
Research Report
Preparing the Worldwide LHC Computing Grid for

MPI applications

Research Report for RP2
University of Amsterdam

MSc in System and Network Engineering

Class of 2005-2006

Richard de Jong, Matthijs Koot
{rjong,mrkoot}@os3.nl

30th June 2006

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

Abstract

This document is the result of a four-week research project, performed in the course of our MSc in
System and Network Engineering. We describe the current and desired state of support for running
parallel applications using the MPI library on the LHC Computing Grid, that is currently being
developed to support the experiments on CERNs Large Hadron Collider. We propose a solution to
achieve the first phase of the desired state (single-site MPI) and we describe the key problem areas
and possible solutions in achieving the second phase (cross-site MPI). We include a description and an
evaluation of YAIM, a tool used for installing and configuring Grid middleware. We found that YAIM
fulfills its goals, but only if it is used strictly in the environments it was designed for: small and/or
non-complex sites.

Acknowledgement

We’d like to thank dr. David Groep of NIKHEF for being our supervisor, and moreover for being so
helpful in provisioning our grid accounts and getting us to CERN. Without him, this project wouldn’t
have been possible. We hope our work approaches your expectations.

We’d like to thank Louis Poncet MSc of CERN for playing a key role in getting us enrolled in HR,
providing us with the inside information that enabled us to get the project started immediately, and
mostly for being an allround nice guy. We enjoyed the drinks at the Lake of Geneva, Louis. Happy
wake-boarding to you!

We’d like to thank dr. Maarten Litmaath of CERN, dr. Charles Loomis of LAL, dr. Stephen Childs
of Grid-Ireland, and our colleagues at the IT-GD team for their feedback and knowledge sharing.

We’d like to thank the University of Amsterdam, and especially dr. Karst Koymans, for providing
us with the possibility of performing a Master of Science study in the very interesting and exciting
field of System and Network Engineering.

Lastly but certainly not leastly, we’d like to thank our families for their support. You’ve been
great!

3

Contents

1 Introduction 7
1.1 The Worldwide LHC Computing Grid project . 7
1.2 Grid . 8
1.3 Research goals . 10
1.4 Acronyms . 10
1.5 Copyrights and ownership . 11

2 Enabling MPI on the WLCG 12
2.1 Introduction to parallel computing . 12
2.2 MPI on the WLCG, current situation . 15
2.3 MPI on the WLCG, desired situation . 15

2.3.1 Single-site MPI (first phase) . 16
2.3.1.1 Implications for the end-user . 16
2.3.1.2 Implications for RBs . 17
2.3.1.3 Implications for CEs . 17
2.3.1.4 Implications for WNs . 19

2.3.2 Cross-site MPI (second phase) . 19
2.3.2.1 More implications . 19
2.3.2.2 Prior art . 22

2.3.3 Remarks . 23
2.3.3.1 Unmet requirements . 23
2.3.3.2 Efficiency of fabric usage . 23
2.3.3.3 Integration of MPI and LRMS . 24

2.4 Implementations of MPI and their fitness for the WLCG 25
2.4.1 LAM . 26

2.4.1.1 LAM-6.5.9 . 26
2.4.1.2 LAM-6.5.9 on the WLCG . 26
2.4.1.3 LAM-7.0.6 . 26
2.4.1.4 LAM-7.0.6 on the WLCG . 26
2.4.1.5 LAM-7.1.2 . 27
2.4.1.6 LAM-7.1.2 on the WLCG . 27

2.4.2 MPICH . 27
2.4.2.1 MPICH-1.2.6 on the WLCG . 27
2.4.2.2 MPICH-1.2.7 on the WLCG . 27

2.4.3 MPICH2 . 27
2.4.3.1 MPICH2 on the WLCG . 28

2.4.4 OpenMPI . 28
2.4.5 OpenMPI on the WLCG . 29
2.4.6 Mpiexec . 29
2.4.7 Mpiexec on the WLCG . 29

2.5 Modifications for deployment of MPI . 30
2.6 Site Functional Test for MPI . 30

4

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

2.7 Conclusion on MPI on the WLCG . 31
2.8 Future work . 31

3 YAIM 32
3.1 Structure . 32
3.2 Scope . 33
3.3 Evaluation . 33
3.4 Conclusion on YAIM . 34
3.5 Future work . 34

Bibliography 35

A The BSD license for this project 39

B Requirements 40
B.1 User requirements . 40
B.2 Site requirements . 41

C Changes to YAIM 42
C.1 functions/config mpi . 42
C.2 examples/site-info.def . 46
C.3 scripts/node-info.def . 47

D A Quick Guide to using MPI on the WLCG 48
D.1 mpi-example.jdl . 48
D.2 MPItest.c . 48

E Wrapper scripts 50
E.1 lam-6-wrapper.sh without Torque/PBS . 50
E.2 lam-7-wrapper.sh without Torque/PBS . 52
E.3 lam-7-pbs-wrapper.sh with Torque/PBS . 54
E.4 mpich-wrapper.sh without Torque/PBS . 56
E.5 mpich-pbs-wrapper.sh with Torque/PBS . 58
E.6 mpich2-wrapper.sh without Torque/PBS . 59
E.7 mpich2-pbs-wrapper.sh with Torque/PBS . 61
E.8 openmpi-wrapper.sh without Torque/PBS . 63
E.9 openmpi-wrapper.sh with Torque/PBS . 65

F Site Functional Test for MPI 67
F.1 tests/sft-mpi.def . 67
F.2 tests/sft-mpi . 67

5

List of Figures

1.1 Data handling and computation for physics analysis . 8
1.2 The layered grid model . 9

2.1 Flynn-Johnson taxonomy of computer systems. 13
2.2 Serial computing: example of a SISD scenario. 13
2.3 Parallel computing: example of a MISD scenario. 14
2.4 Parallel computing: example of a SIMD scenario. 14
2.5 Parallel computing: example of a MIMD scenario. 14
2.6 Key (problem) areas of cross-site MPI. 20
2.7 Run-time incompatibility between MPI implementations. 21
2.8 Cross-site MPI with MPICH and MPICH-G2 . 23
2.9 Each MPI implementation needs to be integrated with a site’s LRMS. 24

3.1 The dependability tree . 34

6

Chapter 1

Introduction

As part of our Master of Science study in the field of System and Network Engineering at the Uni-
versity of Amsterdam, we have done research at CERN, Geneva [2], on enabling MPI-based parallel
computing on the LHC Computing Grid (LCG). The research was performed on behalf of NIKHEF [3],
Amsterdam, and was supervised by David Groep. The work was done in close cooperation with Louis
Poncet from the IT Grid Deployment group at CERN.

1.1 The Worldwide LHC Computing Grid project

The Worldwide LHC Computing Grid, or WLCG, is the project to create a grid to support the
physicists that will analyze the data coming from the Large Hadron Collider, a particle accelerator.
The section below is taken from the LCG Project Overview1 [4]:

“The Large Hadron Collider (LHC), currently being built at CERN near Geneva, is the
largest scientific instrument on the planet. When it begins operations in 2007, it will
produce roughly 15 Petabytes (15 million Gigabytes) of data annually, which thousands of
scientists around the world will access and analyse. The mission of the LHC Computing
Project is to build and maintain a data storage and analysis infrastructure for the entire
high energy physics community that will use the LHC.

The data from the LHC experiments will be distributed around the globe, according to
a four-tiered model. A primary backup will be recorded on tape at CERN, the “Tier-0”
centre of LCG. After initial processing, this data will be distributed to a series of Tier-1
centres, large computer centres with sufficient storage capacity for a large fraction of the
data, and with round-the-clock support for the Grid.

The Tier-1 centres will make data available to Tier-2 centres, each consisting of one or sev-
eral collaborating computing facilities, which can store sufficient data and provide adequate
computing power for specific analysis tasks. Individual scientists will access these facilities
through Tier-3 computing resources, which can consist of local clusters in a University
Department or even individual PCs, and which may be allocated to LCG on a regular
basis.

Discovering new fundamental particles and analysing their properties with the LHC accel-
erator is possible only through statistical analysis of the massive amounts of data gathered
by the LHC detectors ATLAS, CMS, ALICE and LHCb, and detailed comparison with
compute-intensive theoretical simulations. The goals of the LCG project include:

• Developing different software components to support the physics application software
in a Grid environment.

1The W in WLCG is added later than the quoted text was written, to denote the difference between the grid
middleware software stack which was used to be called LCG, and the worldwide grid using this software

7

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

• Developing and deploying computing services based on a distributed Grid model.

• Managing users and their rights in an international, heterogeneous and non-centralized
Grid environment.

• Managing acquisition, installation, and capacity planning for the large number of
commodity hardware components that form the physical platform for the LCG.”

The workflow for processing the LHC data is depicted in figure 1.1, taken from [5].

Figure 1.1: Data handling and computation for physics analysis

1.2 Grid

So, what exactly is a grid? According to Ian Foster [9], one of the ‘fathers of the grid’, a grid is a
system that:

1. . . . coordinates resources that are not subject to centralized control. . .

2. . . . using standard, open, general-purpose protocols and interfaces. . .

3. . . . to deliver nontrivial qualities of service.

Thus, it is more than simply a bunch of interconnected computational resources (which might
rather be called a cluster); it includes social and political aspects as well. The most prevalent vision
on grid computing is that of ‘service-oriented computing’, i.e. considering computational resources to
be like water and electricity facilities [10, 11]. Exploitation of these means for scientific purposes is also
denoted with the term e-Science, as coined by John Taylor [10]. Building on knowledge and code from
Globus Toolkit (the US-born de facto grid middleware), the European DataGrid project, or EDG,

8

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

and the Enabling Grids for E-sciencE project, or EGEE, the LCG project at CERN aims to deliver
a production-quality world-wide grid for scientific purposes (and perhaps commercial usage at a later
stage). The WLCG actually comprises multiple grids, making it a ‘grid of grids’: besides the LCG,
it also connects the US Open Science Grid, or OSG, and the Nordic Data Grid Facility, or NDGF.
This implies a need for grid interoperability. It is believed that one day, like every system needs an
IP-address to be connected to the Internet, every system to be connected to ‘the Grid’ shall need to
support the Open Grid Services Architecture, or OGSA. The OGSA webservice interfaces encourage
interoperability between heterogeneous grids. At this time, OGSA is not yet addressed in the gLite
development; instead, the interoperability is endeavored by providing common interfaces in the Virtual
Data Toolkit, or VDT (which provides some fundamental grid services).

During years of research on distributed computing, a general multilayer model has been developed
for grid architectures, which is depicted in figure 1.2. This model is semantically comparable with
the TCP/IP model used for Internet. The functions placed between the User Applications layer and
the Fabric layer are provided by Grid middleware. Several middleware projects exist; in the case of
the WLCG, the most prevalent middleware is called gLite. gLite, which was previously ambiguously
named LCG (referring to both the operational grid and to the grid middleware itself), is a collection of
software delivered by the JRA-1 group of EGEE. The gLite middleware is typically deployed through
Yet Another Installation Method, or YAIM, an installation method developed in the course of Grid
deployment. The OGSA specifies interfaces for all layers.

User Applications
aka "Application layer"

Collective Services
aka "Middleware layer"

Basic Services
aka "Resource layer"

Fabric
aka "Network layer""D

at
a

to
 k

n
o

w
le

d
g

e" "C
o

n
tro

l"

Figure 1.2: The layered grid model

In WLCG terminology, a Computing Element, or CE, is an abstraction of Worker Nodes, or WNs,
and a single ‘head node’ providing a job queue. CEs represent an interface to computing resources.
One CE can be seen as a single cluster, owned by an organization that controls this cluster, defines who
has access to it and, for instance, is responsible for scheduling decisions. When an end-user submits a
job described in the Job Description Language, or JDL, through a User Interface, or UI, the job is sent
to a Resource Broker, or RB. The RB will notify the Logging & Bookkeeping component, or LB, and
then query the Grid Index Information Service, or GIIS, to find CEs that are capable of executing the
job. If any such CEs are found, the RB delegates the job to ‘the best one’ by accessing it through its
Gatekeeper. The Gatekeeper then calls the CE Job Manager, which distributes the job to the WNs.
The components relevant to our research are visualized in figure 2.6.

9

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

1.3 Research goals

The research goals for our research were as follows:

Single-site MPI The primary goal of our research was to allow MPI-jobs to be submitted through
the grid interface and be executed within a single CE. This consists of the following subgoals:

• Define the requirements for integrating MPI into the gLite middleware and the YAIM
deployment scheme, so that, if enabled during gLite deployment, MPI jobs may be submitted
through the WLCG grid interface (this includes scalability and dependency issues).

• Integrate (and demonstrate) MPI into the gLite middleware and the YAIM deployment
scheme.

YAIM MPI will be deployed and configured by YAIM. Our secondary goal is to assess YAIM on
elementary software quality attributes, as well as on adherence to best practices and standards
that have been defined by the Global Grid Forum, or GGF 2.

Cross-site MPI The tertiary goal for our research was to pinpoint and document the issues that
arise when trying to implement Cross-site MPI.

1.4 Acronyms

The following acronyms are used in this report:
API Application Programming Interface

BDII Berkeley Database Information Index

CE Computing Element

CERN European Laboratory for Particle Physics

EDG European DataGrid

EGEE Enabling Grids for E-sciencE

GGF Global Grid Forum

GIIS Grid Index Information Server

GRAM Globus Resource Allocation Manager

GRIS Grid Resource Information Service

GSI Grid Security Infrastructure

IS Information Service

JDL Job Description Language

LB Logging and Bookkeeping Service

LDAP Lightweight Directory Access Protocol

LHC Large Hadron Collider

LCG LHC Computing Grid

LRMS Local Resource Management System

LSF Load Sharing Facility

MPI Message Passing Interface

OS Operating System

PBS Portable Batch System

RB Resource Broker

RFIO Remote File Input/Output

2 GGF is often called ‘the IETF of Grid computing’.

10

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

SE Storage Element

SFT Site Functional Tests

SMP Symmetric Multi Processor

QWG Quattor Working Group

VDT Virtual Data Toolkit

VO Virtual Organization

WLCG Worldwide LHC Computing Grid

WMS Workload Management System

WN Worker Node

YAIM Yet Another Installation Mechanism

1.5 Copyrights and ownership

All documents which are created as a part of this project will be licensed under the Creative Commons
2.5 Attribute license [66]. All source and object code which is produced as a part of this project will
be licensed under the revised BSD license [67].

11

Chapter 2

Enabling MPI on the WLCG

2.1 Introduction to parallel computing

Parallel programming is the art of using multiple processors to solve a single problem. The traditional
paradigm of computer architecture is the exact opposite: to solve multiple problems with a single
processor. This is also known as serial computing. The problems which are dealt with in scientific and
R&D communities nowadays are often to big to be solved using scalar processors; using a single scalar
processor to solve a large-scale problem, such as depicted in figure 2.2, is likely to exceed the acceptable
amount of time to solve that problem (should be < ∆time). With millions of scalar computers now
connected through the Internet, the perspective on computing is slowly changing to that of ‘the network
is the computer’; instead of using a single processor to solve a problem, a global network of processors
is now available to solve (the same or larger) problems.

In the Flynn-Johnson1 taxonomy of computer systems [18], as depicted in figure 2.1, this kind of
(non-parallel) system is classified as a Single Instruction, Single Data machine, or SISD. To handle a
problem with multiple processors, one may divide it into smaller problems through decomposition and
orchestrate them with parallel programming.

In functional decomposition2, each processor is assigned a different role/responsibility, such as de-
picted in figure 2.3; this type of system is classified as Multiple Instruction, Single Data, or MISD.
In domain decomposition3, each processor is assigned a different part of the data, such as depicted in
figure 2.4; this type of system is classified as Single Instruction, Multiple Data, or SIMD ; in perfect
domain decomposition, given a SIMD with N processors, the total execution time may be decreased
to ∆time/N (best case scenario). The last type of system in Flynn’s original taxonomy, which dates
back to 1972, is the Multiple Instruction, Multiple Data, or MIMD machine; an example is depicted
in figure 2.5. In 1988, Johnson extended the taxonomy by differentiating the MIMD class on Commu-
nication/Synchronization and Memory attributes.

Historic methods of parallel programming included threading, Inter Process Communication (IPC)
and Parallel Virtual Machines (PVM). None of them, however, are really suitable for a ‘heavily distrib-
uted’ environment like the globe-spanning WLCG [6]. Today, there are two main approaches to parallel
programming [14]. In the directives-based data-parallel language approach, serial code is parallelized by
adding directives that tell the machines how to distribute data and use multiple processors. Examples
of such languages are OpenMP and High Performance Fortran. In the message passing approach, which
was designed to succeed PVM and is suitable for large-scale distribution, the programmers themselves
are responsible for dividing data and work across the processors (striving for optimal load balancing),
and manage communication between them (striving for minimal and non-blocking communication)
by explicitly calling specific library functions. The prime quality attributes of the de facto standard
for message passing, the Message Passing Interface, or MPI, are source code portability — to support

1 Other and more exhaustive approaches to classification of parallel systems exist, but the Flynn-Johnson appears
most widely accepted and suffices for our purposes.

2 Parallelism that arises through functional decomposition is also known as task-parallelism.
3 Parallelism that arises through domain decomposition is also known as data-parallelism.

12

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

SISD
"Uniprocessors"

MISD

SIMD
"Array processors"

GMSV
"Shared-
memory

multiprocessors"

DMSV
"Distr.Shared

memory"

GMMP

DMMP
"Distrib.-memory
multiprocessors"

MIMD

Single Multiple

Data Stream(s)

In
st

ru
ct

io
n

S
tr

ea
m

(s
)

M
ul

tip
le

S
in

gl
e

Shared Variables Message Passing
Communication/Synchronization

G
lobally S

hared
D

istributed
M

em
ory

LCG

MISD = Multi-Instruction, Single Data
SISD = Single-Instruction, Single Data

SIMD = Single-Instruction, Multiple Data
MIMD = Multi-Instruction, Multiple Data

GMSV = Global-Memory, Shared-Variable
GMMP = Global-Memory, Message-Passing
DMSV = Distributed-Memory, Shared-Variable
DMMP = Distributed-Memory, Message-Passing

Legenda:

Figure 2.1: Flynn-Johnson taxonomy of computer systems.

Processor 1

$./descrack key1

$./descrack key2

$./descrack keyN

begin

end

∆ time

Figure 2.2: Serial computing: example of a SISD scenario.

13

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

Processor 1

$./descrack1 key1

begin

end

Processor 2

$./descrack2 key1

Processor N

$./descrack3 key1∆ time2

Figure 2.3: Parallel computing: example of a MISD scenario.

Processor 1

$./descrack key1

begin

end

Processor 2

$./descrack key2

Processor N

$./descrack keyN
∆ time / N
(best case)

Figure 2.4: Parallel computing: example of a SIMD scenario.

Processor 1

$./descrack1 key1

begin

end

Processor 2

$./descrack2 key2

Processor N

$./descrack3 key3∆ time3

Figure 2.5: Parallel computing: example of a MIMD scenario.

14

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

heterogeneous parallel architectures — and to allow efficient implementation [7, 8]. Although MPI may
be used in shared-memory architectures (SMP, NUMA), its original design was focused on distributed
memory architectures. It is the latter type of environment in which MPI is used at the WLCG; many
scalar processors with their own memory, mostly grouped into scientific computing clusters, connected
over the Internet.

Message passing has been an established paradigm for parallel computing since the early nineties.
Due to the proliferation of several incompatible libraries for parallel computing, the Message Passing
Interface Forum, or MPI Forum, was established to provide for standardization. The group, consist-
ing of some 60 people from 40 organizations, published version 1.0 of the Message Passing Interface
standard in 1994 [15]. Version 1.1 was released in 1995, mainly to correct some errors and make clar-
ifications in the first document. The most recent MPI is version 2.0, which was released in 1997 and
is an extension (not a modification) to version 1.1. Today, MPI is the most widely-used standard for
message passing on distributed-memory parallel computers.

2.2 MPI on the WLCG, current situation

When discussing parallel computing on the WLCG, one is firstly discussing distributed-memory,
message-passing MIMD-multiprocessors, although a possible scenario would be to use distributed-
memory for inter-CE computation and shared-memory for intra-CE or intra-WN computation (i.e.
multiprocessor WNs or CEs with a high-speed inter-WN memory bus, such as Myrinet or Infiniband).
Currently, preliminary support for running MPI jobs on the WLCG is already available. It is possible
to run an MPI job, provided the following conditions are met:

• SSH host-based authentication is set up between the Worker Nodes abstracted by the CE;

• The attribute “MPICH” is advertised by the CE;

When installing a Worker Node, the mpich package is installed. Mpich is one of the Open Source
implementations of MPI. The user can specify a Jobtype of “MPICH” in the job and request a number
of nodes. This number of nodes is internally interpreted as the number of CPUs, and it is currently
impossible to specify both the required number of nodes and the number of processors. The list of
Resource Broker types that are capable of running MPI jobs is hard-coded in the gLite software. The
user needs to submit his job as a precompiled binary, linked to the same version of mpich as is installed
on the CE his job is sent to. This leaves the user little flexibility in choice of an MPI implementation
and in variations on it’s version. The user’s application is wrapped inside a script that uses Secure Copy
(SCP) to copy the executable to all the assigned hosts. Some sites prefer to use a shared filesystem
and therefore do not need this. The wrapper script invokes the mpirun command, which does not
integrate very well with the gLite software. Altogether, the current solution for running MPI jobs is
not complete, nor is it very flexible.

2.3 MPI on the WLCG, desired situation

Based on the experiences with MPI on the WLCG, in Q1 2006, a new working group was formed
within the EGEE Technical Coordination Group (EGEE-TCG), specifically focussing on MPI, called
EGEE-TCG-MPI [16]. This working group has elicited several requirements for MPI on the WLCG.
The requirements are cited in Appendix B and together, they define the desired situation. In the next
sections, these requirements will be referred to using codes — please refer to the appendix for their
meaning.

In the next subsections, the relationship between those requirements and the LCG will be discussed.
Facilitating MPI is neutral in some respects, but not in others; this mostly depends on whether only
single-site MPI is facilitated, or users want to have their MPI jobs span multiple sites.

Most of the requirements are met when single-site MPI is deployed throughout the WLCG. To also
meet the remaining requirements, cross-site MPI has to be facilitated. We propose to split up the
effort in two phases: first enable single-site MPI, then enable cross-site MPI.

15

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

2.3.1 Single-site MPI (first phase)

Single-site MPI refers to the ability to submit an MPI job through the grid interface, and have it
executed within a single CE (i.e. a single cluster).

2.3.1.1 Implications for the end-user

End-users will be able to execute MPI jobs by submitting them from a UI. MPI is a standardized inter-
face specification, of which a whole breed of different implementations is available (in the dozens [13]).
The main difference between these implementations is their prioritization of certain quality attributes;
whereas one implementation focusses on sheer performance, others focus on portability and support-
ability, et cetera. Since MPI merely is an interface specification, code that behaves correctly when
linked against, say, OpenMPI, should behave correctly when linked against, for example, MPICH2.
Theoretically, anyway. In reality, the differences in implementation may lead to an ‘unsafe’ program
that behaves differently on one system than it does on another [14]:

“Several outcomes are consistent with the MPI specification and the actual outcome de-
pends on the precise timing of events. In order to complete successfully, an ‘unsafe’ program
may require resources that are not guaranteed by the MPI implementation of the system
on which it is running. Because of the varying MPI implementations, it is important to be
aware of the issues you should consider when writing code that you want to be portable.
Some of these issues are:

• Buffering Assumptions. In standard mode, blocking sends and receives should
not be assumed to be buffered. The reason for this is that buffer memory is finite
and all computers will fail under sufficiently large communication loads. If you write
a program using buffering assumptions, it will work under some conditions and fail
under others. Hence, it is not portable.

• Barrier Synchronization Assumptions for Collective Calls. In MPI, collective
communications are always assumed to be blocking. However, your program should
not depend on whether collective communication routines, like broadcast commands,
act as barrier synchronizations. An MPI implementation of collective communications
may or may not have the effect of barrier synchronization. One obvious exception to
this is the MPI BARRIER routine.

• Communication Ambiguities. When writing a program, you should make sure
that messages are matched by the intended receive call. Ambiguities in the com-
munication specification can lead to incorrect or non-deterministic programs if race
conditions arise. Use the message tags and communicators provided by MPI to avoid
these types of problems.”

The end-users of the WLCG are advised to write MPI-code that is suitable for (tested with) an MPI-
implementation that is (will be) explicitly provided by sites. If requirement u3 (see B) is adequately
fulfilled, this issue is unlikely to be an issue for most end-users; a range of different implementations
and versions would then be available to them. An extension to MPI was suggested, called Dyn-MPI, to
improve performance of parallel applications in non-dedicated cluster environments in which resources
are continuously competed for [32]; it may be worthwhile to consider.

Requirement u1+u3+u5 implies that the user shall be responsible for calling mpicc on the WNs,
as well as calling the preferred implementation of mpicc. This may be done by writing a Bash script
in which the path is prepended with an environment variable $MPI <implementation> PATH/bin,
in which <implementation> must refer to one of the CE-provided implementations of MPI (i.e.
$MPI MPICH PATH for MPICH, as advertised by the CE). WNs shall be required to provide such variables
if the CE advertises availability of MPI (one variable for each implementation), ref. section 2.3.1.3.
The script is then assigned to the Executable parameter in the JDL-file, and the required source files
are assigned to InputSandbox. Example usage:

16

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

#!/bin/sh
#
MPIjob.sh
#

(...)

Set up the paths
PATH=$MPI_MPICH_PATH/bin:$PATH
LD_LIBRARY_PATH=$MPI_MPICH_PATH/lib:$LD_LIBRARY_PATH

mpicc helloworld.c -o helloworld
mpiexec -n 2 ./helloworld
(...)

/* job.jdl */
(...)
Executable = "MPItest.sh";
InputSandbox = "helloworld.c";
(...)

Requirement u2+s2 implies that if the user needs a shared directory, he will explicitly refer to that
directory by referring to the $MPI PATH TO SHARED HOME environment variable. WNs shall be required
to provide this variable if the CE advertises availability of a shared directory, ref. section 2.3.1.3.
Example usage:

#!/bin/sh
#
MPIjob.sh
#

(...)
echo ‘/bin/hostname‘ >> $MPI_PATH_TO_SHARED_HOME/unsafe-example.txt
(...)

2.3.1.2 Implications for RBs

Requirement u7 implies that an end-user is able to pass two MPI-related parameters to the RB,
which denote the number of nodes required and the number CPUs to use on each node. As is, JDL
specification v0.8 provides a single such parameter called NodeNumber, which may be assigned a
positive numerical value. Depending on how a JDL-job is submitted, this number indicates
either the number of required ‘nodes’ (submission through Network Server4 [20]) or the
number of required CPUs (submission through WMProxy5 [21]). Due to interpretation
issues, a CPUNumber parameter has been unofficially suggested, but its current status is unknown.
Be it as it may, the RB will be required to explicitly process those parameter(s) while matching the
job to available CEs. In gLite-3.0, this means that parts of these packages need to be modified:
org.glite.wms.helper, org.glite.wms.jdl, org.glite.wms.jdlj, org.glite.wms-ui.gui-java.

2.3.1.3 Implications for CEs

The very fact that MPI needs to be facilitated has implications for the Local Resource Management
Systems6, or LRMSs, that are used by a CE. The implications are learned from [22]:

4 “The NodeNumber attribute is an integer greater than 1 specifying the number of nodes needed for an MPI job.”
5 “The NodeNumber attribute is an integer greater than 1 specifying the number of CPUs needed for an MPI job.”
6 Local Resource Management Systems are sometimes referred to as Job Management Systems, or JMSs, and several

other synonyms have been seen in the wild; examples of such systems are OpenPBS, its successor Torque, and LSF.

17

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

“Since in MPI, every process is a member of some communicator; when one allows MPI to
create or destroy processes, all of the communicators that that process belongs to change.
In order to keep collective operations on communicators meaningful (for example, what
does a reduction mean when a process joins the reduction during the operation; for that
matter, how is ‘during’ defined), all changes to communicators are collective operations.”

Thus, to correctly manage an MPI job (e.g. provide for correct signal delivery, free resources,
provide accounting), the LRMS and MPI implementation will need some coupling [23, 24, 25]. This
integration may, for example, be done by having the LRMS offer an external interface to job scheduling
functions and instruct the MPI library to use this API when spawning new processes. This approach
has been demonstrated in the integration of LAM/MPI with OpenPBS [23] through the PSCHED
Task Management API [33], which was an attempt to standardize such an external API. While this
integration is still available in OpenMPI and Torque (the successors of respectively LAM-MPI and
OpenPBS), PSCHED does not appear to be used by other LRMSs [31]. CEs that employ an LRMS that
does not explicitly support parallelism cannot service MPI jobs and should therefore never advertise
themselves as being MPI-capable. This issue is elaborated in section 2.3.3.3.

Furthermore, scheduling a mixture of MPI and non-MPI jobs may pose a problem. It is up to the
site administrator to evaluate the capabilities of a site’s LRMS to perform such scheduling. If mixed
scheduling can not be provided economically, a site should not deploy MPI, unless the site would be
dedicated to it (which in turn requires the WMS to somehow exclude it from matching it to non-MPI
jobs).

Requirement u2 implies CEs need to explicitly advertise the (un)availability of a shared home
directory. There is not yet an accepted way of advertising availability of a shared home, but this
could be done by having the CE advertise “MPI HOME SHARED” (see instructions below). The
exact path to the shared directory may not be known to the CE; therefore, as is, the LRMS wraps
the job executable inside a preprocessing script that is run at the WNs and interprets such vari-
ables (i.e., cd to the right directory) and finalizes by initiating the actual job. Unavailability of a
shared home is currently advertised as “MPI HOME NOTSHARED”. This is done by modifying the
GlueHostApplicationSoftwareRunTimeEnvironment value in the
/opt/lcg/var/gip/ldif/lcg-info-static-cluster.ldif file (or rather, the $CE RUNTIMEENV variable in your site-
info.def and run configure node again):

(...)
GlueHostApplicationSoftwareRunTimeEnvironment: MPI_HOME_NOTSHARED
(...)

The exact strings that may be advertised are arbitrary, and as is, coordination of naming conventions
is up to the end-users; such responsibility belongs to the User Applications layer, of which the gLite
middleware is no part.

Requirement u3+u5 implies CEs need to explicitly advertise the various MPI implementations they
provide, i.e. by tagging themselves with {“OPENMPI-1.0.2”, “MPICH-1.2.7”, “MPICH-G2-1.2.7”,
. . . }. This is done, again, by modifying the GlueHostApplicationSoftwareRunTimeEnvironment
value in the /opt/lcg/var/gip/ldif/lcg-info-static-cluster.ldif file:

(...)
GlueHostApplicationSoftwareRunTimeEnvironment: OPENMPI-1.0.2
GlueHostApplicationSoftwareRunTimeEnvironment: MPICH-1.2.7
GlueHostApplicationSoftwareRunTimeEnvironment: MPICH-G2-1.2.7
(...)

Requirement u7 implies that an end-user is able to pass two parameters to the LRMS, instructing
it to assign a certain number of nodes and the number of CPUs per node for a job. As is, JDL spec-
ification v0.8 provides a parameter called NodeNumber, which may be assigned a positive numerical
value designating that required number of nodes [49]. Due to interpretation issues, a CPUNumber
parameter has been unofficially suggested, but its current status is unknown. The current JDL speci-
fication does not provide for a way to fulfill requirement u7 as cited. Be it as it may, presuming that

18

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

the JDL will provide for such parameters, the LRMS will be required to process those parameter(s).
In gLite-3.0, this means that parts of these packages need to be modified: org.glite.ce.blahp,
org.glite.ce.cream, org.glite.cream-api-java, org.glite.ce.cream-cli.

Requirement s1 implies that the administrator of a site should check if his LRMS is able to run
MPI jobs, before advertising support for MPI. To our best knowledge, Torque, PBS, LSF and lcgpbs
have this ability. We were only able to test with Torque.

2.3.1.4 Implications for WNs

Requirement u1+u3+u5 implies that WNs shall provide working mpicc compiler and run-time en-
vironments for multiple implementations of both MPIv1 and MPIv2. The paths to these environments
shall be available for user scripts by having the WN provide a $MPI <implementation> PATH environ-
ment variable for each MPI-implementation, in which <implementation> is the name of the preferred
implementation. For example, when OpenMPI-1.0.2 and MPICH-1.2.6 are supported, the WN shall
execute:

#!/bin/sh
some WN/bootscript

(...)
export MPI_MPICH_PATH=/opt/mpich-1.2.6
export MPI_OPENMPI_PATH=/opt/openmpi-1.0.2
(...)

Requirement u2 implies that WNs shall provide an environment variable called $MPI PATH TO SHARED HOME
which contains the path of the shared directory. This is not required if the CE does not advertise the
availability of a shared directory.

2.3.2 Cross-site MPI (second phase)

Cross-site MPI refers to the ability of submitting an MPI job through the grid interface, and have it
executed accross multiple CEs (i.e. spanning a single MPI job over multiple clusters). Requirement
u4+s3+s4+s5+s9 states that MPI jobs may indeed span multiple CEs. The implications of such
requirements on the WLCG are discussed in the next sections.

2.3.2.1 More implications

Cross-site MPI adds several implications to those discussed for single-site MPI, and is a non-trivial
requirement. Figure 2.6 depicts the key problem areas. The problems have been numbered by priority
(‘common sense’-style).

19

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

U
I

C
E

 a
t

N
IK

H
E

F,
 A

'd
am

E
xe

cu
ta

bl
e=

"m
ym

pi
.s

h"
N

od
eN

um
be

r=
20

0

?

C
ro

ss
-s

it
e

M
P

I o
n

g

L
it

e-
3.

x:
 k

ey
 is

su
es

C
E

C
o

n
d

o
r-

C

G
at

ek
ee

p
er

B
L

A
H

P

L
C

A
S

 /
L

C
M

A
P

S
W

S
S

L
S

F
P

B
S

/T
o

rq
u

e
C

o
n

d
o

r

W
N

s

W
M

S
W

M
P

ro
xy

IC
E

C
R

E
A

M

M
at

ch
 M

ak
er

IC
E

-c
li

N
et

w
o

rk
 S

er
ve

r

T
as

k
Q

u
eu

e

Jo
b

 S
u

b
m

is
si

o
n

 &
 M

o
n

it
o

ri
n

gIn
fo

rm
at

io
n

 S
u

p
er

M
ar

ke
t

IC
E

-c
li

C
o

n
d

o
r

CIn
fo

rm
at

io
n

 S
ys

te
m

B
D

II

G
IIS

IS
 w

eb
in

te
rf

ac
e

IS
M

 U
p

d
at

er

W
M

P
ro

xy
-c

li

C
E

 a
t

C
E

R
N

, G
en

ev
a

C
E

C
o

n
d

o
r-

CG
at

ek
ee

p
er

B
L

A
H

P

L
C

A
S

 /
L

C
M

A
P

S
W

S
S

L
S

F
P

B
S

/T
o

rq
u

e
C

o
n

d
o

r

W
N

s

IC
E

C
R

E
A

M

M
P

I-
im

pl
M

P
I-

im
pl

#1
. M

P
I i

n
te

ro
p

er
ab

ili
ty

?

N
et

w
or

k
N

et
w

or
k

#4
. N

et
w

o
rk

 la
te

n
cy

?
P

ro
to

co
ls

?

LR
M

S
LR

M
S

#3
. S

yn
ch

ro
n

iz
e

sc
h

ed
u

lin
g

?

#2
. A

u
to

m
at

ic
 jo

b
 d

ec
o

m
p

o
si

ti
o

n
?

U
se

r-
d

ef
in

ed
 d

ec
o

m
p

o
si

ti
o

n
?

#5
b

. P
ro

ce
ss

 M
P

I p
ar

am
et

er
s

o
n

 IS
?

#5
c.

 P
ro

ce
ss

 M
P

I p
ar

am
et

er
s

o
n

 W
M

S
?

#6
. U

se
r-

d
ef

in
ed

 M
P

I r
eq

u
ir

em
en

ts
?

In

 J
D

L
?

 In
 s

h
el

ls
cr

ip
t?

#5
a.

 A
d

ve
rt

is
e

M
P

I p
ar

am
et

er
s?

Jo
e

th
e

S
ci

en
tis

t

F
ig

ur
e

2.
6:

K
ey

(p
ro

bl
em

)
ar

ea
s

of
cr

os
s-

si
te

M
P

I.

20

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

Problem #1 MPI interoperability?

Description By default, MPI implementations of different vendors are not interoperable (this also
goes for the open-source ones). It is not possible to span a job over CEs that do not provide a
common MPI implementation, as depicted in more detail in figure 2.7 [35]. An open, low-level
protocol called IMPI has been suggested to solve the interoperability problem, which has (only)
been implemented in LAM/MPI [34], WMPI II, HP MPI [36] and GridMPI [37]. More recently,
HeteroMPI was suggested [38].

Solution 1 Require different sites to run the same implementation(s) of MPI.

Solution 2 Require different sites to run an IMPI-supporting implementation of MPI.

Solution 3 Initiate a working group to build yet another implementation of MPI that fulfills the
grid-specific needs.

Worker Node at site 1
(SL3.0.6 + OpenMPI on x86)

MPI API

OpenMPI SDK

OpenMPI protocol

TCP/IP

Worker Node at site 2
(Win2k3 + MPICH on x86)

MPI API

MPICH SDK

MPICH protocol

TCP/IP
x

MPI provides portability,
not interoperability

Figure 2.7: Run-time incompatibility between MPI implementations.

Problem #2 Automatic job decomposition? User-defined decomposition?

Description To span a single job over multiple CEs, the problem needs to be decomposed in a
way that allows efficient fabric usage and is forgiving to network latency; i.e. independently
schedulable jobs. Although it may currently be done for some classes of problems, manually, it
is unclear how to do so in general — let alone how to automate it.

Solution Future work; this is area of current academic research. It seems that any solution to this
problem will involve both end-users (i.e. MPI programmers) and grid middleware engineers.
One relevant source is the MSc-thesis of Sean Philip Peisert in 2000, in which he proposed a
programming model for automated decomposition on heterogeneous clusters [39].

Problem #3 Synchronize scheduling?

Description Jobs which cannot be decomposed in a way that completely avoids the need for inter-CE
communication, require the LRMSs (or their abstractions) of the participating CEs to provide
some form of synchronization and/or reservation mechanisms.

Solution Future work. It yields new requirements to the CE and LRMS components. A solution may
come from analyzing the Globus DUROC scheduling component as used by MPICH-G2 [30] and
the KOALA grid scheduling system developed at TU Delft [40], which also introduces an economic
co-allocation scheduling policy 7. Furthermore, the Korean K*Grid Middleware Initiative has
forked MPICH-G2 into MPICH-GX to allow co-allocation using the GRASP scheduler of their
MoreDream middleware [41]. Lastly, some work has been done on ‘hybrid preemptive scheduling’
of MPI applications [42].

7This policy is named Incremental Claiming Policy and “optimistically postpones the claiming of the processors for
the job to a time close to the estimated job start time”; this has been demonstrated in the DAS-2 system.

21

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

Problem #4 Network latency? Protocols?

Description Latency is an important issue for MPI jobs. In [43], it is shown most MPI benchmarks
only scale fine up to 20ms RTT; in real life, however, the latency might be up to hundreds of
ms, depending on topological and geographical distance between sites participating in the job.
Walking up the stack of the OSI networking model, another problem appears at the transport
layer: it has been suggested that TCP is rather unsuitable as a carrier of MPI communication
(TCP is designed for contiguous data, whereas MPI is typically non-contiguous).

Solution 1 It has been suggested that some three small modifications to TCP may improve its perfor-
mance for MPI purposes. This includes the use of a pacer at start-up of an MPI job to prevent
TCP from going into ‘Slow Start’ mode [44, 45], and switching TCP parameters at different
stages of the MPI execution flow [45]. Applying these modifications may improve performance
by 10% to 30% [45, 46];

Solution 2 It has been suggested that SCTP is more suitable for MPI than TCP [47]. Depending
on message length and acceptable packet loss, using SCTP instead of TCP may increase MPI
communication performance between 250% and 1100%;

Solution 3 Design latency-tolerance into parallel jobs (this is area of current academic research).

Problem #5a Advertise MPI parameters?

Problem #5b Process MPI parameters on IS?

Problem #5c Process MPI parameters on WMS?

Description The availability of MPI implementations and several MPI-specific parameters need to be
processed throughout several grid components, including the WMS, the IS and the CE. The CE
shall need to advertise the MPI implementations it supports and the (un)availability of a shared
home directory to the IS. The WMS shall need to accept such parameters into its ISM, and the
MatchMaker component shall need to be able to perform matchmaking on those MPI-specific
requirements.

Solution See section 2.3.1; this is a topic for the JRA-1 group.

Problem #6 User-defined MPI requirements? In JDL? In shellscript?

Description The end-user shall need to specify the requirements to the MPI environment in the job
description or the job executable.

Solution See section 2.3.1 and appendix D.

2.3.2.2 Prior art

Cross-site MPI has already been demonstrated in 2001 using the now-proprietary Legion MPI [27, 28],
and in 2005 on TeraGrid using MPICH-G2 [29]. Similar environments are probably out there. MPICH-
G2, a ‘grid-enabling’ extension to MPICH [30], in essence allows MPICH to walk the grid stack to the
level needed to coordinate an MPI job over multiple sites, as depicted in figure 2.8. Its implementation
is tightly coupled to the Globus Toolkit.

We strongly advise the WLCG team to consider MPICH-G2 as a pilot for facilitating cross-site MPI
(assuming cross-site MPI indeed needs to be facilitated). MPICH-G2 has already been demonstrated
to work with the Globus Toolkit 2.x grid service architecture, and full integration with the future
webservices architecture is on its current roadmap [26]:

“COMING SOON: We have a version of MPICH-G2 that is fully integrated with the web
services distributed in version v4.x of the Globus Toolkit. We are currently working on
that version to complete its integration with the new MPICH-2 library and expect to have
our first release in the first quarter of 2006”

22

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

User Applications

Collective Services

Basic Services

Fabric

User Applications

Collective Services

Basic Services

Fabric

MPICH-supported
network, e.g. TCP/IP

or Infiniband

MPICH

G
lo

b
u

s
To

o
lk

it

MPICH-G2 utilizes GT:
- AuthN/AuthZ
- resource allocation
- executable staging
- process creation
- process monitoring
- process control

G
lo

b
u

s To
o

lkit

MPICH

MPICH-G2

Figure 2.8: Cross-site MPI with MPICH and MPICH-G2

2.3.3 Remarks

Some of the implications discussed in the previous sections are reflected in YAIM code. Please refer
to appendix C for a listing of the exact changes. The following section contains a listing of comments
on the requirements which have not been (fully) addressed by us.

2.3.3.1 Unmet requirements

Requirement u2

Remark Scalability, reliability and availability of the shared directory are a responsibility of the site,
and will not be addressed in our work.

Requirement u5

Remark Commercial/proprietary compilers are beyond the scope of our research due to anticipated
mind-numbing software licensing issues.

Requirement s1+s7

Remark Due to the required integration (albeit loose or tight) between LRMS and MPI libraries and
a lack of standardization in that respect, it is currently not feasible to fulfill this requirement.
Instead, it is chosen to provide support for one major LRMS, namely Torque.

Requirement s6

Remark This requirement is being addressed through Savannah (bug-reporting) tickets and is the
responsibility of the EGEE JRA-1 group.

Requirement s8

Remark This requirement is considered a ‘recommendation’ and has been used as such.

2.3.3.2 Efficiency of fabric usage

It is hard to estimate the performance of a message passing job and thus to know ex ante if the grid
fabric will be unnecessarily stressed. This is actually true for all parallel programs, since the datasets
they process might contain inefficiencies as well. It is the responsibility of the end-users to provide
efficient code (i.e., do not use parallelism when you do not need to); global deployment of MPI will
not by itself affect the efficiency of fabric usage on the WLCG.

23

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

2.3.3.3 Integration of MPI and LRMS

One of the problems that needs to be solved in the course of enabling single-site or cross-site MPI is
fairly fundamental: the MPI run-time environment needs to collaborate with the LRMS environment.
This collaboration is important, because it enables accounting of resource use and correct termination
of processes: without collaboration, one host is assigned by the LRMS to start the application on the
assigned hosts, and only this host is reported in the LRMS statistics. When there is collaboration,
the LRMS takes care of starting the application on each of the hosts and therefore all hosts will be
reported in the statistics.

Some implementations of MPI do not provide any such integration, some provide only the TM
interface that comes with Torque/OpenPBS, some support SLURM and/or SGE. Few, if any, imple-
mentations support all possible LRMSs. This is probably due to the fact that there is no standardized
interface for applications to interact with LRMSs. There has been an effort to provide such a stan-
dardized interface, the PSCHED Task Management API (TM) [33], but it has not really caught on:
only PBS with its derivatives support it with the TM interface.

If there is no collaboration between the MPI implementation and the LRMS, it is often still possible
to submit and run jobs. Most LRMSs provide a list of hosts that are assigned to the job through an
environment variable. This list can be used by the user’s wrapper script, but there is no guarantee
that he will not pick other hosts to use as well. This requires a lot of trust in the user who has to
provide a wrapper script to read out this environment variable and start his application. The areas of
interest are depicted in figure 2.9.

WLCG LRMS

pbs_server
1. "reserve 2x1 CPUs"
2. "send mpi-job.{sh,c}"

Node1

pbs_mom
1. "mpicc mpi-job.c"

2. "mpiexec -np 2 a.out"

Node2

mpi-job.sh
mpi-job.c

pbs_server
1. "send a.out to Node1"
2. "send a.out to Node2"

3. create processes

a.out

pbs_mom
1. "mpirun -np 2 a.out"

pbs_mom
"mpirun -np 2 a.out"

a.out
"MPI_COMM_SPAWN"

a.out

a.out

#1. The MPI run-time environment should delegate
(child) process creation to the LRMS!

#2. What if a user calls MPI_COMM_SPAWN?
#3. What if a user calls fork()?

a.out
"fork()"

mpi-job.jdl
mpi-job.sh
mpi-job.c

?

Joe the Scientist

Integration between
LRMS and MPI: key issues

Figure 2.9: Each MPI implementation needs to be integrated with a site’s LRMS.

Problem #1 The MPI run-time environment should delegate (child) process creation to the LRMS.

Description Once mpi-job.jdl has been interpreted by the CE gatekeeper and the LRMS has reserved
the requested resources, mpi-job.sh is executed on Node 1. This script compiles the MPI source

24

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

code (mpi-job.c) into object code (a.out), which is then ready to be distributed and executed
(on Node 1 and 2). But who creates the new processes? As explained, process creation should
only be performed by the LRMS, not by plain forking or ssh’ing. Each (WLCG-supported) MPI
implementation will thus need to support each (WLCG-supported) LRMS implementation. In
table 2.1, the currently available (vendor-claimed) integration is depicted.

LRMS-MPI integration
Torque/PBS LSF SGE SLURM XGrid POE

MPICH yes unknown unknown unknown unknown unknown
MPICH2 yes unknown unknown unknown unknown unknown
LAMv6 yes unknown unknown unknown unknown unknown
LAMv7 yes unknown unknown unknown unknown unknown
OpenMPI yes unknown unknown yes yes yes

Table 2.1: Current state of LRMS-MPI integration.

Solution 1 Execute the object code through a special, implementation-specific MPI wrapper; this is
the case for MPICH and MPICH2, which use a specialized mpiexec, as well as OpenMPI, which
uses the Open Run-Time Environment (orte) for such purposes, as well as LAMv6/7, which offer
a specialized boot sequence for Torque/PBS;

Solution 2 Compile the source code with an LRMS-aware MPI compiler;

Solution 3 Provide LRMS-integration in the source code (not a realistic option for grid environ-
ments).

Problem #2 What if a user calls MPI COMM SPAWN?

Description From the official MPI-2 standard, we cite [7]:

“The MPI COMM SPAWN and MPI COMM SPAWN MULTIPLE routines pro-
vide an interface between MPI and the runtime environment of an MPI application.”

“Complex interaction of an MPI application with its runtime environment should
be done through an environment-specific API.”

Solution 1 Kindly ask end-users not to call MPI COMM SPAWN or MPI COMM SPAWN MULTIPLE;

Solution 2 Compile the source code with an LRMS-aware MPI compiler;

Problem #3 What if a user calls fork()?

Description Calling fork() results in the creation of a new process, by default subverting the LRMS.
Evidently, this is the case for any application calling fork(); not just MPI-applications.

Solution Future work; we consider this beyond our scope.

2.4 Implementations of MPI and their fitness for the WLCG

A large number of implementations of MPI exist. They vary in a number of degrees. They may
implement MPI-1, MPI-1 and MPI-2, or MPI-1 and a subset of MPI-2. It appears to be very difficult
to implement MPI-2 completely, since only one of the implementations currently available offers full
MPI-2 support.

There are different mechanisms for distributing the executable and starting the executable on the
assigned machines. Most of the implementations rely on some form of remote shell access, for instance
through the RSH or SSH commands. Most implementations use a daemon framework which can be
set up before starting the job and can often remain active so that the next job can be run quickly.

We continue to describe a number of available Open Source implementations of MPI, that may or
may not fulfill all the requirements, and describe how well they work in the WLCG.

25

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

2.4.1 LAM

LAM, which stands for Local Area Multicomputer, comes standard with Red Hat Enterprise Linux,
and is therefore included in Scientific Linux, the Linux distribution created by CERN and Fermilab and
other labs and universities to provide one standard base Operating System for various researchers [50].
It implements MPI-1.2 and much of MPI-2.

The project is in maintenance mode, because LAM is one of the contributing implementations to
OpenMPI which is discussed in section 2.4.4. OpenMPI will obsolete LAM.

2.4.1.1 LAM-6.5.9

Version 6.5.9 of LAM is shipped with Red Hat ES 3. This version does not support any LRMS and
is therefore not the best candidate for use within the WLCG. It offers the lamboot command to start
up the LAM environment. It requires a list of hosts to which it logs in using SSH by default. It uses
this to start a daemon under the current user account on all the hosts that listens on 2 ports, 32870
and 32871 for requests.

If this has succeeded, the mpirun command can be issued to start the MPI application on some or
all of the hosts that have been set up. The mpirun command has the option of uploading (staging)
the executable to all the required hosts before starting it. It does not have a solution for uploading
the data to process.

When the application has finished running, the lamhalt command can be issued to stop all the
daemons that have been started. For this SSH logins to all hosts are performed.

2.4.1.2 LAM-6.5.9 on the WLCG

Although not the best solution, it is possible to use LAM on the WLCG. LAM is installed easily by
running something like:

apt-get install lam

on a Scientific Linux 3 machine. Running jobs on LAM requires the user to create a wrapper script
to boot the LAM environment using the hosts provided by the LRMS. An example script can be
found in Appendix E.1. It takes the name of the program to run on the commandline. It boots the
LAM environment if necessary, compiles the .c file, runs the executable, and breaks down the LAM
environment if required.

Setting the correct paths is not much of an issue in this case, because LAM is installed in the
default system locations, such as /usr/bin, that are already in the path.

The script assumes SSH authentication has been set up between the Worker Nodes.

2.4.1.3 LAM-7.0.6

Version 7.0.6 is provided with Redhat ES 4, so it is also included in Scientific Linux 4. As of release
7, LAM supports TM (the PSCHED API), which makes it an interesting solution because now it
integrates neatly with Torque/PBS, the default LRMS in the gLite Grid middleware.

2.4.1.4 LAM-7.0.6 on the WLCG

If a worker nodes runs Red Hat ES 4 or one of it’s derivatives, it can simply be installed with the usual
means, for instance by running

apt-get install lam

The integration with Torque/PBS should make it straightforward to start a LAM/MPI job, just run
lamboot without any arguments. It will detect it is running from within Torque/PBS and will use
tm spawn function calls to set up the required daemons. Then an invocation of mpirun will use the
hosts provided by Torque/PBS.

Setting the correct paths is not much of an issue in this case, because LAM is installed in the
default system locations, such as /usr/bin that are already in the path.

26

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

2.4.1.5 LAM-7.1.2

The latest version of LAM is 7.1.2. On it’s website [57] the RPM and SRPM (Source RPM) can
be downloaded. The SRPM builds nicely on SLC3 (Scientific Linux 3, CERN edition) and can be
installed with no trouble. A reminder here is that Grid middleware is not supposed to just overrule
Operating System provided packages unless necessary. Therefore it would be a good idea to modify the
spec file8 in the SRPM, to build and install into a different directory, for instance in /opt/lam-7.1.2.
Unfortunately, we had some trouble building this RPM due to some peculiarities in the spec file.

2.4.1.6 LAM-7.1.2 on the WLCG

As mentioned before, take care to not just upgrade components of the Operating System. If one
manages to install LAM-7.1.2, the use of it is just as easy as described in section 2.4.1.4. Care must be
taken however to determine the correct path. Wrapper scripts can be found in Appendix E.2 and E.3.

2.4.2 MPICH

MPICH is a freely available, portable implementation of MPI-1, created by Argonne National Lab. It
uses SSH to connect to remote hosts and launch the requested application. It offers multiple ways to
communicate between processes. For a distributed system with TCP/IP communication between the
nodes, ch p4 should be chosen.

MPICH has no notion of LRMS’s, so it cannot cooperate with any of them. To work around this
problem, Mpiexec was developed and should be used in Torque/PBS environments, see section 2.4.6.

2.4.2.1 MPICH-1.2.6 on the WLCG

MPICH-1.2.6 has been in the LCG middleware stack for quite some time, and is still included in the
gLite 3.0 release. There is rudimentary support for MPI jobs available based on this software. It has
been preconfigured to use the ch p4 device for communication.

One problem with this version of MPICH as provided in gLite, is that it installs in the normal
system directories, just as LAM does. Therefore MPICH and LAM cannot co-exist without modifying
one or the other. Since LAM is a default system component, it makes sense to modify the MPICH RPM
so that it installs in another location. This has already been done for MPICH-1.2.7, see section 2.4.2.2.
Therefore we propose to upgrade MPICH from 1.2.6 to 1.2.7, which will solve this problem.

Another problem with the current MPI support in gLite is that the invocation of /usr/bin/mpirun
is hard coded in the jobwrapper template. Use of mpirun is not the preferred way of starting MPI
applications. This should be fixed by removing the invocation of mpirun and instead let the user
provide a script that executes mpiexec.

2.4.2.2 MPICH-1.2.7 on the WLCG

The latest version of MPICH is 1.2.7p1. An RPM has already been created by Charles Loomis of the
Laboratoire de l’Accélérateur Linéaire (LAL) [51] of the Institut national de physique nucléaire et de
physique des particules (IN2P3) [52] in France and can be found in this directory [53]. This RPM
installs the software in /opt/mpich-1.2.7, so it does not clash with a LAM installation. Therefore the
path needs to be modified if a user wants to start an MPICH MPI job, by prepending the $PATH
variable accordingly. A wrapper script can be found in Appendix E.4. A wrapper script using mpiexec
can be found in Appendix E.5.

2.4.3 MPICH2

From the MPICH site of Argonne National Lab [54]:

8A spec file describes how to create an RPM from the provided tarball with the source code

27

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

“MPICH2 is an all-new implementation of MPI, designed to support research into high-
performance implementations of MPI-1 and MPI-2 functionality. In addition to the features
in MPICH, MPICH2 includes support for one-side communication, dynamic processes,
intercommunicator collective operations, and expanded MPI-IO functionality. Clusters
consisting of both single-processor and SMP nodes are supported. With the exception of
users requiring the communication of heterogeneous data, we strongly encourage everyone
to consider switching to MPICH2. Researchers interested in using using MPICH as a base
for their research into MPI implementations should definitely use MPICH2.”

MPICH2 uses a different mechanism to start processes from that of MPICH, which is called MPD.
This mechanism looks a lot like that of LAM. First the mpdboot command is used to start an mpd
daemon on the hosts specified. This can be checked using the mpdtrace or mpdringtest commands.
When the MPD-ring is set up, the mpiexec command can be given to run the command on all or
some of the hosts. When the task is finished, the mpdallexit command is used to shut down all the
daemons.

2.4.3.1 MPICH2 on the WLCG

The current version of MPICH2 is 1.0.3. It is distributed in .tar.gz format, but an RPM has been
provided by Charles Loomis and can be found at [53]. This RPM installs itself in the /opt/mpich2-1.0.3
directory, so it does not conflict with the other MPI implementations.

To be able to run MPICH2 jobs on the WLCG, wrapper scripts are provided in Appendix E.6
and E.7.

2.4.4 OpenMPI

From the OpenMPI website [55]:

“Open MPI is a project combining technologies and resources from several other projects
(FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library
available. A completely new MPI-2 compliant implementation, Open MPI offers advantages
for system and software vendors, application developers and computer science researchers.”

The implementations above have migrated into the OpenMPI project, which will make this an
important implementation for the future. It offers full MPI-2 standards conformance. One of the
things they have already created, is yet another way of starting an MPI job. It is called OpenRTE,
which stands for The Open Run-Time Environment [56]. This is a spin-off from the Open MPI
initiative. Its overarching goals are to create a portable, high-performance run-time environment for
both serial and parallel applications in a wide variety of hardware and software environments, and to
transparently support both single and multiple applications operating across a variety of environments.

OpenRTE supports a number of “launchers”, listed below:

• rsh / ssh

• Recent versions of BProc (e.g., Clustermatic)

• PBS Pro, Torque, and Open PBS (the TM system)

• Yod (Red Storm)

• POE

• SLURM

• XGrid

28

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

2.4.5 OpenMPI on the WLCG

Since OpenMPI includes OpenRTE, and OpenRTE provides support for Torque, it is an excellent
candidate for use on the WLCG. The orterun command is used to start an MPI application. It
automatically recognizes if it is running under Torque/PBS and then uses the TM interface.

Just as for the other implementations, Charles Loomis has provided RPM’s for OpenMPI as well.
Unfortunately they are a little outdated, since the RPM’s are for version 1.0.1, while 1.1 is the current
release. It installs nicely into a Worker Node, because it is installed in /opt/openmpi-1.0.1. Sample
wrapper scripts can be found in Appendix E.8 and E.9.

2.4.6 Mpiexec

Mpiexec is not an MPI implementation, but a helper program, to ease integration with Torque/PBS.
Is created by OSC, the Ohio Supercomputer Center. To quote their website [58]:

“Mpiexec is a replacement program for the script mpirun, which is part of the mpich
package. It is used to initialize a parallel job from within a PBS batch or interactive envi-
ronment. Mpiexec uses the task manager library of PBS to spawn copies of the executable
on the nodes in a PBS allocation.”

The following MPI implementations are supported by Mpiexec:

MPICH/p4 Basic implementation of MPI over ethernet devices.

MPICH/gm MPI using GM or MX message-passing software on Myrinet hardware.

MVAPICH An MPI implementation for InfiniBand networks, based on MPICH.

MPICH/rai An MPI implementation for the IB-like network on the Cray XD1 products.

MPICH/shmem MPI using only the local memory bus on a single-node multi-processor machine.

MPICH2/PMI Rewrite of the venerable MPICH, with a different job launch interface (called PMI)
that is intended to be common across all interconnects. Start mpiexec with –comm=pmi to
specify this MPI.

MVAPICH2 An InfiniBand implementation based on MPICH2. Uses the same PMI interface for
startup (–comm=pmi).

Intel MPI Based on mpich2 and uses the same PMI interface for startup.

EMP Experimental programmable gigabit ethernet MPI implementation.

none A way to start up many processes which are not related to each other. Handy for startup and
shutdown activities or multiple single-processor tasks in a single script.

2.4.7 Mpiexec on the WLCG

Mpiexec is already deployed on all Worker Nodes (WN’s), but in a rather old version, 0.77. This
version had no support for MPICH2 yet. The current stable version is 0.80 and does have support for
MPICH as well as MPICH2 as listed above. An RPM is provided by Charles Loomis that installs in
/opt/mpiexec-0.80/. This means the path to mpiexec has to be provided for the user.

29

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

2.5 Modifications for deployment of MPI

We have modified YAIM to provide for configuration of MPI. This modification consisted of three
steps:

• adding configuration parameters to examples/site-info.def;

• creating a new function functions/config mpi;

• calling it in scripts/node-info.def;

In the course of doing this, we also came across an inconsistency in YAIM. The PBS configuration
(/var/spool/pbs/server priv/nodes) should contain a list of WNs, with their number of processors as an
argument for every WN. In a pre-gLite CE this was done correctly by YAIM, but in a gLite-CE, the
number of processors was hardcoded in the gLiteContainers.xml file and set to 1. This was fixed by
adding the line

CE_SMPSIZE:torque-wn.number.processors

to gLite.def. This file creates mappings between environment variables (from site-info.def and Python
variables.

With this change, the NodeNumber parameter in a JDL file is actually interpreted by the LRMS
as the number of CPUs (processors) to use for a job.

The exact changes are listed in appendix C, and have been committed to the gLite CVS repository.
Charles Loomis has provided RPM packages for OpenMPI, MPICH and MPICH2, which will be
included in the appropriate gLite ‘metapackage’ by the gLite package and release managers. LAM-6
is included in the default Scientific Linux 3.0.6 distribution. Deployment of MPI has the following
implications to grid components:

• on WNs, a file will be created at /etc/profile.d/mpi.sh — this file provides end-users with site-
specific information of MPI (e.g. paths, availability of shared home), and is supposed to be
‘sourced’ in the job they submit;

• on CEs, new attributes will be advertised: one for each deployed implementation of MPI (cur-
rently MPICH, MPICH2, OPENMPI, LAM 6 and/or LAM 7), and one stating the (un)availability of a
shared home (MPI HOME SHARED or MPI HOME NOTSHARED). The latter is required to be advertised
if any MPI implementation is advertised, and NOT to be advertised if a site doesn’t provide
MPI.

There is no impact on other components.

2.6 Site Functional Test for MPI

Site Functional Tests, or SFTs are part of a framework to test the operation of the LCG grid. They
consist of small scripts that each test one or more functionalities. These scripts are wrapped inside one
job and submitted to the CE that is to be tested. To read more about this framework, please see [59].

We have created a simple script that tests all the available implementations of MPI that are installed
when using our suggestions. These can be found in Appendix F. To use this test, copy the SFT scripts,
the wrapper scripts and the file MPItest.c from the Appendices or from [1] and add sft-mpi to the list
of tests to be executed. Remember to add the required extra variables for NodeNumber and JobType
to the JDL file.

30

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

2.7 Conclusion on MPI on the WLCG

There is a need to run MPI-parallelized jobs on the WLCG. It seems that support for MPI has been
beyond the scope of the EGEE working groups, at least until Q1 2006 when the EGEE-TCG-MPI
group was formed. Preliminary support has been available since then - but establishing a working MPI
environment still required site administrators to perform a fairly large amount of (poorly documented)
customization. Even after doing so, the resulting MPI environment was inflexible in that it contained
several hard-coded elements (at the RB) and was not integrated with the LRMSs. Our work provides
support for multiple concurrent implementations of MPI, and allows for better integration with LRMSs.
End users of the grid are now able to submit MPI jobs for any of these implementations. It is up to
the site administrators to determine if their site is able to provide MPI functionality; primarily, this
means that they need to evaluate the capacity of the site’s LRMS to schedule both MPI and non-MPI
jobs. If not, they may choose to dedicate it for MPI, or probably shouldn’t expose MPI capacities to
the WLCG. Although we only provide single-site MPI at this time, we have described the problems
that need to be solved for establishing cross-site MPI, and believe our report provides a small pointer
towards the right direction.

2.8 Future work

Due to time constraints, we have not yet been able to determine possible issues related to mixed
scheduling of MPI and non-MPI jobs. It is not uncommon to see clusters dedicated for MPI, but this
is probably not an acceptable requirement to most WLCG sites, nor for the future. This is an issue
for both single-site and cross-site MPI, and suggest it to be researched in the near future. It appears
that the Maui scheduler plugin for Torque has some capabilities in this respect.

We observed a lack of integration between MPI implementations and various LRMSs. Support for
Torque/PBS seems to be available in some common MPI implementations, but integration with other
LRMSs may be important to the success of grid-based MPI (that is, assuming that Torque/PBS is not
the sole LRMS used in WLCG sites). Again, this is an issue for both single-site and cross-site MPI. A
solution may be found through collaboration of the MPI and LRMS communities.

With regards to cross-site MPI, a mechanism for co-allocation of computing resources needs to be
defined. It may be sensible to build on knowledge from MPICH-G2, MPICH-GX and KOALA (as
mentioned).

Reliability and performance tests should be performed on the work we provided, and the Site
Functional Test (SFT) we created should be checked and then used for monitoring purposes.

Lastly, in the context of e-Science, it may be interesting to review support for Cactus Code, a
well-known problem solving environment for scientists and engineers.

31

Chapter 3

YAIM

Yet Another Installation Method, or YAIM, is a tool for installation and configuration of grid middle-
ware. It was originally created by Louis Poncet1, Oliver Keeble and Laurence Field. It started as a
straightforward, simple and easy to use tool, to help system administrators configure their machines.
Now, it is the default and supported deployment system. Before YAIM was created, system admin-
istrators had to work through a 300 page installation and configuration manual. This manual still
exists, but now more as a reference guide. The installation and configuration manual is now reduced
to some 30 pages.

3.1 Structure

YAIM is entirely written in Bash, a UNIX scripting language, except for a few scripts in Python that
are used to create gLite configuration files. The gLite middleware itself contains Python scripts for
configuration, which can be controlled and run from YAIM, but not after the configuration files have
been created.

YAIM is a very modular system, the components are configuration files, scripts, functions and
utilities.

Configuration files are what guide the configuration of the machine.

• The site-info.def file looks like a shell script, consisting only of attribute-value assignments.
It is not to be regarded as a shell script, but solely as a configuration file. Functionality
beyond setting a variable should be done in function files. In principle, one site-info.def
should suffice for an entire site.

• The node-info.def file defines what steps need to be taken to configure a node to take on
a certain role. This means that for every role, there is a list of functions that need to be
called.

Scripts are the glue of YAIM.

• The install node script manages the installation of grid middleware components. This
boils down to installing a meta-package, which is an RPM file named after a grid middleware
node type, that has dependencies on all software necessary to install this node type. Node
types can be CE, WN, Torque-server, etcetera. It is possible for a node to have multiple
types.

• The configure node script is run after the install node script and takes care of configur-
ing the components based on the configuration files listed above. It does this by scanning
the command line for arguments that match node types. These node types are then looked
up in node-info.def and the resulting functions are run.

1Who happens to be our supervisor at CERN, indeed

32

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

Functions are the basic elements of configuration. For every element that needs to be configured, a
file is created named after the function, and it only contains this function2.

Sometimes a site needs to override the default version of a function. This is possible by creating
a file named after the function in the local directory below the functions directory.

Utilities are small scripts that contain a routine that may be called by various functions.

3.2 Scope

As mentioned above, YAIM originated as a solution to help reduce the burden on system administra-
tors. It was not built as a full featured configuration management system for large sites. Actually such
a system has been built, as a result of Work Package 4 of EDG. Its task definition was [60]:

“WP4 Installation system provides a mean to install operating system and applications
through the network, to configure system parameters and thereby to apply site policies.
It makes available all the necessary applications and user environments on the node. It
runs automatically or on request to examine the system and eventually to bring it to the
externally defined state stored in the ‘configuration database’.”

The resulting system from WP4 is Quattor [61]. This is in fact in use at a number of the bigger
WLCG sites. But the scope of Quattor (and WP4), was installation and configuration of the Operating
System. Not grid middleware.

There is a working group, called the Quattor Working Group (QWG), whose aim is to install,
configure and maintain the grid middleware using Quattor [62]. This effectively extends the use of
Quattor so that YAIM is no longer required3.

3.3 Evaluation

At the time we wrote our research plan, we assumed that CMUs Software Quality Attributes would be a
suitable (albeit somewhat general) framework for evaluating YAIM. After analyzing YAIM, this seemed
a bit overdone; the CMU Quality Attributes comprise performance, dependability, security and safety,
whereas the nature of YAIM — a tool for grid middleware deployment —, suggests only dependability
to have any relevance; the other attributes are probably more relevant to the grid middleware and
middleware configuration. The goal of YAIM is defined as follows:

“Yaim’s aim is to be able to configure the most common site architectures quickly and
simply. The code should be easy to read and should be regarded as unambiguous doc-
umentation as much as a set of scripts. Yaim does not need to cover the more obscure
requirements of highly specialized sites.”

The so-called dependability tree, as depicted in figure 3.1, visualizes the attributes of dependability,
the means to achieving it, and the impairments [63, 64, 65]. A posteriori, we note the following with
regards to the dependability of YAIM:

Not atomic: lots errors or warnings may be produced when running configure node, but still the end
result may be: “Configuration complete”.

Unstructured output: when configuring multiple node types or services, it is not obvious from
observing the output which part is being configured.

Reconfiguring: when things have to be changed after a system has been configured, one would want
to be able to rerun YAIM with a new site-info.def, and be sure that everything will be updated
accordingly. This is not always the case.

2A helper function may be defined in a function file, but only if it is not possible to make it so generic that it should
be a utility

3Or perhaps only for the QWG to do reverse engineering

33

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

Dependability
engineering

Attributes
(concerns)

Impairments
(factors)

Means
(methods)

- Availability
- Reliability
- Safety
- Confidentiality
- Integrity
- Maintainability

- Faults
- Errors
- Failures

- Fault prevention
- Fault tolerance
- Fault removal
- Fault forecasting

Figure 3.1: The dependability tree

Unconfiguring/removing a service: how to uninstall a service? This needs some scripting to list
the requirements of the meta-packages and uninstalling all of them.

Perhaps the worst part is that site administrators may get used to these problems. Two anecdotal
stories: We watched someone use YAIM and ignore some error messages, his comment was: “It’s no
problem, it’s only GridICE”. Which happened to be a component that was not installed, but YAIM
did try to configure. Another example was a presentation from someone from the QWG who said that
when using YAIM, “some errors you have to ignore, and some you do not.”

We acknowledge the suggestively low-profile goal of YAIM, but would like to point out that exclud-
ing it from fulfilling ‘obscure requirements’ does not exclude it from having to be dependable — we
believe YAIM should provide the aforementioned fundamentals, especially for ‘the most common’ sites
who may not have the expertise to deal with deployment peculiarities. That being said, if a YAIM
deployment run completes successfully and no rigorous reconfiguration is required, it does exactly what
it was built for; deploying grid components in an presumed-default environment.

3.4 Conclusion on YAIM

YAIM is designed to deploy grid components on a default OS environment, and it does a fine job as
such. We believe, however, that YAIM lacks several fundamental properties that may be essential
to deployment by unexperienced site administrators, or to deployment on non-default environments.
Excluding it from fulfilling requirements of ‘highly specialized’ sites does not exclude it from being
dependable; it may be worthwhile to elicit possible new requirements that site administrators — the
end-users of YAIM, after all — may have, and hear their opinion in this.

3.5 Future work

We suggest that a(nother) round of requirements gathering is performed amongst current and future
site administrators, and that its output is used to improve YAIM (if necessary). One of the possible
to-do’s we learned from site administrators is to allow them to (automatically) map VO-members that
are assigned an ‘lcgadmin’-role to separate pool accounts, instead of having all members with this role
map to the same account — this may aid in auditing and responsibility issues. In more general terms,
they want YAIM to be more flexible in user configuration.

34

Bibliography

[1] Jong de, Richard and Koot, Matthijs: Wiki with our scripts and other online information
https://twiki.cern.ch/twiki/bin/view/LCG/ImplementationOfMpi

[2] CERN: European Organization for Nuclear Research, http://www.cern.ch

[3] NIKHEF: Dutch Institute for High Energy and Nuclear Physics, http://www.nikhef.nl

[4] LCG Project Overview, http://lcg.web.cern.ch/LCG/overview.html

[5] Shiers, Sheets of SC4/WLCG Workshop, 2006,
http://indico.cern.ch/materialDisplay.py?materialId=slides&confId=1148

[6] Gropp, William and Lusk, Ewing: “PVM and MPI are completely different”, 1997,
http://citeseer.ist.psu.edu/573977.html

[7] MPI Forum: Message Passing Interface (MPI) Forum homepage, 1998, http://www.mpi-
forum.org/docs/docs.html

[8] Fagg, Graham and London, Kevin: “MPI Inter-connection and Control”, 1998,
http://citeseer.ist.psu.edu/400213.html

[9] Foster, Ian: “What is the Grid? A Three Point Checklist.”, 2002, http://www-
fp.mcs.anl.gov/∼foster/Articles/WhatIsTheGrid.pdf

[10] Foster, Ian: “Service-Oriented Science.”, 2005,
http://www.sciencemag.org/cgi/content/short/308/5723/814

[11] Papazoglou, M. and Georgakopoulos, D.: “Service-oriented computing: Introduction”, 2003,
http://portal.acm.org/citation.cfm?doid=944217.944233

[12] Gropp, William and Lusk, Ewing: “Goals Guiding Design: PVM and MPI”, 2002,
http://citeseer.ist.psu.edu/568858.html

[13] Trustees of Indiana University: “MPI Implementation List”, 2005, http://www.lam-
mpi.org/mpi/implementations/

[14] NCSA / PACS Training Group: “Introduction to MPI”, 2001,
http://webct.ncsa.uiuc.edu:8900/public/MPI/

[15] MPI-Forum: “MPI: A Message-Passing Interface Standard”, 1995, http://www.mpi-
forum.org/docs/mpi-11-html/mpi-report.html

[16] EGEE TCG: “Message Passing (MPI) WG”, http://egee-intranet.web.cern.ch/egee-
intranet/NA1/TCG/wgs/mpi.htm

[17] EGEE MPI Working Group: Minutes of the 2006-02-23 meeting,
http://agenda.cern.ch/fullAgenda.php?ida=a061204

[18] Johnson, Mike: “Superscalar Microprocessor Design”, Prentice Hall, 1991

35

https://twiki.cern.ch/twiki/bin/view/LCG/ImplementationOfMpi
http://www.cern.ch/
http://www.nikhef.nl
http://lcg.web.cern.ch/LCG/overview.html
http://indico.cern.ch/materialDisplay.py?materialId=slides&confId=1148
http://citeseer.ist.psu.edu/573977.html
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://citeseer.ist.psu.edu/400213.html
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www.sciencemag.org/cgi/content/short/308/5723/814
http://portal.acm.org/citation.cfm?doid=944217.944233
http://citeseer.ist.psu.edu/568858.html
http://www.lam-mpi.org/mpi/implementations/
http://www.lam-mpi.org/mpi/implementations/
http://webct.ncsa.uiuc.edu:8900/public/MPI/
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://egee-intranet.web.cern.ch/egee-intranet/NA1/TCG/wgs/mpi.htm
http://egee-intranet.web.cern.ch/egee-intranet/NA1/TCG/wgs/mpi.htm
http://agenda.cern.ch/fullAgenda.php?ida=a061204

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

[19] IETF (S. Bradner): “RFC 2119: Key words for use in RFCs to Indicate Requirement Level”,
1997, http://www.ietf.org/rfc/rfc2119.txt

[20] EGEE JRA-1: “Job Description Language Attributes Specification (submission through Network
Server)”, 2006, https://edms.cern.ch/document/555796/1

[21] EGEE JRA-1: “Job Description Language Attributes Specification (submission through WM-
Proxy)”, 2006, https://edms.cern.ch/document/590869/1

[22] Gropp, William and Lusk, Ewing: “Dynamic Process Management in an MPI Setting”, 1995,
http://citeseer.ist.psu.edu/gropp95dynamic.html

[23] Barret, Brian et al: “Integration of the LAM/MPI environment and the PBS scheduling system”,
2003, http://citeseer.ist.psu.edu/633226.html

[24] Saphir, William et al: “Job Management Requirements for NAS Parallel Systems and Clusters”,
1995, http://citeseer.ist.psu.edu/saphir95job.html

[25] Sistare, Steve et al: “An Architecture for Integrated Resource Management of MPI Jobs”, 2002,
http://doi.ieeecomputersociety.org/10.1109/CLUSTR.2002.1137769

[26] Northern Illinois University: “MPICH-G2”, 2005, http://www3.niu.edu/mpi/

[27] Humphrey, Marty et al: “Legion MPI: High Performance in Secure, Cross-Site, Cross-Architecture
MPI Applications”, 2001, http://legion.virginia.edu/presentations/LegionMPI-NAVO-Jun2001/

[28] Natrajan, Anand et al: “Capacity and Capability Computing using Legion”, 2001,
http://citeseer.ist.psu.edu/natrajan01capacity.html

[29] Dong, Suchuan et al: “Cross-Site Computations on the TeraGrid”, 2005, Computing in Science
and Engineering 7(5):14 – 23, ISBN: 1521-9615

[30] Karonis, N. et al: “MPICH-G2: A Grid-enabled implementation of the Message Passing Inter-
face”, 2003, Journal of Parallel and Distributed Computing, 63(5):551 – 563

[31] Open MPI: “Development Mailing List Archives”, 2006, http://www.open-
mpi.org/community/lists/devel/2006/06/0939.php

[32] Weatherly, D. Brent et al: “Dyn-MPI: Supporting MPI on Non Dedicated Clusters”, 2003,
http://citeseer.ifi.unizh.ch/weatherly03dynmpi.html

[33] The PSCHED API Working Group: “PSCHED: An API for Parallel Job/Resource Management”,
1996, http://www.pbspro.com/docs/psched-api-report.ps

[34] Squyres, Jeffrey et al: “The interoperable message passing interface (IMPI) extensions to
LAM/MPI”, 2000, http://citeseer.ist.psu.edu/squyres00interoperable.html

[35] Skjellum, Anthony et al: “Interoperability of Message-Passing Interface (MPI) Implementations:
A Position Paper”, 1997, http://citeseer.ist.psu.edu/68559.html

[36] HP: “HP MPI User’s Guide - Chapter 3”, 2003, http://docs.hp.com/en/B6060-
96013/ch03s03.html

[37] GridMPI: “GridMPI version 1.1”, 2006, http://www.gridmpi.org/gridmpi-1-1/

[38] Lastovetsky, Alexey et al: “HeteroMPI: Towards a message-passing library for heterogeneous
networks of computers”, 2006, Journal of Parallel and Distributed Computing, 66(6):197 – 220

[39] Peisert, Sean Philip: “A Programming Model for Automated Decomposition on Heterogeneous
Clusters of Multiprocessors”

36

http://www.ietf.org/rfc/rfc2119.txt
https://edms.cern.ch/document/555796/1
https://edms.cern.ch/document/590869/1
http://citeseer.ist.psu.edu/gropp95dynamic.html
http://citeseer.ist.psu.edu/633226.html
http://citeseer.ist.psu.edu/saphir95job.html
http://doi.ieeecomputersociety.org/10.1109/CLUSTR.2002.1137769
http://www3.niu.edu/mpi/
http://legion.virginia.edu/presentations/LegionMPI-NAVO-Jun2001/
http://citeseer.ist.psu.edu/natrajan01capacity.html
http://www.open-mpi.org/community/lists/devel/2006/06/0939.php
http://www.open-mpi.org/community/lists/devel/2006/06/0939.php
http://citeseer.ifi.unizh.ch/weatherly03dynmpi.html
http://www.pbspro.com/docs/psched-api-report.ps
http://citeseer.ist.psu.edu/squyres00interoperable.html
http://citeseer.ist.psu.edu/68559.html
http://docs.hp.com/en/B6060-96013/ch03s03.html
http://docs.hp.com/en/B6060-96013/ch03s03.html
http://www.gridmpi.org/gridmpi-1-1/

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

[40] Mohamed, H.H. et al: “The Design and Implementation of the KOALA Co-Allocating Grid Sched-
uler”, 2005, http://www.st.ewi.tudelft.nl/koala/papers/egc-final00.ps

[41] K*Grid Middleware Initiative (KMI): “MPICH-GX (Grid?eXtension of MPICH”, 2005,
http://kmi.moredream.org/doc/MPICH-GX-Manual.pdf

[42] Bouteiller, Aurelien et al: “Hybrid Preemptive Scheduling of MPI Application on the Grids”, 2004,
Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04),
p.130 – 137

[43] Matsuda, Motohiko et al: “Evaluation of MPI Implementations on Grid-connected Clusters using
an Emulated WAN Environment”, 2003, Proceedings of the 3st International Symposium on
Cluster Computing and the Grid (page 10), ISBN:0-7695-1919-9

[44] IETF (R. Braden): “RFC 1122: Requirements for Internet Hosts – Communication Layers”,
1989, http://www.ietf.org/rfc/rfc1122.txt

[45] Matsuda, Motohiko et al: “TCP Adaptation for MPI on Long-and-Fat Networks”, 2005, Proceed-
ings of the IEEE International Conference on Cluster Computing (Cluster 2005)

[46] Matsuda, Motohiko et al: “The Design and Implementation of an Asynchronous Communication
Mechanism for the MPI Communication Model”, 2004, Proceedings of the IEEE International
Conference on Cluster Computing (Cluster 2004)

[47] Kamal, Humaira et al: “SCTP versus TCP for MPI”, 2005, Proceedings of the ACM/IEEE SC
2005 Conference (SC’05), p.30 – ?

[48] CERN: “LCG Computing Grid - Technical Design Report v1.04”, 2005,
http://lcg.web.cern.ch/LCG/tdr/LCG TDR v1 04.pdf

[49] JRA-1: “Job Description Language - Attributes Specification v0.8”, 2006,
https://edms.cern.ch/file/555796/1/EGEE-JRA1-TEC-555796-JDL-Attributes-v0-8.pdf

[50] Scientific Linux, website, https://www.scientificlinux.org/

[51] Laboratoire de l’Accélérateur Linéaire (LAL), website, http://www.lal.in2p3.fr/

[52] Institut national de physique nucléaire et de physique des particules (IN2P3), website,
http://www.in2p3.fr/

[53] Index of MPI Packages, http://quattor.web.lal.in2p3.fr/packages/mpi/

[54] Argonne National Laborotary, website, http://www.anl.gov/

[55] OpenMPI, A High Performance Message Passing Library, website, http://www.open-mpi.org/

[56] The Open Run-Time Environment (ORTE) Project, website, http://www.open-rte.org/

[57] LAM/MPI Parallel Computing, website, http://www.lam-mpi.org/

[58] Ohio Supercomputer Center, website, http://www.osc.edu/∼pw/mpiexec/index.php

[59] Site Functional Tests, http://goc.grid.sinica.edu.tw/gocwiki/Site Functional Tests

[60] Polok Jaroslaw, Iven Jan: “WP4 Task definition: Installation”, 2001,
http://iven.home.cern.ch/iven/wp4/wp4-inst-task.pdf

[61] QUATTOR: QUattor is an Administration ToolkiT for Optimizing Resources, website,
http://quattor.web.cern.ch/quattor/

[62] Quattor Working Group, https://svn.lal.in2p3.fr/LCG/QWG/web/index.html

37

http://www.st.ewi.tudelft.nl/koala/papers/egc-final00.ps
http://kmi.moredream.org/doc/MPICH-GX-Manual.pdf
http://www.ietf.org/rfc/rfc1122.txt
http://lcg.web.cern.ch/LCG/tdr/LCG_TDR_v1_04.pdf
https://edms.cern.ch/file/555796/1/EGEE-JRA1-TEC-555796-JDL-Attributes-v0-8.pdf
https://www.scientificlinux.org/
http://www.lal.in2p3.fr/
http://www.in2p3.fr/
http://quattor.web.lal.in2p3.fr/packages/mpi/
http://www.anl.gov/
http://www.open-mpi.org/
http://www.open-rte.org/
http://www.lam-mpi.org/
http://www.osc.edu/~pw/mpiexec/index.php#description
http://goc.grid.sinica.edu.tw/gocwiki/Site_Functional_Tests
http://iven.home.cern.ch/iven/wp4/wp4-inst-task.pdf
http://quattor.web.cern.ch/quattor/
https://svn.lal.in2p3.fr/LCG/QWG/web/index.html

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

[63] CMU-SEI: “Technical Report CMU/SEI-95-TR-021 - Quality Attributes”, 1995,
http://www.sei.cmu.edu/pub/documents/95.reports/pdf/tr021.95.pdf

[64] Baracci, Mario et al: “Principles for Evaluating the Quality Attributes of a Software Architecture”,
1997, http://citeseer.ist.psu.edu/barbacci97principles.html

[65] IFIP WG10.4: “WG 10.4 on DEPENDABLE COMPUTING AND FAULT TOLERANCE”, 1980-
now, http://www.dependability.org/wg10.4/

[66] Creative Commons: Creative Commons Attribution 2.5 license, www.creativecommons.org

[67] Open Source Initiative, The BSD License, www.opensource.org

38

http://www.sei.cmu.edu/pub/documents/95.reports/pdf/tr021.95.pdf
http://citeseer.ist.psu.edu/barbacci97principles.html
http://www.dependability.org/wg10.4/
http://creativecommons.org/licenses/by/2.5/
http://www.opensource.org/licenses/bsd-license.php

Appendix A

The BSD license for this project

Copyright (c) 2006, Richard de Jong and Matthijs Koot All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither the name of the University of Amsterdam nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

39

Appendix B

Requirements

In Q1/2006, a new working group was formed within EGEE Technical Coordination Group (EGEE-
TCG), specifically focussing on MPI [16]. In their early meetings, preliminary end-user and (grid) site
requirements were elicited. In the next subsections, the explicit requirements are listed and tagged for
referencing purposes (i.e. traceability) and prioritized for our own purposes using the conventional
{MUST,SHOULD,MAY} requirement levels described in RFC 2119 [19]. The prioritization has been
refined during a phone conference with Charles Loomis, who is leader of the EGEE working group.

B.1 User requirements

The end-user requirements are as follows [17]:

u1 MUST “Users need to prepare the job before the MPI executable is launched. This typically
involves compilation of the executable and preparation of the job inputs.”

u2 MUST “Some jobs require a shared directory. During the execution of the job, some of the files
in the shared directory are updated. These changes need to be visible on the child nodes.”

u3 MUST “Multiple versions of MPI need to be supported. There is a mix of MPI-1 and MPI-2 jobs
which need to be executed. Moreover, some users prefer a particular implementation. We should
look at MPICH-1, MPICH-2, and LAM at a minimum.”

u4 MAY “At least the computational chemistry application will need to have cross-site MPI available.
This means looking at MPICH-G2 and other similar solutions. The experiences from CrossGrid
will be helpful here.”

u5 MAY “Many of the MPI codes are compiled with commercial compilers. We need to see how this
can be accommodated on the production service.”

u6 SHOULD “Some grid-enabled applications call grid services from the child processes. This means
that these processes need access to the user proxy. This access is usually not possible because the
proxy is put into a local space (/tmp). Currently the applications handle the distribution of the
proxies directly.”

u7 MAY “Some applications want to have detailed control over the distribution of jobs, specifying
both the number of nodes and number of CPUs on each node.”

40

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

B.2 Site requirements

The site requirements are as follows [17]:

s1 MAY “Need to ensure that MPI jobs are compatible with all of the job managers (lcgpbs, pbs,
etc.).”

s2 MUST “The details of the ‘shared home directory’ requirement needs to be better understood.
First, is it necessary that this be the home directory or can another directory be provided? Second,
is this required for all jobs; could some jobs survive without? Third, if jobs can survive without,
what files need to be distributed automatically to the child nodes? The executable is the minimum,
but proxies, etc. may be needed.”

s3 MAY “It looks like most sites supporting MPI on the production service will support a mix of
MPI and non-MPI jobs. Efficient scheduling can only be done in this situation if job backfilling
is possible. This means that the local scheduler *must* have access to the job requirements. This
requirement has come up in other contexts. It is critical for MPI jobs to avoid inefficient use of
the fabric or job starvation. For the case of starvation, Fokke [Dijkstra] pointed out that the new
ERT algorithm may help avoid some of the bad scheduling decisions.”

s4 MAY “Need to look at efficient scheduling of the MPI jobs at the grid-level at well. For the
CrossGrid modified resource broker some additional information was needed, such as the number
of CPUs really free, number of CPUs available for MPI, and the like. May also need schema
changes for indicating whether a shared home directory is available.”

s5 MAY “CrossGrid also found that there were some problems with the standard LRMS information
providers. For example for PBS, it would advertise a CPU as free even if it was loaded and could
not be scheduled. Need to look in detail to ensure that the information is correct.”

s6 SHOULD “Need to avoid hardcoding of things at the level of the resource broker. This makes it
extremely difficult to customize MPI support at the site. For example, there is a desire for site
running Torque/PBS to use mpiexec which permits correct accounting and control of the child
processes. The job wrapper should not assume that this is mpirun, nor call it automatically at
the start of the job.”

s7 SHOULD “A variety of batch systems need to be supported. At the meeting there were people
wanting to have SGE and Torque working with MPI. There are also many sites running LSF.”

s8 SHOULD “Having a standard user environment came up in several of the points above. For
example, it might be possible to provide an environment variable which indicates the location of
a shared disk (not necessarily the home area). Also when supporting many different MPI imple-
mentations, there will be a need to indicate the locations of those implementations. Environment
variables may also be a natural way of implementing site customizations, e.g. indicating the
executable to start MPI.”

s9 MAY “If cross-site MPI is supported, then the IP requirements for doing so must be determined.”

41

Appendix C

Changes to YAIM

C.1 functions/config mpi

We have added a file to YAIM, namely function/config mpi:

#

CONFIG_MPI

#

Description: MPI-related configuration

#

History:

2006-06-21, mkoot: File created.

2006-06-23, mkoot: Replaced "rpm -i" with "rpm -Uvh".

Added $MPI_MPIEXEC.

2006-06-26, mkoot: Moved if-then clauses from site-info.def to this file;

config_mpi() now changes CE_RUNTIMEENV.

2006-06-27, mkoot: Added timestamp to comments header of generated file (mpi.sh).

2006-06-28, mkoot: Complied the generated comment header of "mpi.sh" to the YAIM DevGuide

#

Remarks:

- if a site wants to allow ’scp’ for job distribution, they must MANUALLY configure

their ssh_config and sshd_config files to allow it (i.e. "HostbasedAuthentication yes")

#

TODO:

- add MPI rpms to gliteWN metapackage

#

#

The location of the MPI implementation is found by querying if the RPM is installed,

searching for the mpicc command in the file list, extracting the path from it and

testing if it exists in real life. You are free to use a fixed value for the

$MPI_<foobar>_PATH and $MPI_<foobar>_VERSION, however, and arbitrary MPI implementations

may be added (inform your users on the variable names). REMEMBER that you may want

to have the CE advertise your custom MPI, and if so, the changes you make here

need to be reflected in the CEs GlueSoftwareRunTimeEnvironment!

#

find_dir() {

dir=‘rpm -ql $1 | awk -F/bin/mpicc ’/mpicc$/ {print $1}’‘

if ["x$dir" != "x"]

then

if [-d $dir -a -f $dir/bin/mpicc]

then

echo $dir

42

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

fi

fi

}

find_version() {

version=‘rpm -q $1 | grep -v "is not installed" | awk -F- ’{print $2}’‘

if ["x$version" != "x"]

then

echo $version

fi

}

config_mpi() {

#--

WN-related configuration for MPI

#--

testing for "WN" will also include "glite-WN" (Good Thing [tm])

if (echo "${NODE_TYPE_LIST}" | egrep -q ’WN’ > /dev/null); then

TIMESTAMP=‘date‘

cat <<EOF > /etc/profile.d/mpi.sh

#

Script dynamically generated by YAIM function ${FUNCNAME[0]}

#

MPI.SH (generated at $TIMESTAMP)

#

Description:

--

This script is generated by YAIM when running "configure_node <foobar.def> glite-WN".

It should be executed as a prelude to a MPI job and sets MPI environment variables,

for example by having the end-user ’source’ it in a shellscript he/she provides

in the "Executable" parameter of foobar-job.jdl. If you don’t provide MPI, this file

merely acts as a place holder and should be empty (besides this comment header).

#

WARNING: if you customize this file, please make sure to make a backup before

running configure_node again: this file will be overwritten!

#

EOF

SOME_MPI_IS_SELECTED="false"

#----

Handle MPICH

#----

if ["x$WN_ENABLE_MPI_MPICH" == "xyes"]

then

SOME_MPI_IS_SELECTED="true"

if ["x$WN_ENABLE_MPI_MPICH_PATH" != "x"]

then

echo "MPI_MPICH_PATH=’$WN_ENABLE_MPI_MPICH_PATH’">> /etc/profile.d/mpi.sh

echo "MPI_MPICH_VERSION=’$WN_ENABLE_MPI_MPICH_VERSION’">> /etc/profile.d/mpi.sh

else

rpm -Uvh "http://quattor.web.lal.in2p3.fr/packages/mpi/mpich-1.2.7p1-1.sl3.cl.1.i386.rpm"

echo "MPI_MPICH_PATH=’‘find_dir mpich‘’">> /etc/profile.d/mpi.sh

echo "MPI_MPICH_VERSION=’‘find_version mpich‘’">> /etc/profile.d/mpi.sh

fi

echo "export MPI_MPICH_PATH MPI_MPICH_VERSION">> /etc/profile.d/mpi.sh

43

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

fi

#----

Handle MPICH2

#----

if ["x$WN_ENABLE_MPI_MPICH2" == "xyes"]

then

SOME_MPI_IS_SELECTED="true"

if ["x$WN_ENABLE_MPI_MPICH2_PATH" != "x"]

then

echo "MPI_MPICH2_PATH=’$WN_ENABLE_MPI_MPICH2_PATH’">> /etc/profile.d/mpi.sh

echo "MPI_MPICH2_VERSION=’$WN_ENABLE_MPI_MPICH2_VERSION’">> /etc/profile.d/mpi.sh

else

rpm -Uvh "http://quattor.web.lal.in2p3.fr/packages/mpi/mpich2-1.0.3-1.sl3.cl.1.i386.rpm"

echo "MPI_MPICH2_PATH=’‘find_dir mpich2‘’">> /etc/profile.d/mpi.sh

echo "MPI_MPICH2_VERSION=’‘find_version mpich2‘’">> /etc/profile.d/mpi.sh

fi

echo "export MPI_MPICH2_PATH MPI_MPICH2_VERSION">> /etc/profile.d/mpi.sh

fi

#----

Handle OpenMPI

#----

if ["x$WN_ENABLE_MPI_OPENMPI" == "xyes"]

then

SOME_MPI_IS_SELECTED="true"

if ["x$WN_ENABLE_MPI_OPENMPI_PATH" != "x"]

then

echo "MPI_OPENMPI_PATH=’$WN_ENABLE_MPI_OPENMPI_PATH’">> /etc/profile.d/mpi.sh

echo "MPI_OPENMPI_VERSION=’$WN_ENABLE_MPI_OPENMPI_VERSION’">> /etc/profile.d/mpi.sh

else

rpm -Uvh "http://quattor.web.lal.in2p3.fr/packages/mpi/openmpi-1.0.1-1.sl3.cl.1.i386.rpm"

echo "MPI_OPENMPI_PATH=’‘find_dir openmpi‘’">> /etc/profile.d/mpi.sh

echo "MPI_OPENMPI_VERSION=’‘find_version openmpi‘’">> /etc/profile.d/mpi.sh

fi

echo "export MPI_OPENMPI_PATH MPI_OPENMPI_VERSION">> /etc/profile.d/mpi.sh

fi

#----

Handle LAMv6

#----

if ["x$WN_ENABLE_MPI_LAM_6" == "xyes"]

then

SOME_MPI_IS_SELECTED="true"

if ["x$WN_ENABLE_MPI_LAM_6_PATH" != "x"]

then

echo "MPI_LAM_6_PATH=’$WN_ENABLE_MPI_LAM_6_PATH’">> /etc/profile.d/mpi.sh

echo "MPI_LAM_6_VERSION=’$WN_ENABLE_MPI_LAM_6_VERSION’">> /etc/profile.d/mpi.sh

else

TBD: rpm -Uvh SOMETHING?

apt-get install lam

echo "Note: there isn’t a gLite-integrated .rpm for LAM-6 yet so it won’t be usable..."

echo "MPI_LAM_6_PATH=’‘find_dir lam-6*‘’">> /etc/profile.d/mpi.sh

echo "MPI_LAM_6_VERSION=’‘find_version lam-6*‘’">> /etc/profile.d/mpi.sh

fi

echo "export MPI_LAM_6_PATH MPI_LAM_6_VERSION">> /etc/profile.d/mpi.sh

fi

#----

44

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

Handle LAMv7

#----

if ["x$WN_ENABLE_MPI_LAM_7" == "xyes"]

then

SOME_MPI_IS_SELECTED="true"

if ["x$WN_ENABLE_MPI_LAM_7_PATH" != "x"]

then

echo "MPI_LAM_7_PATH=’$WN_ENABLE_MPI_LAM_7_PATH’">> /etc/profile.d/mpi.sh

echo "MPI_LAM_7_VERSION=’$WN_ENABLE_MPI_LAM_7_VERSION’">> /etc/profile.d/mpi.sh

else

TBD: rpm -Uvh SOMETHING?

echo "Note: there isn’t a gLite-integrated .rpm for LAM-7 yet so it won’t be usable..."

echo "MPI_LAM_7_PATH=’‘find_dir lam-7*‘’">> /etc/profile.d/mpi.sh

echo "MPI_LAM_7_VERSION=’‘find_version lam-7*‘’">> /etc/profile.d/mpi.sh

fi

echo "export MPI_LAM_7_PATH MPI_LAM_7_VERSION">> /etc/profile.d/mpi.sh

fi

#----

Handle shared home and SSH host-based authentication parameters, but only

if at least ONE implementation of MPI is being installed; otherwise it’s

just confusing to end-users and WN-sysadmins.

#-----

if ["x$SOME_MPI_IS_SELECTED" = "true"]; then

echo "MPI_PATH_TO_SHARED_HOME=’$WN_ENABLE_MPI_SHARED_HOME_PATH’">> /etc/profile.d/mpi.sh

echo "MPI_SSH_HOST_BASED_AUTH=’$WN_ENABLE_MPI_SSH_HOST_BASED_AUTH’">> /etc/profile.d/mpi.sh

echo "export MPI_PATH_TO_SHARED_HOME MPI_SSH_HOST_BASED_AUTH">> /etc/profile.d/mpi.sh

if ["x$WN_ENABLE_MPIEXEC_EXECUTABLE" != "x"]; then

echo "MPI_MPIEXEC=’$WN_ENABLE_MPIEXEC_EXECUTABLE’">> /etc/profile.d/mpi.sh

echo "export MPI_MPIEXEC">> /etc/profile.d/mpi.sh

fi

fi

fi

#--

CE-related configuration for MPI

#--

if (echo "${NODE_TYPE_LIST}" | egrep -q ’CE’ > /dev/null); then

SOME_MPI_IS_SELECTED="false"

if ["x$WN_ENABLE_MPI_MPICH" = "xyes"]; then

CE_RUNTIMEENV="${CE_RUNTIMEENV}

MPICH"

SOME_MPI_IS_SELECTED="true"

fi

if ["x$WN_ENABLE_MPI_MPICH2" = "xyes"]; then

CE_RUNTIMEENV="${CE_RUNTIMEENV}

MPICH2"

SOME_MPI_IS_SELECTED="true"

fi

if ["x$WN_ENABLE_MPI_OPENMPI" = "xyes"]; then

CE_RUNTIMEENV="${CE_RUNTIMEENV}

OPENMPI"

45

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

SOME_MPI_IS_SELECTED="true"

fi

if ["x$WN_ENABLE_MPI_LAM_6" = "xyes"]; then

CE_RUNTIMEENV="${CE_RUNTIMEENV}

LAM_6"

SOME_MPI_IS_SELECTED="true"

fi

if ["x$WN_ENABLE_MPI_LAM_7" = "xyes"]; then

CE_RUNTIMEENV="${CE_RUNTIMEENV}

LAM_7"

SOME_MPI_IS_SELECTED="true"

fi

#-----

Only advertise (un)availability of shared home if at least ONE implementation

of MPI is being installed; otherwise it’s just confusing to end-users.

#-----

if ["x$SOME_MPI_IS_SELECTED" = "true"]; then

if ["x$WN_ENABLE_MPI_SHARED_HOME" = "xyes"]; then

if ["x$WN_ENABLE_MPI_SHARED_HOME_PATH" = "x"]; then

echo "Error: WN_ENABLE_MPI_SHARED_HOME is set to ’yes’ in your site-info.def file,"

echo "but no WN_ENABLE_MPI_SHARED_HOME_PATH was given!"

exit 1

else

CE_RUNTIMEENV="${CE_RUNTIMEENV}

MPI_HOME_SHARED"

fi

else

CE_RUNTIMEENV="${CE_RUNTIMEENV}

MPI_HOME_NOTSHARED"

fi

fi

fi

return 0

}

C.2 examples/site-info.def

We have appended several MPI-related variables to the site-info.def file:

#----------------------------------

MPI-related configuration:

#----------------------------------

Several MPI implementations are available in the package repository.

If you do NOT want an implementation to be installed, set its variable

to "no". Else, set it to "yes" (default). If you want to use an

already installed version of an implementation, set its "_PATH" and

"_VERSION" variables to match your setup (examples below).

#

NOTE 1: the CE_RUNTIMEENV will be automatically updated in the file

functions/config_mpi, so that the CE advertises the MPI implementations

you choose here - you do NOT have to change it manually in this file.

It will become something like this:

#

CE_RUNTIMEENV="$CE_RUNTIMEENV

46

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

MPICH

MPICH2

OPENMPI

LAM_6

LAM_7"

#

NOTE 2: the above requires yaim-3.0.0-20 or higher to work; otherwise you

need to change CE_RUNTIMEENV manually for glite-CE nodes.

#

NOTE 3: it is currently NOT possible to configure multiple concurrent

versions of the same implementations (e.g. MPICH-1.2.3 and MPICH-1.2.7)

using YAIM. Customize "/opt/glite/yaim/functions/config_mpi" file

to do so.

WN_ENABLE_MPI_MPICH="yes"

WN_ENABLE_MPI_MPICH2="yes"

WN_ENABLE_MPI_OPENMPI="yes"

WN_ENABLE_MPI_LAM_6="yes"

WN_ENABLE_MPI_LAM_7="no"

#---

Example for using an already installed version of MPI.

Setting "_PATH" and "_VERSION" variables will prevent YAIM

from downloading and installing the gLite-provided packages.

Just fill in the path to its current installation (e.g. "/usr")

and which version it is (e.g. "6.5.9").

#---

#WN_ENABLE_MPI_LAM_6_PATH="/usr"

#WN_ENABLE_MPI_LAM_6_VERSION="6.5.9"

If you do NOT provide a shared home, set $WN_ENABLE_MPI_SHARED_HOME to "no" (default).

Else, set it to "yes" and assign its path to $WN_ENABLE_MPI_SHARED_HOME_PATH="/shared").

#

WN_ENABLE_MPI_SHARED_HOME="no"

WN_ENABLE_MPI_SHARED_HOME_PATH=""

#

If you do NOT have SSH Hostbased Authentication between your WNs, set the below

variable to "no" (default). Else, set it to "yes".

#

WN_ENABLE_MPI_SSH_HOST_BASED_AUTH="no"

#

If you provide a ’mpiexec’ for MPICH, please state the full path to

that file here (http://www.osc.edu/~pw/mpiexec/index.php). Else, leave empty.

#

#WN_ENABLE_MPIEXEC_EXECUTABLE="/usr/bin/mpiexec"

WN_ENABLE_MPIEXEC_EXECUTABLE="/usr/bin/mpiexec"

C.3 scripts/node-info.def

We have modified scripts/node-info.def so that the functions/config mpi script is called during WN and
CE deployment.

47

Appendix D

A Quick Guide to using MPI on the
WLCG

The following sections contain listings of two files, together comprising an example MPI job. Use the
mpich-wrapper.sh from Appendix E.5 or E.4.
The expected output is:

Hello world! from processor 3 out of 6
Hello world! from processor 2 out of 6
Hello world! from processor 4 out of 6
Hello world! from processor 5 out of 6
Hello world! from processor 1 out of 6
Hello world! from processor 0 out of 6

D.1 mpi-example.jdl

Type = "Job";

JobType = "MPICH";

NodeNumber = 6;

Executable = "mpich-wrapper.sh";

Arguments = "MPItest";

StdOutput = "test.out";

StdError = "test.err";

InputSandbox = {"mpich-wrapper.sh","MPItest.c"};

OutputSandbox = {"test.err","test.out","mpiexec.out"};

Requirements = member("MPICH", other.GlueHostApplicationSoftwareRunTimeEnvironment);

D.2 MPItest.c

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int numprocs; /* Number of processors */

int procnum; /* Processor number */

/* Initialize MPI */

MPI_Init(&argc, &argv);

/* Find this processor number */

MPI_Comm_rank(MPI_COMM_WORLD, &procnum);

/* Find the number of processors */

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

48

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

printf ("Hello world! from processor %d out of %d\n", procnum, numprocs);

/* Shut down MPI */

MPI_Finalize();

return 0;

}

49

Appendix E

Wrapper scripts

E.1 lam-6-wrapper.sh without Torque/PBS

Script to start an MPI job under lam-6

Richard de Jong @ CERN 2006-06-29

echo "Using LAM-6"

if [-z $MPI_LAM_6_VERSION]

then

echo "LAM-6, no such version available"

exit

fi

PATH=$MPI_LAM_6_PATH/bin:$PATH

LD_LIBRARY_PATH=$MPI_LAM_6_PATH/lib:$LD_LIBRARY_PATH

SHUTDOWN="yes"

EXE=$1

if ["x${PBS_NODEFILE}" != "x"] ; then

echo "PBS Nodefile: ${PBS_NODEFILE}"

HOST_NODEFILE=${PBS_NODEFILE}

fi

if ["x${LSB_HOSTS}" != "x"] ; then

echo "LSF Hosts: ${LSB_HOSTS}"

HOST_NODEFILE=‘pwd‘/lsf_nodefile.$$

for host in ${LSB_HOSTS}

do

echo ${host} >> ${HOST_NODEFILE}

done

fi

if ["x${HOST_NODEFILE}" = "x"]; then

echo "No hosts file defined. Exiting..."

exit

fi

echo "***"

HOST_NEEDED=‘cat ${HOST_NODEFILE} | wc -l | awk ’{print $NF}’‘

echo "Node count: $HOST_NEEDED"

50

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

echo "Hosts in $HOST_NODEFILE:"

cat $HOST_NODEFILE

echo "***"

echo "compiling program ${EXE}"

mpicc -o $EXE $EXE.c

if [! $? -eq 0]; then

echo "Error compiling program. Exiting..."

exit 1

fi

if ["x${MPI_PATH_TO_SHARED_HOME}" != "x"]

then

if [! -d ${MPI_PATH_TO_SHARED_HOME}]

then

echo "Shared home is set, but it is not accessible"

exit 1

else

echo "Shared home exists and is ${MPI_PATH_TO_SHARED_HOME}"

fi

else

echo "No shared home is accessible"

if ["x${MPI_SSH_HOST_BASED_AUTH}" == "xyes"]

then

echo "Using SSH to copy the files to all nodes"

for i in ‘cat $HOST_NODEFILE | grep -v ${HOSTNAME} | sort -u‘; do

echo "Copying files to $i"

ssh ${i} mkdir -p ‘pwd‘

scp -rp . "${i}:‘pwd‘"

Copy the proxy certificate

scp -p ${X509_USER_PROXY} ${i}:${X509_USER_PROXY}

done

else

echo "Uh oh, cannot use SSH to copy the files to all WN’s"

exit 1

fi

fi

Check if there is already a running LAM environment set up:

if (lamnodes > /dev/null 2>&1)

then

echo "lam is set up already"

else

echo "lam not ready yet, booting lam environment using hosts from ${HOST_NODEFILE}"

if (lamboot ${HOST_NODEFILE})

then

echo "lam booted succesfully"

else

echo "Error booting lam. Exiting..."

exit 1

fi

fi

In case the lam environment had already been started, make sure we only use the hosts

51

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

that are assigned to us by the LRMS. This provides at least a lightweigt coupling.

AVAILABLE_NODES=‘lamnodes | grep -f ${HOST_NODEFILE} |awk ’{print $1}’ | tr ’\n’ ’ ’‘

echo "available nodes: ${AVAILABLE_NODES}"

MY_NODE_NUMBER=‘lamnodes h -c|awk ’{print $1}’‘

if ["x${MY_NODE_NUMBER}" == "x"]

then

echo "Localhost is not one of the running lam nodes."

echo "Can not continue because only this host has the executable. Exiting..."

exit 1

fi

Run the command on the available nodes, using -s helps to get the executable to all hosts

mpirun -s ${MY_NODE_NUMBER} ${AVAILABLE_NODES} ${EXE}

#close down the lam environment?

if ["${SHUTDOWN}" == "yes"]

then

lamhalt

fi

E.2 lam-7-wrapper.sh without Torque/PBS

Script to start an MPI job under lam-7

Richard de Jong @ CERN 2006-06-29

echo "Using LAM-7"

if [-z $MPI_LAM_7_VERSION]

then

echo "LAM-7, no such version available"

exit

fi

PATH=$MPI_LAM_7_PATH/bin:$PATH

LD_LIBRARY_PATH=$MPI_LAM_7_PATH/lib:$LD_LIBRARY_PATH

SHUTDOWN="yes"

EXE=$1

if ["x${PBS_NODEFILE}" != "x"] ; then

echo "PBS Nodefile: ${PBS_NODEFILE}"

HOST_NODEFILE=${PBS_NODEFILE}

fi

if ["x${LSB_HOSTS}" != "x"] ; then

echo "LSF Hosts: ${LSB_HOSTS}"

HOST_NODEFILE=‘pwd‘/lsf_nodefile.$$

for host in ${LSB_HOSTS}

do

echo ${host} >> ${HOST_NODEFILE}

done

fi

if ["x${HOST_NODEFILE}" = "x"]; then

echo "No hosts file defined. Exiting..."

52

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

exit

fi

echo "***"

HOST_NEEDED=‘cat ${HOST_NODEFILE} | wc -l | awk ’{print $NF}’‘

echo "Node count: $HOST_NEEDED"

echo "Hosts in $HOST_NODEFILE:"

cat $HOST_NODEFILE

echo "***"

echo "compiling program ${EXE}"

mpicc -o $EXE $EXE.c

if [! $? -eq 0]; then

echo "Error compiling program. Exiting..."

exit 1

fi

if ["x${MPI_PATH_TO_SHARED_HOME}" != "x"]

then

if [! -d ${MPI_PATH_TO_SHARED_HOME}]

then

echo "Shared home is set, but it is not accessible"

exit 1

else

echo "Shared home exists and is ${MPI_PATH_TO_SHARED_HOME}"

fi

else

echo "No shared home is accessible"

if ["x${MPI_SSH_HOST_BASED_AUTH}" == "xyes"]

then

echo "Using SSH to copy the files to all nodes"

for i in ‘cat $HOST_NODEFILE | grep -v ${HOSTNAME} | sort -u‘; do

echo "Copying files to $i"

ssh ${i} mkdir -p ‘pwd‘

scp -rp . "${i}:‘pwd‘"

Copy the proxy certificate

scp -p ${X509_USER_PROXY} ${i}:${X509_USER_PROXY}

done

else

echo "Uh oh, cannot use SSH to copy the files to all WN’s"

exit 1

fi

fi

Check if there is already a running LAM environment set up:

if (lamnodes > /dev/null 2>&1)

then

echo "lam is set up already"

else

echo "lam not ready yet, booting lam environment using hosts from ${HOST_NODEFILE}"

if (lamboot -ssi boot rsh -ssi boot_rsh_agent ssh ${HOST_NODEFILE})

then

echo "lam booted succesfully"

else

53

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

echo "Error booting lam. Exiting..."

exit 1

fi

fi

In case the lam environment had already been started, make sure we only use the hosts

that are assigned to us by the LRMS. This provides at least a lightweigt coupling.

AVAILABLE_NODES=‘lamnodes | grep -f ${HOST_NODEFILE} |awk ’{print $1}’ | tr ’\n’ ’ ’‘

echo "available nodes: ${AVAILABLE_NODES}"

MY_NODE_NUMBER=‘lamnodes h -c|awk ’{print $1}’‘

if ["x${MY_NODE_NUMBER}" == "x"]

then

echo "Localhost is not one of the running lam nodes."

echo "Can not continue because only this host has the executable. Exiting..."

exit 1

fi

echo "Executing application"

mpirun -v -np $HOST_NEEDED ${EXE}

#close down the lam environment?

if ["${SHUTDOWN}" == "yes"]

then

echo "Shutting down the LAM environment"

lamhalt

fi

E.3 lam-7-pbs-wrapper.sh with Torque/PBS

Script to start an MPI job under lam-7

Richard de Jong @ CERN 2006-06-29

echo "Using LAM-7"

if [-z $MPI_LAM_7_VERSION]

then

echo "LAM-7, no such version available"

exit

fi

PATH=$MPI_LAM_7_PATH/bin:$PATH

LD_LIBRARY_PATH=$MPI_LAM_7_PATH/lib:$LD_LIBRARY_PATH

SHUTDOWN="yes"

EXE=$1

if ["x${PBS_NODEFILE}" != "x"] ; then

echo "PBS Nodefile: ${PBS_NODEFILE}"

HOST_NODEFILE=${PBS_NODEFILE}

fi

if ["x${LSB_HOSTS}" != "x"] ; then

echo "LSF Hosts: ${LSB_HOSTS}"

HOST_NODEFILE=‘pwd‘/lsf_nodefile.$$

for host in ${LSB_HOSTS}

54

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

do

echo ${host} >> ${HOST_NODEFILE}

done

fi

if ["x${HOST_NODEFILE}" = "x"]; then

echo "No hosts file defined. Exiting..."

exit

fi

echo "***"

HOST_NEEDED=‘cat ${HOST_NODEFILE} | wc -l | awk ’{print $NF}’‘

echo "Node count: $HOST_NEEDED"

echo "Hosts in $HOST_NODEFILE:"

cat $HOST_NODEFILE

echo "***"

echo "compiling program ${EXE}"

mpicc -o $EXE $EXE.c

if [! $? -eq 0]; then

echo "Error compiling program. Exiting..."

exit 1

fi

if ["x${MPI_PATH_TO_SHARED_HOME}" != "x"]

then

if [! -d ${MPI_PATH_TO_SHARED_HOME}]

then

echo "Shared home is set, but it is not accessible"

exit 1

else

echo "Shared home exists and is ${MPI_PATH_TO_SHARED_HOME}"

fi

else

echo "No shared home is accessible"

if ["x${MPI_SSH_HOST_BASED_AUTH}" == "xyes"]

then

echo "Using SSH to copy the files to all nodes"

for i in ‘cat $HOST_NODEFILE | grep -v ${HOSTNAME} | sort -u‘; do

echo "Copying files to $i"

ssh ${i} mkdir -p ‘pwd‘

scp -rp . "${i}:‘pwd‘"

Copy the proxy certificate

scp -p ${X509_USER_PROXY} ${i}:${X509_USER_PROXY}

done

else

echo "Uh oh, cannot use SSH to copy the files to all WN’s"

exit 1

fi

fi

Check if there is already a running LAM environment set up:

if (lamnodes > /dev/null 2>&1)

then

55

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

echo "lam is set up already"

else

echo "lam not ready yet, booting lam environment using hosts from ${HOST_NODEFILE}"

if (lamboot -ssi boot tm)

then

echo "lam booted succesfully"

else

echo "Error booting lam. Exiting..."

exit 1

fi

fi

In case the lam environment had already been started, make sure we only use the hosts

that are assigned to us by the LRMS. This provides at least a lightweigt coupling.

AVAILABLE_NODES=‘lamnodes | grep -f ${HOST_NODEFILE} |awk ’{print $1}’ | tr ’\n’ ’ ’‘

echo "available nodes: ${AVAILABLE_NODES}"

MY_NODE_NUMBER=‘lamnodes h -c|awk ’{print $1}’‘

if ["x${MY_NODE_NUMBER}" == "x"]

then

echo "Localhost is not one of the running lam nodes."

echo "Can not continue because only this host has the executable. Exiting..."

exit 1

fi

Run the command on the available nodes, using -s helps to get the executable to all hosts

echo "Executing application"

mpirun -s ${MY_NODE_NUMBER} ${AVAILABLE_NODES} ${EXE}

#close down the lam environment?

if ["${SHUTDOWN}" == "yes"]

then

echo "Shutting down the LAM environment"

lamhalt

fi

E.4 mpich-wrapper.sh without Torque/PBS

Script to start an MPI job under MPICH

Richard de Jong @ CERN 2006-06-29

echo "Using MPICH"

if [-z $MPI_MPICH_VERSION]

then

echo "MPICH, no such version available"

exit

fi

Set up the paths

PATH=$MPI_MPICH_PATH/bin:$PATH

LD_LIBRARY_PATH=$MPI_MPICH_PATH/lib:$LD_LIBRARY_PATH

The binary to execute

EXE=$1

echo "***"

56

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

echo "Running on: $HOSTNAME"

echo "As: " ‘whoami‘

echo "***"

echo "***"

echo "Compiling binary: $EXE"

echo mpicc -o ${EXE} ${EXE}.c

mpicc -o ${EXE} ${EXE}.c

echo "*************************************"

if ["x$PBS_NODEFILE" != "x"] ; then

echo "PBS Nodefile: $PBS_NODEFILE"

HOST_NODEFILE=$PBS_NODEFILE

fi

if ["x$LSB_HOSTS" != "x"] ; then

echo "LSF Hosts: $LSB_HOSTS"

HOST_NODEFILE=‘pwd‘/lsf_nodefile.$$

for host in ${LSB_HOSTS}

do

echo $host >> ${HOST_NODEFILE}

done

fi

if ["x${HOST_NODEFILE}" = "x"]; then

echo "No hosts file defined. Exiting..."

exit

fi

echo "***"

HOST_NEEDED=‘cat ${HOST_NODEFILE} | wc -l | awk ’{print $NF}’‘

echo "Node count: $HOST_NEEDED"

echo "Hosts in $HOST_NODEFILE:"

cat $HOST_NODEFILE

echo "***"

if ["x${MPI_PATH_TO_SHARED_HOME}" != "x"]

then

if [! -d ${MPI_PATH_TO_SHARED_HOME}]

then

echo "Shared home is set, but it is not accessible"

exit 1

else

echo "Shared home exists and is ${MPI_PATH_TO_SHARED_HOME}"

fi

else

echo "No shared home is accessible"

if ["x${MPI_SSH_HOST_BASED_AUTH}" == "xyes"]

then

echo "Using SSH to copy the files to all nodes"

for i in ‘cat $HOST_NODEFILE | grep -v ${HOSTNAME} | sort -u‘; do

echo "Copying files to $i"

ssh ${i} mkdir -p ‘pwd‘

scp -rp . "${i}:‘pwd‘"

Copy the proxy certificate

scp -p ${X509_USER_PROXY} ${i}:${X509_USER_PROXY}

done

57

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

else

echo "Uh oh, cannot use SSH to copy the files to all WN’s"

exit 1

fi

fi

echo "***"

echo "Executing $EXE with mpirun"

chmod 755 $EXE

mpirun -np $HOST_NEEDED -machinefile $HOST_NODEFILE ‘pwd‘/$EXE

echo "***"

E.5 mpich-pbs-wrapper.sh with Torque/PBS

Script to start an MPI job under MPICH

Richard de Jong @ CERN 2006-06-29

echo "Using MPICH"

if [-z $MPI_MPICH_VERSION]

then

echo "MPICH, no such version available"

exit

fi

Set up the paths

PATH=$MPI_MPICH_PATH/bin:$PATH

LD_LIBRARY_PATH=$MPI_MPICH_PATH/lib:$LD_LIBRARY_PATH

The binary to execute

EXE=$1

echo "***"

echo "Running on: $HOSTNAME"

echo "As: " ‘whoami‘

echo "***"

echo "***"

echo "Compiling binary: $EXE"

echo mpicc -o ${EXE} ${EXE}.c

mpicc -o ${EXE} ${EXE}.c

echo "*************************************"

if ["x$PBS_NODEFILE" != "x"] ; then

echo "PBS Nodefile: $PBS_NODEFILE"

HOST_NODEFILE=$PBS_NODEFILE

fi

if ["x$LSB_HOSTS" != "x"] ; then

echo "LSF Hosts: $LSB_HOSTS"

HOST_NODEFILE=‘pwd‘/lsf_nodefile.$$

for host in ${LSB_HOSTS}

do

echo $host >> ${HOST_NODEFILE}

done

fi

58

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

if ["x${HOST_NODEFILE}" = "x"]; then

echo "No hosts file defined. Exiting..."

exit

fi

echo "***"

HOST_NEEDED=‘cat ${HOST_NODEFILE} | wc -l | awk ’{print $NF}’‘

echo "Node count: $HOST_NEEDED"

echo "Hosts in $HOST_NODEFILE:"

cat $HOST_NODEFILE

echo "***"

if ["x${MPI_PATH_TO_SHARED_HOME}" != "x"]

then

if [! -d ${MPI_PATH_TO_SHARED_HOME}]

then

echo "Shared home is set, but it is not accessible"

exit 1

else

echo "Shared home exists and is ${MPI_PATH_TO_SHARED_HOME}"

fi

else

echo "No shared home is accessible"

if ["x${MPI_SSH_HOST_BASED_AUTH}" == "xyes"]

then

echo "Using SSH to copy the files to all nodes"

for i in ‘cat $HOST_NODEFILE | grep -v ${HOSTNAME} | sort -u‘; do

echo "Copying files to $i"

ssh ${i} mkdir -p ‘pwd‘

scp -rp . "${i}:‘pwd‘"

Copy the proxy certificate

scp -p ${X509_USER_PROXY} ${i}:${X509_USER_PROXY}

done

else

echo "Uh oh, cannot use SSH to copy the files to all WN’s"

exit 1

fi

fi

echo "***"

echo "Executing $EXE with $MPI_MPIEXEC"

$MPI_MPIEXEC ‘pwd‘/$EXE

echo "***"

E.6 mpich2-wrapper.sh without Torque/PBS

This script sets up the mpd-ring because there is no support in MPICH2 for other LRMS’s than
Torque/PBS

Script to start an MPI job under MPICH2

Richard de Jong @ CERN 2006-06-29

echo "Using MPICH2"

if [-z $MPI_MPICH2_VERSION]

then

59

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

echo "MPICH2, no such version available"

exit

fi

Set up the paths

PATH=$MPI_MPICH2_PATH/bin:$PATH

LD_LIBRARY_PATH=$MPI_MPICH2_PATH/lib:$LD_LIBRARY_PATH

The binary to execute

EXE=$1

echo "***"

echo "Running on: $HOSTNAME"

echo "As: " ‘whoami‘

echo "***"

echo "***"

echo "Compiling binary: $EXE"

echo mpicc -o ${EXE} ${EXE}.c

mpicc -o ${EXE} ${EXE}.c

echo "*************************************"

Create the .mpd.conf file.

This is required to boot the mpd daemons on all hosts

$RANDOM creates a random integer between 0 and 32767.

echo "MPD_SECRETWORD=PASS$RANDOM" > ~/.mpd.conf

chmod 0600 ~/.mpd.conf

if ["x$PBS_NODEFILE" != "x"] ; then

echo "PBS Nodefile: $PBS_NODEFILE"

HOST_NODEFILE=$PBS_NODEFILE

fi

if ["x$LSB_HOSTS" != "x"] ; then

echo "LSF Hosts: $LSB_HOSTS"

HOST_NODEFILE=‘pwd‘/lsf_nodefile.$$

for host in ${LSB_HOSTS}

do

echo $host >> ${HOST_NODEFILE}

done

fi

if ["x${HOST_NODEFILE}" = "x"]; then

echo "No hosts file defined. Exiting..."

exit

fi

echo "***"

HOST_NEEDED=‘cat ${HOST_NODEFILE} | wc -l | awk ’{print $NF}’‘

echo "Node count: $HOST_NEEDED"

echo "Hosts in $HOST_NODEFILE:"

cat $HOST_NODEFILE

echo "***"

if ["x${MPI_PATH_TO_SHARED_HOME}" != "x"]

then

60

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

if [! -d ${MPI_PATH_TO_SHARED_HOME}]

then

echo "Shared home is set, but it is not accessible"

exit 1

else

echo "Shared home exists and is ${MPI_PATH_TO_SHARED_HOME}"

fi

else

echo "No shared home is accessible"

if ["x${MPI_SSH_HOST_BASED_AUTH}" == "xyes"]

then

echo "Using SSH to copy the files to all nodes"

for i in ‘cat $HOST_NODEFILE | grep -v ${HOSTNAME} | sort -u‘; do

echo "Copying files to $i"

ssh ${i} mkdir -p ‘pwd‘

scp -rp . "${i}:‘pwd‘"

Copy the proxy certificate

scp -p ${X509_USER_PROXY} ${i}:${X509_USER_PROXY}

Copy the MPD secret file

scp -p ~/.mpd.conf ${i}:

done

else

echo "Uh oh, cannot use SSH to copy the files to all WN’s"

exit 1

fi

fi

Boot the MPD ring

mpdboot -f ${HOST_NODEFILE}

echo "***"

echo "Testing MPD ring with mpdtrace"

mpdtrace

echo "Testing MPD ring with mpdringtest"

mpdringtest

echo "***"

echo "***"

echo "Executing $EXE with mpirun"

mpirun -n ${HOST_NEEDED} ‘pwd‘/${EXE}

echo "***"

Stop the MPD daemons

mpdallexit

E.7 mpich2-pbs-wrapper.sh with Torque/PBS

This wrapper script does not use the mpd commands, because the mpiexec that integrates with TM
is used.

Script to start an MPI job under MPICH2

Richard de Jong @ CERN 2006-06-29

echo "Using MPICH2"

61

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

if [-z $MPI_MPICH2_VERSION]

then

echo "MPICH2, no such version available"

exit

fi

Set up the paths

PATH=$MPI_MPICH2_PATH/bin:$PATH

LD_LIBRARY_PATH=$MPI_MPICH2_PATH/lib:$LD_LIBRARY_PATH

The binary to execute

EXE=$1

echo "***"

echo "Running on: $HOSTNAME"

echo "As: " ‘whoami‘

echo "***"

echo "***"

echo "Compiling binary: $EXE"

echo mpicc -o ${EXE} ${EXE}.c

mpicc -o ${EXE} ${EXE}.c

echo "*************************************"

if ["x$PBS_NODEFILE" != "x"] ; then

echo "PBS Nodefile: $PBS_NODEFILE"

HOST_NODEFILE=$PBS_NODEFILE

fi

if ["x$LSB_HOSTS" != "x"] ; then

echo "LSF Hosts: $LSB_HOSTS"

HOST_NODEFILE=‘pwd‘/lsf_nodefile.$$

for host in ${LSB_HOSTS}

do

echo $host >> ${HOST_NODEFILE}

done

fi

if ["x${HOST_NODEFILE}" = "x"]; then

echo "No hosts file defined. Exiting..."

exit

fi

echo "***"

HOST_NEEDED=‘cat ${HOST_NODEFILE} | wc -l | awk ’{print $NF}’‘

echo "Node count: $HOST_NEEDED"

echo "Hosts in $HOST_NODEFILE:"

cat $HOST_NODEFILE

echo "***"

if ["x${MPI_PATH_TO_SHARED_HOME}" != "x"]

then

if [! -d ${MPI_PATH_TO_SHARED_HOME}]

then

echo "Shared home is set, but it is not accessible"

62

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

exit 1

else

echo "Shared home exists and is ${MPI_PATH_TO_SHARED_HOME}"

fi

else

echo "No shared home is accessible"

if ["x${MPI_SSH_HOST_BASED_AUTH}" == "xyes"]

then

echo "Using SSH to copy the files to all nodes"

for i in ‘cat $HOST_NODEFILE | grep -v ${HOSTNAME} | sort -u‘; do

echo "Copying files to $i"

ssh ${i} mkdir -p ‘pwd‘

scp -rp . "${i}:‘pwd‘"

Copy the proxy certificate

scp -p ${X509_USER_PROXY} ${i}:${X509_USER_PROXY}

done

else

echo "Uh oh, cannot use SSH to copy the files to all WN’s"

exit 1

fi

fi

echo "***"

echo "Executing $EXE with mpiexec"

$MPI_MPIEXEC --comm=mpich2 ‘pwd‘/${EXE}

echo "***"

E.8 openmpi-wrapper.sh without Torque/PBS

Script to start an MPI job under OpenMPI

Richard de Jong @ CERN 2006-06-29

echo "Using OpenMPI"

if [-z $MPI_OPENMPI_VERSION]

then

echo "OPENMPI, no such version available"

exit

fi

Set up the paths

PATH=$MPI_OPENMPI_PATH/bin:$PATH

LD_LIBRARY_PATH=$MPI_OPENMPI_PATH/lib:$LD_LIBRARY_PATH

The binary to execute

EXE=$1

echo "***"

echo "Running on: $HOSTNAME"

echo "As: " ‘whoami‘

echo "***"

echo "***"

echo "Compiling binary: $EXE"

echo mpicc -o ${EXE} ${EXE}.c

mpicc -o ${EXE} ${EXE}.c

63

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

echo "*************************************"

if ["x$PBS_NODEFILE" != "x"] ; then

echo "PBS Nodefile: $PBS_NODEFILE"

HOST_NODEFILE=$PBS_NODEFILE

fi

if ["x$LSB_HOSTS" != "x"] ; then

echo "LSF Hosts: $LSB_HOSTS"

HOST_NODEFILE=‘pwd‘/lsf_nodefile.$$

for host in ${LSB_HOSTS}

do

echo $host >> ${HOST_NODEFILE}

done

fi

if ["x${HOST_NODEFILE}" = "x"]; then

echo "No hosts file defined. Exiting..."

exit

fi

echo "***"

HOST_NEEDED=‘cat ${HOST_NODEFILE} | wc -l | awk ’{print $NF}’‘

echo "Node count: $HOST_NEEDED"

echo "Hosts in $HOST_NODEFILE:"

cat $HOST_NODEFILE

echo "***"

if ["x${MPI_PATH_TO_SHARED_HOME}" != "x"]

then

if [! -d ${MPI_PATH_TO_SHARED_HOME}]

then

echo "Shared home is set, but it is not accessible"

exit 1

else

echo "Shared home exists and is ${MPI_PATH_TO_SHARED_HOME}"

fi

else

echo "No shared home is accessible"

if ["x${MPI_SSH_HOST_BASED_AUTH}" == "xyes"]

then

echo "Using SSH to copy the files to all nodes"

for i in ‘cat $HOST_NODEFILE | grep -v ${HOSTNAME} | sort -u‘; do

echo "Copying files to $i"

ssh ${i} mkdir -p ‘pwd‘

scp -rp . "${i}:‘pwd‘"

Copy the proxy certificate

scp -p ${X509_USER_PROXY} ${i}:${X509_USER_PROXY}

done

else

echo "Uh oh, cannot use SSH to copy the files to all WN’s"

exit 1

fi

fi

echo "***"

64

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

echo "Executing $EXE with orterun, without tm integration"

chmod 755 $EXE

orterun --prefix $MPI_OPENMPI_PATH -np $HOST_NEEDED -machinefile $HOST_NODEFILE ‘pwd‘/$EXE

echo "***"

E.9 openmpi-wrapper.sh with Torque/PBS

Script to start an MPI job under OpenMPI

Richard de Jong @ CERN 2006-06-29

echo "Using OpenMPI"

if [-z $MPI_OPENMPI_VERSION]

then

echo "OPENMPI, no such version available"

exit

fi

Set up the paths

PATH=$MPI_OPENMPI_PATH/bin:$PATH

LD_LIBRARY_PATH=$MPI_OPENMPI_PATH/lib:$LD_LIBRARY_PATH

The binary to execute

EXE=$1

echo "***"

echo "Running on: $HOSTNAME"

echo "As: " ‘whoami‘

echo "***"

echo "***"

echo "Compiling binary: $EXE"

echo mpicc -o ${EXE} ${EXE}.c

mpicc -o ${EXE} ${EXE}.c

echo "*************************************"

if ["x$PBS_NODEFILE" != "x"] ; then

echo "PBS Nodefile: $PBS_NODEFILE"

HOST_NODEFILE=$PBS_NODEFILE

fi

if ["x$LSB_HOSTS" != "x"] ; then

echo "LSF Hosts: $LSB_HOSTS"

HOST_NODEFILE=‘pwd‘/lsf_nodefile.$$

for host in ${LSB_HOSTS}

do

echo $host >> ${HOST_NODEFILE}

done

fi

if ["x${HOST_NODEFILE}" = "x"]; then

echo "No hosts file defined. Exiting..."

exit

fi

echo "***"

HOST_NEEDED=‘cat ${HOST_NODEFILE} | wc -l | awk ’{print $NF}’‘

echo "Node count: $HOST_NEEDED"

65

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

echo "Hosts in $HOST_NODEFILE:"

cat $HOST_NODEFILE

echo "***"

if ["x${MPI_PATH_TO_SHARED_HOME}" != "x"]

then

if [! -d ${MPI_PATH_TO_SHARED_HOME}]

then

echo "Shared home is set, but it is not accessible"

exit 1

else

echo "Shared home exists and is ${MPI_PATH_TO_SHARED_HOME}"

fi

else

echo "No shared home is accessible"

if ["x${MPI_SSH_HOST_BASED_AUTH}" == "xyes"]

then

echo "Using SSH to copy the files to all nodes"

for i in ‘cat $HOST_NODEFILE | grep -v ${HOSTNAME} | sort -u‘; do

echo "Copying files to $i"

ssh ${i} mkdir -p ‘pwd‘

scp -rp . "${i}:‘pwd‘"

Copy the proxy certificate

scp -p ${X509_USER_PROXY} ${i}:${X509_USER_PROXY}

done

else

echo "Uh oh, cannot use SSH to copy the files to all WN’s"

exit 1

fi

fi

echo "***"

echo "Executing $EXE with orterun, tm way"

chmod 755 $EXE

orterun --prefix $MPI_OPENMPI_PATH -np $HOST_NEEDED ‘pwd‘/$EXE

echo "***"

66

Appendix F

Site Functional Test for MPI

F.1 tests/sft-mpi.def

testName: sft-mpi

testTitle: SFT MPI test for multiple implementations

friendlyName: mpi

testHelp: https://twiki.cern.ch/twiki/bin/view/LCG/ImplementationOfMpi

F.2 tests/sft-mpi

#!/bin/bash

STATUS=

tests="lam-6-wrapper.sh lam-7-pbs-wrapper.sh lam-7-wrapper.sh mpich2-pbs-wrapper.sh

mpich2-wrapper.sh mpich-pbs-wrapper.sh mpich-wrapper.sh openmpi-pbs-wrapper.sh openmpi-wrapper.sh"

result=0

failed=

fcode=OK

function statusCode

{

case $1 in

0) echo "OK";;

*) echo "ERROR" ;;

esac

}

echo "<h2>SFT MPICH test</h2>"

echo "<p>Testing compilation and execution of an MPI application using various implementations of MP

I.

Note: this is a super-test that contains a number of tests!</p>"

log=sft-mpi.log

rm -f $log

echo "<table border=1><th>Test</th><th>Result</th>"

export PBS_NODEFILE=pbs_nodefile

echo $HOSTNAME > $PBS_NODEFILE

for test in $tests ; do

echo "<h3>Now running: $test</h3>" >> $log

67

RP2: Preparing the Worldwide LHC Computing Grid for MPI applications

echo "<pre>" >> $log

data/$test data/MPItest >> $log 2>&1

res=$?

echo "</pre>" >> $log

code=‘statusCode $res‘

if [$res -gt 0] ; then

result=$res

fcode="$code:"

failed="$failed$test "

fi

echo "<tr><td>$test</td><td>$code</td></tr>"

done

echo "</table>"

rm -f $PBS_NODEFILE

echo "<p>Overall summary: "

statusCode $result

echo "</p>"

echo "<p>LOG from sub-tests execution:</p>"

echo "<pre>"

cat $log

rm -f $log

echo "</pre>"

echo "result is $result"

if [$result -gt 0]

then

result=50

else

result=10

fi

echo "summary: $fcode $failed"

exit $result

68

	Introduction
	The Worldwide LHC Computing Grid project
	Grid
	Research goals
	Acronyms
	Copyrights and ownership

	Enabling MPI on the WLCG
	Introduction to parallel computing
	MPI on the WLCG, current situation
	MPI on the WLCG, desired situation
	Single-site MPI (first phase)
	Implications for the end-user
	Implications for RBs
	Implications for CEs
	Implications for WNs

	Cross-site MPI (second phase)
	More implications
	Prior art

	Remarks
	Unmet requirements
	Efficiency of fabric usage
	Integration of MPI and LRMS

	Implementations of MPI and their fitness for the WLCG
	LAM
	LAM-6.5.9
	LAM-6.5.9 on the WLCG
	LAM-7.0.6
	LAM-7.0.6 on the WLCG
	LAM-7.1.2
	LAM-7.1.2 on the WLCG

	MPICH
	MPICH-1.2.6 on the WLCG
	MPICH-1.2.7 on the WLCG

	MPICH2
	MPICH2 on the WLCG

	OpenMPI
	OpenMPI on the WLCG
	Mpiexec
	Mpiexec on the WLCG

	Modifications for deployment of MPI
	Site Functional Test for MPI
	Conclusion on MPI on the WLCG
	Future work

	YAIM
	Structure
	Scope
	Evaluation
	Conclusion on YAIM
	Future work

	Bibliography
	The BSD license for this project
	Requirements
	User requirements
	Site requirements

	Changes to YAIM
	functions/config_mpi
	examples/site-info.def
	scripts/node-info.def

	A Quick Guide to using MPI on the WLCG
	mpi-example.jdl
	MPItest.c

	Wrapper scripts
	lam-6-wrapper.sh without Torque/PBS
	lam-7-wrapper.sh without Torque/PBS
	lam-7-pbs-wrapper.sh with Torque/PBS
	mpich-wrapper.sh without Torque/PBS
	mpich-pbs-wrapper.sh with Torque/PBS
	mpich2-wrapper.sh without Torque/PBS
	mpich2-pbs-wrapper.sh with Torque/PBS
	openmpi-wrapper.sh without Torque/PBS
	openmpi-wrapper.sh with Torque/PBS

	Site Functional Test for MPI
	tests/sft-mpi.def
	tests/sft-mpi

