
 
 
 

 
G5 Performance Report 

 

It’s all about the bottleneck: determining the performance 
bottleneck of an Apple Power Mac G5, when high performance 

networking is requested 
 

Version 1.0 
 

Niels Visser & Daniël Hilster 
 

University of Amsterdam, Amsterdam, The Netherlands 
 

February 1, 2004 
 

 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 2 

Index 
 

ABSTRACT.........................................................................................................................3 

1. INTRODUCTION.........................................................................................................3 

2. G5 ARCHITECTURE ....................................................................................................4 

2.1 A CLOSER LOOK ........................................................................................................4 
2.1.1 PCI-X...............................................................................................................4 
2.1.2 HyperTransport .................................................................................................4 
2.1.3 System controller ..............................................................................................5 
2.1.4 Frontside bus....................................................................................................5 
2.1.5 Memory ...........................................................................................................6 

3. SETUP........................................................................................................................6 

3.1 OPERATING SYSTEMS..................................................................................................6 
3.2 32BIT VS. 64 BIT......................................................................................................6 
3.3 SYSTEM SETUP .........................................................................................................6 
3.4 INTEL PRO/10GBE ...................................................................................................6 
3.5 CONFIGURING LINUX ..................................................................................................6 
3.6 CONFIGURING MAC OS X ............................................................................................7 

4. BENCHMARKING........................................................................................................7 

4.1 SYSTEM BENCHMARKS: MAC OS X ..................................................................................7 
4.2 SYSTEM BENCHMARK: LINUX .........................................................................................7 

4.2.1 Memperf ..........................................................................................................7 
4.2.2 CacheBench......................................................................................................9 

4.3  SYSTEM BENCHMARKS: MAC OS X & LINUX.......................................................................9 
4.4 NETWORK BENCHMARKS............................................................................................. 10 

4.4.1 Linux network benchmarks ............................................................................... 10 
4.4.2 Mac OS X network benchmarks ......................................................................... 12 

5. FUTURE WORK.........................................................................................................12 

6. CONCLUSION...........................................................................................................12 

7. REFERENCES............................................................................................................14 

8. APPENDIX 1: XBENCH RESULTS...............................................................................16 

 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 3 

Abstract 
Apple recently introduced the G5, a 64 bit personal computer running at speeds up to 2.0 GHz. The 
G5, having high bus and memory speeds, seems perfectly fit to be used in a high speed networking 
environment. In order to determine if the G5 incorporates a bottleneck when performance is 
concerned, a number of tests were conducted on both Linux and Mac OS X 10.3. The tests 
focussed on several aspects of the G5 architecture like memory, network and processor speeds. It 
seems both theoretically and practically the G5 does not have a bottleneck when performance is 
concerned, except for the bandwidth limit of the PCI-X bus which must be used to install a high 
performance network card, the Intel PRO/10GbE. The PCI-X bus limitations, reduces the bandwidth 
of the network card to 8.5 Gigabit/s. However, this theoretical maximum speed of 8.5 Gigabit/s 
was never reached by the NIC during tests, topping at 3.5 Gigabit/s. From our experience we think 
software is the main performance limiting factor. When this is fixed Apple’s G5 should be a suitable 
candidate for high speed networking environments. 

1. Introduction 
Currently the Advanced Internet Research group at the University of Amsterdam is researching 
high speed long distance data transfers over Ethernet using TCP/IP and other transport 
mechanisms. This is done using the NetherLight1 infrastructure, which is partly based upon 10 
Gigabit/s Ethernet. Earlier research2 showed the maximum throughput from memory-to-memory 
using single stream TCP was about 5.22 Gigabit/s. This result was obtained using Intel Itanium2 
and Xeon based systems all equipped with an Intel Pro/10GbE network interface card (NIC) 
connected through a PCI-X slot.   
 
Recently Apple introduced a new generation of their Power Mac systems based upon an exclusively 
for Apple designed version of the IBM PowerPC 970 processor, called the G53. The G5 is a 64 bit 
processor currently running up to a maximum clock speed of 2.0 GHz. Unique feature of the G5 
design is the Frontside Bus (FSB) which runs at half the clock speed. In addition to two G5 
processors, the new Power Mac G5’s are all equipped with one 133 MHz and two 100MHz 64 bit 
PCI-X slots. 
 
Theoretically this architecture allows for high data transfer and processing speeds compared to 
other equally priced systems. Therefore the Advanced Internet Research group is curious if the 
Power Mac G5 can life up to its specifications and is able to produce similar or even better results 
than the Intel Itanium2 systems mentioned earlier. 
 
This curiosity provided an opportunity for two students System & Network Administration to 
research the performance of the G5, thereby focussing on both theoretical and practical  
performance bottleneck these systems possibly have when used for high speed networking. The 
results of this research are described in this document. 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 4 

2. G5 Architecture 
Several components of the G5 are critical to the G5 to obtain high network performance through 
the Intel 10 PRO/GbE network interface card (NIC). Figure 1 shows the architecture of a Power Mac 
G5.  

 
 
 
 
When data is received through the NIC it will travel through the PCI-X bridge (6), to the System 
controller(3) and then can be directly stored to memory (4) or be loaded into a processor by using 
the Frontside bus (1 and 2). When sending data, the same path is followed, only the other way 
around. All of these components can form a bottleneck.  

2.1  A closer look 

Apple provides detailed information and specifications for almost all their hardware, including the 
Power Mac G5. This and other resources were used to research all critical components mentioned 
above in more detail. For each of these components, the findings are listed below.  

2.1.1 PCI-X  

The fastest PCI-X slot available in the Power Mac is clocked at 133 MHz. Both other slots are 
limited to 100 MHz. Although fastest, throughput is still limited to (133.10e6*64=) 8.5 Gigabit/s. 
This certainly is a limiting factor, since the NIC has a maximum throughput of 10 Gigabit/s.  
 
In most of the G5 documentation and white papers Apple states PCI-X has a throughput of 2 
GibiByte/s4 (!). This is only true when you look at the sum of the throughput of all three available 
PCI-slots of the G5. 

2.1.2 HyperTransport 

As can be seen in figure 2, Apple uses a HyperTransport5 bus to connect the System controller, 
PCI-X bridge and I/O controller to each other. HyperTransport technology is developed by 
Advanced Micro Devices (AMD), to provide a high-speed, point-to-point link to interconnect I/O 
devices and controllers on integrated circuit boards. Using HyperTransport links, bandwidths up to 

1+2.  (Dual) Frontside bus 

3. AGP 8x Pro bus/card 

4. System controller 

5. 400 MHz Memory 

6.  PCI-X bridge 

7. I/O controller 

8. Serial-ATA storage 

Figure 1: G5 Architecture4 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 5 

12.8 GibiByte/s are possible. HyperTransport is intended to be used in cases where high bandwidth 
and low latency are necessary, such as networking.  
 

 
 

2.1.3 System controller 

A HyperTransport bus can be used in several different configurations. The G5 is equipped with two 
of them. One is used to connect the System controller, U3 in figure 2, to the PCI-X bridge.  This 
bus consists of two 16 bits wide point-to-point unidirectional paths and uses an 800 MHz clock. 
Since this bus is ‘double pumped’, meaning both rising and falling edge of the clock are used 
(double date rate), bandwidth in each direction is (2*16*800.10e6=) 25.6 Gigabit/s (3,2 
GigaByte/s). The other bus is used to connect the I/O controller to the PCI-X bridge. 
 
So when looking purely to data throughput, the HyperTransport bus between System Controller 
and PCI-X bridge is not a bottleneck. However, data from and to the PCI-X bridge must be 
encapsulated into a communication protocol used by HyperTransport. At the end of the bus that 
same data will have to be rebuild. This process of encapsulating and rebuilding data will most 
certainly have some influence on the data delay to and from the PCI-X slots.  

2.1.4 Frontside bus 

The Frontside bus (FSB) of the Power Mac G5 is something special. First of all the G5 offers two 
Frontside busses, one for each processor. Secondly, the FBS’s works at half the processor’s clock 
speed. So in our case, with a Dual 2.0 GHz G5 system, the FSB’s run at 1.0 GHz. 
 
Both FSB’s consist of two unidirectional 32 bit data paths: one travelling into the processor and the 
other one travelling out of the processor. These two paths can be used simultaneously, which 
implies that each FSB provides a total bandwidth of (2*32/8*1.10e9=) 8 GigaByte/s. Therefore 

Figure 2: Detailed architecture overview6 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 6 

there a data flow of 8 GigaByte/s to and from the processors is possible. Compared to the 
maximum data flow coming from the NIC, 8.5 Gigabit/s, the FSB is most certainly not a bottleneck. 

2.1.5 Memory 

The G5 uses 400 MHz 128 bits DDR memory which, for high performance desktop systems, is 
rather regular nowadays. Double Data Rate (DDR) technology implies both rising and falling edges 
of the clock are used to read or write data. By using a 128 bit interface, it is possible to access two 
banks of DDR-RAM at a time resulting in a total throughput of (2*128/8*400.10e6=) 6.4 
GigaByte/s. 

3. Setup 

3.1  Operating Systems 

While the goal of this project being to achieve the highest possible performance using an Apple G5, 
for comparison reasons it would be wise to test performance under more than one operating 
system. The Apple G5 came with Mac OS X 10.3 preinstalled so this was the default choice for the 
tests. In a previous research2, tests were conducted using the Linux operating system. Although 
not being as widely available for the Power PC platform (in comparison to the x86 platform) 
decided was to also use Linux in the performance tests. Linux distribution of choice is Gentoo Linux 
which offers a Power PC, G5 ready, (Gentoo PPC) flavour and is compiled fully from source allowing 
for better system optimalisation (GCC Flags: -03 –mcpu=powerpc –altivec) than a binary 
distribution.   

3.2  32bit vs. 64 bit 

Traditionally PC operating systems are 32 bit. However, with the G5 Apple has introduced 64 bit 
computing to the desktop and thus setting the need for a 64 bit operating system. To satisfy this  
need Apple launched Mac OS 10.3, also known as Panther, the new, 64 bit ready, version of their 
operating system. However 64 bit in Panther is not as fully supported as Apple claims7. The only 64 
bit “feature” Panther supports is 64 bit addressing, making it possible to address huge amounts of 
memory (up to 17 billion GibiByte).  
 
The Gentoo PPC distribution currently only offers a 32 bit Linux kernel. A 64 bit kernel for PowerPC 
G5 is available from YellowDog Linux8. Together with a 64 bit compiler it becomes possible to use 
64 bit applications running under Linux. 32 bit Linux as well as 64 bit Linux is used in order to 
determine performance differences.  

3.3  System Setup 

In total four Apple Power Mac G5 machines were used. Two of which were setup as a testing 
environment. The two other G5 machines were equipped with 10 Gigabit/s NICs and configured for 
network benchmarks. The 10 Gigabit/s NIC were connected to the G5 via the 64 bit 133 Mhz PCI-X 
slot. 
 
The two G5's to be used for network benchmarking are connected to each other using a back-to-
back connection established using single mode fiber.  

3.4  Intel PRO/10Gbe 

The Intel PRO/10GbE NIC9 was used. This card supports theoretical speeds up to 10 Gigabit/s 
allowing for high speed data transfer using the Ethernet standard. Its support for jumbo frames 
(MTU size up until 16 KibiByte) enhances performance even further. Also it adds support for NAPI, 
a system for better network performance by combining polling for heavy loads with interrupts for 
light loads.  

3.5  Configuring Linux 

The systems were installed using the Gentoo Linux PPC G5 live cd10. Instead of using the Linux 
2.6.0-test9 kernel supplied with the live cd, we opted for using a newer release, Linux 2.6.1-rc1-
test1 because it had support for G5 power management to silence the fans. Linux was installed 
according to Gentoo Linux PPC installation instructions11. Hereby some problems were encountered 
and solved. An installation howto can be found on this project's website12. We also upgraded some 
of the existing tools and packages. Packages updated were: glibc-2.3.2-r3, binutils-2.14-r6 and 
gcc-3.2.3-r3. 
 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 7 

To speedup the kernel we tried minimising it as much as possible by eliminating all unnecessary 
features and thus keeping functionality to a minimum. Support for the Intel PRO/10GbE NIC is 
available in the Linux 2.6 kernel by default (make menuconfig, and then Device drivers-> 
Networking support -> Ethernet 10000 Mbit). Support was enabled and compiled directly in the 
kernel (no module). We tried compiling the driver with NAPI enabled (again look in the 
menuconfig) which succeeded. However, the machines were not able to boot after that, hanging 
when bringing up the Ethernet interfaces.  
 
Before compiling a 64 bit Linux kernel could be tried, a compiler able to compile 64 bits binaries 
had to be created.  Documentation on the Linux PPC 64 site13 was used in order to accomplish this. 
Unfortunately creating a 64 bit compiler was not successful, because of some compilation errors we 
were not able to resolve. These errors were caused by a mismatch between the 64 bit source patch 
and the gcc sources to be patched.  

3.6  Configuring Mac OS X 

A basic install of Mac OS X 10.3 was performed. When installation was finished the systems were 
brought up to date, using Apple software update. Additionally Apple Developer Tools July 2002 
were installed. Mac OS X does not offer native support for the Intel PRO/10GbE NIC. Intel 
themselves also do not offer support for Mac OS X. A solution to this problem was found in a small 
Minnesota based company called Small Tree Communications14. This company offers a driver and 
support for the Intel PRO/10GbE on the Mac OS X platform.  

4. Benchmarking 
In order to determine the bottleneck of the Apple Power Mac G5 a number of benchmarks were 
performed which were split up in two categories: system benchmarks and network benchmarks. 
Where possible these benchmarks were executed on both operating systems, Linux and Mac OS X 
Panther.  

4.1  System benchmarks: Mac OS X 

To determine the system performance of the G5 running Mac OS 10.3, the Xbench benchmark was 
used. Xbench15 was developed to provide a comprehensive benchmarking solution for Mac OS X 
and is therefore only available for Mac OS X. It consists of different performance tests like a 
memory, CPU and graphic tests. All tests of the Xbench benchmark were run with the exception of 
the User Interface Test.  
 
Apple's G5 incorporates a technique called “bus slewing” which is used to dynamically alter the 
system's performance to whatever level needed. According to Apple leaving the performance 
setting on automatic (which in fact is automatic bus slewing) will have no impact on performance 
(these settings can be found under System Preferences -> Energy Saver -> Options). However, 
Xbench tests show otherwise. The overall CPU performance score increased by nearly 45% when 
using the highest performance setting. Also, the highest setting had some impact on memory and 
multi threading scores. Overall the performance of the automatic setting was more or less 
comparable with the highest setting with a difference of only 2.5%.  
 
Memory speed as tested by Xbench resulted in a maximum memory fill rate of 2.7 GibiByte/s and a 
maximum memory copy rate of 1.4 GibiByte/s. All memory stream tests (Copy, Scale, Add and 
Triad) scored around 2 GibiByte/s. Full results of the Xbench test can be found in Appendix 1. 
 
The theoretical memory bandwidth of 6.4 GigaByte/s is never reached by the Xbench benchmark. 
However the values we did obtain show no bottleneck for memory performance when using a 
single memory operation (such as memcopy). When multiple memory operations are needed to 
obtain high network performance, memory performance may become a bottleneck.  

4.2  System benchmark: Linux 

Two system benchmarks were performed on Linux, CacheBench and Memperf. These should give a 
more detailed look at the memory performance. 

4.2.1 Memperf 

 “Memperf measures the memory bandwidth in a 2 dimensional way. First it varies the block size 
which provides information of the throughput in different memory system hierarchy’s (different 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 8 

cache levels). Secondly it varies the access pattern from contiguous blocks to different strided 
accesses.” 16 

 
Strided access refers to a series of I/O requests, where each request is for the same number of 
bytes, and the file pointer is incremented by the same amount between each request. Contiguous 
blocks refer to the situation where data is allocated as a complete block, without leaps.  
 
The Memperf benchmark itself consists of 4 different memory performance tests. It starts with a 
load test, figure 3, to measure the speed at which data can be loaded from memory. This is done 
for different block sizes and different strides.  
 

1 3 5 7
12 16 31 48 64

12
7

19
2

0.5 K

4 K32 K

256 K

2 M

0

5000

10000

15000

20000

25000

30000

35000

B
an

dw
id

th
 [M

eb
iB

yt
e/

s]

Stride

Workload

Load Sum Performance

 

1 3 5 7
12 16 31 48 64

12
7

19
2

0.5 K

4 K32 K

256 K

2 M

0

2000

4000

6000

8000

10000

12000

14000

B
an

dw
id

th
 [M

eb
iB

yt
e/

s]

Stride

Workload

Constant store performance

 

 
The constants store test does the opposite of the load test. Instead of loading from memory, data 
is now stored to memory, using the same differences in block sizes and strided, see figure 4. 
 
The load copy test combines the load and constant store test. Memory is loaded in a strided way 
and stored contiguous, as can be seen in figure 5.  
 

1 3 5 7
12 16 31 48 64

12
7

19
2

0.5 K

4 K32 K

256 K

2 M

0

5000

10000

15000

20000

25000

30000

35000

B
an

dw
id

th
 [M

eb
iB

yt
e/

s]

Stride

Workload

Load Copy Performance

 

1 3 5 7
12 16 31 48 64

12
7

19
2

0.5 K

4  K32 K

256 K

2 M

0

5000

10000

15000

20000

25000

30000

35000

B
an

dw
id

th
 [M

eb
iB

yt
e/

s]

Stride

Workload

Copy Store Performance

 

 
The last test, copy store, uses contiguous access to load data from memory and strided access to 
write it back. See figure 6. 
 
Memperf shows the memory performance of the G5 in much more detail than the previously 
mentioned Xbench. Looking at the results of Memperf one can conclude that maximum memory 
bandwidth is reached when using small block sizes. When block size increases, memory bandwidth 
decreases. When block sizes becomes too large data can no longer be stored in cache memory, so 
main memory (RAM) must be used. Using only one memory operation (store or load) bandwidth 
suddenly drops after 256 KibiByte. During the last two tests where two memory operations (load 
and store) are performed, bandwidth drops after 64 KibiByte. Peak results show a maximum 
bandwidth of around 20 GibiByte/s and drops to around 2 GibiByte/s. Needless to say this is not a 
bottleneck when the needed network performance is concerned. However, when multiple memory 
operations with large (> 256 KibiByte) block sizes are needed for high network performance, 
memory bandwidth may not be sufficient. 

Figure 3: Memperf Load Sum Figure 4: Memperf Constant Store 

Figure 5: Memperf Load Copy Figure 6: Memperf Copy Store 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 9 

4.2.2 CacheBench 

 “CacheBench is a benchmark designed to evaluate the 
performance of the memory hierarchy of computer 
systems. Its specific focus is to parameterize the 
performance of possibly multiple levels of cache present 
on and off the processor. By performance, we mean raw 
bandwidth in megabytes per second. Of interest to us is 
the ability of the cache to sustain large, unit-stride, 
floating point workloads.”17 

 
CacheBench encapsulates a total of 8 different tests. Two 
of them resulted in some very interesting findings. These 
were the memcopy and memset tests. It seems for small 
block sizes memcopy and memset tests are conducted 
using cache memory of the processors. When block sizes 
are kept below 256 Kbytes memcopy can be as fast as 
14 GibiByte/s and memset operations limited to 256 
KibiBytes run at a maximum of 7.5 GibiByte/s. Going 
beyond these block sizes, bandwidth drops rapidly due to 
reaching the maximum cache size so RAM memory must 
be used.  
 
Results from this test do not show a bottleneck, when 
memset and memcopy, see figure 7 & 8, operations are 
concerned and block sizes are kept below 256 KibiByte. 
Also, if data is copied from main memory instead of 
cache no bottleneck is found and performance is 
sufficient. This is only true if single memory operations 
are concerned.  

4.3  System benchmarks: Mac OS X & Linux 

Ubench18 consists of two tests: a CPU and a memory benchmark. The CPU benchmark concurrently 
executes mathematical integer and floating-point calculations. Ubench will spawn about 2 
concurrent processes for each CPU available on the system. This ensures all available CPU speed is 
used. Thereafter Ubench executes the memory test, in which memory allocation and memory to 
memory copying operations are performed concurrently. This is called Ubench MEM benchmark. As 
with the CPU test, it uses all available CPU’s. 
 
Ubench tests both CPU and memory performance. Unfortunately it does not produce “real” values 
instead it produces a number which can be used to compare your system with that of others. Also 
it produces an “average bench number” used to give an indication of overall system performance. 
The comparison table below shows our results as well as some results from other systems, 
obtained from the Ubench website18. 
 

System CPU bench Memory bench Avg. bench 

Apple Dual G5 2.0GHz 
Mac OS X 10.3 

181965 140867 161416 

Apple Dual G5 2.0GHz 
Linux 2.6.1-rc1-test1 

175849 168207 172028 

Dual Intel Xeon 2.4GHz 
FreeBSD 4.7 

163207 132191 147699 

Dual AMD 2200+ 
Linux 2.4.18-SMP 

115926 117584 116785 

Table 1: Ubench results 
 
As far as these results can be seriously interpreted one can say the Linux operating system slightly 
outperforms Mac OS X on the G5. 

Figure 7: CacheBench memcpy results 

Figure 8: CacheBench memset results 

Memcpy Performance

0
2
4
6
8

10
12
14
16

25
6

76
8

2.0
48

6.1
44

16
.38

4

49
.15

2

13
1.0

72

39
3.2

16

1.0
48

.576

3.1
45

.728

8.3
88

.608

Block size (bytes)

Ba
nd

w
id

th
 (G

ig
aB

yt
es

/s
)

Memset performance

0
1
2
3
4
5
6
7
8

42
4

17
04

68
24

27
30

4

10
92

24

43
69

04

17
47

62
4

69
90

50
4

27
96

20
24

1,1
2E

+08

4,4
7E

+08

Block size (bytes)

Ba
nd

w
id

th
 (G

ig
aB

yt
es

/s
)



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 10 

4.4  Network benchmarks 

To test the network performance two tools were used, Iperf and Netperf. The tests were conducted 
under both Linux and Mac OS X. 

4.4.1 Linux network benchmarks 

In order to get maximum network performance we used the sysctl settings shown in figure 9. Also 
PCI-X burst size was increased from 512 bytes to 4096 bytes. When testing with 1500 byte MTU 
size this showed only a small increase in performance. After increasing the MTU size to a maximum 
of 16 KibiByte and performing tests on both 9000 and 15900 byte MTU sizes the performance did 
increase.  
 
While this project's goal being to determine the system performance bottleneck the majority of 
tests were performed using optimized TCP, MTU and burst size settings.  
 
Netperf 

“Netperf19 is a benchmark that can be used to measure various aspects of network performance. 
It's primary focus is on bulk data transfer and request response performance using either TCP or 
UDP and the Berkeley sockets interface. There are optional tests available to measure the 
performance of DLPI, Unix Domain Sockets, the Force ATM API and the HP HiPPI LLA interface.”20 
“However, no shaping algorithms have been implemented. Therefore, the value of the UDP test 
type is limited, because due to the lack of shaping, the sender will often overflow the receiver, 
because sending is easier than receiving.”21 

 
Netperf was used as a reference to test network performance without optimised TCP and PCI-X 
burst settings. Typical speed without optimisation is around 900 Mbps. This result is quite poor, 
especially when the theoretical maximum speed (8.5 Gigabit/s) of the Intel PRO/10GbE is kept in 
mind, it barely even reaches 1 Gigabit/s.  
 
To measure kernel performance of a non-tuned TCP stack on both Linux and Mac OS 10.3, a 
localhost test was performed using Netperf. Mac OS reached 3 Gigabit/s, while Linux performed 
much better topping at 6.5 Gigabit/s. This is an interesting result. It seems that Linux’ standard 
configuration allows for higher network performance than Mac OS 10.3. 
 

# to modify the MMRBC field in PCI-X configuration space to 
# increase transmit burst lengths on the bus. 
/sbin/setpci -d 8086:1048 e6.b=2e 
                                                                                                                           
#increase the MTU 
/sbin/ifconfig eth0 mtu 16000 
                                                                                                                           
# Following sysctl variables are changed using sysctl command 
# for really big buffers 
net.core.rmem_max = 33554432 
net.core.wmem_max = 33554432 
                                                                                                                           
# leave the default low 
net.core.rmem_default = 65536 
net.core.wmem_default = 65536 
                                                                                                  
net.core.optmem_max = 33554432 
                                                                                                                           
# increase Linux autotuning TCP buffer limits 
# 32M 
net.ipv4.tcp_rmem = 4096 87380 33554432 
net.ipv4.tcp_wmem = 4096 65536 33554432 
net.ipv4.tcp_mem = 33554432 33554432 33554432 
                                                                                                                           
net.ipv4.tcp_timestamps = 0 
net.ipv4.tcp_sack = 0 
                                                                                                                           
# suggested by for high speed flows 
net.core.mod_cong = 2800 
net.core.lo_cong = 1000 
net.core.no_cong = 200 
net.core.no_cong_thresh = 2900 
net.core.netdev_max_backlog = 3000000                                                                                       
 Figure 9: Linux sysctl settings 

 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 11 

Iperf 
“Iperf22 is a tool for measuring maximum TCP and or UDP bandwidth associated with a link, 
reminiscent of ttcp and nettest. It has been written to overcome the shortcomings of those ageing 
tools. It attempts to throttle a network with TCP or UDP traffic - discovering the maximum transfer 
throughput (bandwidth) between two nodes in a network, without monitoring in-between 
nodes/routers. It can also utilise parallel-streamed transfers if the appropriate libraries are installed 
and have the benefit of using user-specified window size for network transfers.”23 

 
“…Iperf basically tries to send as much information down a connection as quickly as possible 
reporting on the throughput achieved. This tool is especially useful in determining the volume of 
data that links between two machines can supply.”23 “Because Iperf has implemented shaping 
algorithms its UDP test is more reliable then that of Netperf.”21  

 
In contradiction to Netperf, the Iperf toolkit consist of a combined client/server program named 
Iperf. This implies that, in contradiction to Netperf, the server side options should be specified 
directly to the server version of the program. All server oriented output will not send back to the 
client either, but remain at the server console. This also implies that only a test socket will be 
opened and no control socket. 
 
Iperf TCP 
To test network performance using Iperf we used a number of settings. Using the “-l” option buffer 
length is set to 8000 bytes. Previous tests2 showed this is quite sensitive. All tests were conducted 
with two different MSS (maximum segment size) sizes, 9000 and 15900, specified with the “-M” 
option. Additionally various window sizes ranging from 64 KibiBytes to 16 MebiBytes were used. 
Unfortunately due to a bug in the Linux TCP stack it automatically doubles all window sizes so this 
should be accounted for when interpreting the results. We tested using multiple streams (16, 8 and 
4 streams) as well as a single stream using the “-P” option. Length for all tests was set to 60 
seconds.  
 

Iperf - TCP MSS=9000 bytes

0
0,5

1
1,5

2
2,5

3
3,5

4

128 2048 4096 8192 16384 32768

TCP Window Size (bytes)

Th
ro

ug
hp

ut
 (G

ig
ab

it/
s)

16 Streams
8 Streams
4 Streams
1 Stream

 

Iperf - TCP MSS=15900 btyes

0
0,5

1
1,5

2
2,5

3
3,5

4

128 2048 4096 8192 16384 32768

TCP Window Size (bytes)

Th
ro

ug
hp

ut
 (G

ig
ab

it/
s)

16 Streams
8 Streams
4 Streams
1 Stream

 

 
Figures 10 and 11 show the results of the TCP tests. Maximum achieved performance is 3.5 
Gigabit/s with 16 simultaneous TCP streams using a MSS of 9000. It seems that a TCP window size 
of about 8 MebiByte is optimal (for multiple streams); any sizes beyond that do not seem to affect 
performance much.  
 
Iperf UDP 
Figures 12 and 13 show the results of the UDP tests. The results displayed here are the results 
from the sender which are typically much higher then the receiver results.  

Figure 10: Iperf TCP results, MSS of 9000 bytes Figure 11: Iperf TCP results, MSS of 15900 bytes 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 12 

UDP Client MSS=9000 bytes 

0
1
2
3
4
5
6
7
8
9

128 2048 4096 8192 16384 32768

Window Size (bytes)

Th
ro

ug
hp

ut
 (G

ig
ab

it/
s)

16 Streams
8 Streams
4 Streams
1 Stream

UDP Client MSS=15900 bytes

0
1
2
3
4
5
6
7
8
9

128 2048 4096 8192 16384 32768

Window Size (bytes)

Th
ro

ug
hp

ut
 (G

ig
ab

it/
s)

16 Streams
8 Streams
4 Streams
1 Stream

 

 
Maximum speed attained is 7.8 Gigabit/s which effectively more then doubles the TCP speeds 
attained. At this sending speed maximum receiving speed is “only” 4.1 Gigabit/s, a difference of 
more than 3 Gigabit/s or 47%! There seems to be no logical explanation for such large a 
difference.  

4.4.2 Mac OS X network benchmarks 

In order to get maximum network performance, the sysctl settings in figure 14 were used.  

Figure 14: Mac OS 10.3 sysctl settings 
 
Increasing the PCI-X burst size under Mac OS X did not work. The MTU size however, was changed 
to 16000 bytes. Unfortunately, when running tests with these optimised settings the system 
crashed, especially when using larger window size (> 1 MebiByte). Strange thing is that only the 
client system would crash, the server just kept running and functioning normally. We did manage 
to test with Iperf however using only smaller window sizes (< 1 MebiByte). Virtually the same 
settings as in Linux were used with this Iperf test. 
 
The setting used for MSS size (9000 and 15900) caused some problems. Although specified at 
higher levels, the system would still revert back to it's default MTU size of 1500 bytes. This will 
surely have a significant impact on performance.  
 
The obtained results were quite poor and there were not enough results to produce a usable graph. 
Maximum attained speed was 1.4 Gigabit/s using a 1 MebiByte TCP window size and 16 TCP 
streams. Increasing the window size to 1.75 MebiByte didn’t improve the bandwidth.  

5. Future work 
To fully benefit from the potential power of the Apple Power Mac G5 a true 64 bit environment will 
have to be used. For Linux a fully 64 bit development environment should be made with which 64 
bit kernel and applications can be compiled. Another point of interest should be enabling NAPI 
support. 
 
At the Mac OS X side it would certainly pay off to look at the crashing problem so that better TCP 
optimisations can be used. The MTU size problem will also have to be solved.  

6. Conclusion 
During this project we focussed on determining the bottleneck of the Apple Power Mac Dual G5 2.0 
GHz as far as network performance is concerned. Theoretically speaking, the only true bottleneck 
of the Apple Power Mac G5 is the speed of the PCI-X bus which is limited to 8.5 Gigabit/s. 
 

Figure 12: Iperf UDP results, MSS 9000 bytes Figure 13: Iperf UDP results, MSS 15900 bytes 

#increase the MTU 
/sbin/ifconfig eth0 mtu 16000 
                                                                                                                           
# Following sysctl variables are changed using sysctl command 
# for really big buffers 
kern.ipc.maxsockbuf = 33554432 
net.inet.tcp.mssdflt = 16000 
 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 13 

Tests of the G5's memory speeds showed no real bottleneck when memory operations use small 
block sizes (< 256 KibiByte). Operations using larger block sizes result in a performance drop to 2 
GibiByte/s. If high speed networking relies heavily on memory operations using large block sizes, 
memory performance may become a bottleneck.  
 
Although theoretically the Apple G5 should be able to perform well in high performance networking 
environments, practical results showed otherwise. Maximum TCP speed attained using the Linux 
operating system was only 3.5 Gigabit/s while testing under Mac OS X 10.3 was difficult due to a 
crashing problem. The UDP test on the contrary showed the real power of the G5 topping at 7.8 
Gigabit/s, nearly the theoretical maximum of the PCI-X bus! 
 
Poor TCP performance and high UDP performance shows the performance bottleneck of the G5 
does not lie in it's hardware. More likely the performance limiting factor is software. 



 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 14 

7. References 
 
1: NetherLight infrastructure 
http://www.surfnet.nl/innovatie/netherlight/ 
 
2: A new look at Ethernet: Experiences from 10 Gigabit Ethernet End-to-End network between 
Amsterdam and Geneva.  
http://nikhef.antony.nl/writing/10-wan-phy-cern.pdf 
 
3: Apple Power Mac G5 
http://www.apple.com/powermac/ 
 
4: Power Mac G5 Technology and Performance Overview, November 2003 
http://www.apple.com/powermac/pdf/PowerMacG5_TO_111803.pdf  
 
5: HyperTransport™ Technology I/O Link: A High-Bandwidth I/O Architeture 
 http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/HyperTransport_IO_Link_Whitepaper_25012
A.pdf 
 
6: Power Mac G5 Developer Note: Block Diagram and Buses 
http://developer.apple.com/documentation/Hardware/Developer_Notes/Macintosh_CPUs-
G5/PowerMacG5/2Architecture/chapter_3_section_2.html 
 
7: Thoughts on Mac OS X 10.3: Counting the Bits of a Panther 
http://www.osnews.com/story.php?news_id=4009 
 
8: G5 support Yellow Dog Linux 
http://www.terrasoftsolutions.com/products/apple/g5s.shtml 
 
9: Intel PRO/10GbE LR Server Adapter 
http://www.intel.com/network/connectivity/products/pro10GbE_LR_server_adapter.htm 
 
10: Gentoo G5 
http://www.gentoo.org/news/20031111-g5.xml 
 
11: Gentoo Linux/PPC 1.4 Installation Instructions 
http://www.gentoo.org/doc/en/gentoo-ppc-install.xml 
 
12: Gentooo G5 installation guide 
http://www.os3.nl/~visser2d/g5install.html 
 
13: PPC64 toolchain construction 
http://linuxppc64.org/toolchain.shtml 
 
14: Small Tree 
http://www.small-tree.com/ 
 
15: Xbench 
http://www.xbench.com 
 
16: Memperf 
http://www.cs.inf.ethz.ch/CoPs/ECT/ 
http://www.cs.inf.ethz.ch/CoPs/ECT/README 
 
17: Cachebench 
http://www.cs.utk.edu/~london/papers/cachebench.ps 
http://icl.cs.utk.edu/projects/llcbench/cachebench.html 
 
18: Ubench 
http://www.phystech.com/download/ubench.html 
 

http://www.surfnet.nl/innovatie/netherlight/
http://nikhef.antony.nl/writing/10-wan-phy-cern.pdf
http://www.apple.com/powermac/
http://www.apple.com/powermac/pdf/PowerMacG5_TO_111803.pdf
http://www.amd.com/us
http://developer.apple.com/documentation/Hardware/Developer_Notes/Macintosh_CPUs
http://www.osnews.com/story.php?news_id=4009
http://www.terrasoftsolutions.com/products/apple/g5s.shtml
http://www.intel.com/network/connectivity/products/pro10GbE_LR_server_adapter.htm
http://www.gentoo.org/news/20031111-g5.xml
http://www.gentoo.org/doc/en/gentoo-ppc-install.xml
http://www.os3.nl/~visser2d/g5install.html
http://linuxppc64.org/toolchain.shtml
http://www.small-tree.com/
http://www.xbench.com
http://www.cs.inf.ethz.ch/CoPs/ECT/
http://www.cs.inf.ethz.ch/CoPs/ECT/README
http://www.cs.utk.edu/~london/papers/cachebench.ps
http://icl.cs.utk.edu/projects/llcbench/cachebench.html
http://www.phystech.com/download/ubench.html


 

G5 Performance Report – Version 1.0 – By Niels Visser & Daniël Hilster – February 1, 2004 15 

19: Netperf home 
http://www.netperf.org/netperf/NetperfPage.html 
 
20: Building a Network 
http://www.qsl.net/n9zia/wireless/page08.html 
 
21: Network Test Tools 
http://carol.wins.uva.nl/~jblom/datatag/wp3_1/tools/test_tools.html 
 
22: Iperf 
http://dast.nlanr.net/Projects/Iperf/ 
 
23: Iperf 
http://www.hep.ucl.ac.uk/~ytl/monitoring/iperf/description.html 
 
Definitions of the SI unit: The binary prefixes 
http://www.physics.nist.gov/cuu/Units/binary.html 
 
NAPI and other 10 GbE research 
http://www.sc-conference.org/sc2003/paperpdfs/pap293.pdf 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.netperf.org/netperf/NetperfPage.html
http://www.qsl.net/n9zia/wireless/page08.html
http://carol.wins.uva.nl/~jblom/datatag/wp3_1/tools/test_tools.html
http://dast.nlanr.net/Projects/Iperf/
http://www.hep.ucl.ac.uk/~ytl/monitoring/iperf/description.html
http://www.physics.nist.gov/cuu/Units/binary.html
http://www.sc-conference.org/sc2003/paperpdfs/pap293.pdf


 

 16 

8. Appendix 1: Xbench results 
 
PowerSaving settings: Automatic 
 
Results 190.61  
 System Info   
  Xbench Version   1.1.3 
  System Version   10.3.2 (7D24) 
  Physical RAM   4096 MB 
  Model    PowerMac7,2 
  Processor   PowerPC 970x2 @ 2.00 GHz 
   L1 Cache  64K (instruction), 32K (data) 
   L2 Cache  512K @ 2.00 GHz 
   Bus Frequency  1 GHz 
  Video Card   ATY,RV350 
  Drive Type   ST3160023AS 
  CPU Test   134.65  
  GCD Loop   91.30  3.57 Mops/sec 
  Floating Point Basic  207.99  752.17 Mflop/sec 
  AltiVec Basic   89.80  2.61 Gflop/sec 
  vecLib FFT   145.93  2.27 Gflop/sec 
  Floating Point Library  295.45  11.83 Mops/sec 
  Thread Test   188.91  
  Computation   132.62  1.79 Mops/sec, 4 threads 
  Lock Contention  328.24  4.12 Mlocks/sec, 4 threads 
  Memory Test   302.88  
  System    331.31  
   Allocate  724.33  472.48 Kalloc/sec 
   Fill   262.58  2090.14 MB/sec 
   Copy   258.66  1293.29 MB/sec 
  Stream    278.95  
   Copy   234.45  1713.80 MB/sec [G5] 
   Scale   240.49  1774.83 MB/sec [G5] 
   Add   327.57  2096.43 MB/sec [G5] 
   Triad   349.28  2134.10 MB/sec [G5] 
  Quartz Graphics Test  261.06  
   Line   255.65  6.51 Klines/sec [50% alpha] 
   Rectangle  226.28  15.92 Krects/sec [50% alpha] 
   Circle   236.23  5.45 Kcircles/sec [50% alpha] 
   Bezier   227.10  2.47 Kbeziers/sec [50% alpha] 
   Text   457.53  7.46 Kchars/sec 
  OpenGL Graphics Test  176.43  
   Spinning Squares 176.43  123.46 frames/sec 
  Disk Test   94.39  
  Sequential   84.76  
   Uncached Write 149.78  62.44 MB/sec [4K blocks] 
   Uncached Write 136.08  55.72 MB/sec [256K blocks] 
   Uncached Read  76.76  12.15 MB/sec [4K blocks] 
   Uncached Read  49.65  20.06 MB/sec [256K blocks] 
  Random   106.50  
   Uncached Write 98.27  1.47 MB/sec [4K blocks] 
   Uncached Write 109.44  24.68 MB/sec [256K blocks] 
   Uncached Read  100.12  0.66 MB/sec [4K blocks] 
   Uncached Read  121.08  24.92 MB/sec [256K blocks]



 

 17 

PowerSaving: Maximum performance 
 
Results 195.32  
 System Info   
  Xbench Version   1.1.3 
  System Version   10.3.2 (7D24) 
  Physical RAM   4096 MB 
  Model    PowerMac7,2 
  Processor   PowerPC 970x2 @ 2.00 GHz 
   L1 Cache  64K (instruction), 32K (data) 
   L2 Cache  512K @ 2.00 GHz 
   Bus Frequency  1 GHz 
  Video Card   ATY,RV350 
  Drive Type   ST3160023AS 
  CPU Test   194.33  
  GCD Loop   117.98  4.61 Mops/sec 
  Floating Point Basic  319.18  1.15 Gflop/sec 
  AltiVec Basic   137.69  4.00 Gflop/sec 
  vecLib FFT   224.69  3.49 Gflop/sec 
  Floating Point Library  415.50  16.63 Mops/sec 
  Thread Test   20985  
  Computation   152.53  2.06 Mops/sec, 4 threads 
  Lock Contention  336.23  4.22 Mlocks/sec, 4 threads 
  Memory Test   323.73  
  System    381.89  
   Allocate  740.54  483.06 Kalloc/sec 
   Fill   341.92  2721.69 MB/sec 
   Copy   279.28  1396.39 MB/sec 
  Stream    280.95  
   Copy   244.20  1785.12 MB/sec [G5] 
   Scale   243.23  1795.03 MB/sec [G5] 
   Add   320.98  2054.27 MB/sec [G5] 
   Triad   342.95  2095.43 MB/sec [G5] 
  Quartz Graphics Test  280.07  
   Line   264.25  6.73 Klines/sec [50% alpha] 
   Rectangle  257.27  18.10 Krects/sec [50% alpha] 
   Circle   261.03  6.02 Kcircles/sec [50% alpha] 
   Bezier   234.91  2.55 Kbeziers/sec [50% alpha] 
   Text   477.67  7.79 Kchars/sec 
  OpenGL Graphics Test  188.89  
   Spinning Squares 188.89  132.18 frames/sec 
  Disk Test   112.94  
  Sequential   121.38  
   Uncached Write 167.34  69.76 MB/sec [4K blocks] 
   Uncached Write 126.30  51.72 MB/sec [256K blocks] 
   Uncached Read  84.83  13.43 MB/sec [4K blocks] 
   Uncached Read  137.49  55.55 MB/sec [256K blocks] 
  Random   105.59  
   Uncached Write 96.14  1.44 MB/sec [4K blocks] 
   Uncached Write 107.78  24.31 MB/sec [256K blocks] 
   Uncached Read  100.03  0.66 MB/sec [4K blocks] 
   Uncached Read  121.87  25.08 MB/sec [256K blocks] 
 


