Intrusion Detection System honeypots

X

X

X

Master program System and Network Administration

University of Amsterdam
In cooperation with SURFnet

SURF/net

Mark Meijerink, Jonel Spellen

February 13, 2006

Chapter 1

Summary

With the immense popularity of the Internet and the growing number of house-
holds with a broadband Internet connection more and more computers are being
attacked by hackers, script-kiddies and malware. To be able to keep your net-
work clean of these illegitimate activities you have to monitor your network so
you can take actions against thesethe activities get detected. Honeypots are
systems which can be used for this goal. activities when they get detected.

SURFnet is a Internet Service Provider for research centers, school and uni-
versitities and connects these connected parties to the Internet. SURFnet is
rolling out a Distributed Intrusion Detection System (D-IDS) to detect illegit-
imate network activity in the LANs of the connected parties. Sensors in those
LANS are connected to the honeypot at SURFnet. The honeypot gathers infor-
mation about the detected illegitimate network activity. Via a webinterface the
connected partie can see the information about the detected malware in their
network.

In our research project we researched the honeypot SURFnet is using in their
IDS and we looked at other honeypots which could be interesting for SURFnet
to apply in their IDS.

The conclusion of our research project is that Nepenthes is the honeypot
that meets most of the requirements of SURFnet. Nepenthes emulates the most
known vulnerabilities. To detect zero-day attacks we advised to add the Argos
high-interaction honeypot to their IDS. When Argos is added to their IDS they
can detect most of the illegitimate network activity.

Chapter 2

Preface

Students of the master study System and Network Administration have to do
two research projects on a certain topic. We have chosen a research project
about honeypots. Almost avery household as an Internet connection nowadays
and more and more households are connected by a broadband Internet connec-
tion. Computers with a broadband Internet connection are willing targets for
hackers and script-kiddies. These computers can be compromised by the attack-
ers and then be used for spamming, keylogging and botnetting. With an IDS
you can detect compromise attacks or malware spreading so administrators can
take action against these activities. A system which can be used for detecting
unauthorized activities on the network is a honeypot. In our research project
we have researched the honeypot SURFnet is using in their IDS and looked at
other honeypots that could be part of their IDS. In this report you can read our
findings.

2.1 Acknowledgments

We want to thank Rogier Spoor, Kees Trippelvitz and Jan van Lith at SURFnet
for their advice and feedback during the research project. We also want to thank
Herbert Bos and Georgios Portokalidis for their contribution to the research
project about the Argos Honeypot.

Contents

1 ummar,

2 Preface
2.1 Acknowledgments|. oo

13 Research goals|

4__Related work]

[TIntroduction to IDSs and honeypots]
b1 IDSI . . o

EZ Eoneipotﬂ

6.2.4 Analysis|o
6.3 Features
6.4 Supporting community|.
6.5 Development| oo
6.6 Extendability| oo oo o

|7 Alternative honeypots and tools|

[7.1.4 Supporting community|.
[7.1.5 Development| L.
[7.1.6 Extendability|o

10
10
11
12
12
12
12
13

[7.2.4 Supporting community|.
7.2.5 Development| 0.
[26 Extendability]o
...............................

(.3.4 Supporting communityl.o
.3.5 evelopment|o oo
[7.3.6 Extendability| oo

7.4.4 Supporting community|.
[7.4.5 Development|
[7.4.6 Implementation proposall
7.5 nalysis|

|Z.5.1 Network monitoring|
[75.2 Vulnerability emulation]

[7.5.3 Supporting community|.
[7.5.4 Development activity].

|Appendix A: Projectomschrijving|

|Appendix B: CERT vulnerability list|

29

29

32

33

Chapter 3

Research goals

When we started the research project we made a projectdescription. In this
chapter we will describe the research goals we have defined for this research
project. The full research description, written in Dutch, can be found in the
appendix as Appendix A: Projectomschrijving. The research goals we have
defined are listed below.

e Analyse Nepenthes in catching malware
e Find interesting tools and honeypots for the IDS
e Find protection methods against TCP fingerprinting

In the analysis of Nepenthes we will look at the way Nepenthes is designed
to catch malware. We will try to find out which malware is catched and which
malware isn’t. Our second research goal is to find honeypots and tools which
SURFnet can use to expand their IDS. If a honeypot is interesting to look
at we may do some tests. We will compare these honeypots with Nepenthes
and give an advice. The final goal is to find protection methods against TCP
fingerprinting tools. It depends on the time we have left after two research goals
mentioned earlier in we can start with a research about TCP fingerprinting.
With tools like nmap and xprobe you can make a fingerprint of a system and
get to know which operating system it runs. Our goal is to find methods to
masquerade the real operating system.

Chapter 4

Related work

Last year Kees Trippelvitz and Harm-Jan Blok from the master study System
and Network Administration have done a research project for SURFnet last
summer. They made a proposition [I] for the design and architecture of an IDS
what SURFnet can use to detect illegitimate network activity on the connected
parties LANs. They designed an scalable and zero maintenance architecture.
Kees Trippelvitz and Harm-Jan Blok based their research project about other
projects which were done before. These project were about using standard
applications as sensors, a centralized log analysis for IDSs [3] and the use of
high interactive windows honeypots [4].

Chapter 5

Introduction to IDSs and
honeypots

This report is about IDSs and honeypots. This chapter gives an overview of
IDSs, honeypots and the SURFnets IDS Service.

5.1 IDS

In general an IDS detects unwanted manipulations to systems. The manipula-
tions may take the form of attacks by skilled malicious hackers, or script kiddies
using automated tools. An IDS is required to detect all types of malicious net-
work traffic and computer usage that can’t be detected by tools like a firewall.
This includes network attacks against vulnerable services, data driven attacks
on applications, host based attacks such as privilege escalation, unauthorized
logins and access to sensitive files, and malware (viruses, trojan horses, and
worms).

Within IDS we separate three kind of IDS. Network IDSs, host-based IDSs
and hybrid IDSs. A Network IDS identifies intrusions by examining network
traffic. Network IDSs gain access to network traffic by connecting to a hub,
network switch configured for port mirroring, or network tap. A Host-based IDS
consists of an agent on a host which identifies intrusions by analyzing system
calls, application logs, file-system modifications and other host activities and
state. A Hybrid IDS combines both approaches. Host agent data is combined
with network information to form a comprehensive view of the network. This
paragraph is based on the the text of Wikipedia.org [I5] about IDS.

5.2 Honeypots

A honeypot is a trap set to detect, deflect or in some manner counteract at-
tempts at unauthorized use of information systems. A honeypot appears to be
part of a network but which is actually isolated and protected. A honeypot
seems to contain information or a resource that would be of value to attackers.
A honeypot is valuable as a surveillance and early-warning tool. Honeypots
should have no production value and hence should not see any legitimate traf-
fic or activity. Whatever they capture can then be surmised as malicious or
unauthorized. Honeypots can generally be divided into different categories,
low-interaction and high-interaction honeypots. Low-interaction honeypots em-
ulate services. Honeyd, Mwcollect and Nepenthes are low-interaction honeypots
which can be used to collect autonomously spreading malware. Automated at-
tacks are not only logged, the daemons extract information how to obtain the
malware binaries from the exploit payload using known patterns and then ac-
tively download a sample. High interaction honeypots like Argos offer a full
operating system to the attacker and when the attackers tries to do something
malicious the honeypot will shut down and makes dumps of memory and disk
to get information about what the attacker was trying to do. This paragraph is
based on the the text of Wikipedia.org [16] about Honeypots.

5.3 SURFnet’s IDS Service

SURFnet is going to roll-out a Distributed IDS with multiple sensors and one
honeypot. This D-IDS is in testing fase now. In their current approach a work-
station in the LAN of the connected party is used as a sensor. The workstation
is turned into a sensor by booting it from an USB stick containing the SURFnet
D-IDS sensor software. This USB stick contains a remastered Knoppix distri-
bution and uses openVPN to start a layer-2 tunnel to the D-IDS server. The
layer-2 tunnel is put in bridging mode with the network interface of the sensor.
Next, a DHCP request is made from the D-IDS server through the tunnel into
the client LAN. This request allows the D-IDS server to obtain an IP-address
on the client LAN and then bind it on a virtual interface containing a honeypot.
Virtually, the D-IDS server will be present on the client LAN and attackers will
think they are attacking a host on the client LAN. The honeypot that is being
used on the D-IDS server is Nepenthes, which is able to emulate vulnerabilities.
If an attacker triggers the honeypot it is considered a malicious attack and the
honeypot attempts to retrieve the malware that an attacker tries to put on the
host. All attacks are logged into a PostgreSQL database and users are able to
view detailed information about the attacks through a web interface. For more
information and the latest news you can go the SURFnet IDS website [2]. This
paragraph is based on the information found on the SURFnet’s IDS website and
the research report of Kees Trippelvitz ans Harm-Jan Blok [I].

Chapter 6

Analysis of the Nepenthes
honeypot

Nepenthes is a low-interaction honeypot that emulates known vulnerabilities
worms use to spread and Nepenthes catches these worms.

6.1 Detection method

Nepenthes has a lot of vulnerabilities it can emulate. Every vulnerability module
emulates a vulnerability in a service which runs on a network port. Nepenthes
also starts services like FTP, POP3, IMAP to collect data. When an attacker
connects to a service Nepenthes will open the network port of that service and
asks every registered vulnerability module on that port to start a shellcodehan-
dler for accepting the data. When the data comes in, the data is sent to all the
created shellcodehandlers. As the packets send by the attacker do not fit what
the shellcodehandlers expect then they tell the socketmanager to stop send-
ing packets to the shellcode handler. Every vulnerability module has a certain
amount of functionality to interact with the attackers. When a vulnerability
is exploited the malware will send shellcode to the network port. When the
shellcode is received the shellcodehandler will pass the shellcode to a second
shellcode handler. This handler will use perl regular expressions to detect the
type of shellcode. Lets say this is a shellcode to create a windows shell on a
certain port. The shell will be started and the shellcodehandler will wait for
further instructions. Most malware will now try to download a file and execute
it. Nepenthes will download the file but will not executed it.

6.2 Vulnerabilities

Nepenthes catches malware what tries to exploit known vulnerabilities. In this
part of the research we describe the emulated vulnerabilities, the way Nepenthes

handles unknown vulnerabilities and a short analysis of Nepenthes and vulner-
ability emulation.

6.2.1 Emulated vulnerabilities

Nepenthes emulates known vulnerabilities. In this paragraph we give the list
of vulnerabilities which Nepenthes can emulate. We used the documentation
which is available at the website of the Nepenthes project [5]. The following
vulnerabilites were emulated in Nepenthes version 0.1.6.

Portnr. Vulnerability
vuln-netdde, emulates the netdde vulnerability

42 vuln-winsm, emulates the wins vulnerabiltiy

80 vuln-asnl, emulates the asnl vulnerability

80 vuln-iis, handles some different bugs in microsoft iis5
135 vuln-dcom, emulates the dcom vulnerabilty

139 vuln-netbiosname, replies netbiosnames on valid requests
443 vuln-iis, handles some different bugs in microsoft iish
445 vuln-dcom, emulates the dcom vulnerabilty

445 vuln-lsass, emulates the Isass vulnerabiltiy

445 vuln-asnl, emulates the asnl vulnerability

1023 vuln-sasserftpd, handles bug in sasserftp

1025 vuln-dcom, emulates the dcom vulnerabilty

1434 vuln-mssql, emulates the mssql vulnerability

2103 vuln-msmgq, handles the MSMQ bug found in 2005
2105 vuln-msmgq, handles the MSMQ bug found in 2005
2107 vuln-msmgq, handles the MSMQ bug found in 2005
2745 vuln-bagle, emulates the bagle backdoor

3127 vuln-mydoom, emulates the mydoom backdoor
3140 vuln-optix, emulates the optix vulnerability

5000 vuln-upnp, emulates the upnp vulnerability

5554 vuln-sasserftpd, handles bug in sasserftp

17300 vuln-kuang2, emulates the kuang?2 vulnerability
27374 vuln-sub7, emulates the sub7 vulnerability

6.2.2 Known vulnerabilities

We used the list of known vulnerabilities we found on the website of the Cert
Command Center [9]. This list contains vulnerabilities for applications and
operating systems. We filtered out the application vulnerabilities so the list of
operating systems remains.

Effected Service Portnr/Protocol Related Information
tftp 69/udp CA-2003-20: W32/Blaster worm
http 80/tcp CA-2002-27: Apache/mod_ssl Worm

10

epmap

netbios-ns
netbios-dgm

netbios-ssn

https
microsoft-ds

http-rpc

unassigned*
unassigned*
globe
ctx-bridge

unassigned*
unassigned*

135/tcp
135/udp

137/udp
138/udp

139/tcp
139/udp

443 /tcp
445 /tcp
445 /udp

593 /tep

1052/tcp
1978 /udp
2002/udp
3127 /tep

4156 /udp
4444 /tcp

CA-2003-09:

CA-2003-16:
CA-2003-19:
CA-2003-20:
CA-2003-23:
CA-2003-08:
CA-2003-23:
CA-2003-08:
CA-2003-23:

CA-2003-03:
CA-2003-08:
CA-2003-16:
CA-2003-19:
CA-2003-20:
CA-2003-23:
CA-2002-27:

CA-2003-03:
CA-2003-16:
CA-2003-19:
CA-2003-20:
CA-2003-23:
CA-2003-20:
CA-2003-23:
CA-2002-27:
CA-2002-27:
CA-2002-27:

Buffer Overflow in Core Microsoft Windows DLL

Buffer Overflow in Microsoft RPC

Exploitation of Vulnerabilities in Microsoft RPC Interface
W32/Blaster worm

RPCSS Vulnerabilities in Microsoft Windows

Increased Activity Targeting Windows Shares

RPCSS Vulnerabilities in Microsoft Windows

Increased Activity Targeting Windows Shares

RPCSS Vulnerabilities in Microsoft Windows

Buffer Overflow in Windows Locator Service

Increased Activity Targeting Windows Shares

Buffer Overflow in Microsoft RPC

Exploitation of Vulnerabilities in Microsoft RPC Interface
W32/Blaster worm

RPCSS Vulnerabilities in Microsoft Windows
Apache/mod_ssl Worm

Buffer Overflow in Windows Locator Service

Buffer Overflow in Microsoft RPC

Exploitation of Vulnerabilities in Microsoft RPC Interface
W32 /Blaster worm

RPCSS Vulnerabilities in Microsoft Windows
W32/Blaster worm

RPCSS Vulnerabilities in Microsoft Windows
Apache/mod_ssl Worm

Apache/mod_ssl Worm

Apache/mod_ssl Worm

Current Activity 01/26/04: W32/Mydoom.A or W32/Novarg
Current Activity 02/10/04: W32/Mydoom.C or W32.HLLW.Doomjuice

CA-2002-27:
CA-2003-20:

6.2.3 Unknown vulnerabilities

Apache/mod_ssl Worm
W32/Blaster worm

As we mentioned in the paragraph about the detection method the vulnerbility
modules start a shellcodehandler when a connection is made to the network port
they are registered to. If none of the shellcodehandlers can handle the given
shellcode Nepenthes will make a hexdump of the shellcode to disk and will create
a message in the logfile. These hexdumps can be used by developers to create a
new shellcodehandler or by anti-virus companies. Connections made on network
ports on which no vulnerability modules or other modules are registered are not

noticed by Nepenthes. No logs will be created.

11

6.2.4 Analysis

Nepenthes detects malware using use well known vulnerabilities. Nepenthes
gives very few false positive and false negative events. This is because Nepenthes
is looking at the known vulnerabilities and uses shellcode comparison.

Most of the known vulnerabilities in Windows operating systems are emu-
lated by Nepenthes. Vulnerabilities in other software the the operating system
are not fully covered. Nepenthes simulates a lot of vulnerabilities in applications
besides the operating system. Vulnerebilities in applications like Sendmail are
not simulated by Nepenthes but Nepenthes does open the ports 21 for FTP, 25
for SMTP and 110 for POP3.

Malware using vulnerabilities not covered by the Nepenthes modules can
not be identified. Nepenthes will create a log in the logfile and will make an
hexdump of the communication to disk. Trough this hexdump developers can
look at the code that the malware is trying to execute. Developers can also
make a new module to emulate the vulnerability and interact with the malware
so the malware can be identified in the future.

6.3 Features

e Detects attacks on known vulnerabilities
e Low rate of false positives and false negatives
e Downloads malware

e Modular

6.4 Supporting community

The Nepenthes developers can be contacted in different ways for support. On
their website they have a mailing-list [0], a forum [7] and a contact [§] section.
Nepenthes also has an IRC channel. The IRC channel is #Nepenthes. The
main developer can always be contacted and to answer your questions.

6.5 Development
At January 15th 2006 version 0.1.6 was released. The Nepenthes project is
under continious development. In the release history of Nepenthes we see a new

version every one or two months. The developers keep on writing new modules
for Nepenthes.

12

6.6 Extendability

Nepenthes is build modular and can be easily extended with new modules.
When Nepenthes is started it will go true the modules directory and starts
loading the modules. Nepenthes gives the developer 8 example modules with
examples for using modules for dns resolving, file downloading and geological
IP location resolving.

13

Chapter 7

Alternative honeypots and
tools

In the current IDS Nepenthes is the honeypot. Our goal was to look at tools and
other honeypots with could be used to improve the IDS. Because the lack of time
we were only able to analyse other honeypots. We looked at many honeypots
but most of them are no longer under development. In our research we looked
at low-interaction honeypots, high-interaction honeypots and a honeywall. The
honeypots we analyzed were Honeyd, Mwcollect, Honeynet and Argos. Honeyd
and Mwcollect are low-interactive honeypots just like Nepenthes, Argos is a
high-interactive honeypot and Honeynet is a honeywall.

14

7.1 Honeyd

Honeyd [I1] is developed by Niels Pavos of the University of Michigan. The
first versions were written for the unix platform but meanwhile Honeyd has also
been ported to the Windows platform.

7.1.1 Detection method

Honeyd uses a tool called arpd to route the illegitimate network traffic to unused
IP addresses to the Honeyd honeypot because every connection attempt to an
unused IP address is a possible attack. Honeyd will take the identity of the
unused IP address and will interact with the attacker.

Honeyd uses virtual hosts to communicate with the attacker. A virtual host
is simulated at stack level so tools like nmap and xprobe will not be able to
get a fingerprint of the honeypot server but will get the operating system of the
virtual system. The virtual hosts are defined in the configuration file of Honeyd.
When you create a virtual host you can open tcp and upd ports, bind scripts to
ports, set the personality of the virtual host and bind an IP address to a virtual
host.

We can open all ports if we want and we can write scripts who handle the con-
nections. For more information about how to create virtual hosts and networks
we advice you to read the documents “Simulating Networks with Honeyd” [12]
and the webpage “Open Source Honeypots: Learning with Honeyd” [13].

7.1.2 Vulnerabilities

Although we can create scripts to handle connections there have only been two
scripts written to catch malware. One script to catch the kuang2 worm and one
script to catch the mydoom worm. There have been developers who created a
mail server emulator and telnet emulator which we can use to detect connections
on these ports and look at the instructions given by the attacker. With Honeyd
you can see connections made to opened ports but to see which vulnerability the
malware is trying to exploit you should capture all the instructions and execute
these instructions on a machine running a real operating system.

7.1.3 Features

e simulates virtual hosts

e service configuration via configuration file

simulates operating systems on TCP/IP stack level

simulates network topologies

subsystem virtualization

15

7.1.4 Supporting community

The community behind Honeyd seems to be very small. When you take a look
at the forum we see many questions but not so many answers. Only Niels Pavos
gives answers to the questions so it seems that he is the only one who is really
into Honeyd.

7.1.5 Development

Niels Pavos released a new version of Honeyd at December 31st 2005. However
this is just a beta test release. Although this new version was released there
are no new scripts available to detect the vulnerabilities malware are trying to
exploit. The last script was added on June 11th 2004.

7.1.6 Extendability

Honeyd uses scripts to handle connections made on certain ports. Developers
can develop their own scripts and bind them to a port to handle connections
made on that port.Honeyd uses plugins to extend it’s functionality. These can
be written by developers also.

16

7.2 Mwcollect

Mwcollect [26] is a low-interaction honeypot. Honeynet is partly funded by the
Honeynet project. Mwecollect is designed like Nepenthes. The current devloper
of Nepenthes decided to start his own project after he had a different point of
view how Mwecollect should be developed. He took the source and started the
Nepenthes project.

7.2.1 Detection method

The honeypots on a operating system. The Mwcollect deamon openes ports
which are commonly attacked by malware. By simulating some well known
vulnerabilities on these ports, malware will exploit these ports and send its
shellcodes to the Mwcollect deamon.The deamon will parse the exploited pack-
ets, will search in the shellcodes, interprets the shellcode and then take further
action to download de malware. Once the malware is catched it will be saved
to disk.

7.2.2 Vulnerabilities

The vulnerabilities which Mwecollect can detect are found in the source code.
There are only a few vulnerabilities that Mwcollect can emulate. Mwecollect
emulates the vulnerabilities listed below.

e MS03-026 Buffer Overrun In RPC Interface Could Allow Code Execution,
port 135.

e MS04-011 Remote Code Execution in LSASS Service, port 445.

e MS05-039 Vulnerability in Plug and Play Could Allow Remote Code Ex-
ecution and Elevation of Privilege, port 445.

e MS05-051 Remote Code Execution in MS Microsoft Distributed Transac-
tion (MSDTC), port 1025.

7.2.3 Features

e Detects attacks on known vulnerabilities.
e Modular

Downloads malware

Low false positives and false negatives

17

7.2.4 Supporting community

Mwcollect is partly funded by The Honeynet Project [I7]. Mwcollect has a big
support community. They don’t have a forum where someone can post mes-
sages. But for viewing modules or shellcodes you can use their svn(subversion)
repository or Trac’s SVN front-end (web based svn repository). For reporting
bugs they have a ticket system where someone can post found bugs. Mwcollect
also has a IRC channel to communicate with the developers. The IRC channel
is #Mwecollect.

7.2.5 Development

In december 2005 they released version 3.02. This means that they are still de-
veloping Mwecollect application. But the development of modules and shellcode
is going very slow. There are not much vulnerability emulation modules made
for the program.

7.2.6 Extendability

Just like Nepenthes modules and shellcodes can be written to extend Mwcollect’s
features.

18

7.3 Honeynets

Honeynet is developed by The Honeynet Project to capture information at a
network. The primary purpose of the honeynet is to gather information on
security threads. The tool is a high-interaction honeypot to capture extensive
information. It act as a gateway, called Honeywall, by collecting data flow
from and to the honeypot(s) on a network. The Honeynet is a collection of
tools compiled into on CDROM which can be downloaded from The Honeynet
Project [17] site. The latest Honeywall CDROM is called “Roo”.

7.3.1 Detection method

The detection method [29] is explained based on the figure below. The principle
part of the Honeynet is the gateway which is called the honeywall. The honey-
wall is the one that separates the honeypots victims from the rest of the world.
All the traffic entering or leaving the honeypots must pass through the honey-
wall. The honeywall can be configured as a layer 2 or layer 3 routing gateway.
But a layer 2 bridge is better because in bridge mode it is harder to detect by
attackers. By bridging the interfaces the gateway won’t have an IP address. The
only assigned IP address is a secure network used for administrative purpose

only.
C1] [T [T Jﬁi

Production Production Production 192.168.1.254
192.168.1.15 192.168.1.20 192.168.1.23

1
|
1
h

ethl
Honeywall @ ethz —
Gateway B | | 10.1.1.1
eth1

== e

Hneypnt Honeypot Hneypnt
192.168.1.101 192.168.1.102 192.168.1.103

Figure 7.1: Honeywall architecture

19

For the honeynet to work successfully it has to be deployed properly or it
will fail to capture attackers activity. The honeywall consists of three parts:
data control, data capture and data collection. Data control: once a honeypot
within the honeynet is compromised, honeynet have to contain the activity and
ensure the honeypots are not used to harm non honeynet systems. There must
be some means of controlling how traffic can flow in and out of the honeynet,
without attackers detecting control activities. Data control always takes priority
over data capture. Data capture: captures all activity within the honeynet and
the information that enters and leaves the honeynet, without attackers knowing
they are being watched. The data capturing is the monitoring and logging of
all the attackers activities within the honeynet. This captured data is analyzed
to learn the tools, tactics and motives of the attackers. Data collection: When
the honeynet is part of a distributed environment the captured data is securely
forwarded to a centralized data collection point. This allows captured data from
honeynet sensors to be centrally collected for analysis and archiving.

7.3.2 Vulnerabilities

The honeynet does not actually emulate vulnerabilities. A honeypot behind
the honeywall could be used to emulate vulnerabilities. It logs inbound and
outbound data flow passing through the honeywall. This data can then be used
for further analysis. By analyzing data new exploits and vulnerabilities can be
found.

7.3.3 Features

e Data control
e Data capture

e Data analysis

7.3.4 Supporting community

The Honeynet Project has created a document called “Honeynet Definitions,
Requirements, and Standards”. The purpose of the document is to give or-
ganizations the flexibility to build a honeynet that fit into their environment
and their goals. The document defines in details how the organizations can de-
ploy their honeynet environment effectively and securely and allowing different
honeynets to work together. The members of The Honeynet Project can be
contacted by email.

7.3.5 Development

The development of honeynet is still in progress. In may 2005 they released
the Honeywall CDROM called “Roo”. As they say in their whitepaper “Know

20

Your Enemy: Honeywall CDROM Roo” [28] they are not fully satisfied with
the CDROM. They have more options planned to be added for the next release.

7.3.6 Extendability

The Honeywall is a Fedora 3 Linux distribution and it can be extended by adding
more tools. By making use of the package management tools from Fedora more
tools can be added.

21

7.4 Argos

Argos is a high-interaction honeypot for catching zero-day attacks like new
worms. Unlike low-interaction honeypots Argos provides real services and a
real operating system that the malware can try to compromise. Argos is based
on Qemu [22], an fast emulator for multiple architectures like x86 and power-
pc64. For more information about Qemu check the Qemu website [22] or the
Qemu wikipedia page [23]. Argos extends Qemu by providing the functionality
to taint and track memory and to generate footprints. Our focus will be on
Argos itself. Argos is focused on attacks which are automated like worms and
other malware and do not need any user input. Argos is designed to detect
vulnerabilities which are used by malware to compromise computer systems and
they are not interested on the payload given after the vulnerability is exploited.
This paragraph is based on the paper “Argos: an Emulator for Fingerprinting
Zero-Day Attacks” [24] written by Gerogios Portokalidis, Asia Slowinska and
Herbert Bos [25] and the website of the Argos project [19].

7.4.1 Detection method

All incoming traffic is logged in a trace database via tcpdump and is send to
the guest system that is running on Qemu. Every guest system has his own
IP address. The whole system is based on tainting memory that arrives from
untrusted sources(i.e. the network). When the network is written to the memory
then these memory blocks are tainted. If memory is copied to a other memory
block or is copied into a register then this new location is tainted too. The
system keeps checking the tainted places.

Argos raises an alarm on several actions. When an attacker is trying to gain
control over a system the attacker will try to redirect the control to instructions
supplied by the attacker, the attackers shellcode. Argos can detect this action by
continious checking the call, ret, jmp and longjmp instructions. These instruc-
tions can be used to change the position of the instruction pointer, EIP. Other
ways that Argos uses to detect illegitimate use of memory are checks on string
format vulnerabilities and checking if the Qemu execve() attributes are tainted.
Format string vulnerabilities can be used to overwrite memory locations with
illegitimate network data.

When an alarm is raised Argos starts the signature creation proces. Memory
dumps and register dumps will be made and are written to a logfile. The au-
thors also made a piece of forensic shellcode which they execute on the tainted
code to get extra information about the attacked process, executable name,
open files, open sockets, network port used, etc. With the information gathered
by the forensic shellcode, the data in the trace database can be filtered on the
process and network port. If the attack was a TCP connection then the TCP
flow will be reconstructed. The following step is the creation of the signature.
The signature is created with the gathered information as input value. Argos
creates a flow signature and a packet signature. The flow signature is the se-
quence of bytes and the packet signature can be used for IDS and IPS systems.

22

The creation of signatures is not as good as they want it to be so they are still
submitting their signatures to Sweetbait. Sweetbait is a system that correlates
signatures form different sites and creates a new signature based on this cor-
relation process. These signatures can be used for the creation of IPS rules
for example snort_inline and for IDS systems to detect malware. The following
figure is an overview of the Argos system as explained in this section.

"

AT forensics 3 ‘

guextOS (Windows, Linux, etc) |
¥

extended dynamic
ldll‘ll analysis
ietwotk data Argos emulator

dEp'lﬂ,dll(!n\

-

me mory |

i
& O 7
dump i Bl A
i ¢
‘_ - _(_ldlﬂl_ﬂ-_{ data) ! /' Sweetbait
- refined signature

nem :)rk ~

{ trace "0100111"
=

currelalmn_-— signature
"0100111001100111"

Figure 7.2: Argos overview

7.4.2 Vulnerabilities
The vulnerabilities that are catched by Argos depend on the virtual systems
running on top of it. The virtual systems can run all possible several services
on Windows or Unix bases operating systems. Argos can detect every attack
on a vulnerability in a service. The more services the virtual system runs, the
more vulnerabilities Argos can detect.
7.4.3 Features

e Emulation of multiple platforms

e Detects control flow and code execution attacks

e Uses physical memory addresses in stead of virtual memory adresses

e Forensic shellcode

7.4.4 Supporting community

The Argos project is part of the European FP6 Noah project [20] that aims
to design a Pan-European Network of Advanced Honeypots. Their are quite
a lot of parties involved in the FP6 Noah project from different countries like

23

Greece, Switzerland, the Netherlands, Germany and France. At the Vrije Uni-
versiteit of Amsterdam in the Netherlands Herbert Bos, Georgios Portokalidis,
Asia Slowinska and some students are working on the project. Argos will be
used as the honeypot in the Network of Advanced Honeypots. This could mean
there will be a big supporting community. Herbert Bos and Georgios Portoka-
lidis can be contacted by email or by phone. Their addresses can be found
on the Argos website [19]. Argos is also part of the DeWorm project. In this
project they plan to investigate a new approach called DeWorm which combines
the deep scan and flow-based approaches to stop flash worms even if they are
self-modifying. More information can be found on their website [21].

7.4.5 Development

Georgios, Hertbert and Asia are still working at the project at the Vrije Uni-
verisiteit in Amsterdam in the Netherlands. Asia Salwinska in now working on
the improvement of the signature creation. The future work is improving the
signature generation. Their aim is to make better signatures then Sweetbait
is making right now and in the future they want to distribute the signatures
themselves. It depends on the growth of the Noah project which steps will be
made do develop the Argos honeypot. The forensic shellcode will be released
within a few weeks.

7.4.6 Implementation proposal

The current SURFnet architecture is based on three components. The sensors,
the honeypot and the logserver. In this section we will focus on the honeypot
itself. In the current situation the sensors used to send all of their network traffic
from the LANS of the connected parties to the honeypot. The logging server is
used to analyse and present the information gathered from the honeypot. We
tried to find setups to implement Argos within the current architecture of IDS
service. We will explain two setups of which we know they will work.

In the first setup Nepenthes will run as a subsystem of Honeyd and passing
al unknown traffic to Argos. In this setup Nepenthes could identity malware and
download files, Argos makes signatures of the malware unknown to Nepenthes,
and Honeyd will protect the real operating system against TCP fingerprinting
as explained in the paragraph about Honeyd. The developers of Nepenthes
already tried this setup [27]. They did had a few problems but it worked. More
research has te be done to solve these problems.

In the second setup Argos will run at a seperate system. The sensor in
the connected party’s LAN will setup two openVPN connections. One connec-
tion with the Nepenthes system and another connection with the Argos system.
Nepenthes can be used for detecting malware trying to exploit well known vul-
nerabilities and Argos will be used to detect zero-day attacks.

With these two setups SURFnet’s IDS should be able to detect malware us-
ing known vulnerabilities and malware attacking new, zero-day, vulnerabilities.
These setups are two of setups possible. Problems with this setup could be

24

combining Nepenthes and Argos logfiles. We hope SURFnet can use our setup
proposals to expand their IDS service of give them some ideas about how they
could combine Nepenthes and Argos in their IDS service.

25

7.5 Analysis

In the following paragraph we will make a comparison between the honeypots
we analysed earlier. We will compare the honeypots on the point listed below.

e Network monitoring
e Vulnerability emulation
e Supporting community

e Development activity

7.5.1 Network monitoring

The honeypots we analysed all have the capability to monitor the network on
illegitimate network activity. Honeynet just logs the network activity and need
administrators to analyse the logged data.

7.5.2 Vulnerability emulation

Nepenthes, Honeyd and Mwcollect can emulate vulnerabilities. Comparing
these honeypots Nepenthes is the one which emulates the most vulnerabilities
and is updated most often. A honeypot like Nepenthes or Mwecollect can also
be implemented as a subsystem of Honeyd. One of the developers of Nepenthes
tried it, but he came faced a couple of problems. More information on this
test can be found on the website of Nepenthes [5]. Honeynet is a honeywall
and cannot emulate vulnerabilities. The honeypot behind Honeynet can. Argos
doens’t emulate honeypots eather. The guest system is running a real operating
system and provides real services.

7.5.3 Supporting community

Nepenthes community has different ways to contact them. They has a mailing-
list, a forum, an contact emailaddress and a IRC channel. In the Nepenthes
IRC channel you will find the developer and the members to talk to. Honeyd
has a forum on their website where occasionally messages are posted. The
most messages posted are answered by the developer Niels Pavos. Mwollect
has an IRC channel where you can talk to the developer and members of the
community. Argos community is growing bigger. On the Noah [20] website
under partner section you can see the partners who are working together with
the Argos project. Meaning if Argos grows the supporting community will also
be bigger. Honeynet is part of the Honeynet project and has a big supporting
community.

Concluding the different supporting communities, the supporting community
of Nepenthes is the most active compare to the other. The Argos community
will also be growing if the Noah project succeeds.

26

7.5.4 Development activity

All the alternative honeypots we analysed are still under development. Argos
is still under heavy development and when Argos is implemented in the Noah
project it will be developt a lot faster. Nepenthes is also under continious
development. They bring out new modules on quite often. A new testversion
of Honeyd has just been released but is still under development but we can not
see any recent scripts and plugins submitted to the website

27

Chapter 8

Conclusion

The conclusions we can make after our research projects are the following. By
comparing Nepenthes with the alternative honeypots on the aspects; network
monitoring, vulnerabilities emulation, support community and development ac-
tivity we conclude that Nepenthes is still the honeypot for SURFnet to use in
their IDS. Nepenthes meets most of the requirements of SURFnet’s IDS. Argos
would be a good addition to the IDS to capture zero-day attacks in LANs of
connected parties.

28

Chapter 9

Future work

Argos looks to be a very promising honeypot and when it will be used in the
Noah project a lot of people will be working with the honeypot so it can be
developed much quicker than it is now. Future work would be a project for the
implementation of Argos. A great challenge of this project would be combining
the logs created by Nepenthes and Argos.

In our research project we were only able to look at different honeypots and
we dit not had the time do a research for interesting tools as well. In a following
research project a research can be done to find interesting tools which can be
used to improve the IDS.

Other future work could be the design of an architecure in which multiple
honeypots could be added as end-points. The sensors will probably have to be
modified to set up multiple openVPN connections to the different honeypots.

29

Bibliography

[1] Report SURFnet Intrusion Detection System,
http://staff.science.uva.nl/ delaat/snb-2004-2005/p30/report.pdf

[2] SURFunet IDS project, http://ids.surfnet.nl

[3] Paper van onderzoek naar gecentraliseerde loganalyse voor IDS,
http://staff.science.uva.nl/ delaat/snb-2004-2005/p16/report.pdf

[4] Paper van research projects naar het gebruik van high-interaction Windows
honeypots,
http://www.0s3.nl/ bart/courses/IDS /bestanden /project /IDS verslag.pdf

[5] Nepenthes project homepage, http://Nepenthes.sourceforge.net

[6] Nepenthes Mailing-list, https://sourceforge.net/mail/?group_id=137598

[7] Nepenthes Forum, http://sourceforge.net/forum/?group_id=137598

[8] Nepenthes Contact, http://Nepenthes.sourceforge.net/contact

[9] CERT Coordination Center, http://www.cert.org/current/services_ports.html

[10] Portlist of malware http://www.chebucto.ns.ca/ rakerman/trojan-port-
table.html

[11] Honeyd Virtual Honeypot hompage, http://www.Honeyd.org

[12] Simulating Networks with Honeyd written by R Chandran and S. Pakala,
http://www.paladion.net /papers/simulating networks_with_Honeyd.pdf

[13] Open Source Honeypots: Learning with Honeyd by Lance Spitzner,
http://www.securityfocus.com/infocus /1659

[14] Wikipedia.org, http://www.wikipedia.org
[15] Wikipedia IDS, http://en.wikipedia.org/wiki/Intrusion-detection_system
[16] Wikipedia Honeypots, |http://en.wikipedia.org/wiki/Honeypot_%28electronics%29

[17] The Honeynet Porject, http://www.honeynet.org

30

http://staff.science.uva.nl/~delaat/snb-2004-2005/p30/report.pdf
http://ids.surfnet.nl
http://staff.science.uva.nl/~delaat/snb-2004-2005/p16/report.pdf
http://www.os3.nl/~bart/courses/IDS/bestanden/project/IDS_verslag.pdf
http://Nepenthes.sourceforge.net
https://sourceforge.net/mail/?group_id=137598
http://sourceforge.net/forum/?group_id=137598
http://Nepenthes.sourceforge.net/contact
http://www.cert.org/current/services_ports.html
http://www.chebucto.ns.ca/~rakerman/trojan-port-table.html
http://www.chebucto.ns.ca/~rakerman/trojan-port-table.html
http://www.Honeyd.org
http://www.paladion.net/papers/simulating_networks_with_Honeyd.pdf
http://www.securityfocus.com/infocus/1659
http://www.wikipedia.org
http://en.wikipedia.org/wiki/Intrusion-detection_system
http://en.wikipedia.org/wiki/Honeypot_%28electronics%29
http://www.honeynet.org

[18]
[19]
[20]
[21]

[22]
[23]
[24]

[25]

[26]
[27]

28]

[29]

Qdetect, http://www.quarantainenet.nl
Argos, http://www.few.vu.nl/ porto/Argos
Website of the Noah project, http://www.fp6-noah.org/

Website of the DeWorm project,
http://www.cs.vu.nl/ herbertb/projects/deworm/

Qemu projectsite, [http://fabrice.bellard.free.fr/qemu/about.html
Qemu wikipedia.org, http://en.wikipedia.org/wiki/QEMU

Paper Argos: an Emulator for Fingerprinting Zero-Day Attacks written by
Georgios Portokalidis, Asia Slowinska and Herbert Bos

Hertbert Bos researcher and teacher at the Vrije Universiteit of Amsterdam,
http://www.cs.vu.nl/ herbertb/

Mwecollect, http://www.Mwcollect.org

Howto run Nepenthes as Honeyd subsystem,
http://nepenthes.sourceforge.net /howto:run_nepenthes_as_honeyd_subsystem

Know Your Enemy: Honeywall CDROM,
http://www.honeynet.org/papers/cdrom/index.html

Know Your Enemy: Genll Honeynets,
http://www.honeynet.org/papers/gen2/index.html

31

http://www.quarantainenet.nl
http://www.few.vu.nl/~porto/Argos
http://www.fp6-noah.org/
http://www.cs.vu.nl/~herbertb/projects/deworm/
http://fabrice.bellard.free.fr/qemu/about.html
http://en.wikipedia.org/wiki/QEMU
http://www.cs.vu.nl/~herbertb/
http://www.Mwcollect.org
http://nepenthes.sourceforge.net/howto:run_nepenthes_as_honeyd_subsystem
http://www.honeynet.org/papers/cdrom/index.html
http://www.honeynet.org/papers/gen2/index.html

Appendix A:
Projectomschrijving

Het begin van het onderzoek wordt de honeypot Nepenthes bekeken. Het onder-
zoek zal zich richten op de werking van Nepenthes in het vangen van malware.
Aan de hand van de binnengekomen meldingen van Nepenthes zal bekeken wor-
den of er nog malware tussendoor glipt zonder dat Nepenthes hier iets mee
doet.

Als dit onderdeel is afgerond wordt gekeken naar het eventuele gebruik van
andere honeypots (bv. mwecollect, qdetect, honeyd) en tools voor het IDS. Er
worden in ieder geval een aantal andere honeypots onderzocht en eventueel
getest. Van sommige honeypots is namelijk bekend dat de ontwikkeling stil
staat. Binnen SURFNet is een aantal maanden terug gekozen voor Nepenthes,
maar daarna is niet meer gekeken naar andere honeypots. Als er honeypots en
tools zijn welke een meerwaarde bieden voor het huidige IDS dan wordt bekeken
hoe deze kunnen worden opgenomen binnen het IDS.

Als de tijd het toe laat wordt ook nog gekeken naar TCP fingerprinting
en naar een full interactive honeypot. Nepenthes is high interactive honeypot
en een andere type honeypot is de full interactive honeypot. De honeypot
laat de malware zijn gang gaan en als de malware klaar is wordt het systeem
afgesloten om de schade te analyseren De sensoren binnen het IDS zijn gebaseerd
op Knoppix. Het zou verdacht zijn als malware een TCP fingerprint doet en
terugkrijgt dat het een Knoppix systeem is terwijl de malware net een aanval
heeft gedaan op een lek in Microsoft Windows.

32

Appendix B: CERT
vulnerability list

Service/Portnr Used Protocol Related Information

ICMP
ssh

smtp

domain
bootps
bootpc

tftp
http

hosts2-ns
sunrpc

epmap

netbios-ns
netbios-dgm

netbios-ssn

https

snpp
microsoft-ds

rtsp
http-rpc

kerberos-adm
pump
unassigned™®
lotusnote
ms-sql-m
h323hostcal
unassigned*
globe
ctx-bridge

unassigned*®

0/icmp
22/tcp

25/tcp

53/tcp
53/udp
67 /tcp
67/udp
68/tcp
68/udp
69/udp
80/tcp

81/tcp

111/tep
111/udp
135/tcp
135/udp

137 /udp
138/udp

139/tcp
139/udp

443 /tcp
444 /tcp
445 /tcp
445 /udp

554/tcp
593 /tcp

749/tcp
749/udp
751/tcp
751/udp
1052 /tcp
1352 /tcp
1434 /udp
1720/tcp
1720/udp
1978/udp
2002/udp
3127 /tcp

4156 /udp

Current Activity 08/18/2003: W32/Welchia Worm
CA-2002-36: Multiple Vulnerabilities in SSH Implementations
CA-2003-24: Buffer Management Vulnerability in OpenSSH
CA-2003-07: Remote Buffer Overflow in Sendmail
CA-2003-12: Buffer Overflow in Sendmail

CA-2003-25: Buffer Overflow in Sendmail

CA-2002-31: Multiple Vulnerabilities in BIND
CA-2003-01: Buffer Overflows in ISC DHCPD Minires Library

CA-2003-01: Buffer Overflows in ISC DHCPD Minires Library

CA-2003-20: W32/Blaster worm

CA-2002-27: Apache/mod_ssl Worm

CA-2002-33: Heap Overflow Vulnerability in Microsoft Data Access Components (MDAC)
CA-2003-09: Buffer Overflow in Core Microsoft Windows DLL

Current Activity 08/18/2003: W32/Welchia Worm

CA-2002-35: Vulnerability in RaQ Server Appliances

CA-2002-26: Buffer Overflow in CDE ToolTalk

CA-2003-16: Buffer Overflow in Microsoft RPC

CA-2003-19: Exploitation of Vulnerabilities in Microsoft RPC Interface
CA-2003-20: W32/Blaster worm

Current Activity 08/18/2003: W32/Welchia Worm

CA-2003-23: RPCSS Vulnerabilities in Microsoft Windows

CA-2003-08: Increased Activity Targeting Windows Shares
CA-2003-23: RPCSS Vulnerabilities in Microsoft Windows

CA-2003-08: Increased Activity Targeting Windows Shares
CA-2003-23: RPCSS Vulnerabilities in Microsoft Windows

CA-2003-03: Buffer Overflow in Windows Locator Service

CA-2003-08: Increased Activity Targeting Windows Shares
CA-2003-16: Buffer Overflow in Microsoft RPC

CA-2003-19: Exploitation of Vulnerabilities in Microsoft RPC Interface
CA-2003-20: W32/Blaster worm

CA-2003-23: RPCSS Vulnerabilities in Microsoft Windows

CA-2002-27: Apache/mod_ssl Worm

CA-2002-35: Vulnerability in RaQ Server Appliances

CA-2003-03: Buffer Overflow in Windows Locator Service

CA-2003-08: Activity Targeting Windows Shares

CA-2003-16: Buffer Overflow in Microsoft RPC

CA-2003-19: Exploitation of Vulnerabilities in Microsoft RPC Interface
CA-2003-20: W32/Blaster worm

CA-2003-23: RPCSS Vulnerabilities in Microsoft Windows

VU#934932: RealNetworks media server RTSP protocol parser buffer overflow
CA-2003-20: W32/Blaster worm

CA-2003-23: RPCSS Vulnerabilities in Microsoft Windows

CA-2002-29: Buffer Overflow in Kerberos Administration Daemon

CA-2002-29: Buffer Overflow in Kerberos Administration Daemon
CA-2002-27: Apache/mod_ssl Worm
CA-2003-11: Multiple Vulnerabilities in Lotus Notes and Domino
CA-2003-04: MS-SQL Server Worm

CA-2004-01: Multiple H.323 Message Vulnerabilities

CA-2002-27: Apache/mod_ssl Worm

CA-2002-27: Apache/mod_ssl Worm

Current Activity 01/26/04: W32/Mydoom.A or W32/Novarg

Current Activity 02/10/04: W32/Mydoom.C or W32.HLLW.Doomjuice
CA-2002-27: Apache/mod-ssl Worm

33

unassigned™®
sip

sip

unassigned*
unassigned*
font-service

4444 /tcp
5060/tcp
5060/udp
5061 /tcp
6129/tcp
6778/ tcp
7100/tcp

CA-2003-20: W32/Blaster worm

CA-2003-06: Multiple vulnerabilities in implementations of the Session Initiation Protocol (SIP)
CA-2003-06: Multiple vulnerabilities in implementations of the Session Initiation Protocol (SIP)
Current Activity 12/26/2003: Systems compromised via buffer overflow in DameWare
CA-2002-32: Backdoor in Alcatel OmniSwitch AOS

CA-2002-34: Buffer Overflow in Solaris X Window Font Service

34

	Summary
	Preface
	Acknowledgments

	Research goals
	Related work
	Introduction to IDSs and honeypots
	IDS
	Honeypots
	SURFnet's IDS Service

	Analysis of the Nepenthes honeypot
	Detection method
	Vulnerabilities
	Emulated vulnerabilities
	Known vulnerabilities
	Unknown vulnerabilities
	Analysis

	Features
	Supporting community
	Development
	Extendability

	Alternative honeypots and tools
	Honeyd
	Detection method
	Vulnerabilities
	Features
	Supporting community
	Development
	Extendability

	Mwcollect
	Detection method
	Vulnerabilities
	Features
	Supporting community
	Development
	Extendability

	Honeynets
	Detection method
	Vulnerabilities
	Features
	Supporting community
	Development
	Extendability

	Argos
	Detection method
	Vulnerabilities
	Features
	Supporting community
	Development
	Implementation proposal

	Analysis
	Network monitoring
	Vulnerability emulation
	Supporting community
	Development activity

	Conclusion
	Future work
	Bibliography
	Appendix A: Projectomschrijving
	Appendix B: CERT vulnerability list

