
MonALISA

ing. B. Dorlandt, ing. H.J. Blok

4th February 2005

Contents
Introduction 3
1 MonALISA Design 4
1.1 Lookup Service 4
1.2 Station Server 4
1.3 Farm monitor 6
1.4 Clients 7
1.4.1 Pseudo-clients 8
2 Communication 9
2.1 Jini 9
2.1.1 Lookup Service 9
2.1.2 Leasing Mechanism 10
2.1.3 Remote events 10
2.1.4 Transactions Manager 10
2.1.5 JavaSpace Service 11
2.1.6 The Mailbox Service 11
2.1.7 Code Mobility 11
2.2 Soap 12
3 Security 13
3.1 MonALISA versions 13
3.1.1 Jini & Security 13
3.2 Administration interface 14
3.3 Group registration 14
4 Installation and configuration 15
4.1 Installation 15
4.2 Configuration 15
4.2.1 MonALISA group 15
4.2.2 Farm monitoring configuration 15
4.2.3 Web Service configuration 18
4.2.4 Basic certificate management 18
4.2.5 Advanced certificate management 20
5 Conclusions 22
References 23
A Definitions 24
A.1 Groups 24
A.2 Farm, cluster and node 24
A.3 MonALISA service 24
B SSHProcLoad 26

ing. B. Dorlandt, ing. H.J. Blok 2

Introduction
In the past four weeks we have done research on MonALISA for the UvA and
SARA as part of our study, System and Network Administration, at the University
of Amsterdam (UvA). MonALISA stands for Monitoring Agents in A Large Inte-
grated Services Architecture. The developers describe MonALISA as following:

The MonALISA system provides a distributed service for monitoring,
control and global optimization of complex systems. MonALISA is based
on a scalable Dynamic Distributed Services Architecture (DDSA) im-
plemented using Java / JINI and Web Services technologies.

We investigated the components, the communication and the security in MonAL-
ISA. We also have set up a test environment to monitor nodes in the LightHouse
lab.

First we’ll discuss the design of MonALISA, followed by the communication it
uses. After that, we write some thoughts on the security of MonALISA next we
give some notes on the installation and configuration. The last chapter we give our
conclusion of this project including our recommendation for further investigation.

Thank You

We want to thank the people who have helped us during this project.
• Freek Dijkstra & Bas van Oudenaarde & Paola Grosso, for guidance and sup-

port during the project
• Iosif Legrand & Adrian Muraru, developers of MonALISA

ing. B. Dorlandt, ing. H.J. Blok 3

1 MonALISA Design

Figure 1: Station Server

As figure 1 shows, MonALISA consists of different kind of services which we’ll
discuss in the next chapter. First we’ll mention the hart of MonALISA, the lookup
service. Next we’ll discuss the station server and the farm monitor which together
will give the information to the clients, mostly these are called together as the
MonALISA service [1].

1.1 Lookup Service

As said before, the lookup service is the hart of MonALISA. It controls everything
from client to the monitoring information service. Each MonALISA service regis-
ters itself with a set of Lookup Services as part of a group1, and having a set of
attributes. How the registration is done will be explained in chapter 2.1.1.

MonALISA is developed with reliability in mind. This starts by registering ser-
vices to a set of lookup services. A lookup service is also a service of MonALISA
and therefore it also registers to at least one lookup services. These lookup services
will replicate their information to one-other making this a reliable network for reg-
istration of services. Besides that, MonALISA is also set up dynamically, it uses a
leasing mechanism. How this mechanism works will be explained in chapter 2.1.2.

1.2 Station Server

A station server is a provider for different kind of services. Through this station
server information is transfered to the clients. Before this is possible the station
server needs to register itself with the lookup service. As a result it downloads the
necessary code and parameter data2 (the yellow dots in the figure), from a JavaS-
pace. At the same time the station server sets itself up as a remote listener, to keep
updated with events. This way each station server keeps an updated dynamic list
of active station servers. This communication goes via the proxies. By making use
of remote events the station servers will keep up-to-date of changes. The commu-
nication is schematically shown in figure 2.

1. see appendix A
2. Information for the communication

ing. B. Dorlandt, ing. H.J. Blok 4

The station servers keep a list of other active station servers to create a network that
hosts dynamic services. This framework allows services to access the information
they require from the entire system and can also interact with other services.

The lookup service is aware of the attributes a specific station server has. Accord-
ing to these attributes a client/service or other service can match these attributes
to find the information the client is looking for. After a match has been found the
client wishes to communicate with the service. The client downloads a proxy from
an URL, which it receives from the lookup service and communicates through it
with the station server. How this works will be explained in chapter 1.4.

MonALISA, isn’t just a monitoring tool. Because it uses standardized messages
and information to communicate with other services it is able to use these mes-
sages/information to do something intelligent. For example, if some information
is requested by a service, the returned information can be used, if matched by a
filter, to take actions. These actions can be used to improve the grid, like load bal-
ancing.

The filter mentioned in the previous paragraph, is launched by the code mobility
paradigm. How code mobility is used is explained in chapter 2.1.7

Figure 2: Station Server

ing. B. Dorlandt, ing. H.J. Blok 5

1.3 Farm monitor

The data collection part in MonALISA is called the farm monitor, see figure 3. This
farm monitor monitors the nodes in a farm [1] [3]. It is possible to use different
data collection methods to monitor parameters from the nodes, for example you
could use SNMP to monitor parameters from these nodes. The farm monitor can
also use an existing monitoring application to monitor parameters from the nodes
in a farm.

Figure 3: Monitoring parameters in MonALISA.

To be able to monitor the parameters from the different nodes independently and
in parallel, the farm monitor is build as a multi-threaded system, consisting of
a dedicated control thread and a number of monitor threads (see figure 4). This
thread pool is created dynamically. The dedicated control thread is used to control
the monitor threads. In this dynamic thread pool, a monitor thread is reused after
a monitor task has completed. So the dynamic thread pool only has to be created
once, which reduces the load on the system.

To perform the monitor tasks, monitoring modules are used. These monitoring
modules can be loaded from a file-system or can be (dynamically) loaded into the
farm monitor from a web-server (using HTTP). Each monitoring module can be
used to monitor parameters just once or with a given frequency from one or more
nodes. In order to monitor, a monitoring module executes a script, runs a program
or queries a node using SNMP. It is possible to develop your own modules but
there are already monitoring modules developed for:
• querying nodes using SNMP.
• monitoring the local proc.
• use data collected with other monitoring-tools like Ganglia or MRTG (Multi

Router Traffic Grapher).
Another possibility is to use ”push methods” (like SNMP traps) to monitor param-
eters from the nodes. Instead of the farm monitor querying the nodes to monitor
the parameters the nodes report the results periodically back to the farm monitor.

ing. B. Dorlandt, ing. H.J. Blok 6

Figure 4: Farm monitor in detail.

When a monitoring task is executed the monitoring module is loaded into the
thread. After completion of the task the thread is reused for another monitoring
task. The advantage of this multi-threaded system is that if a monitoring task fails
or hangs (due to I/O errors) the other monitoring tasks can continue their tasks
without being delayed or disrupted. Hanging tasks are properly closed by the ded-
icated control thread. The dedicated control thread also takes care of rescheduling
those tasks that have not been successfully completed.

1.4 Clients

When a client connects to MonALISA, it uses the discovery service to find all the
services from a list of user predefined groups. According to this groups a proxy is
downloaded via the lookup service that communicates between the client and the
specific monitoring service. This monitoring service is the station server and the
farm monitor that goes with it.

ing. B. Dorlandt, ing. H.J. Blok 7

A client can request for real-time or historical data. It uses a so called predicate
and filter mechanism for requesting or subscribing to selected measured values. In
case of historical data it uses the predicate mechanism to query the SQL database.

The client also makes use of event notification. By registering itself to the lookup
service to specific groups it will receive event updates of these groups.

In chapter 3.2 will be explained how it is possible to administer the MonALISA
service via the GUI administration interface.

1.4.1 Pseudo-clients

With the pseudo-client it is possible to have access and gain information through,
for example, your mobile phone. It communicates the same way as a normal client,
through the lookup service. The pseudo-client also subscribe to specific service
with a list of predicates and filters.

We haven’t gone in deeper at this subject, because we found it not relevant to this
project.

ing. B. Dorlandt, ing. H.J. Blok 8

2 Communication
In this chapter we’ll describe the communication used in MonALISA. MonALISA
is based on a scalable Dynamic Distributed Services Architecture (DDSA) which
is designed to meet the needs of physics collaborations for monitoring global Grid
systems, and is implemented using Jini/JAVA and WSDL/SOAP technologies [4].

MonALISA services are able to register, discover, receive events and subscribe to
each other autonomously by making use of self-describing protocols. MonALISA
clients can do the same to the services. With these cooperating services they can
access each other seamlessly and adapt rapidly in a dynamic environment. This
is possible thanks to Jini (Java Intelligent Network Infrastructure) [5], in the next
chapter we will discuss the Jini mechanism.

2.1 Jini

The most important concept within the Jini architecture is that of a service. A ser-
vice is an entity that can be used by a person, a program, or another service. A
service may be a computation, storage, a communication channel to another user,
a software filter, a hardware device, or another user [8].

The services within Jini communicate by using a service protocol, which is a set of
interfaces written in Java. This service protocol is RMI, Remote Method Invocation.
RMI provides mechanisms to find, activate, and garbage collect object groups.

2.1.1 Lookup Service

The lookup service is the main service in Jini and therefore also in MonALISA. It is
the central point of contact between the user and the rest of the system. The main
purpose of the lookup service is to find and resolve services. A service is added to
a lookup service by a pair of protocols called discovery and join. First the service
locates an appropriate lookup service (by using the discovery protocol), and then
it joins it (by using the join protocol) [15].

The protocols used for discovery can be [6]:
• The multicast request protocol, used to discover one or more lookup

services on a local area network (LAN)
• The multicast announcement protocol, used to announce the pres-

ence of a lookup service on a local network
• The unicast discovery protocol, used to establish communications

over a local area or wide area network (WAN) with a lookup ser-
vice whose address is known in advance.

In figure 5 is shown how the communication via the lookup service works. The
MonALISA service registers itself with one or more lookup services (step 1). At
the same time it sets itself up to receive remote notifications. Why this is done
will be described in chapter 2.1.3. The lookup services have registered themselves
with each other before the MonALISA services do, in step 2 they replicate their
information to make MonALISA more reliable.

When a client wants to receive information from MonALISA it uses the lookup
discovery service to find all the MonALISA services (step 3). Depending on the
client attributes it downloads a proxy from an URL that is specified by the lookup
service. The clients connect to the MonALISA service through the proxy (step 4).

ing. B. Dorlandt, ing. H.J. Blok 9

Figure 5: Communication in MonALISA

2.1.2 Leasing Mechanism

A lease is a grant of guaranteed access over a period of time. The lease is negotiated
between the user of the service and the provider of the service. If the lease isn’t re-
newed before it expires, the resource can be freed. This can happen in case of client
or network failure, the service is no longer needed or the lease is not permitted to
be renewed.

Jini has taken thought about the leasing mechanism. Because of working in an dis-
tributed system, with clients and servers all over the world, you can encounter
problems that you won’t have on a single computer. For example, the time. The
time will never be exact the same on each computer. Therefore, the lease mech-
anism works with a countdown system instead of specifying a timestamp in the
future.

2.1.3 Remote events

Within Jini it is possible to get notified if changes occur. This can be a service that
is unavailable or if a network link is down. These changes are called events. If a
service or a client register interest in events, they will receive notification of the
occurrence of such an event.

2.1.4 Transactions Manager

The transaction manager doesn’t really do more than any other transaction man-
ager. The transaction manager makes sure that the operation(s) are performed cor-
rect. Only if the operation is performed correct the result is written.

More information about the transaction manager specified in Jini can be viewed at
the Jini homepage [9].

ing. B. Dorlandt, ing. H.J. Blok 10

2.1.5 JavaSpace Service

This service supports an ensemble of active programs, distributed over a set of
physically dispersed machines. While each program is able to execute indepen-
dently of the others, they all communicate with each other by releasing data (a
tuple) into tuple spaces containing code as well as data. Programs read, write, and
take tuples (entries) from tuple spaces that are of interest to them [2].

This JavaSpace can be seen as a cloud around the services of Jini. The other services
take care of the communication like the discovery and join, and the remote events.
The advantage that is created by this mechanism is the presentation to the clients.
To the clients it looks like MonALISA is only one system.

The JavaSpace communication mechanism was heavily influenced by the concept
of a tuple space that was first described in 1982 in a programming language called
Linda [10]. A similar implementation from IBM that can be also used in the Jini ar-
chitecture is named Tspaces [11]. An extended, high performance implementation
which also supports replication is provided by Gigaspaces [12].

2.1.6 The Mailbox Service

This service can be used to provide asynchronous communications (based on any
type of messages) between distributed services. [2]

2.1.7 Code Mobility

Agents or Filters are java objects (code) that a client (or an other service) can deploy
on one or all the services. These pieces of code can process data locally at each
service and send back to the client processed information or are used to take action
when predefined condition are detected. An agent or filter can communicate back
with the client (or service) that deployed them in different ways (RMI, client server,
channels). For security, these objects that are dynamically deployed are digitally
signed.

Code Mobility is pretty vague. There is not very much documentation on it and
time was not at our hand to do more research. For more information about Code
Mobility, see [13] [14].

ing. B. Dorlandt, ing. H.J. Blok 11

2.2 Soap

Beside the Jini interface MonALISA also has a SOAP interface. SOAP (Simple Ob-
ject Access Protocol) is a simple XML based protocol to exchange information be-
tween applications in a computer understandable format. With the MonALISA
SOAP interface you can retrieve the values of the monitored parameters and the
monitoring configuration from the farm(s) the MonALISA service monitors.

SOAP is one of the protocols used in the so-called Web Services.
The World Wide Web is more and more used for application to applica-
tion communication. The programmatic interfaces made available are
referred to as Web services [7].

The MonALISA SOAP interface can be used to build higher level services which re-
quire this monitored parameters or the monitoring configuration from the farm(s).

There are three SOAP methods available to get information from the monitored
farm(s).
getValues This method is used to get the monitored parameters in a specific time

interval. To get this parameters you should specify in your request:
• the farm name (* means all monitored farms).
• the cluster name (* stands for all monitored clusters).
• the node name (again * means all monitored nodes).
• the parameter name (* returns all monitored parameters).
• the time interval, this can be specified using absolute values (in ms since

1970) or relative values (in ms).
The method returns an array of the requested monitored parameters, speci-
fying for every monitored parameter the absolute time (ms since 1970) when
this value was registered.

getConfiguration Get the farm configuration(s) in a specific time interval. In your
request you should specify the time interval, using absolute time values (in
ms since 1970).

getLastConfiguration Use this method to get the latest configuration from a farm.
In your request you only have to specify the farm name you want to re-
ceive the configuration from (or * to see the configuration from all monitored
farms).

To be able to communicate with this SOAP interface it is required to know the
interface definition. WSDL (Web Service Description Language) is a simple XML
based protocol used to specify the SOAP interface in a computer understandable
format. It is not necessary to hardcode the interface definition in your program
because you can access the WSDL (and thus the SOAP interface) during runtime.

By default the MonALISA WSDL is published on http://<your_hostname>:
6004/axis/services/MLWebService?wsdl and the SOAP interface at http:
//<your_hostname>:6004/axis/services/MLWebService .

Chapter 4.2.3 explains how to start the MonALISA Web Service. The online man-
ual [16] explains the Web Service interface in a more detailed manner.

ing. B. Dorlandt, ing. H.J. Blok 12

http://<your_hostname>:6004/axis/services/MLWebService?wsdl
http://<your_hostname>:6004/axis/services/MLWebService?wsdl
http://<your_hostname>:6004/axis/services/MLWebService
http://<your_hostname>:6004/axis/services/MLWebService

3 Security
In this chapter we’ll discuss the security and perhaps the insecurity of MonALISA.
First we’ll discuss differences between the MonALISA versions, following the Jini
security. After that the administration interface will be discussed and finally the
group registration.

3.1 MonALISA versions

After some communication with the developers of MonALISA we heard about
MonALISA version 2. We haven’t found any documentation about it, so we were
surprised to hear this. The question that lead to this information was about the
security of MonALISA version 1. After reading information about MonALISA ver-
sion 1 and about Jini, we were interested if MonALISA was using the net.jini.security
package.

About the security in MonALISA version 1, according to the developers:
There are no security issues in Monalisa v1 as much as we know

We took this for granted because we didn’t have the time to do a research about
its security. Though we have read about the package net.jini.security. This package
check the confidentiality and the integrity of, for example, the downloaded code.
If you think of it, wouldn’t that declare MonALISA version 1, insecure. . .

3.1.1 Jini & Security

We won’t go in to deep on this subject and we can’t say what the perfect way
should be for Jini/MonALISA to set up their environment. Nevertheless, we can
mention somethings that could look insecure.

When a client communicates to MonALISA, after the discovery procedure, it com-
municates through the downloaded proxy. It uses the X.509 certificates to authen-
ticate the client and the server. Unfortunately, this doesn’t determine if the proxy is
trustworthy. The client doesn’t want to give its private key to the “wrong” proxy.

Downloaded code is always a security problem, because you don’t want malicious
code to be run on your system. Even if MonALISA version 1 is secure, are the per-
missions of the downloaded code correct and does this changes in case someone
will use the administration interface (chapter 3.2).

After considering this, are remote events transmitted secure? Is the integrity of
these events guaranteed? Should the leasing mechanism be secure? Should the
same be considered for the transaction mechanism?

ing. B. Dorlandt, ing. H.J. Blok 13

3.2 Administration interface

The MonALISA GUI has an administration interface which you can use to admin-
ister the MonALISA service. Administering is done via a SSL connection which is
based on X.509 certificates. The server (the MonALISA service) has a public cer-
tificate from every user who is authorized to administer the MonALISA service. If
the user can prove knowledge of the corresponding private certificate the user is
allowed to administer the MonALISA service. The certificates are stored in the so-
called ”keystore”. One keystore (with the public certificates) is stored on the server,
the other keystore (containing the public and the private certificate(s)) is stored on
the client, see figure 6. Chapter 4.2.4 explains in detail how to create certificates
and how to store them in the keystore.

Figure 6: MonALISA certificates and keystores.

3.3 Group registration

When you register yourself with a lookup service you have to register yourself as
part of a group. It is not possible to register yourself in any group you like. There
are freely available groups (like ’test’) and there are secured groups. Registration in
these secured groups is only possible using X.509 certificates. This X.509 certificate
has to be signed by a trustworthy Certification Authority.

ing. B. Dorlandt, ing. H.J. Blok 14

4 Installation and configuration
4.1 Installation

The online manual [16] explains how to install MonALISA. Just read the preface,
chapter 1.1 and chapter 1.2 and follow the steps described in chapter 1.3 (only read
chapter 1.3.1).

To find the Latitude and Longitude of the server use the Maporama site [17] in-
stead of the suggested site Geotags [18].

4.2 Configuration

The online manual [16] explains how to configure MonALISA. The basic configu-
ration is done with the install script used to install MonALISA. MonALISA uses
three configuration files to configure its environment. The first configuration file is
used to specify how to start MonALISA.
ml env In this file settings like your Java path and the username from which you

will run MonALISA are specified. The file is located at $MonaLisa HOME/
Service/CMD/

The next two configuration files are used by MonALISA itself and are located at
$MonaLisa HOME/Service/YOURFARMNAME/
ml.properties The global farm properties are specified in this file. Settings like

your farm name, your farm location, which monitoring modules should be
loaded and which database should be used.

YOURFARMNAME.conf Settings like cluster names, node names and the moni-
toring modules which should be used to monitor a node are specified in this
configuration file.

The default for YOURFARMNAME is myFarm.

4.2.1 MonALISA group

The MonALISA group in which you want to register is specified in the ml.properties
file. As explained in chapter 3.3 you can’t register in any group you like. By default
your farm is registered in the (freely available) test group. With the line
lia.Monitor.group=test

you can change the group you want to register with. You can only register in
groups that already exist. At this moment only the developers are able to start
a new group.

4.2.2 Farm monitoring configuration

The parameters from your farm that should be monitored are initially configured
in the farm monitor configuration file YOURFARMNAME.conf. When MonALISA
is running, you can change this configuration file and restart MonALISA, but you
can also dynamically change the farm monitor configuration using the adminis-
tration interface.

As explained in appendix A.2 a farm consists of one or more clusters and on their
turn consists of one or more nodes. In the farm monitor configuration file (YOUR-
FARMNAME.conf) a new cluster is defined with the line:

ing. B. Dorlandt, ing. H.J. Blok 15

*cluster_name

Some special cluster names are used to be able to collect information shown on the
map in the MonALISA GUI.
WAN The monitored parameters from the nodes in the WAN cluster are used to

show the information for the WAN links on the map. To be able to show
the WAN links on the map, the MonALISA developers have to know the
endpoints of the WAN links before they appear on the map. Example
*WAN

PN PN stands for ’Processing Nodes’ and the monitored parameters from the
node(s) in this cluster are used to show the pie chart views containing the
cluster usage on the map. To be able to show this information on the map the
cluster name has to start with PN. Example
*PN_yourname

To define a monitored node in this cluster you should specify the complete node
name (or IP address) optionally following on the nodes short name.
>node_name.domain.com

or
>short_name node_name.domain.com

Monitoring modules are used to collect the data (see chapter 1.3). Several modules
are shipped with MonALISA to collect data for example using SNMP or the local
proc. Usually monitoring modules collect more than just one parameter from a
node. Which monitoring modules should be used to monitor a node with a given
frequency is specified with the line:
module_name%30

The monitoring frequency (%30) is specified in seconds. It is possible to use more
than one monitoring module to collect parameters from a node.

A complete farm monitor configuration file looks like this
*PN_cluster
>node0 node0.domain.com
monProcLoad%30
monProcStat%30
monProcIO%30

>node1 node1.domain.com
monPing%30
SSHProcLoad%30

*Routers
>router0 router0.domain.com
monPing%30

MonALISA ships with some monitoring modules. Some of these supplied moni-
toring modules are:
monProc* The monProc* modules (monProcLoad, monProcIO, monProcStat) col-

lect parameters from the local system (the system running MonALISA) using
the local proc. It collects parameters like load average, I/O on network inter-
face(s) and CPU load.

ing. B. Dorlandt, ing. H.J. Blok 16

monPing This module sends a ping from the system running MonALISA to the
specified node and collects parameters like round trip time and lost pack-
ages.

snmp Load The snmp * modules collect parameters from a node using SNMP
messages. This module (snmp Load) is used to monitor the load average
from a node.

snmp IO Monitors the I/O on the network interface(s).
snmp CPU Monitors the CPU usage from a node.
snmp Mem Memory usage can be monitored using this module.
snmp Disk A module to monitor disk usage from a node.
snmp IOpp The snmp IOpp and the snmp IOpp HC modules can be used to

monitor router and switch interfaces using SNMP. The snmp IOpp uses 32-
bit SNMP counters, the snmp IOpp HC uses 64-bit SNMP counters. The con-
figuration (in YOURFARMNAME.conf) for this module is:
snmp_IOpp{1=if1_desc;2=if2_desc;3=if3_desc}%30

WARNING
At the moment of writing the snmp IOpp module has some known
problems with the parsing of these strings. Therefore there should
be no space after the ; .

1 is the SNMP interface number, if1 desc is your own interface description.
To discover the SNMP interface number you can use the snmpwalk utility.
snmpwalk -v2c -c public <routerIP> .1.3.6.1.2.1.2.2.1.2
This will lists all the interface and their numbers.
IF-MIB::ifDescr.1 = STRING: GigabitEthernet 0/0
IF-MIB::ifDescr.2 = STRING: GigabitEthernet 0/1
The MonALISA user guide [16] describes SNMP in a more detailed manner.

snmp IOpp HC This module is the 64-bit equivalent of the snmp IOpp module.
The configuration for this module is the same:
snmp_IOpp_HC{1=if1_desc;2=if2_desc}%30

WARNING
At the moment of writing the snmp IOpp HC module has some
known problems with the parsing of these strings. Therefore there
should be no space after the ; .

It is also possible to write your own modules. The modules are written in Java, ex-
amples are located at $MonaLisa HOME/Service/usr code/. During our project
we have written our own module to collect parameters from a nodes proc using
SSH. See appendix B for the source code. To use your own module you have to
specify the class URL from your module(s) in the ml.properties file, so MonALISA
can load the modules.
lia.Monitor.CLASSURLs=file:${MonaLisa_HOME}/Service/
usr_code/SSHProc/

You can now use your modules in the farm monitor configuration file (YOUR-
FARMNAME.conf). For example, to use your own module SSHProcLoad.class use
the line
SSHProcLoad%30

ing. B. Dorlandt, ing. H.J. Blok 17

4.2.3 Web Service configuration

The settings for the MonALISA Web Service are configured in the ml.properties
file. To start the Web Service you should change the line
lia.Monitor.startWSDL=false

into
lia.Monitor.startWSDL=true

You can configure the port on which the Web Service is running with the line
lia.Monitor.wsdl_port=6004

By default MonALISA uses port 6004.

After a restart MonALISA offers a SOAP interface on http://<your_hostname>:
6004/axis/services/MLWebService and its WSDL on http://<your_hostname>:
6004/axis/services/MLWebService?wsdl .

4.2.4 Basic certificate management

Administering the MonALISA service can also be done using the MonALISA GUI
(see chapter 3.2) [19]. Authenticating users is done with SSL (X.509) certificates.
The certificates are stored in the so-called ”keystore”. One keystore (with the public
certificates) is stored on the server, the other keystore (containing the public and
the private certificate(s)) is stored on the client see figure 7. MonALISA uses the
Java keytool utility to generate and store X.509 certificates. MonALISA provides
some scripts to ease the use of the Java keytool.

Figure 7: MonALISA certificates and keystores.

The Java keytool is located at $JAVA HOME/bin/keytool, the MonALISA scripts
are located at $MonaLisa HOME/Service/SSecurity/.

To set up certificates based authentication for administering the MonALISA ser-
vice you have to follow four steps:
1. Create the client keystore with a public and private certificate.
2. Export the client public certificate.
3. Import the client public certificate into the servers keystore.
4. Restart the MonALISA service.

ing. B. Dorlandt, ing. H.J. Blok 18

http://<your_hostname>:6004/axis/services/MLWebService
http://<your_hostname>:6004/axis/services/MLWebService
http://<your_hostname>:6004/axis/services/MLWebService?wsdl
http://<your_hostname>:6004/axis/services/MLWebService?wsdl

The first step uses the genKey script to create a new X.509 certificate pair (a pri-
vate and a public certificate) and to store this new certificate pair into a keystore.
This keystore, containing a certificate pair (public and private certificate), is used
by the client and thus should be stored there (ClientKeystore.ks in figure 7). The
keystore and the certificate(s) are password protected. This genKey script takes
two arguments:
1. The name of the keystore. You can add the new certificate into an existing

keystore or store the certificate into a new keystore. If the keystore doesn’t
exist it will be created.

2. An alias name for the certificate.
When you run the script genKey you will be asked to enter the keystore password
and some personal details for creating the X.509 certificate.

WARNING
Choose the same password to protect your certificate and to protect
your keystore, because the MonALISA GUI isn’t able to handle differ-
ent passwords for them.

$ $MonaLisa_HOME/Service/SSecurity/genKey \
> newkeystore.ks certaliasname

Enter keystore password: ******
What is your first and last name?

[Unknown]: M.Y. Name
What is the name of your organizational unit?

[Unknown]: Unit
What is the name of your organization?

[Unknown]: Organization
What is the name of your City or Locality?

[Unknown]: City
What is the name of your State or Province?

[Unknown]: State
What is the two-letter country code for this unit?

[Unknown]: CC
Is CN=M.Y. Name, OU=Unit, O=Organization, L=City, ST=State,
C=CC correct?

[no]: yes

Enter key password for <certaliasname>
(RETURN if same as keystore password): ******

This keystore with the public and the private certificate should be stored on the
client.

Another keystore is located at the server (FarmMonitor.ks in figure 7), this key-
store doesn’t contain certificate pairs but only contains public certificates from the
users which are authorised to administer the MonALISA service. This keystore
is located at $MonaLisa HOME/Service/SSecurity/FarmMonitor.ks. The second
step is to get the users public certificate so you can import this certificate into the
(servers) keystore. The user has to export his public certificate out of his keystore
(ClientKeystore.ks in figure 7). You can use the supplied exportCert script to store
the users public certificate into a file. This script takes three arguments:

ing. B. Dorlandt, ing. H.J. Blok 19

1. The keystore in which the public certificate is stored.
2. The alias name for the certificate that should be exported.
3. Into which file the (public) certificate should be stored.
$ $MonaLisa_HOME/Service/SSecurity/exportCert \
> newkeystore.ks certaliasname public.cert

Enter keystore password: ******
Certificate stored in file <public.cert>

Importing this public certificate into the servers keystore (FarmMonitor.ks in figure
7) is the third step. To do so you use the supplied importCert script. This script
takes two arguments:
1. An alias name for the public certificate.
2. The location of the public certificate.
If you trust this (public) certificate the script imports the public certificate into the
keystore (FarmMonitor.ks).
$ $MonaLisa_HOME/Service/SSecurity/importCert \
> publiccertaliasname public.cert

Owner: CN=M.Y. Name, OU=Unit, O=Organization, L=City,
ST=State, C=CC

Issuer: CN=M.Y. Name, OU=Unit, O=Organization, L=City,
ST=State, C=CC

Serial number: 41efb162
Valid from: Thu Jan 20 14:25:54 CET 2005 until: Wed Apr 20

15:25:54 CEST 2005
Certificate fingerprints:

MD5: 39:54:2D:A1:8F:C2:23:13:64:F7:68:DF:78:7E:E3:68
SHA1: AE:08:98:7D:04:BE:8F:C3:68:52:A8:FE:D2:2D:82:6E:

2C:19:5C:69
Trust this certificate? [no]: yes
Certificate was added to keystore

The last step is to restart the MonALISA service.

To administer the MonALISA service the user has to load his keystore (containing
the public and the private certificate) into the MonALISA GUI.
1. Choose Keystore from the menu security.
2. Select the location of the keystore and enter the keystore password.
3. Click OK.
If you now display the farm properties window from a farm you are authorised to
administer, the administration buttons will appear.

NOTE
It could take some time before the buttons appear.

4.2.5 Advanced certificate management

Beside creating, exporting and importing certificates into a keystore it is also pos-
sible to list the stored certificates or to delete a certificate from a keystore. To create,

ing. B. Dorlandt, ing. H.J. Blok 20

export and import a certificate you can use the supplied scripts located at $MonaL-
isa HOME/Service/SSecurity/, other certificate management tasks can be accom-
plished with the Java keytool located at $JAVA HOME/bin/keytool. The servers
keystore is located at $MonaLisa HOME/Service/SSecurity/FarmMonitor.ks.

To list all the certificates in the servers keystore use the command
$ keytool -list -keystore FarmMonitor.ks

The keystore is password protected, the default password is ”monalisa”.

The command
$ keytool -delete -alias aliasname -keystore FarmMonitor.ks

deletes the certificate with the alias name ”aliasname” from the servers keystore.
NOTE
It is required to have at least one private key in the servers keystore
(FarmMonitor.ks) to be able to set up SSL communications.

ing. B. Dorlandt, ing. H.J. Blok 21

5 Conclusions
We hope it is clear that the MonALISA service is more than just monitoring soft-
ware. MonALISA truly is a monitoring service. You can build higher level services
upon this MonALISA service using the Jini or the SOAP interface.

Within Lambda context the SOAP interface can be useful in retrieving monitoring
information used in some higher level (lambda) service. Because the used format
(SOAP) is computer understandable the higher level (lambda) service can adapt
itself dynamically when changes occur in which nodes are being monitored and
how they are monitored.

The Jini interface can also be used to accomplish this task, but we suppose that the
Jini interface can do even more. We suppose that you are able to use the Jini in-
terface to dynamically change which nodes are being monitored. Our supposition
comes from the fact that you can use the administration interface in the MonAL-
ISA GUI to dynamically change which nodes are being monitored. We suppose the
MonALISA GUI uses Jini to accomplish this task.

Being able to dynamically change which nodes are being monitored can be useful
for example when a higher level services changes the underlying structure. The
higher level service is than also able to change which nodes are being monitored
and how they are monitored. This may be subject of further investigation.

Another point of further investigation are the (security) differences between Mon-
ALISA version 1 and 2.

Our opinion

We think the MonALISA service is a good an innovative concept. We have enjoyed
researching MonALISA although in our opinion the documentation on MonALISA
could be expanded. We hope our report contributes to this. We also hope this report
can help the society also working on this project.

ing. B. Dorlandt, ing. H.J. Blok 22

References
[1] MonALISA Design

http://monalisa.caltech.edu/design.html
[2] Data Intensive Grids for High Energy Physics

http://ultralight.caltech.edu/gaeweb/Grid2002_
HEPChapterFinal_071902.doc

[3] MonALISA Design.
http://www.sinica.edu.tw/˜jzlee/LCG/Design/

[4] MonALISA: A Distributed Monitoring Service Architecture
http://monalisa.caltech.edu/documentation/MOET001.pdf

[5] Jini homepage
http://www.jini.org

[6] Discovery and Join
http://java.sun.com/products/jini/2.0/doc/specs/html/
discovery-spec.html

[7] Web Services Activity.
http://www.w3.org/2002/ws/

[8] Jini Specifications Archive - v2.0
http://java.sun.com/products/jini/2_0index.html

[9] Transaction
http://java.sun.com/products/jini/2.0/doc/specs/html/
txn-spec.html

[10] Maximum Performance Through Parallel Execution
http://lindaspaces.com/products/linda_overview.html

[11] What is TSpaces?
http://www.alphaworks.ibm.com/tech/tspaces/

[12] Gigaspaces Enterprise Application Grid
http://www.gigaspaces.com/

[13] Understanding Code Mobility
http://sunset.usc.edu/classes/cs599_2002/Week11_c.ppt

[14] Understanding Code Mobility
http://www.elet.polimi.it/upload/picco/papers/icse00tut.
pdf

[15] JINI Lookup service
http://java.sun.com/products/jini/2.0/doc/specs/html/
lookup-spec.html

[16] MonALISA - Service User Guide.
http://monalisa.caltech.edu/documentation/ml_ser_ug.html

[17] Maporama
http://www.maporama.com

[18] Geotags
http://geotags.com/

[19] MonALISA User Guide
http://www.sinica.edu.tw/˜jzlee/LCG/Documentation/
userguide.html

[20] GRID3
http://www.ivdgl.org/grid2003/

ing. B. Dorlandt, ing. H.J. Blok 23

http://monalisa.caltech.edu/design.html
http://ultralight.caltech.edu/gaeweb/Grid2002_HEPChapterFinal_071902.doc
http://ultralight.caltech.edu/gaeweb/Grid2002_HEPChapterFinal_071902.doc
http://www.sinica.edu.tw/~jzlee/LCG/Design/
http://monalisa.caltech.edu/documentation/MOET001.pdf
http://www.jini.org
http://java.sun.com/products/jini/2.0/doc/specs/html/discovery-spec.html
http://java.sun.com/products/jini/2.0/doc/specs/html/discovery-spec.html
http://www.w3.org/2002/ws/
http://java.sun.com/products/jini/2_0index.html
http://java.sun.com/products/jini/2.0/doc/specs/html/txn-spec.html
http://java.sun.com/products/jini/2.0/doc/specs/html/txn-spec.html
http://lindaspaces.com/products/linda_overview.html
http://www.alphaworks.ibm.com/tech/tspaces/
http://www.gigaspaces.com/
http://sunset.usc.edu/classes/cs599_2002/Week11_c.ppt
http://www.elet.polimi.it/upload/picco/papers/icse00tut.pdf
http://www.elet.polimi.it/upload/picco/papers/icse00tut.pdf
http://java.sun.com/products/jini/2.0/doc/specs/html/lookup-spec.html
http://java.sun.com/products/jini/2.0/doc/specs/html/lookup-spec.html
http://monalisa.caltech.edu/documentation/ml_ser_ug.html
http://www.maporama.com
http://geotags.com/
http://www.sinica.edu.tw/~jzlee/LCG/Documentation/userguide.html
http://www.sinica.edu.tw/~jzlee/LCG/Documentation/userguide.html
http://www.ivdgl.org/grid2003/

A Definitions
A.1 Groups

MonALISA is diveded into several groups (see figure 8), every group contains one
or more farms. Mostly the groupname indicates to which organisation3 the farms
belong. A farm can also span several groups. An example is the ”grid3” group [20]:

The Grid3 collaboration has deployed an international Data Grid with
dozens of sites and thousands of processors. The facility is operated
jointly by the U.S. Grid projects iVDGL, GriPhyN and PPDG, and the
U.S. participants in the LHC experiments ATLAS and CMS.

Figure 8: The MonALISA ’world’.

A.2 Farm, cluster and node

A node in MonALISA is a ”piece” of hardware that can contain one or more pro-
cessors, for example a computer or a router. A clusters is a collection of nodes and
a farm contains one or more clusters. See figure 9.

A.3 MonALISA service

To include your farm into the MonALISA world you have to install software on
one of your nodes (this node can be part of the farm or can be a dedicated machine).
This piece of software takes care of the communication between your farm and the
MonALISA world and takes care of monitoring the parameters from your nodes.
We call the node running this piece of software the MonALISA service.

3. When two or more organisations collaborate this groupname indicates to which virtual organisation
the farms belong.

ing. B. Dorlandt, ing. H.J. Blok 24

Figure 9: A farm in MonALISA.

ing. B. Dorlandt, ing. H.J. Blok 25

B SSHProcLoad
This is the source code for the monitoring module using SSH to monitor the load
average from a node. The module uses the load average information from /proc/loadavg.
It is required to set up password less, key based SSH login to the monitored node.
import lia.Monitor.monitor.*;

import java.io.*;
import java.util.*;
import java.net.InetAddress;

public class SSHProcLoad extends cmdExec implements MonitoringModule {

// The name of this module
static public String ModuleName="SSHProcLoad";
// What parameters do we monitor?
static public String[] ProcResTypes = {"Load5", "Load10", "Load15" };

static public String OsName = "linux";
double load5, load10, load15;
String user = "user";

public SSHProcLoad () {
super(ModuleName);
info.ResTypes = ProcResTypes;
System.out.println ("Start the Interface to SSH proc.");
isRepetitive = true;

}

public String[] ResTypes () {
return ProcResTypes;

}

public String getOsName() { return OsName; }

public MonModuleInfo getInfo(){
return info;

}

//Get and process the results
public Object doProcess() throws Exception {

System.out.println ("Connecting to host " + Node + " as " + user + ".");

//Command to read remote proc using ssh:
// ssh -n -2 -x -t -C user@node ’ cat /proc/loadavg’
String cmd = "ssh -n -2 -x -t -C " + user + "@" +

ing. B. Dorlandt, ing. H.J. Blok 26

Node + " ’ cat /proc/loadavg’";

//Get the results
BufferedReader buff1 = procOutput (cmd);

if (buff1 == null) {
System.out.println (" Failed for " + full_cmd);
throw new Exception (" Proc output is null for " + Node.name);

}

//Process the results
String lin;
StringTokenizer tz;

try {
for (; ;) {

lin = buff1.readLine();

if (lin == null) break;
if (lin.equals("")) break;

tz = new StringTokenizer (lin);
load5 = (new Double(tz.nextToken().trim())).doubleValue();
load10 = (new Double(tz.nextToken().trim())).doubleValue();
load15 = (new Double(tz.nextToken().trim())).doubleValue();

}
buff1.close();

} catch (Exception e) {
System.out.println ("Exception in Parsing SSH proc output Ex=" + e);
throw e;

}

//Store the results
Result result = new Result (Node.getFarmName(),Node.getClusterName(),

Node.getName(), ModuleName, ProcResTypes);
result.time = (new Date()).getTime();
result.param[0] = load5; //load5
result.param[1] = load10; //load10
result.param[2] = load15; //load15

System.out.println (" Result = " + result);
return result;

}

static public void main (String [] args) {
String host = args[0];
SSHProcLoad aa = new SSHProcLoad();

String ad = null ;
try {

ing. B. Dorlandt, ing. H.J. Blok 27

ad = InetAddress.getByName(host).getHostAddress();
} catch (Exception e) {

System.out.println (" Can not get ip for node " + e);
System.exit(-1);

}

MonModuleInfo info = aa.init(new MNode (args[0] ,ad, null, null),
null, null);

try {
Object bb = aa.doProcess();

} catch (Exception e) {
System.out.println (" failed to process ");

}
}

}

ing. B. Dorlandt, ing. H.J. Blok 28

	Introduction
	 MonALISA Design
	 Lookup Service
	 Station Server
	 Farm monitor
	 Clients
	 Pseudo-clients

	 Communication
	 Jini
	 Lookup Service
	 Leasing Mechanism
	 Remote events
	 Transactions Manager
	 JavaSpace Service
	 The Mailbox Service
	 Code Mobility

	 Soap

	 Security
	 MonALISA versions
	 Jini & Security

	 Administration interface
	 Group registration

	 Installation and configuration
	 Installation
	 Configuration
	 MonALISA group
	 Farm monitoring configuration
	 Web Service configuration
	 Basic certificate management
	 Advanced certificate management

	 Conclusions
	References
	 Definitions
	 Groups
	 Farm, cluster and node
	 MonALISA service

	 SSHProcLoad

