
High Availability Services

Arjan Dekker, Remco Hobo

July 4, 2005

Abstract
We live in the information age, to run a company you need information

and it needs to be available all the time. If for some reason, information
becomes unavailable this could mean great losses for the company. This
article will discuss various ways of making sure data stays available by
investigating so called High Availability solutions.

1

CONTENTS CONTENTS

Contents

1 Preface 3

2 High Availability 4

3 HA challenges and requirements 4
3.1 Costs . 4
3.2 Sessions . 4
3.3 Encryption . 5
3.4 Every added component reduces stability 5
3.5 Installation / Con�guration . 5
3.6 Flexibility . 5

4 HA solutions 5
4.1 ARP-Spoo�ng . 5
4.2 High Availability clustering with virtual servers 6

5 Dedicated solutions and open source solutions 10
5.1 Hardware stability . 10

6 Software Installation 11
6.1 ARP-spoo�ng . 11
6.2 HA-cluster (UltraMonkey) . 15
6.3 DNS . 22
6.4 Installation conclusion . 22

7 Scenarios 23
7.1 Scenario 1: A small business's email-service 23
7.2 Scenario 2: An ISP's secure Webmail service 23
7.3 Scenario 3: An on line travel agency 23

8 Findings 24

9 Conclusion 26

10 Recommendations 27

11 Appendix 29

2

1 PREFACE

1 Preface

Today many organizations make use of computer systems. When there is some-
thing wrong with these computer systems the organization will lose pro�t and
customers will lose their trust in the professionalism of the organization. Many
organizations depend on reliable computer systems. E-commerce company's,
for example, must have a website that is always available. There are several
solutions to get the availability of the computer systems as high as possible.
Many organizations have spare parts. When there are problems, the computer
system can be examined and probably be �xed using the spare parts. This solu-
tion brings some downtime with it because when the computers system is being
examined it will not be available. HA solutions assure availability even when
some components of the service have failed. Examples of services are websites,
e-mail, LDAP and online calendars.
This project was part of our education at the University of Amsterdam and our
supervisor was Jaap van Ginkel. Hereby we would like to thank Jaap for his
feedback, support and encouragement.

3

3 HA CHALLENGES AND REQUIREMENTS

2 High Availability

A HA cluster can be used to keep a service available when some components
of the server cluster are unavailable. This can be due to failures in hardware,
software, scheduled downtime etc. A HA cluster can also be a solution for
human errors as a miscon�gured server can automatically be excluded from the
cluster. Also during maintenance a server can be administratively taken o�ine
while the service is still available. When the maintenance to the server has
completed, the load balancer will automatically add the server to the cluster
again.

Not all computer systems have to use a High Availability solution. Some
services are very important for the organization, others can be unavailable for
a while without any consequences. Its important to visualize which mission
critical services there are and which dependencies they have. Mission critical
systems are a good candidate for a High Availability solution.

3 HA challenges and requirements

High Availability sounds very interesting, but there are some drawbacks when
using it. This chapter describes the drawbacks of High Availability. Further on
in the document ways of overcoming these drawbacks will be described. The goal
of this chapter is to provide a clear picture about the strengths and weaknesses
of HA.

3.1 Costs

When mission critical services are down the organization will lose pro�t. In-
vesting in equipment is therefore important. High Availability solutions costs
money as additional equipment is needed and the implementation costs time.
Also, sta� has to be trained in managing the system. To make sure the HA
solution is cost e�cient, an analysis has to be made to see if the heightened
availability is worth the cost.

3.2 Sessions

As will be described later on, there are several High Availability solutions. Some
of these solutions have di�culties with sessions. A session is a two-way connec-
tion to some kind of service. The client connects to a server and a session will be
created. During this session the client and server send and receive data. When
the client or server ends the connection, the session will be closed. HA load
balancers are located at the border of the service and can redirect a client from
a failed server to another server. The service will therefore still be available, but
any state that was present on the failed server has been lost. State information
has to be encoded in the request message (URL) or the state has to be preserved
at the client side (cookie). When one of the load balancers failes, the other one
will take over. Some implementations allow for two load balancers to share TCP
information. This means that for instance, downloading of a �le will continue.

4

3.3 Encryption 4 HA SOLUTIONS

3.3 Encryption

High Availability solutions can have di�culties with encrypted sessions. Exam-
ples of services with encrypted sessions are HTTPS (encrypted website sessions)
and LDAP. Some High Availability solutions can not preserve sessions when
they are encrypted. During this project we will investigate the possibilities of
encrypted session preservation.

3.4 Every added component reduces stability

HA is supposed to make a service more reliable but the argument against HA
is that for HA more components in hardware and software are needed and thus
more points of failure are introduced. Some High Availability solutions use
more systems and software then others. It is important to investigate the level
of availability the service must be and which systems and software must be used.

3.5 Installation / Con�guration

Installation and con�guration of a High Availability service is not very easy.
There are multiple computer systems which have to be installed and con�g-
ured. Every High Availability solution must be con�gured di�erently. During
this project we installed and tested multiple High Availability solutions. In
this document we describe the di�culties of the installation and con�guration
process. It is also important to do some research to see if there is enough
documentation available about the chosen High Availability solution.

3.6 Flexibility

Certain High Availability solutions are more exible than others. In this doc-
ument we describe which solutions are highly exible and which solutions are
static. When a static solution is chosen, di�culties will occur when upgrading
the servers. It can occur that the whole service must be taken down while up-
grading the servers. Therefore it might be important to choose a exible High
Availability solution.

4 HA solutions

The main requirement for High Availability is that every component should be
redundant. Therefore a system has to be devised so that a single failure of any
component will not a�ect the whole service. Even when multiple failures might
occur, it is preferable the service will notify clients of temporarily di�culties
instead of remaining silent.

4.1 ARP-Spoo�ng

The ARP-Spoo�ng method is used to mimic a server in case the main server
becomes unavailable. This means that two servers are equipped with the same
services so that when one goes o�ine due to maintenance or due to failure, the
other will take its place. It will send out an ARP reply telling the network the
IP address for the failed server is now reachable at its own MAC-Address. This

5

4.2 High Availability clustering with virtual servers 4 HA SOLUTIONS

is done using a Gratuitous ARP Broadcast. This means that an ARP packet
is sent out without someone asking for it. This way, the failed master cannot
answer with a rogue ARP-reply. If this where the case a race condition could
occur when both servers would answer the same ARP request. When a failover
occurs, a client does not have to reconnect to the network and will not notice the
change of servers as long as the servers are stateless. If the servers are stateful,
the state has to be encoded into the URL or in a cookie otherwise the session
will be lost.

4.2 High Availability clustering with virtual servers

There are two common types of HA clusters available: HA IP and HA applica-
tion clusters.

High Availability IP cluster

A High Availability IP cluster uses a virtual server mechanism that supports
virtual IP addresses. It uses the same techniques as ARP-Spoo�ng but has
some extra features. One virtual server will be the active server and the other
one will be hot-standby. When the hot-standby virtual server notices the other
server has gone down or it has less functionality in terms of connectivity as the
active virtual server, it will become the active virtual server. It does this while
retaining its own unique physical IP address, through a process referred to as IP
failover. Clients will automatically be reconnected to the other server without
recon�guration. The two virtual servers will transmit a heartbeat message to
each other on a prede�ned interval to announce they are still running. The active
virtual server will attach to a prede�ned shared IP address and will become the
host for that address. Some implementations can load-balance certain types
of applications when their contents are replicated across a pool of application
servers. A HA IP cluster will be concerned with maintaining connectivity at the
border of the provided service. It has no way of telling an underlying service
has failed, it will just use a job scheduling mechanism to forward requests to
prede�ned servers regardless of their state.

There are numerous scheduling algorithms, below the two that are most
widely used are explained.

� Round-Robin Scheduling
A round-robin scheduling algorithm will have a list of servers (server A,B
and C). When C is reached, the next request will overow the list, so A
is used again, completing the cycling or 'round-robin' of servers. It treats
all servers as equal regardless of incoming connections, response times
etc. The algorithm has a few advantages over traditional round-robin
DNS. With normal round-robin DNS, a server resolves a single domain
for di�erent IP addresses and scheduling granularity is host based. Also,
due to caching of DNS queries, signi�cant dynamic load imbalances among
the servers could be expected. The scheduling granularity of round-robin
used in a HA cluster is network connection-based, and is much superior
to round-robin DNS due to the �ne scheduling granularity.

� Weighted Round-Robin Scheduling

6

4.2 High Availability clustering with virtual servers 4 HA SOLUTIONS

The weighted round-robin scheduling is used to handle servers that have
di�erent processing capabilities. All servers will have a weight assigned
to hem. This weight is an integer that indicates the processing power of
the server. The higher the weight of the server, the more new connections
the server will receive. When we have servers A, B and C, and they
have the weights, 4, 3, 2 respectively, a good scheduling sequence will be
AABABCABC in a scheduling period.
The weighted round-robin scheduling is better than the round-robin schedul-
ing, when the processing capacity of real servers are di�erent. However, it
may lead to dynamic load imbalance among the real servers if the load of
the requests vary highly. This may mean that a lot of requests, requiring a
large response, are directed to the same server while another server, with
a lesser weight sits idle.
This algorithm can be used for load shaping, not load balancing.

A list of all scheduling algorithms[6] can be found in the bibliography.

Figure 1: HA IP cluster

There are three di�erent ways of forwarding packets; NAT, IP-IP encapsu-
lation (tunnelling) and direct routing.

� Network Address Translation
NAT can be used to manipulate the source and/or destination port and/or
address of the packet. This means that a request from a client will be
forwarded by the load balancer to an underlying server. The response
form this server is then altered so the packet seems to be originated on
the load balancer itself. This means packets pass through the load balancer
twice so the load will be higher on the load balancer.

� Direct Routing
With direct routing packets from a client will be forwarded directly to the

7

4.2 High Availability clustering with virtual servers 4 HA SOLUTIONS

real server. As the IP packets are not modi�ed the underlying server has
to be con�gured to accept tra�c from the load balancer`s IP address. The
underlying server can send replies back directly to the client so this is less
demanding on the load balancer.

� IP-IP encapsulation
Tunnelling is very similar to direct routing with the exception that packets
that are sent to the underlying servers are tunneled. This means the
underlying servers do not have to be in the same LAN or same geographical
area. The underlying server replies to the clients directly.

High Availability Application cluster

The HA application cluster is used for stateful, transactional applications such as
database servers, Web application servers and �le servers. The HA application
cluster will check the state of all underlying services and will determine which
services are still available. It will then forward any requests and will act as a
proxy for the underlying servers. If the HA application clusters proxies �nd
no services are available, it can redirect tra�c to an alternate website to, for
instance, run a static web server locally apologizing for the trouble and advising
people to come back later. In this approach, the proxy is the single point of
failure, if it fails, the whole service will become unavailable.

Figure 2: HA Application cluster

Combine both HA Cluster Types for a Multitier Solution

This is also called layer-4 switching. In most cases, High Availability and scala-
bility are equally important for e-commerce or business-critical systems. When
both types of HA clustering are combined, a Multitier application is possible.
The virtual server/proxies will be the front-end of the service and will be backed
up by a pool of application services. They in their turn can be backed up by a
pool of database services providing full redundancy using the three-tier model.

8

4.2 High Availability clustering with virtual servers 4 HA SOLUTIONS

Figure 3: The 3-Tier model

If an implementation runs an active/active con�guration for its load bal-
ancers, the load of the servers has to be kept in mind. Active/active means
that for, both load balancers are active at the same time. If both load balancers
should be experiencing a load of 60%, this would mean if one of the load bal-
ancers failed, the other would be overloaded. For this reason, an active/passive
implementation might yield a higher availability rate.

Figure 4: HA IP+Application cluster

9

5 DEDICATED SOLUTIONS AND OPEN SOURCE SOLUTIONS

5 Dedicated solutions and open source solutions

5.1 Hardware stability

Since all open source HA solutions run on normal PC hardware, this hardware
has to be taken into account when advising on using an open-source solution.
There are two types of PC hardware:

� Normal client hardware
This hardware normally consists of consumer grade hardware that is less
reliable and is much cheaper then server hardware. Normally, client hard-
ware has no redundant components. Since this hardware is typically used
to accommodate one user's needs it is not as important as a server. For
economical reasons this type of hardware is used in most client machines.

� Server hardware
This hardware is military grade, which means it is more precise in terms of
component accuracy. This type of hardware is more reliable and will stay
reliable longer under less than perfect circumstances like high tempera-
tures. Components in this type of hardware can be redundant. Typically
redundant components will be power supplies, fans and hard drives. These
are the components more prone to failures then others. Server hardware is
normally rack mountable, which means it can be installed into a 19' rack.

Naturally, when building an open source HA solution, the latter hardware is
preferred. Still, this type of hardware can not compete with a purpose built load
balancer like Cisco`s CSS 11500 Series Content Services Switches[4]. Purpose
built solutions have several advantages on using PC hardware:

� No hard drive; Normally a load balancer does not need a hard drive, it
only needs to store a small con�guration script;

� Easy setup; When a load balancer has failed, a new one can be con�gured
in seconds by pasting it`s con�guration script into a console.

One great advantage of an open source solution is it`s adaptability. All
programs needed to operate are available as source code. This way it is easy to
adapt a program to behave in a di�erent way and to �ne-tune the application
for the company`s needs. Also, a lot of additions and modi�cations for programs
are available in the open source community and when you`re making your own
modi�cation there is always someone willing to help.

For a good comparison about stability, the MTBF failure and the expected
life time is needed. Unfortunately, this was unavailable for the Cisco load bal-
ancer.

For the server we have chosen a HP ProLiant DL560[13]. This server has a
MTBF of 120,000 Power On Hours. This means this machine will typically die
after 120,000 hours of approximately 13,7 years. Unfortunately, the MTBF also
requires an expected lifetime which is not available. We will set this value to
�ve years.

Below is the equation for calculating the availability of this server, where A
is availability, MTBF is Mean Time Before Failure and MTTR is Mean Time
To Repair, which we will set to half a business-day, four hours.

10

6 SOFTWARE INSTALLATION

A =MTBF=MTBF +MTTR (1)

120000=120000 + 4 = 0:9999666677 = 99:99666677% (2)

Having a double failure, e.g. both load balancer servers die of hardware mal-
function would be

At = 1� ((1�A1) � (1�A2)) = 0:9999999988 = 99:99999988% (3)

This would give you an 8-digit availability rate for the load balancers, meaning
a double hardware malfunction is highly unexpected. After the �ve years have
passed, the failure rate will start to increase. Of course this calculation only
takes a hardware malfunction into account. Software stability will di�er per
solution and hard numbers on this do not exist.

6 Software Installation

This chapter contains information about ARP-spoo�ng and High Availability
Clusters. These are both methods of setting up a High Availability service.
This chapter describes what software and hardware is needed to set up these
High Availability solutions. Also the exibility, manageability and stability
are described in this chapter. Total time spent on installing and testing these
solutions is about 120 manhours.

6.1 ARP-spoo�ng

ARP-spoo�ng is the most simple method of High Availability. The low costs of
ARP-spoo�ng make it a popular method of High Availability. ARP-spoo�ng is
mostly used for HA on the load balancers and not for HA amongst the underlying
webservers.

Requirements

ARP-spoo�ng is a low cost High Availability solution, because there are only
two identical computer systems needed. The active system and a backup system.
Each system must have at least one Ethernet card installed. We connected the
Ethernet cards of both systems to a switch. The connection to the Internet was
also plugged into this switch. From the Internet there can only be one system
connected through the shared IP-address.

Installation

As described earlier, the installation and con�guration is simple. Fake[10] is an
implementation of ARP-spoo�ng. It is designed to take over the IP-address of a
failed system. Fake is used in combination with other applications. These other
application are used to check if the server is up and/or the service is still avail-
able. When such an application has noticed something is wrong it will start
Fake. In our situation we used Heartbeat[11]. Heartbeat is a package which
contains Fake and an application which checks the availability of other systems.
Heartbeat must be installed on both systems. Heartbeat will send informa-
tion about it`s own availability and receive information about the other load

11

6.1 ARP-spoo�ng 6 SOFTWARE INSTALLATION

balancer`s availability. This information only contains data about Heartbeat.
There is no communication about the availability of the service. Only when the
system has failed Heartbeat will be noti�ed. Heartbeat can be extended with a
module called Ipfail. Ipfail pings certain systems and notices when a connection
to the Internet is lost. When such a connection is lost Fake will be started.
When more load balancers are used it will check which load balancer has the
most active connections. The load balancer with the most active connections
will become active.

Session Continuity

The ARP-spoo�ng technique uses two systems which will check each other.
When the backup system notices that the other system is down it will switch
to active. The backup system will check the availability of the other system at
a prede�ned interval. When problems are encountered it can take up to twenty
seconds before the backup system will take over. The TCP-sessions are broken
and therefore closed. For Highly critical services this is unacceptable. When
TCP-sessions are lost clients must start a new connection. It can take a while
before the backup server will take over so there is a change clients will stop using
the service. This could be devastating for an E-commerce website. When the
availability is less important it is possible to use this method as an automatic
recovery tool for a service. Encrypted sessions are also lost because it uses a
TCP-connection which will die when the switching of load balancers occurs.

Management

ARP-spoo�ng is easy to manage. One server may be active while the other one
could be updated with newer versions of software. When the active system fails
the service will be down as there are no systems left which could take over. Some
organizations use this method so that downtime during system maintenance is
eliminated. One system could be brought down and be upgraded without the
need to hurry. Also when something goes wrong during updating of the system
the service will be available because the other system is still active. When the
updated system becomes the active one it is possible the service is temporary
unavailable during the twenty second period of transition. When this happens
while the service is not used by users this will not be a problem, otherwise it
is a good thing to wait until low hours before switching back to the primary
systems.

Flexibility

ARP-spoo�ng is not very exible. Many services will work with this High
Availability solution which is a good thing, but it is not very extendable. When
performance issues are encountered it is not possible to place an extra server
to solve the performance issues. The current connections are lost because it
will take a while for the backup server to take over. Therefore the exibility of
switching from the master server to the backup server is not very high as this
can only be done when the system is not used much. Fake has no support yet
for IPv6 and no attempts have been made so far to add it

12

6.1 ARP-spoo�ng 6 SOFTWARE INSTALLATION

Stability and Robustness

As mentioned earlier there are people who think High Availability solutions only
introduce more points of failure. ARP-spoo�ng is easy to set up and there is less
equipment needed as with other High Availability solutions. Therefore it adds
some points of failure to the service, but the availability of the service is much
higher with ARP-spoo�ng as it reduces the number of single point of failures.
The only thing that can go wrong is the detection of the status of the service.
When this detection goes wrong it is possible the switch to the backup server
fails or the switch to the backup server was unnecessary. Of course there is a
small change the ARP-spoo�ng or service failure detection software is awed
and will crash the computer system.

Maximum time of unavailability

ARP-spoo�ng can be realized with standard hardware. Therefore the time to
repair a computer system is low when spare parts are available. Many organi-
zations have spare parts which can be used to rapidly �x the system. When one
server is under maintenance, the other server will take over. Taking over the
other system takes a while, because the backup server has to notice the other
system has a failure. Every given time the backup server will check if the other
server is alive and kicking. The amount of time to wait between the checks
can be altered. Besides this, there is an option which con�gures the number of
times the check may fail before the switch to the backup server will be made.
The lower the time between the checks is set, the higher the amount of needed
bandwidth. Also there is a change the service is overloaded and will not answer
on time so the check will fail. When the number of failed checks is set to low,
there is a possibility of an unnecessary switch to the backup server. The prob-
lem of the high load is solved, but not very elegantly. The connections will be
lost, which will decrease the happiness of the users. So it is important to �ne
tune these settings with the service in mind.

How is discontinuity of a service discovered?

ARP-spoo�ng has no way of knowing an underlying service has failed. It is
only used to make sure one of the two load balancers is online and functioning
properly.

What kind of services can be provided?

ARP-spoo�ng can be used between two servers to check if the other has failed.
This means that you can install the same services on both of these machines.
These services have to be stateless, so static HTML, FTP, SMTP etc will be
�ne. If the service involves some kind of state, some other means has to be
devised to make sure both servers know this state.

Performance

ARP-spoo�ng uses one server which is exactly the same performancewise as
when there is no High Availability solution installed. The main server and the
backup server are probing on each other which costs an amount of bandwidth.

13

6.1 ARP-spoo�ng 6 SOFTWARE INSTALLATION

Thus the performance of this High Availability solution is a little lower as a
single server setup. The actual performance depends on the service which is
running on the server and the system itself.

14

6.2 HA-cluster (UltraMonkey) 6 SOFTWARE INSTALLATION

6.2 HA-cluster (UltraMonkey)

An important point of availability is performance. When a server is overloaded
with requests the service will become unavailable. High Availability Clusters can
improve the performance of a service. That is why websites with many visitors
use load balancers. Load balancers are used in High Availability Clusters. Linux
Virtual Server (LVS) is a kernel module which extends the normal kernel so it
can perform load balancing. The following websites, amongst others[9], use
LVS-based (Linux Virtual Server) load balancers:

� Linux.com

� Sourceforge.net

� Real.com (Real networks)

Of course there are more websites which use LVS-based solutions but the
ones above are highly visited and well known websites so they are good example
of the usage of LVS-based High Availability Clusters. Besides an LVS-based
application, an application which detects the failure of a service is also needed.

Requirements

High Availability needs more hardware then ARP-spoo�ng. At least three ma-
chines are needed, namely a load balancer and two systems (servers) which have
the provided service installed and running. The load balancer is the single point
of failure when using a total of three systems. To resolve this, two load balancers
can be used for redundancy. When one load balancer encounters a problem the
other one will take over. This works with the ARP-spoo�ng technique. During
this project we have chosen to use two load balancers and two servers.

Figure 5: Our lab setup

15

6.2 HA-cluster (UltraMonkey) 6 SOFTWARE INSTALLATION

Installation

High Availability Clusters use di�erent pieces of software which have their own
tasks. We have chosen UltraMonkey[18]. UltraMonkey is a combination of tools
which can be used to set up a High Availability Cluster. UltraMonkey consists
of Linux Virtual Server, Heartbeat and Ldirectord[12]. Linux Virtual Server is a
kernel module which extends the normal kernel so it is able to load balance the
connection attempts between the servers. Heartbeat is used to check if the load
balancer is still alive. If Heartbeat detects the load balancer is not alive it will
switch to the other load balancer. Heartbeat can be extended with a module,
called Ipfail, which checks if the connection to the servers or the Internet is
available. Ipfail pings some highly available machines and when this fails it
assumes that the connection is down. These highly available machines could
be some server somewhere on the Internet or the local servers. Ldirectord is
used to investigate if a service is running without any problems. We made an
HTML test page which contains some text, like "Service Up". Ldirectord will
connect to the webserver and will get the HTML test page. When the test
page is loaded, it will look for the words "Service Up". When these words are
located inside the test page it will assume the service is up. These means if
the service is down it will be detected because it will not return "Service Up"
but an error page which does not contain "Service Up". The "Service Up"
page can be self-written. It may check things like database connections, load
and such before giving positive feedback to the load balancer. Ldirectord is
highly extendable. It contains a number of checks for certain services. If it
is required, custom scripts can be made to add a speci�c check. Another tool
to test if a service is available is Mon[16]. Mon works like Ldirectord and has
some minor improvements like sending out e-mails when an error occurs. Of
course, Ldirectord could be extended so it also sends an e-mail when a problem
is detected but does not has this option out of the box.

UltraMonkey delivers packages for Debian and Redhat Linux which simpli�es
the installation process. Of course there is a possibility to compile the software
from source. There are three methods to route the packets between the servers
and users. We have chosen to use the NAT routing method, because it is the
easiest way to install and while it is not the fastest routing method it was
su�cient for our testing purposes. The appendix contains the con�guration
�les we used during this project.

Session Continuity

ARP-spoo�ng has the problem of losing connections when the master server
fails. High Availability Clusters solve this problem much more elegantly. Ser-
vices that use small sessions, like LDAP, DNS, SMTP, IMAP, HTTP, HTTPS
and POP do not even notice when they get switched another server. When a
server encounters problems (the "Service Up" page is not returned anymore)
the load balancer does not use this server anymore and will remove it from the
list of active servers. Ldirectord can be used to check which servers are running
and which are not. Every given time the load balancer will check if the service
on the server is up and running. When the output of this check is negative
the server will be deleted from the list of active servers. When the server is
available again it will be automatically detected and added to the list of active

16

6.2 HA-cluster (UltraMonkey) 6 SOFTWARE INSTALLATION

servers. The time needed to switch from one server to another is so small it is
not noticeable to users and applications. When the load balancer encounters
problems it can take a couple of seconds to switch to the other one. The time
to detect the failure of a load balancer can be con�gured.

During long lasting sessions, like downloading huge �les with HTTP and
streaming media, it depends on which problem occurs if the sessions will stay
alive. LVS can be installed with a master and backup load balancer. The
master load balancer synchronizes his connection information with the backup
load balancer. When the master fails the backup load balancer will be acti-
vated and with help of the synchronized session information the active sessions
will stay alive. When the master load balancer comes back online the session
information will not be synchronized. So when the master load balancer is on-
line the connections will be killed and the master load balancer will become
active. There is an experimental application which synchronizes both ways. It
is called ip vs user sync simple[14]. This is a solution to the shortcoming de-
scribed above. The installation of this application is badly documented and it
also needed some work to alter the source code to compile it.

When a server fails it will be removed from the list of active servers. When a
user has been connected to this server the TCP-sessions are lost. Depending on
the service it could be the application level session will overcome this problem.
FTP is such an application as it supports resuming. Applications with small
sessions, such as HTTP, will switch to another server without any problem.
When the server delivers dynamic webpages the information about the session
is lost when this information is placed on the server itself. To overcome this
problem it is possible to encode the information into the URL or to alter the
dynamic website so the location of the information is somewhere on an other
system. For example, the information can be saved on the load balancers who
must synchronize this information with each other. When a server fails the load
balancer will divert the user to another server. This alternate server will look for
dynamic website session information on the load balancer. If this information
is found, it will be used. Also client-site cookies can be used, but these are not
recommended because they could be altered by the user or a hacker which is
active on the users machine. Also some users do not allow for cookies to be stored
on their computer. High Availability Clusters can improve the availability, but
before choosing for a particular setup all possible scenarios with this setup have
to be taken into account.

Management

A High Availability Cluster is easily manageable. A server could be brought
down without any problems, if the High Availability is well con�gured. Once
a server is down it can be looked after without critical priority. Of course the
other running servers will get some more connections to handle. Therefore it
is important to investigate if the performance is good enough before taking the
server down. Once the server is upgraded it can be brought online again. The
load balancer will automatically add the server to the list of active servers.
When this happens the next server could be upgraded. A High Availability
Cluster uses at least three computer systems which must be managed. The
servers and load balancers must be upgraded periodically. Often more systems
are used, so this higher number of machines will take more time to manage in

17

6.2 HA-cluster (UltraMonkey) 6 SOFTWARE INSTALLATION

comparison with ARP-spoo�ng.

Flexibility

The exibility of a High Availability Cluster is outstanding. When the perfor-
mance of the systems is low the number of servers could easily be extended.
Install a new server and add it to the cluster is all that is needed to get it
running. Adding a server to the cluster does mean editing the con�guration �le
and restarting Ldirectord. When two load balancers are used, one of them can
be recon�gured �rst, and by then forcing this load balancer to become active,
the new con�guration �le will be used without any discontinuity of the service.
Thereafter, the other load balancer can be updated. When a systems fails the
impact for the service will be minor, because of the full redundancy. Many
organizations buy hardware load balancers which are also exible but are only
usable for load balancing. When the load balancer is too slow a newer version
of a load balancer has to be bought. Using standard hardware, which we use
during this project, will make it easier to extend the performance of the load
balancer. We could, for example, buy more memory or a new and faster moth-
erboard. This is less expensive as buying a new hardware load balancer. When
a hardware load balancer is too old to use, it can be thrown away while an load
balancer made of standard hardware could be used for other purposes.

LVS is still in developing state which means not all functions are imple-
mented. Ipv6 for example is still on the todo-list. The LVS programmers have
started with modi�cations to make it possible to use Ipv6 with LVS, but it is
still highly experimental and the latest version was released in 2002 which could
mean that this project[1] is abandoned. Therefore, upgrading to Ipv6 is not
recommended if LVS is used (at least not today).

Stability and Robustness

The stability of a High Availability Cluster depends on the hardware which is
used. When cheap hardware is used there is a bigger change of encountering
problems. Therefore we recommend the use of high quality hardware. A High
Availability Cluster depends on many systems and software which could make
it unstable. We have extensively tested our High Availability Cluster and en-
countered no strange behavior. The use of ip vs user sync simple is a little bit
tricky because it is highly experimental but the other pieces of software are sta-
ble. The stability of the total setup is high even when there is more hardware
which could fail. Every aspect of failure can be solved by the High Availability
Cluster. The stability of the cluster could only be impaired if the software fails.
When a load balancer announces it is up and running while it is not it could
bring down the cluster. A High Availability Cluster allows for more time to
carry out maintenance, but the stability of the cluster will be much higher in
comparison with no High Availability solutions. The ability to add more servers
while the service is still running without any problems improves the robustness
of the service. A downside to this implementation is that when a switch has
been made, the software will not check this switch has gone according to plan.
We discovered this in the following scenario: We set up two load balancers.
One had no connectivity and the other had only eth0 up. Naturally the latter
became the active load balancer. When we also put eth1 up and restored con-

18

6.2 HA-cluster (UltraMonkey) 6 SOFTWARE INSTALLATION

nectivity to the �rst load balancer, the program had no clue it had not attached
to the eth1 interface of the second load balancer so all servers behind the load
balancers remained unreachable.

What kind of services can be provided?

Not all applications could be used in combination with a High Availability
Cluster. Some applications are smart enough to reconnect to the service and
run without any problems. Other applications will lose the connection with
the server and fail. Most applications that use small sessions, such as LDAP,
DNS, SMTP, IMAP, HTTP, HTTPS, NTP and POP will work because if a
switch to another server is made they will reconnect automatically to the new
server. It is important to synchronize the data between the servers which is
needed by the services. Dynamic websites could be altered to make this possible.
Services which have long lasting sessions, such as FTP, downloading �les from
HTTP, SSH, TELNET and streaming media will have bigger problems during
the switch to an other server. FTP has the ability to restart the session and
let the download start at the location where it was when the problem occurred.
Downloading a large �le from a HTTP-server will stop when a problem occurs on
the server because it is not intelligent enough to reconnect to the other server
and continue(HTTP has no resume options). SSH is not useful with a High
Availability Cluster because there is no way to now on which system you are
working on.

LDAP
Many organizations use LDAP (Lightweight Directory Access Protocol). LDAP
contains information about the users of the network. The authorization infor-
mation is located within the LDAP-database. Many services use the LDAP-
database to check if a user may or may not connect and use the service. When
this service is unavailable many services cannot be used anymore. For this rea-
son LDAP-service must be high availabile. High Availability Clusters could be
used to make LDAP high available. LDAP itself contains some methods to set
up a high available LDAP service but the exibility could be extended when a
High Availability Cluster is used.

We have investigated the best method of setting up a high available LDAP-
service. LDAP uses a master server and slave servers. The master server can
handle write request which the slaves can not. When the master server is un-
available the service is still available because the slave servers will handle the
connections. To extend the performance of the service it is possible to add more
slave servers. Load balancers could be used to reduce the time needed to con-
�gure the new situation. With help of load balancers the clients only have to
know the IP-address of the slave server farm. Adding a slave server is therefore
very simple because this IP-address is already con�gured at the clients. The
following picture explains our design:

19

6.2 HA-cluster (UltraMonkey) 6 SOFTWARE INSTALLATION

Figure 6: HA LDAP con�guration

The master server could be connected through an administrator LAN which
is shielded from the outside. The changes made to the master server will be
replicated to the slaves. The number of slaves could be extended very easily.
The load balancers are installed with Heartbeat and Ldirectord. When a load
balancer encounters problems the other load balancer will take over. It is also
possible to place redundant switches by using multiple network interfaces on
the slaves and load balancers.

Streaming media
Today many radio and television related organizations o�er the ability to listen
or see their programs online. The load on the server can become quite high when
a huge number of users are connected. Load balancers can be used to balance
the load between multiple servers. With help of a High Availability Cluster
it is easier to extend the performance because an extra server could be added
without a long time to con�gure the new server. A new server can be added
without discontinuity of the service. When ldirectord is restarted, the new con-
�guration will become active. By switching to the other load balancer before
ldirectord is restarted, an interruption of the service is prevented. Also when a
load balancer has problems and the connection status is synchronized (with help
of ip vs user sync simple) the other load balancer will take over and the media
will still be streaming from the clients bu�er. Depending on the client's bu�er
size, a small discontinuity could be experienced. When a streaming server has
a failure, a client has to reconnect and will be forwarded to a functional server.

20

6.2 HA-cluster (UltraMonkey) 6 SOFTWARE INSTALLATION

When custom services are made it is important to think about the future use of
the service. When the service might be required to be highly available, this has
to be taken into account when designing the service. Dynamic websites must
be created with a High Availability Cluster in mind, because the location of
temporary information can not be saved on the server itself.

Maximum time of unavailability

The maximum time of the service to be unavailable is very low if a server has
a failure. When switching from servers there is no unavailability of the service.
When the load balancer encounters a problem it has the same time of service
unavailability as ARP-spoo�ng. When an application which synchronizes con-
nection information is installed the connections remain so the time to switch
from server is not a huge problem. High Availability Clusters have almost no
time of unavailability which make it very useful.

How is discontinuity of a service discovered?

We have installed UltraMonkey on our load balancers which contains Ldirectord.
Ldirectord investigates the state of an service. Ldirectord has the ability to
control the list of active servers. When Ldirectord detects the failure of a service
it removes the server from the list, also when it detects a server which could join
the list it will be added to it. Ldirectord has several built in checks of certain
services, such as HTTP, HTTPS, LDAP, POP, IMAP, SMTP, FTP, DNS and
MySQL. Also we installed on our load balancers a plug-in to Heartbeat called
Ipfail. Ipfail checks the availability of the network connections. When Ipfail
detects a network connection which is down it will communicate with the other
load balancer. The other load balancer may have more network connections
which are available. If the other load balancer has more available network
connections it will become the active load balancer.

Performance

One of the great advantages of High Availability Clusters is the easiness of
extending the performance of the service. The load on the service is shared
between multiple servers. When the servers are having too much connections to
handle, it is possible to add an extra server without any troubles. ARP-spoo�ng
only uses one server at the time so the performance is not balanced between
multiple servers. We have tested if the load balancers could be overloaded
with a script which simulates multiple users. Even with 10.000 simulations
connections the load balancers were not overloaded but the webservers where.
Huge websites with many visitors are using LVS-based load balancers without
any performance issues. When websites are overloaded it is mostly due to
the lack in performance of the servers. The documentation we used during
this project said it is possible to handle 100.000 simultaneous connections. A
100Mbit link could be load balanced with commodity hardware. With higher-
end hardware it is even possible to load balance a 1Gbit link and beyond.

21

6.3 DNS 6 SOFTWARE INSTALLATION

6.3 DNS

By setting multiple A records for the same hostname, a website can be dis-
tributed amongst multiple servers. This way, a tra�c shaping solution can be
created. The DNS server will then use a round-robin like way to answer to DNS
request so all servers will get approximately the same number of requests. This
is a kind of tra�c shaping as the load of a particular server and the type of
request is not taken into account. By setting the TTL to a low value, in case of
a failure, the DNS record will be picked up by a client after a short period of
time. This approach has some downsides:

� Users might use the direct IP address instead of a host name.

� Users might use non-DNS methods like /etc/hosts to map server host
names to IP addresses.

� A round-robin DNS solution cannot di�erentiate between a one-o� hit,
and a request that will result in many hits.

� There is no way to assign weights to servers thus their stability, load,
resources are not taken into account.

DNS is not a good option for HA. It's strength lies more in creating a robust,
easy to implement and transparent to end users method of distributing tra�c
to multiple server. DNS has no options to check connectivity of a server before
it responds with its IP address to a request. When a server has failed, a system
administrator has to manually remove the server from the DNS list.

6.4 Installation conclusion

DNS round-robin is not a real option for HA. It is an easy way to do some basic
load shaping but it has no way to know a service has failed and no automatic
way to exclude a server from the DNS list.

ARP-spoo�ng can be used to make two identical machines HA. Services on
these two machines need to be in the same state. Content must be the same
across both servers. When a session state has to be preserved, this information
has to be stored on the client or encoded in the URL. Also, another means
of synchronizing the states between servers can be implemented, but this is
application dependent. It still is IPv4 only.

UltraMonkey can be used to create a fully redundant solution. Every com-
ponent can be made redundant and is the best HA solution out there. It works
quite stable, we have not had any unexplainable behavior with it. When mul-
tiple application servers are implemented, the state also has to be stored client
side or encoded into the URL. Again, another means of synchronizing the states
between servers can be implemented, but this is application dependent. Ultra-
Monkey has no stable support yet for IPv6 and the documentation is insu�cient.
It can take a while before the cluster is setup to speci�c needs as not all options
are documented.

22

7 SCENARIOS

7 Scenarios

When is what kind of HA solution applicable if any. In this chapter we describe
three scenarios where High Availability solutions could be used to increase the
availability of the service. This chapter aims at providing some examples on
when to use which HA solution.

7.1 Scenario 1: A small business's email-service

A small company has an email server which send and receive the email of the
company. Also it contains a POP-service so the employees can read and send
email from their homes. Email is used as a way to communicate with customers,
but the telephone is still the primary way of communication. Therefore it is not
very devastating if the email server is down for a couple of hours. Also an
email message will be hold for a couple of hours when an email server ca not
be reached. When the server is back online the email message will be resend.
The usage of the email-service by employees which are at home is very high. In
the weekends there is no system administrator which can �x the email-server
when it encounters problems. Therefore they use ARP-spoo�ng to take over
the problematic email-server with a backup email-server. This way the email
service is still available when problems are encountered. They use Heartbeat
and Ldirectord to check if the SMTP and POP services are available. When
problems are detected the software will let the email service switch to the backup
server without any activity of a system administrator. It is a relative cheap
solution to setup a High Availability service. The email messages located on
the active server are replicated with the backup server.

7.2 Scenario 2: An ISP's secure Webmail service

An medium-sized Internet provider o�ers a Webmail-service to it's customers.
This Webmail-service uses encrypted HTTP-sessions (HTTPS). The Webmail-
service is a huge success and the usage was highly underestimated. Therefore
they wanted a setup whereby the performance could be easily extended. All
the email messages of the users are located at an IMAP-server. The provider
has chosen to use a load balancer and two servers with Apache/SSL and a
customized version of Squirrelmail[17] which connect to the IMAP-server to
make use of the email messages. When in the future some performance issues
will arise, it is possible to add multiple servers which could be used by the
customers. When a server fails, the customer automatically will be redirected
to another server. The customer does not even notice he/she has switched of
servers. Squirrelmail does encode information into the URL and with help of
Apache::Session[7] it is possible to save session information at another location
besides the server itself which will make it possible to switch to a di�erent server
without any problems. Optionally they can add a second load balancer in the
future for redundancy.

7.3 Scenario 3: An on line travel agency

An online travel agency has a website on which one can search for ights to
a speci�c location and search for accommodation in the destination area. The

23

8 FINDINGS

availability of this service should be as high as possible as it reects the integrity
of the travel agency. Any outages will have a negative e�ect on this and if
outages are common, customers may lose faith and will book their holidays and
journeys elsewhere.

Therefore the travel agency investigated which High Availability solution is
the best solution to keep this service available. They had investigated the option
to use load balancers with multiple servers. The outcome of this investigation
was that they could use it, but not out of the box. They had to use the 3-tier
architecture. The �rst tier is the presentation-tier which presents the front-end
of the service to the customers. Load balancers are used to balance the load to
multiple servers. These servers use SSL to provide a secure connection so no
con�dential information will be leaked. When a server encounters problems the
costumer will be redirected to another server. This server has no information
about the state of the previous session and therefore it redirects the customer
to the login-page and starts a new session. When a customer wishes to book a
holiday it will be send to one of the application-servers. This application-server
does several checks. The application-server communicates with a database-
server which contains information about the available seats in an airplane etc.
When all checks out the booking can be �nalized and stored in the database.
When this was done successfully a message will be send to the presentation-tier.
When the application-server encounters problems during a customer session it
will be noticed by the presentation-tier. The server on which the customer is
active will show a message to the customer which informs him/her of about
the problem. After the server has become deactivated the customer will be
redirected to another server. Here the customer has to login again and reenter
the information needed to book the holiday.

By placing multiple servers the travel agency could expand the performance
of their service. The availability of the service has grown, because the customer
could always connect to one of the servers. The only negative situation is when
a application server or database -server fails and the customer must reenter his
booking information.

8 Findings

This chapter describes the problems we encountered during the installation and
testing of our High Availability Cluster.

Poor documentation

We have chosen to install UltraMonkey as this project has several documents
about the installation of High Availability Clusters. There are several projects
which create software to setup an High Availability Cluster, but they are all us-
ing Linux Virtual Server as the basic tool. We looked at several of these projects
and chose the one which o�ers the most documentation. The installation man-
ual of UltraMonkey was useful but incomplete. It contains some information
about the technique of Linux Virtual Server and how to install it. Also some
information about Ldirectord and Heartbeat was available. With help of this
installation manual we were able to install a working High Availability Cluster.
Unfortunately the documentation only gives some scenarios and how to con�g-

24

8 FINDINGS

ure them. It is unusable reference material as it lacks information about some
options. Speci�c documentation is not available or very poorly written.

The documentation belonging to ip vs user sync simple is even worse. The
word "ip vs user sync simple" only gets 56 hits at google at the moment. The
only line of documentation told us to "run a script" which did not work. It
seemed there where some kernel dependencies which where never documented.
The installation procedure was described in a few lines and we where unable to
�nd a complete list of the features it o�ers. After a couple of days experimenting
with ip vs user sync simple we where able to get it running.

Heartbeat has the ability to be extended with a module called Ipfail. Ipfail
must be started as a user called "hacluster". During testing we discovered
the software fails to start because of insu�cient rights. So we tried to get it
working with root-privileges but this also did not work. After a day of searching
on the Internet we found a web page which contains information about Ipfail. It
turned out some option must be altered. The option "auto fallback on" has to
be changed into "nice fallback on". The "auto fallback on"-option was a legacy
option which creates a nicer fallback method between the master and backup
server. This is undocumented in most howto's so it took us quite a while to
�gure it out.

Poorly written source code and installation manual

Load balancers have the ability to be activated both on the same time. This
is called active-active and could be used to increase performance on the load
balancers. The application needed by Linux Virtual Server to make this possible
is called Saru. Saru contains a patch to the kernel which extends the possibilities
of the load balancer. During the installation of Saru we had to change the source
code to get it working. The source code contained the following strange code:

/* Sillyness:

* The varible is defined (in ha_msg.h) but need never be used.

* But -Werror is turned on by default so we have to

* do something with it, else we can't compile.

*/

if(_ha_msg_h_Id){ ; }

/* End of sillyness */

After we removed the "if(ha msg h Id) ; " from the source code it was
able to compile. This problem occurs because we used a newer version of the
GCC-compiler which does not turn "-Werror" on by default.

SSL and Load balancing

When using SSL and load balancing it may be useful to let the load balancer
handle the SSL-connection. When a client connects to a server which uses SSL
it is possible the client is unable to connect to another server when the original
one fails. When the load balancer handles the SSL-connection the client could
switch to another server as the SSL tra�c is translated to normal tra�c (HTTPS
to HTTP). This will decrease the load balancer's performance. Handling a SSL-
session is very demanding for the load balancer. The load balancer must handle
a great number of connection attempts and can be overloaded when it also must

25

9 CONCLUSION

handle the SSL part of the connection attempt. Therefore an SSL o�oad card
could be used. This card can handle SSL-connections in hardware which makes
it a lot faster. Many proprietary load balancers could be extended with an SSL
o�oad card. Also Linux Virtual Servers could be extended with a SSL o�oad
card. HP, for example, o�ers such cards[8].

9 Conclusion

A High Availability Cluster is the best way to setup a service which must be
high available because several failures may occur and the service will still be
available. Upgrading servers is a lot less stressful if a High Availability Cluster is
used because there is always another server which will take over the connection
to the service. Before setting up a High Availability Cluster it is important
to think about the di�culties we described in this document. Also not every
application or service could be used in combination with a High Availability
Cluster. Some applications must be altered to function in combination with a
High Availability Cluster. Therefore an investigation must be done to check if
the application or service should be used in combination with a High Availability
Cluster.

The usability of an open-source High Availability Cluster is not easy to
say. Open source software o�ers some great advantages, like openness, large
communities and freedom of use. Of course there are some disadvantages, like
poor documentation and the lack of support. Also, we encountered abandoned
projects like LVS-IPv6[1] and Saru[15]. We advise not to use the open source
solution if there is not enough knowledge about Linux/Unix available within the
organization. The installation and con�guration of a High Availability Cluster
can only be done by someone who has experience with Linux/Unix. The docu-
mentation contains just enough information to setup a basic High Availability
Cluster, but the maintenance and customization are poorly documented. Also
the installation and con�guration takes more time in comparison to a hardware
load balancer. A great advantage of an open source High Availability solution
is the possibility to customize the cluster. A great advantage of hardware load
balancers is they are easier to setup by people who are less experienced. The
purchase price of the hardware load balancers is higher, but a huge part of this
investment will be regained from the lower maintenance costs. An open source
HA cluster could be cheaper to setup and maintain as a hardware load balancing
HA solution, because the hardware could be re-used after disabling the cluster.
Also, the software is free to use. If there is enough knowledge available to setup
a High Availability Cluster with open source software it could be a good choice
to use it. Every organization is di�erent so we could not give a generic con-
clusion about the usability of an open source High Availability Cluster. When
load balancing is implemented one has to know the load of all servers. When
two servers are under 60% load and one fails, the other will become overloaded.
This way all HA e�ords will become useless.

26

10 RECOMMENDATIONS

10 Recommendations

During this project we have come up with some recommendations about the
High Availability software. We recommended to the programmers of High Avail-
ability software to write more documentation which will increase the usage of
this software. Also it was not always clear if the software project was abandoned
or still alive, like LVS-IPv6[1] and Saru[15]. A project which looks abandoned
will not be used by companies in highly critical situations. LVS is a stable ap-
plication but it is not clear how well it performs. The creators of LVS should
make a chart of the performance. This way it is possible to show future users
how well it performs and which hardware they need to use to create a High
Availability Cluster suited to their needs. There are some commercial compa-
nies which make use of LVS, like Red Hat's Enterprise edition, which have nice
GUI's. UltraMonkey has no GUI at all. Perhaps it is a good idea to create such
a GUI. This GUI must show the status of the servers and load balancers. Also
some con�guration options must be changeable with help of this GUI. While
an experienced system administrator experienced in Linux/Unix knowledge can
install UltraMonkey, the GUI can be used by less experienced personnell to
maintain the cluster. This way the experienced system administrator is not the
only person who can maintain the cluster. IPv6 is at this moment not supported
by LVS. In the future this will be used more often. Therefore we recommend to
start a project which develops a stable IPv6 load balancing solution or continue
the current one[1].

27

REFERENCES REFERENCES

References

[1] An IPv6 attempt for LVS:
http://www.yggr-drasill.com/LVS6/

[2] Architecting Linux High-Availability Clusters - Part 1:
http://www1.us.dell.com/content/topics/global.aspx/power/en/ps4q00 linux?c=us&l=en&s=corp

[3] ARP spoo�ng explained:
http://www.vergenet.net/linux/redundant linux paper/talk/html/node3.html

[4] Cisco CSS 11500 Series Content Services Switches:
http://www.cisco.com/en/US/products/hw/contnetw/ps792/index.html

[5] Creating webfarms with linux:
http://www.vergenet.net/linux/has/slides-stu�-jp/has-slides-jp.pdf

[6] Di�erent scheduling algorithms explained:
http://www.linuxvirtualserver.org/docs/scheduling.html

[7] The Apache::Session webpage:
http://search.cpan.org/dist/Apache-Session/Session.pm

[8] The AXL600L SSL accelerator card:
http://h18004.www1.hp.com/products/servers/security/axl600l/

[9] The deployment of LVS servers:
http://www.linuxvirtualserver.org/deployment.html

[10] The Fake website:
http://www.vergenet.net/linux/fake/

[11] The Heartbeat website:
http://www.linux-ha.org/

[12] The Ldirectord website:
http://www.vergenet.net/linux/ldirectord/

[13] The HP proliant DL560:
http://h18004.www1.hp.com/products/quickspecs/11595 na/11595 na.html

[14] The ip vs user sync simple download site:
http://www.ultramonkey.org/download/conn sync/

[15] The Saru active-active module for Ultramonkey:
http://www.ultramonkey.org/papers/active active/active active.shtml

[16] The Service Monitoring Daemon:
http://www.kernel.org/software/mon/

[17] The Squirrelmail website:
http://www.squirrelmail.org/

[18] The UltraMonkey website:
http://www.ultramonkey.org

28

11 APPENDIX

11 Appendix

Con�guration �les
Here you can �nd the con�guration �les we used during this project. With help
of these �les it is possible to setup a High Availability Cluster which consists of
LVS, Ldirectord and Heartbeat.

HA.CF

logfile /var/log/ha-log

keepalive 2

deadtime 10

serial /dev/ttyS0

node fake1

node fake2

auto_failback on

ping 213.73.255.52 //dutch DNS server

ping 192.168.0.1

ping 192.168.0.2

respawn hacluster /usr/lib/heartbeat/ipfail

HARESOURCES

fake1 192.168.0.10/24/eth1

fake1 145.92.26.80/24/eth0

AUTHKEYS

auth 1

1 crc

LDIRECTORD.CF

Global Directives

checktimeout=3

checkinterval=1

fallback=127.0.0.1:80

autoreload=yes

logfile="/var/log/ldirectord.log"

quiescent=yes

HTTP

virtual=1.2.3.4:80

real=192.168.0.1:80 masq

real=192.168.0.2:80 masq

service=http

request="test.html"

receive="Page Up

scheduler=rr

29

11 APPENDIX

protocol=tcp

HTTPS

virtual=1.2.3.4:443

real=192.168.0.1:443 masq

real=192.168.0.2:443 masq

service=https

request="test.html"

receive="Page Up"

scheduler=rr

protocol=tcp

LDAP

virtual=1.2.3.4:389

real=192.168.0.1:389 masq

real=192.168.0.2:389 masq

service=http

checkport=80

request="testLDAP.html"

receive="Page Up"

scheduler=rr

protocol=tcp

Streaming media

virtual=1.2.3.4:9000

real=192.168.0.1:9000 masq

real=192.168.0.2:9000 masq

service=http

checkport=80

request="testStreaming.html"

receive="Page Up"

scheduler=rr

protocol=tcp

30

