IPv6 Monitoring web services
Scalability, Reliability and Robustness

Analytical Server Project
Masters programme on System and Network Administration
University of Amsterdam, the Netherlands

http://pisa.toscana.os3.nl:8080/"jvb/6net/welcome.html

Jeroen van Beek Gert Jan Verhoog
Jvb@0s3.nl gjiv@os3.nl

2nd February 2004

Abstract

During a course on Web Servidefor the masters programme on System
and Network Administratiochseveral students developed web services and
clients [] to visualise the number of advertised IPv6 prefixes on the Inter-
net over time, providing an indication of the growth of the next-generation
network layer of the Internet, which is based on Internet Protocol version
6. The current implementation of these web services has several drawbacks.
Firstly, it is unclear whether the current web services are able to handle a
large number of clients. Secondly, the web services are dependent on a num-
ber of external programs, among which are certain unix tools and a specific
database implementation, thus limiting possibilities for easy deployment of
the web services on other servers. The third problem is that the current web
services have crashed several times for unknown reasons. Finally, we would
like to expand the functionality of the web services. In this document, we
attempt to analyse the necessary steps to increase the scalability, flexibility
and robustness of the web services and in what way we could expand their
functionality.

'Project Web Services, fall 2003
2University of Amsterdam, the Netherlanditp://www.0s3.nl/

http://pisa.toscana.os3.nl:8080/~jvb/6net/welcome.html
mailto:jvb@os3.nl
mailto:gjv@os3.nl
http://www.os3.nl/

Contents

1

Background

11
1.2

Informationflow
Elements

Goals

2.1
2.2
2.3
2.4

Availability
Scalability.
Flexibility
Datalntegrity.

Realization

3.1
3.2
3.3
3.4

Availability
Scalability.
Flexibility
Datalntegrity.

Planning

4.1
4.2
4.3
4.4

4.5

Setting up a development environment
Researching needed technologies.
Porting of existing functionality.
‘Must Have's”
4.4.1 Integrity of whois information.
4.4.2 Integrity of BGP table information.
4.4.3 More efficient databaseuse
“CouldHave's”

Conclusion

51
5.2
5.3
5.4
55

Realization
UsingJdava
Clientimplementation.
Multi-homed networks.
PersonalNotes.,

Web Service Java Interface

Used Database Tables

B.1
B.2
B.3
B.4

table6necount.
table6nemain
table 6netwhoisasinfo. L.
table 6netwvhois prefixinfo oL

Deliverables

13

14
14
14
14
15

16

1 Background

The Internet consists of a large number of interconnected networks. Packets of in-
formation flow from one network to another via devices knowroasers Routers

act like air traffic controllers for the Internet: They know which networks a packet
has to travel through in order to reach its destination. Also, a router decides the
path a packet has to follow. Internet providavertisethe networks under their
control to other providers and network administrators, informing them of the net-
works that should be reachable on the Internet. The providers negotiate their traffic
exchange with others in so-calledering agreemenf<].

The internet providers exchange this routing information usingBbeler
Gateway Protocglor BGP for short?, 3]. Routers that use BGP maintain a list
of IP? prefixe$ that determines reachability between internet providersiwer
tonomous System&ach BGP router that is connected to the Internet maintains a
full list of network prefixes in it88GP table By looking at one router’'s BGP table,
you get an idea of the number of networks on the entire Internet.

Currently, the BGP table for the IP version 4, or IPv4, Internet, contains roughly
125.000 networks. The BGP table for the IPv6 network, which is the network layer
for the next generation of the Internet, contains slightly less than 500 networks.
This number is growing.

The IPv6 web services software visualises the growth of the IPv6 Internet by
examining the IPv6 BGP table daily. The software acquires the BGP data from
publicly accessible BGP route servers, so-callmuking glasses The web ser-
vices provide functions to access this information. In addition to this, functions
are available to retrieve provider names and locations for AS-numbers and net-
work prefixes. This information is retrieved from sevesdloisregistries: 6Bong
Apnic®, Arin’, Lacni@ and Ripé

1.1 Information flow

The IPv6 web services process information from various sources and deliver it to
its clients. The flow of information is as follows:

1. the parser connects to a looking glass router and retrieves a BGP table;

2. the parser filters out data that is irrelevant for the web services software;

3Internet Protocol, the network layer of the Internet

“a network prefix, “2001:610:148::/48” for example, denotes a network that consists of all IP
addresses starting with “2001:610:148:”. The example prefix denotes the network containing IP
address of the www.6net.org webserver, “2001:610:148:dead:210:18ff:fe02:38".

Shttp://www.6bone.net

Shttp://www.apnic.net

"http://www.arin.net

8http://www.lacnic.net

®http://www.ripe.net

http://www.6bone.net
http://www.apnic.net
http://www.arin.net
http://www.lacnic.net
http://www.ripe.net

Whois
registries

3

BGPInfo
web
service

WhoisInfo
web
service

web services

Figure 1: Information flow in the web services software

3. the parser stores the processed data in a database. These three steps are
executed once a day.

4. The web services wait for incoming requests from clients;

5. the web services retrieve the requested information from the database and/or
whois registries, process this information and return the results to a client.

The information flow from BGP router and wois registries to web services clients
is illustrated in figurel.

1.2 Elements

Based on the previous section, we identify the following elements that make up the
web services software:

e One or more_ooking GlasBGP router servers

e Parser software that stores the filtered BGP data in a database

e a database to hold the BGP information

e web service functions that retrieve and process stored information from the
database

e web service functions that retrieve information from whois registries
e aserver that provides access to the web services

e client applications that visualize the information they request from the web
services.

2 Goals

The first implementation of the IPv6 web servicésWas developed for a course
on Web Services for the masters programme on System and Network Adminis-
tration by a group of students. The software was developed using Ryl
SOAP4R [] for the web services, Obective-C/Cocoa for the Mac OSPclient,
MySQL for the database’] and PHP for the web client and BGP parser]|

We plan to improve this implementation in four areas: Availability, Scalability,
Flexibility and data integrity.

2.1 Availability

Users of the web services should be able to access the functionality anytime, so the
web services should be available all the time. The ruby implementation of the web
services crashed a few times for unknown reasons. A source of the problems could
be that the SOAP implementation for Ruby, SOAP4R, or the server, WebRICK,
have not matured yet. We believe we could improve the availability of the web
services by developing them using proven, mature technologies for programming
language, SOAP server, and database systems.

2.2 Scalability

Scalability means how well a solution to some problem will work when the size
of the problem increases. The IPv6 web services will be publicly available, for an
indefinite time. This means that the software should be able to handle an increas-
ing number of requests per time unit and a growing BGP table. We believe good
scalability will only be possible if the web services are designed with this idea
in mind. The core of the web services consists of a database system and SOAP
functionality. The database must be able to handle an adequate number of trans-
actions. The SOAP library wraps, transports and unwraps datastructures in XML
format, which is fairly processor-intensive. Using a good SOAP implementation
that handles these tasks well is very important.

2.3 Flexibility

It is not yet known how many users the web services will serve in the future, or
how fast the number of advertised IPv6 prefixes in the BGP table increases. At this
time we do not know what deployment options — in terms of hard- and software —
will be available for the web services. We want the web services to be flexible: It
should be easy to migrate to other environments. By developing the web services
in a programming language for which a number of high-end SOAP servers exist,
we ensure that deployment on one of these servers will be possible. Furthermore,
by adding an abstraction layer between the web services and the database, using
another database system in the future does not require large rewrites of the web
service software.

2.4 Data Integrity

The first implementation of the IPv6 web services retrieve the BGP table from
one looking glass router. Relying on a single source for this data presents a risk:
Problems in the looking glass router, caused by network- or equipment downtime
or configuration errors, will be copied by the web services. By using multiple —
preferably not interdependent — sources of data, risks can be lowered.

3 Realization

3.1 Availability

To achieve high availability, we decided to use an application server environment
with a proven track record. Unfortunately, the current web services implementa-
tion, which uses SOAP4R, a SOAP implementation for Ruby, has shown to be less
stable than we would like. In addition to this, we would like to implement the BGP
table parser in a more “professional” environment than PHP, which is what we are
currently using.

Since IBM is one of the participants of the 6NET project, IBM’'s WebSphere
[13] platform is a promising choice for the server environment. However, a Web-
Sphere server was not available at the start of this project, so we had to make do
with an alternative. To ease a possible future migration of the project to a Web-
Sphere platform, we decided to implement the services in Java. Professional appli-
cation servers for Java, such as JBoss and Tomcat are availdbie]. Having
some experience in using the Tomcat server, we decided to choose Tomcat as our
server platform during the development of the IPv6 web services.

3.2 Scalability

Good scalability can be achieved only by choosing the right tools for the job: We
need a fast and scalable SOAP implementation and database system. There is a
wide variety of database systems available, from MySQL, which is fast but limited

6

in its functionality, to high-end enterprise systems such as Oracle and DB2. At this
moment, we don’t know which database system the IPv6 web services will use in
the future. By implementing the web services’ database access using an abstraction
layer known as d@atabase connectpwe ensure portability of our code to different
database systems (see sec8d3).

The SOAP library is more or less determined by choosing Tomcat to deploy the
web services. Tomcat uses the Java platform. The standard SOAP implementation
for Java is thgax-rpclibrary.

3.3 Flexibility

We try to reach flexibility by limiting the number of external dependencies. We
do this by using standard Java libraries only. In this way, the amount of platform-
specific code is kept to a minimum.

To provide and manipulate data concerning the IPv6 network, data storage is
needed. The decision is made to use an SQL-solution. Data is gathered by the
parser application, will be formatted, and is submitted to a database. The 6NET
environment might require large scale deployment. To make this possible and to
prevent product or vendor lock in, the choice is made to make database access
as transparent as possible. Application programmers do not need any knowledge
about the used database systems to execute SQL queries. In case of under dimen-
sioned hardware systems, easy migration to faster hardware is a must. To meet
these requirements — transparent database access running Java — 'Java DataBase
Connectivity’ technology, JDBC, is used. The JDBC API provides cross platform
connectivity for a wide range of data sources; from plain text file databases to
enterprise level solutions. The issue of scalability of the database system will be
moved to a level irrelevant to us; migration to a more advanced database system is
one of the system features now.

3.4 Data Integrity

A significant part of the IPv6 web services use information directly or indirectly
obtained from data stored in the database system. Integrity of this data is vital. It
may occur that BGP routing tables contain invalid or incorrect information, e.g. by
a configuration error. There errors may cause generation of unreliable information;
an unwanted situation, which could be avoided by querying more than one server.
Errors can be detected if two BGP routing servers are used although an error can be
detected only. It is not known which routing table is right and which one is wrong.
By using three routing servers, the chances of incorrect information are decreased
significantly. If one server fails or provides the system with invalid or incorrect
data, the error can be detected and the dataset can be ignored. The chance of using
faulty information is reduced fron® to P2.

Observing the dataset we have collected so far from a single route server, we
see the need for querying multiple servers; see the glitch in gtaph

475

prefixes

of advertized IPwE

225

45 dates processed, start and enddate are shown
Caverage growth in the selected period iz 5.62/dayd

2003-12-01
200d-01-14

Figure 2: Number of IPv6 prefixes per day

4 Planning

The rollout of this project is divided in a number of phases which are described
below:

4.1 Setting up a development environment

When the project started, there weren’'t any IBM WebSphere development plat-
forms available to us. Because of the short lifespan of the project — four weeks in
total — we decided to start working on an alternative development platform. Keep-
ing the Java programming language in mind, we have chosen to develop the web
services using Apache’s Jakarta Tomcat and Siava Web Services Development
Pack[11].

The first step is installing Tomcat. After that the environmewtskflowneeds
to be configured; a build-system which 'translates’ Java source files into an enrolled
web service. We use Apacheisit, a utility providing functionality like the well-
known makeapplication [LZ]. To start, a simple “HelloWorld” web service and
client are coded and generated.

4.2 Researching needed technologies

For developing web services a number of technologies are required. Knowledge
about these technologies is required to make adequate choices:

e Java technology for creating web services, espedakyrpc.

e BGP router tables are imported using socket connections. Setting up socket
connections using Java does not require external libraries.

e The current whois web service implementation uses an external console ap-
plication (“whois”). The same functionality can be implemented using a
socket connection.

e The graph showing the number of advertised IPv6 prefixes needs to be ported
to a Java Applet. Needed functionality is available in Jasa$andswing
libraries.

e The parser requires BGP tables as input. Output data will be stored in a
database. The BGP web service retrieves this ftata the database. As
described in sectioB.3, we do not want to communicate with the database
directly to prevent a database specific implementation. Ja&C library
accomplishes this.

4.3 Porting of existing functionality

After all required infrastructure and other components became available, Java im-
plementation could start. Main target is implementatiomlbfveb services func-
tionality in the Java language. Web service interfaces need to be compatible so
existing clients still can be used connecting to the new web services.

4.4 “Must Have’s”

After porting is completed, a number of other goals need to be accomplished. First
of all, provided information needs to be reliable. To be able to collect reliable data,
functionality must be added to the parser.

4.4.1 Integrity of whois information

The existing implementation parses whois information from different whois databases.
In some cases, returned information is invalid. This is caused by a wide variety in
database formats used in the whois database servers. The issue must be solved.

4.4.2 Integrity of BGP table information

As described in sectioB.4 a method for detecting faulty BGP table information
needs to be added to the system. This can be accomplished by reading out at least
three different BGP route servers. Access to two extra looking glass servers is
needed. New code must be developed to be able to compare routing tables and to
detect possible errors.

4.4.3 More efficient database use

The existing implementation saves a snapshot of the BGP table in a database ev-
eryday. For some operations the existing web services need to process numerous
database records, e.g. for showing added and deleted prefixes in a selected period.
More efficient database design will increase performance and decrease response
times of the system as a whole. Caching tables for the number of advertised pre-
fixes need to be added. Scalability characteristics will be improved.

The old whois web service already caches requested whois records. However,
these entries are only cached in memory. Stopping or restarting the service will
flush this cache. Functionality will be added to save all entries in a database caching
table, using a arbitrary expiration time. As a result, whois queries can be answered
much faster. Again, scalability will be improved.

45 “Could Have's”

If all “Must Have’s” are implemented, a more reliable, scalable and flexible system
is created. Time permitting, we will implement “Could Have's”; new features.
An interesting new feature might be the monitoring of the number of multi-homed
networks.

5 Conclusion

5.1 Realization

During the four weeks of the project, we were able to realize most of the goals
discussed in this document. We followed the steps listed in segtion

We succesfully set up a development and deployment environment using Apache’s
Jakarta Tomcat, included with Sun’s Java Web Services Development Pack. The
necessary Apache Ant build script to build the web services was made, and devel-
oping and debugging the web services was done using Apple’s XCode IDE, part of
Apple’s Developer Toolsd]. The parser was built using vim and the open source
NetBeans IDE [6].

The functionality of the PHP/Ruby implementation of the web services was
implemented in Java. The functionality of the software has been improved in three
areas.

10

The first area of improvement is in the parser. The parser now handles data
from multiple route servers. It compares the data and drops data from route servers
that differ too much from the others. This improves the integrity of the BGP infor-
mation in the database.

The second change is in the use of supporting database tables. These tables
are updated by the parser software once a day. Where possible, the web services’
functions merely retrieve the information from these tables, instead of using com-
plex (and therefore time-consuming) queries on the main database table each time
the web services’ functions are called.

Finally, the parser for the whois information has improved. Instead of trying to
parse every registry — the output formats of the various whois servers vary greatly
— with one parser, different parser routines for each registry are used. This results
in better and more comple#&sSinfoand Prefixinfodata structures being returned
from the web services. Moreover, the whois information is now cached in two
database tables, instead of in-memory.

5.2 Using Java

For reasons discussed in this document, the IPv6 web services have been coded
in Java. Java source code usually compiles to byte code which runs in a virtual
machine, thelava Virtual Machineor JVM for short. JVMs exist for numerous
operating systems, which allowsompile once, run anywhere”Java byte code
generated on one platform can be used on another platform. Unfortunately, while
Java is often touted as being truly cross-platform, there are several problems. First,
the Java Virtual Machines in existence all have their differences and they are not
always compatible. Second, building web services with java requires infrastructure
in the form of a build system and libraries. These libraries need to be present on
every platform that should be able to run the project. However, because the Java
libraries are designed to be very modular, this means that a large number of files
need to be present on the target machine. Ensuring that all the necessary libraries
are available or packaging the project so it includes them can be a hassle.

A second problem we encountered was that the web browsers used to test the
Java client applet all behaved differently, and sometimes the java support seemed
to be flawed. Refreshing applets to test changed functionality for example, didn't
work on the Mac OS X platform. There was no time available to learn how to
develop and debug Java applets with the XCode IDE for this platform.

5.3 Client implementation

As mentioned in the previous section, developing a Java client applet for the web
services proved to be difficult. We really want to be able to demonstrate the web
services with one or more clients, so we decided to adapt the existing Cocoa and
PHP clients to use the new web services.

11

5.4 Multi-homed networks

We planned on showing, in some way, the number of multi-homed IPv6 networks.

At the start of the project, we thought that the BGP data we stored contained the
information necessary for detecting multi-homed networks. However, it became
clear that our understanding of the way multi-homed networks are represented in
the BGP table was not correct. Detecting multi-homed IPv6 networks would re-

guire more research on our part, but the limited time available for the project pre-
vented us from doing so. We decided we would not, at this stage, implement this
“could have”.

5.5 Personal Notes

We would like to end this document with a personal note. Working on this project
has been a pleasurable experience. It was nice to be able to continue the work
that had already been done on the first implementation of the IPv6 web services.
Hopefully, this project is just the beginning, not the end, of the development of
a collection of web services and client that visualize and illustrate the IPv6 Inter-
net. While we believe that we have created something useful in the four weeks
of the project, we feel that many interesting areas relevant to this project could be
researched and developed, given more time.

|

12

A Web Service Java Interface

The WSDL file specifying the web services interface is available on the project’s
web site. Since the WSDL file is not always easy to understand, we provide the
Java interface to the web services’ functions here as reference.

package nl.0s3.ipv6ws;

import java.rmi.Remote;

import java.rmi.RemoteException;
import java.util.Collection;

public interface IPv6ServicelF extends Remote

{
/I WhoisService
public Prefixinfo getPrefixinfo(String prefix) throws RemoteException;
public ASInfo getASInfo(int asnr) throws RemoteException;
public String getWhoisInfoFromRegistry(String address,
String registry) throws RemoteException;
/I BGPInfoService
public int getNumberOfEntriesForDate(String date) throws RemoteException;
public int getNumberOfEntriesForDateMatchingPrefix(String date,
String prefixmatch) throws RemoteException;

public SnapshotTotal[] getNumberOfEntriesBetweenDates(String firstDate,

String secondDate) throws RemoteException;
public SnapshotTotal[] getNumberOfEntriesBetweenDatesMatchingPrefix(

String firstDate, String secondDate,

String prefixmatch) throws RemoteException;
public BGP6Entry[] getDifferenceBetweenDates(

String firstDate,

String secondDate) hrows RemoteException;
public String getEarliestDate() throws RemoteException;
public String getLatestDate() throws RemoteException;

}

13

B Used Database Tables

B.1 table 6netcount

This table is used to store the number of entries in the BGP snapshots for a certain
date.

L — § — [— L — L —— § m—— +

| Field | Type | Null | Key | Default | Extra |

[— [Fomeeee . [B +

| date | date | YES | | NULL | |
| count | int(11) | YES | | NULL | |
[— [Fomeeee . [B +

B.2 table 6netmain

This is the most important table of the database. The parsed BGP information is
stored here.

S Se— R SE— S — S SRR — S m—— +
| Field | Type | Null | Key | Default | Extra |

B R B R —— B — B — [[+

| prefix | varchar(40) | YES | | NULL | [

| mask | char(3) | YES | | NULL [|
| asnr | varchar(128) | YES | | NULL | |

| date | date | YES | | NULL [|

+ + + + + + +
T T T T T T T

B.3 table 6netwhois_asinfo

This table functions as a cache for the whois web services. It holds the ASInfo data
structures.

+ + B — B [B —— +
| Field | Type | Null | Key | Default | Extra |

| matchstring | varchar(255) | YES | | NULL | |

autnum	varchar(255)	YES		NULL [
asname	varchar(255)	YES		NULL	
descr	varchar(255)	YES		NULL	
datum	varchar(255)	YES		NULL	

14

B.4 table 6netwhois prefixinfo

This table functions as a cache for the whois web services. It holds the PrefixInfo
data structures.

+ + e S SRR — S S— +
| Field | Type | Null | Key | Default | Extra |

+ + B — B [B —— +

| matchstring | varchar(255) | YES | | NULL | [

ineténum	varchar(255)	YES		NULL	
netname	varchar(255)	YES		NULL	
descr	varchar(255)	YES		NULL	
country	varchar(255)	YES		NULL	

| datum | varchar(255) | YES | | NULL | |
+ + e S SRR — S —— +

15

C Deliverables
A short list of files and documents that are part of the project:

e This document, containing background information about the project

The deployed web services and related software (parser, WSDL file, database)

e The sources for the parser that retrieves BGP information from the route
servers

e The sources for the web services
e The Cocoa/Objective-C client, including its sources

e The PHP client, including its sources

These items are all available from the project’s web $itga://pisa.toscana.
0s3.nl:8080/"jvb/6net/welcome.html

16

http://pisa.toscana.os3.nl:8080/~jvb/6net/welcome.html
http://pisa.toscana.os3.nl:8080/~jvb/6net/welcome.html

References

[1] “Peering,” WikiPedia, the free encyclopediajtp://en.wikipedia.
org/wiki/Peering ; accessed January 30, 2004.

[2] Y. Rekhter, T. Li, “A Border Gateway Protocol 4 (BGP-4)"RFC 1771,
Internet Engineering Task Force, March 1988p://www.ietf.org/
rfc/rfcl771.txt ; accessed January 30, 2004.

[3] P. Marques, F. Dupont;Use of BGP-4 Multiprotocol Extensions for IPv6
Inter-Domain Routing,’"RFC 2524, Internet Engineering Task Force, March
1999, http://www.ietf.org/rfc/rfc2545.txt ; accessed Jan-
uary 30, 2004.

[4] Daniel Hilster, Andree Toonk, Aziz Ahrouch, Jeroen van Beek, Gert Jan Ver-
hoog, “IPv6 Growth Monitor Web Servicesmasters programme on system
and network engineering, December 2008itp://pisa.toscana.
0s3.nl:8080/ gjv/ ; accessed January 30, 2004.

[5] Nakamura, Hiroshi;Release Notes - SOAP4RIittp://rrr.jin.gr.
jp/doc/soap4r/RELEASE_en.html

[6] Yukihiro Matsumoto, “Ruby Home Page,” http://www.ruby-lang.
org/en/

[7] Apple Computer, “Apple Developer - Cocoa,” http://developer.
apple.com/cocoa/

[8] Apple Computer, “Apple Developer - XCode,” http://developer.
apple.com/tools/xcode/

[9] “MySQL Home Page, http://www.mysql.com/
[10] “PHP Home Page,” http://www.php.net/

[11] “Java Web Services Development Paclun Microystems, http://
java.sun.com/webservices/

[12] “Apache Ant, The Apache Ant Projectttp://ant.apache.org/

[13] WebSphere Software Platform]BM, http://www-306.ibm.com/
software/infol/websphere/

[14] The Apache Jakarta Project,’Apache Tomcat,” http://jakarta.
apache.org/tomcat/

[15] JBoss,"The JBoss Application Serverhttp://www.jboss.org/

[16] NetBeans, “The NetBeans IDE,” http://www.netbeans.org/
products/ide/

17

http://en.wikipedia.org/wiki/Peering
http://en.wikipedia.org/wiki/Peering
http://www.ietf.org/rfc/rfc1771.txt
http://www.ietf.org/rfc/rfc1771.txt
http://www.ietf.org/rfc/rfc2545.txt
http://pisa.toscana.os3.nl:8080/~gjv/
http://pisa.toscana.os3.nl:8080/~gjv/
http://rrr.jin.gr.jp/doc/soap4r/RELEASE_en.html
http://rrr.jin.gr.jp/doc/soap4r/RELEASE_en.html
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://developer.apple.com/cocoa/
http://developer.apple.com/cocoa/
http://developer.apple.com/tools/xcode/
http://developer.apple.com/tools/xcode/
http://www.mysql.com/
http://www.php.net/
http://java.sun.com/webservices/
http://java.sun.com/webservices/
http://ant.apache.org/
http://www-306.ibm.com/software/info1/websphere/
http://www-306.ibm.com/software/info1/websphere/
http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/
http://www.jboss.org/
http://www.netbeans.org/products/ide/
http://www.netbeans.org/products/ide/

	Background
	Information flow
	Elements

	Goals
	Availability
	Scalability
	Flexibility
	Data Integrity

	Realization
	Availability
	Scalability
	Flexibility
	Data Integrity

	Planning
	Setting up a development environment
	Researching needed technologies
	Porting of existing functionality
	``Must Have's''
	Integrity of whois information
	Integrity of BGP table information
	More efficient database use

	``Could Have's''

	Conclusion
	Realization
	Using Java
	Client implementation
	Multi-homed networks
	Personal Notes

	Web Service Java Interface
	Used Database Tables
	table 6net_count
	table 6net_main
	table 6net_whois_asinfo
	table 6net_whois_prefixinfo

	Deliverables

