
Expansion of the
SURFnet Intrusion Detection System

P.J. Siekerman en R. Buijs

02-02-2007

Abstract

Over a period of one month we conducted research into the possibilities for
expansion of the functionality of SURFnet IDS. SURFnet IDS is a distributed
sensor-based intrusion detection system which simulates several vulnerable ser-
vices to learn about malicious traffic on a network. It can detect more than
twenty kinds of attacks and it makes information about these attacks accessible
in a clear web-interface.

In this report we first looked at the current state of SURFnet IDS. Next
we reviewed various intrusion detection applications and decided two might be
suited for use in SURFnet IDS, namely Prelude and Snort. We then investigated
how these two can be integrated into the current system and concluded that
Prelude was not as promising as it initially looked and that Snort was the best
candidate for actual implementation. A minor change to SURFnet IDS has to
be made in order to read the Snort data, but after this change the amount and
variety of malicious traffic which is detected, will increase dramatically.

Acknowledgments

During our project we were actively in contact with the project leader Rogier
Spoor and the current SURFnet IDS developers Kees Trippelvitz and Jan van
Lith. We would like to thank them for their dedication to our project. Their
feedback and tips were very helpful to us.

1

Contents

1 Introduction 3

2 SURFnet IDS 5
2.1 Current setup . 5

2.1.1 Nepenthes . 5
2.2 Planned additions . 6

2.2.1 Argos . 6
2.3 Opportunities . 6

3 IDS software 7
3.1 Filesystem integrity verification 7

3.1.1 Tripwire . 8
3.1.2 Samhain . 8
3.1.3 AIDE . 8

3.2 Low-interaction honeypots . 8
3.2.1 Honeyd . 9
3.2.2 Honeytrap . 10

3.3 Snort . 11
3.4 Prelude . 12
3.5 IPS software . 13
3.6 Conclusion . 13

4 Implementation 15
4.1 Snort . 15

4.1.1 False-positives . 16
4.1.2 Maintenance . 16

4.2 Prelude . 17

5 Conclusion 18

2

Chapter 1

Introduction

Hackers, crackers, viruses, worms, exploits, vulnerabilities, trojans, spyware,
adware . . . the internet is a dangerous place. And yet we can hardly imagine life
without it anymore. So how do we survive our daily life on the web? We secure
our systems using firewalls, virusscanners and other tools. In this category of
tools we also find the Intrusion Detection Systems (IDS).

Intrusion detection systems serve one primary purpose: gathering informa-
tion about attacks against a system to strengthen the defense of the system. To
defeat your enemy, you must know your enemy.

Various types of IDS applications exist. Host-based intrusion detection sys-
tems (HIDS) guard or simulate a host and analyze and report any attacks di-
rected towards this host. Network intrusion detection systems (NIDS) are used
to analyze network traffic directed to various hosts. While HIDS applications
often actively simulate services or complete hosts, NIDS applications usually
work passively by only inspecting traffic without actively modifying it.

When people speak of honeypots, they are usually referring to HIDS appli-
cations. There is a difference between a low-interaction honeypot and a high-
interaction honeypot. A low-interaction honeypot only simulates services at the
most basic level necessary to fool attackers into thinking they are dealing with
a real system. A high-interaction honeypot is a real system running real ser-
vices, often in a virtual machine, combined with intrusion detection software to
analyze what attacks do to the system.

SURFnet is the organization that connects the various universities and other
higher education institutions to the internet. In addition to internet connectiv-
ity it offers several other services to its customers. One of those services is a
distributed intrusion detection system called SURFnet IDS [1].

In this report we examine the current state of SURFnet IDS and offer sug-
gestions on how the service could be expanded by adding other intrusion de-
tection technology. We start by taking a close look at SURFnet IDS as it is
now in chapter 2. In chapter 3 we review various IDS applications to determine
which of them offer the functionality and quality required for implementation in
SURFnet IDS. Based on this review, we select two promising applications (Snort

3

and Prelude) and discuss in chapter 4 if and how they could be integrated into
SURFnet IDS.

When IDS applications contain an active component which automatically
responds to and defends against attacks, they are referred to as Intrusion Pre-
vention Systems (IPS). We discuss why we decided not to consider such systems
as possible extensions to SURFnet IDS in section 3.5.

In addition we decided to exclude all closed source and proprietary IDS so-
lutions from our review. There are the obvious ideological and financial aspects
of this choice which play a role, but the fact that it is impossible to examine
the source of these programs to determine how exactly they work and the fact
that it is impossible to modify them to suite the specific SURFnet IDS setting
were the main reasons for making this decision.

Previous work

During the last two years, several other System and Network Engineering stu-
dents have completed research projects in the area we are dealing with in this
report. In 2005 a report was written about various IDS applications [2] and the
original distributed sensor-based setup for SURFnet IDS was designed [3]. In
2006 the security of SURFnet IDS was reviewed [4] and the addition of Argos
was advised [5], which is currently being implemented. We aim to build on these
reports and suggest further improvements to SURFnet IDS.

4

Chapter 2

SURFnet IDS

In this section we’ll describe the current SURFnet IDS architecture. We do this
to get a clear picture of which functionality is offered by the current system.
This overview will make it easier to determine what new applications in the
structure would add in terms of functionality.

2.1 Current setup

The current SURFnet IDS is a distributed sensor-based intrusion detection sys-
tem. The sensors are based on a modified and remastered Knoppix installation
running on a USB-stick. When the sensor boots from the USB-stick it con-
tacts the server and forwards all its data to the server using OpenVPN and
ethernet bridging. The SURFnet IDS server collects the data from the clients.
The server is running a honeypot called Nepenthes, which analyses the traffic
to detect malicious data. The results are stored in a PostgreSQL database.
The server has a web interface which shows the user the database contents in
a user-friendly way. This web-interface shows which vulnerability attacks were
detected by Nepenthes on the sensor. The web interface also shows a large
variety of useful statistics, for instance about the ranking of the occurrence of
attacks using specific vulnerabilities.

2.1.1 Nepenthes

Nepenthes is a low to medium-interaction honeypot [6]. Low-interaction means
the honeypot simulates services and vulnerabilities only up to the minimum
required level to fool attackers into thinking they are attacking a real system.
It does not take any actions after the detection, except for logging and down-
loading the exploit file. Nepenthes is a modular application which can simulate
several vulnerabilities. Because of this, it is easy to expand Nepenthes with
new vulnerability modules. The application is being built and maintained by
two German students. Nepenthes is able to recognize more than twenty known

5

Windows vulnerabilities. The application is not designed to detect zero day
vulnerabilities.

2.2 Planned additions

Although the setup at the moment of writing this text only includes Nepenthes,
an addition to the system is being worked on for future release. This update
would include the addition of the program Argos as a second honeypot.

2.2.1 Argos

Argos is a full and secure system emulator designed for use as a honeypot [7]
[8]. It is based on Qemu, an open source emulator that uses dynamic transla-
tion to achieve a fairly good emulation speed. Argos extends Qemu to enable
it to detect remote attempts to compromise the emulated operating system.
Using dynamic taint analysis it tracks network data throughout execution and
detects any attempts to compromise the system. When an attack is detected
the memory footprint of the attack is logged. Argos can be used to detect zero
day attacks.

Argos and Nepenthes are linked in such a way that whenever traffic is re-
ceived, it is initially routed to Nepenthes. As Nepenthes only emulates a limited
number of vulnerabilities, there is a good chance that Nepenthes will not be able
to classify the traffic. Based on a few criteria, such as how many times suspect
traffic has been received from another host, a selection of this traffic is routed
to Argos instead of Nepenthes. As Argos has a more flexible way of detecting
attacks, by simulating a real system, allowing an attack to be executed on it and
analyzing the behaviour of the attack, it is has a better chance of determining
whether traffic Nepenthes can not analyse is really an attack or not.

2.3 Opportunities

The SURFnet IDS structure offers a lot of opportunities for expansion. The
currently used honeypot Nepenthes covers only a small collection of exploits,
and we think there should be a way to make SURFnet IDS detect more malicious
traffic. An increase in the diversity of malicious traffic the IDS can detect and
classify would make the IDS more interesting for customers.

6

Chapter 3

IDS software

In this chapter we will scrutinize several IDS programs to determine which
of them would be able to add valuable features to the current SURFnet IDS
setup. We will judge the various programs based on several aspects, such as
their functionality, their current status, the level of documentation and how
well they would integrate into the current situation.

As we described in chapter 2, the primary goal of SURFnet IDS is to sup-
ply information about attacks on a customer’s network. The intention is to
determine the following information for all network traffic the sensor receives:

• Is this traffic an attack?

• Where did it originate from?

• If this is an attack, how does the attack work? Which vulnerability or
exploit does it use? What is it trying to achieve?

An IDS application is only useful if it helps us gain at least part of the
information listed above. While some IDS applications might therefore not be
valuable due to a lack of functionality, there are also applications that offer too
much functionality. This extreme is found in the area of the Intrusion Prevention
System (IPS) applications. These programs include both information gathering
and automated active responses. We will cover IPS software further in section
3.5, where we will also explain why it is not possible to use such software in the
current SURFnet IDS setup.

3.1 Filesystem integrity verification

A simple way of detecting when a system has been compromised, is through
filesystem integrity verification. This technique creates a footprint of a system
in its original state by creating signatures of essential files and gathering various
other characteristics such as file access rights and file sizes and storing this
footprint in a remote, safe location. Periodically new footprints of the system

7

are created and compared to the original footprint. Unexplainable differences
between these footprints serve as indications of the system being compromised.

3.1.1 Tripwire

Tripwire is an open source host-based Intrusion Detection System (HIDS). Trip-
wire is used to detect changes in a host’s filesystem. As most other filesystem
integrity checkers, it works by making a baseline footprint of an original system
and periodically comparing this footprint with footprints of the system as time
progresses. These footprints consist of signatures of the essential files on the
host, created using mainstream hashing techniques such as MD5 [9].

As we indicated before, SURFnet IDS is used to determine whether specific
incoming traffic is an attack or not and to gather as much information about
the attack as possible. Tripwire is only useful to determine whether or not an
attack has occurred between the creation of two footprints. It has no way to
determine any further details about the attack, such as when it occurred, where
it originated from or how it worked. The basic determination whether an attack
occurred or not, which is the only benefit of using Tripwire, is already offered
by Argos (Section 2.2.1). Therefore adding Tripwire to the SURFnet IDS setup
would not add any useful features.

3.1.2 Samhain

Samhain is an open source program which performs a service similar to Tripwire
[10]. It creates a baseline footprint of a filesystem and compares newer footprints
with this baseline to detect unwanted system modifications. It is possible to
monitor a large number of clients with a single server by running client software
on the various hosts and saving the footprints on the main server. Samhain can
be configured to work as part of the Prelude framework (Section 3.4).

As indicated in our evaluation of Tripwire, a filesystem footprinting system
would not add any significant new features to SURFnet IDS. Therefore we do
not recommend using this program.

3.1.3 AIDE

AIDE is another open source filesystem integrity verification program [11] [12].
It is almost identical to Tripwire as it was specifically intended to offer a similar
service. Because this program is very similar to Tripwire, the same analysis
applies. Please refer to section 3.1.1 for more information.

3.2 Low-interaction honeypots

In section 2.1.1 we discussed the honeypot Nepenthes. Nepenthes is usually clas-
sified as a low-interaction honeypot. In contrast to high-interaction honeypots,
which generally offer a completely functional system for an attacker to infect,

8

low-interaction honeypots only emulate the bare necessities of specific services
needed to fool an attacker into believing he is dealing with a real service or
system.

3.2.1 Honeyd

Honeyd is a rather nice honeypot. It serves multiple goals. First of all, it can
be used to simulate a host with a vulnerable operating system or vulnerable
services. Various services are available, such as FTP, HTTP, telnet and SMTP.
Configuring honeyd to simulate such systems is as simple as editing a few con-
figuration files. This is similar to the functionality most other honeypots supply
as well. It can be used to record and analyze attacks on the dummy hosts and
services.

The beautiful part of honeyd is its ability to simulate entire networks of
hosts with a complete network structure and appropriate latency times and
packet loss. It is possible to simulate quite complicated network structures,
which will even show up correctly if the attacker runs a traceroute. When used
in conjunction with the program arpd, it is able to claim all unused ip-addresses
in a specific range and fill those with virtual dummy hosts which can serve to
distract an attacker from the actual system.

Documentation

Honeyd documentation can be found at several locations [13] [14] [15]. There
is quite a bit of documentation on the web about honeyd and it is a very well
known program. Therefore the chance of finding a solution to any problems
that might be encountered during installation or operation is relatively good.
Unfortunately there do not seem to be many recent publications.

Status

Honeyd’s developer is Niels Provos. He maintains the package single-handedly.
Luckily various other people have submitted configuration files to simulate dif-
ferent services. The last major update (1.5) was in february 2006. Unfortunately
there haven’t been any big updates to the program for almost a year.

Conclusion

Researching honeyd initially resulted in a rather optimistic view of the program.
There is a significant amount of information about the program and many peo-
ple know it and appear to have used it at some point. Unfortunately further
investigation showed a somewhat less optimistic picture. Development of the
program appears to have paused or maybe even stopped. There have been no
serious updates for almost a year. Although documentation and articles are in
no short supply, none of it is recent.

The most interesting aspects of honeyd are its abilities to simulate large
networks and claim all unused ip-addresses. Unfortunately neither of these

9

capabilities is directly applicable in the in the current SURFnet IDS setup,
because SURFnet IDS’s current goal is to monitor and analyze the traffic sent
to a single sensor in a network. This might however be interesting as a part of
a future expansion.

It seems that what was once a very promising and interesting program has
since then collapsed and is no longer top of the range. Therefore we do not
recommend using it in the SURFnet IDS setup.

3.2.2 Honeytrap

Honeytrap is a low-interaction honeypot that emulates TCP services. It can
handle known and unknown attacks.

This honeypot is a very simple product. It does not run any services. The
core principle is this: Whenever a request is received for an unused TCP port,
honeytrap opens this port and accepts the incoming data. It saves this data for
later analysis. When the data-transfer is done, the connection is closed and the
port is released again. This way honeytrap is not limited to dealing with known
attacks.

Although honeytrap normally does not emulate any services, it is possible
to fake an attacker into believing that it does. This is done by defining a
default response to requests on specific ports. For instance, it is possible to
have honeytrap send a standard message in response to any requests sent to
TCP port 135. If the attack includes a command to download a file, honeytrap
includes several plugins to allow the program to download these malware files
and store them for later analysis.

Another feature is the ”mirror mode”. This allows all traffic sent to honey-
trap to be reflected back to the attacker. This results in the attacker attacking
himself, allowing the traffic to be analysed without being at risk of infection.

Documentation

Honeytrap documentation can be found at several locations [16] [17]. Unfortu-
nately the amount of documentation totals to 3 or 4 pages. There is no tutorial,
no extensive manual, no faq, no help section. Basically the only way to get
familiar with the program, is diving into the source code. Obviously this is not
an option for normal users.

Status

Honeytrap’s developer is Tillmann Werner. Unfortunately he appears to be
the only developer, which results in relatively infrequent updates. Luckily the
last official release (0.6.4) was very recent. The SVN repository shows that the
developer is still working on the project. Updates have been submitted every
two or three weeks during the last few months.

10

Conclusion

honeytrap was intended as a very simple honeypot, allowing unknown attacks
to be processed, without fully simulating services. It does allow for custom
responses on various ports, as a sort of ”poor man’s service emulator” as the
developer calls it. These responses can be added by end-users.

Unfortunately it appears that this program is hardly being used by anyone.
It seems that apart from the main developer there are no other people con-
tributing to the project. Therefore development goes very slowly and addons
are non-existent. There is no honeytrap community whatsoever.

Considering all the above we advise against using this honeypot.

3.3 Snort

Snort is an open source Network Intrusion Detection System (NIDS), capable
of performing real-time traffic analysis and packet logging on IP networks [23].
It can perform protocol analysis, content searching/matching and can be used
to detect a variety of attacks and probes, such as buffer overflows, stealth port
scans, CGI attacks, SMB probes, OS fingerprinting attempts, and much more.
Snort can even detect evasion attacks.

Snort can run in four modes:

• Sniffer mode - reads the packets off of the network and displays them for
the user in a continuous stream on the console (screen).

• Packet Logger mode - logs the packets to disk.

• Network Intrusion Detection System (NIDS) mode - the most complex and
configurable configuration, which allows Snort to analyze network traffic
for matches against a user-defined rule set and performs several actions
based upon what it sees.

• Inline mode - obtains packets from iptables instead of from libpcap and
then causes iptables to drop or pass packets based on Snort rules that use
inline-specific rule types. When used in inline mode, Snort acts as an IPS
system (Section 3.5).

The NIDS mode uses rules to detect malicious traffic and sends out alerts
when it does [24]. The rules are frequently updated by a development group.
The rules are free to download and use, just like the software. Installing a new
ruleset only takes a few minutes. There is even an application available which
automatically updates the rules [25].

The snort rules are divided in various categories. These categories include:
backdoors, bad traffic, ddos, dns, exploits, ftp, imap, multimedia, mysql, p2p,
pop, smtp and web.

All these categories together contain over 5000 rules to detect malicious
traffic. The user can choose which rules he wants to use. Snort is able to alert
the user according to these rules.

11

Documentation

Snort is a very well-documented program. On the Snort homepage you’ll find
a guide describing how Snort works and how it should be configured. This
documentation is well build, and describes everything necessary. Besides the
official documentation, there is a lot of information on the internet about how
Snort can be configured and maintained.

Status

Snort is being actively developed, just like the Snort rulesets. In contrast to
small programs like honeytrap (Section 3.2.2), Snort is one of the major open
source programs. It has a large and active community of users. Program updates
are released frequently. The official rulesets are updated often and there is a
large group of users which releases custom rules for a variety of things.

Conclusion

Snort is a powerful application with a lot of nice features. Especially the NIDS
function is suitable for our situation. Because Snort can detect lots more ma-
licious traffic than Nepenthes can, we think this application deserves a place
in SURFnet IDS. We will discuss how this program could be integrated into
SURFnet IDS in detail in chapter 4.

3.4 Prelude

Prelude is not an IDS in the classic sense of the word. Instead of being a
front-line HIDS or NIDS, it is intended as a framework which can be used
to process and combine output from several other intrusion detection systems
[18]. Prelude’s core is an open source program. However, it is also available
as a closed source commercial package which contains a few extra features and
improvements [19].

Prelude has to be able to process input from a large number of very diverse
programs. This is made possible by the choice to build the design of Prelude on
the IDMEF (Intrusion Detection Message Exchange Format) standard, which is
a standardized data model for intrusion detection related messages, which could
for instance be implemented in XML.

The IDMEF standard was being developed by the Intrusion Detection Work-
ing Group of the IETF [20]. Unfortunately this working group ended before an
official RFC could be produced. They did however release a final version of
the document they were working on which apparently was supposed to become
RFC 4765 [21]. Since the driving force behind the development of the standard
has disappeared, it is uncertain what the future of the standard will look like.

Although the future of IDMEF is uncertain, there are currently quite a few
programs that support it. A good example is the NIDS Snort, which has a
plugin which allows the program to output alerts in IDMEF XML format [22].

12

Prelude is able to collect IDMEF structured information from a multitude
of sources. Based on a collection of user-definable policies Prelude is able to
combine the various pieces of information it receives into a single response. By
combining the input from multiple sources, the number of false alerts should
decrease and the accuracy of the system should increase.

If SURFnet IDS is to be extended by including other honeypots, a mechanism
has to be created to combine information streams received from the various
honeypots and other applications. This could be done using custom made scripts
and programs, but a more elegant and robust solution would be the use of
a framework such as Prelude. We will discuss if and how Prelude could be
integrated into SURFnet IDS in section 4.2.

3.5 IPS software

Intrusion Prevention System (IPS) applications detect malicious traffic, just like
an IDS. The difference between an IPS and an IDS is their behaviour. An IDS
detects and reports malicious traffic on a certain network device. An IPS does
the same, but in addition to an IDS it can also take action after detection. It can
block the traffic for example. You could compare an IPS with a smart firewall.

In the current SURFnet IDS setup it would be very hard to implement an
IPS, because SURFnet IDS is used by several different companies, with different
unique networks, and different policies regarding security and firewall settings.
The IPS would have to be setup in a unique way for each customer network,
which would require a massive amount of work. The benefit of the current
system, is the fact that it can be used quite effectively in its standard setup,
without the need for a lot of configuration.

Though IPS applications are very interesting, they are beyond the scope of
the current SURFnet IDS. If SURFnet were to run an IPS service, it would in
effect end up being system administrator for a number of companies. Assuming
such a role would create all sorts of new responsibilities and problems, such as
users being upset when data is blocked incorrectly.

The current setup, which only gathers information and presents this infor-
mation in an accessible format, is preferable. Because of the relative simplicity
of this setup, one configuration can be used for all clients, which dramatically
simplifies scaling the services. It also makes sure the responsibility for securing
a network remains with the client’s administrators. SURFnet only supplies in-
formation, the client’s administrators are the ones who have to decide how to
act on this information.

3.6 Conclusion

In this chapter we covered several programs, ranging from filesystem integrity
checkers such as Tripwire, Samhain and Aide, to low-interaction honeypots such
as honeyd and honeytrap. We looked at the IDS framework Prelude and the

13

NIDS Snort.
We concluded that filesystem integrity verification is not suitable for in-

clusion in SURFnet IDS and that the low-interaction honeypots honeyd and
honeytrap were too outdated to be useful. Prelude and Snort however turned
out to be very promising programs. Snort allows the detection of a large number
of attacks simply by analyzing network traffic. Prelude offers a way to combine
data from multiple IDS programs, such as Snort and Nepenthes. In the follow-
ing chapter we will try to determine if and how Prelude and Snort could be
integrated into the current SURFnet IDS setup.

14

Chapter 4

Implementation

In chapter 3 we looked at various IDS and honeypot applications. We concluded
that although there are many such applications, only a few of them are actively
being developed, are well documented and could add some unique functionality
to SURFnet IDS. In this chapter we take a closer look at the two most interesting
applications, Snort and Prelude, to determine if and how they can be added to
SURFnet IDS.

4.1 Snort

As described in section 3.3, Snort is a valuable application because it can detect
a lot of malicious traffic. Snort can run in four modes. One of them is intrusion
detection mode, which is the one we choose to use for SURFnet IDS. Running
in IDS mode, Snort will use its frequently updated rulesets to analyze the traffic
it receives. If it detects malicious traffic it will log this and create an alert.

Snort can run next to Nepenthes without any modifications because Snort
only sniffs the traffic, and does not need to respond to it like Nepenthes. So we
suggest running Snort on the same machine as Nepenthes.

In consultation with the current SURFnet IDS developers we decided what
information we would like to log. This includes:

• Timestamp

• Description of malicious traffic

• Source IP

• Destination IP

Since we only need the data described above, we can run Snort in the ”Fast
Alert” mode, which means it logs only a minimal amount of data. This mode
does for example not log the complete datastream, but since we do not need
this, it will save us space.

15

Snort can log in several ways: it can log to screen, log-file or database. Snort
supports multiple databases, including PostgreSQL, which is the one SURFnet
IDS already uses to store the data gathered by Nepenthes. Since the current
SURFnet IDS developers would like to have the Snort logs in the same database
as the Nepenthes database, we suggest using Snort’s built-in PostgreSQL func-
tionality.

Since Snort uses its own way of logging, it uses a few tables to log the
data to the database. These tables differ from the tables used by Nepenthes,
therefore the web interface of SURFnet IDS will have to be slightly modified
in order to read the data from the appropriate Snort tables. This modification
will include adding some simple SQL queries. The final situation will contain
a web-interface similar to the current situation, with the Snort alerts combined
with the Nepenthes alerts. This way SURFnet IDS will detect and report a lot
more malicious traffic.

4.1.1 False-positives

Nepenthes does not produce any false-positives at all. If Nepenthes reports that
an attack has occurred, it is certain that it truly was an attack. Unfortunately
this certainty comes at a significant cost, which is the small number of attacks
it is able to recognize. Nepenthes is limited to a small range of attacks, but is
100% accurate in that small range.

On the other hand, Snort allows for a much larger number of attacks to be
recognized. It is based on a collection of customizable rules. This ruleset is
updated frequently and includes rules to detect an enormously diverse range of
attacks. While Snort offers a much broader functionality, this comes at a price.
Snort has a reputation for creating a significant number of false positives.

As SURFnet deals with a large number of customers which have different
skill-levels, some of their customers will not be able to determine which of these
alerts are false and which are real. This could potentially lead to a lot of
confusion and unnecessary panic.

It is possible to reduce this problem. The crucial factor here is which Snort
rules are being used. Snort offers an enormous number of rules, but the choice of
which rules to use is completely up to the person running the program. It should
be possible to greatly reduce the number of false-positives Snort generates by
selecting a very conservative collection of rules aimed at specific exploits instead
of the default package.

4.1.2 Maintenance

Snort has another drawback related to the previous problem of false positives.
Although the initial problem can be mitigated by carefully selecting which rules
to use, the work does not stop there. Snort rules are updated very frequently,
which makes keeping Snort up to date a process which requires frequent atten-
tion. Each time new rules are released, these have to be checked to determine
whether or not they are suited for implementation in SURFnet IDS.

16

This makes including Snort a choice with a high maintenance cost. Nonethe-
less we believe this is a worthwhile investment of time and resources. We are
convinced that vastly increasing the ability of SURFnet IDS to detect and report
attacks outweighs the costs.

4.2 Prelude

In section 3.4 we looked at Prelude and determined that it might be a promising
application. It supplies a framework which can be used to combine data gathered
by a number of sensors. Prelude uses the IDMEF standard to communicate with
applications such as Snort, Nepenthes and Nessus. It is possible to write Prelude
policies which define how the data from the various sensors should be combined
into one output.

Prelude offers a web-based interface called Prewikka. If Prelude were to be
used, the most logical way to use it would be as a replacement of the current
web-interface. Unfortunately Prewikka lacks several options which the current
interface does include, such as the ability to display specific statistical data and
the possibility of allowing various customers to log in and only see the data
related to their own sensor. It might be possible to modify the Prewikka source
to add such features, but this would require too much time and effort for it to
be worth the switch.

A further drawback of Prewikka is the fact that this web-interface is rather
slow, making it somewhat tedious to use. As SURFnet IDS is not just being
used in a development environment, but also in production environments by
a large number of customers, having a slow interface would have a significant
negative effect on the popularity of the system.

Based on these observations, we think Prelude is not optimally suited for
use in SURFnet IDS. Although the principle of using a standard framework to
combine input from different intrusion detection systems is worth considering
and Prelude supports an impressive number of programs as sensor, this does
not trump the negative aspects, such as the limited options and the general
slowness of the system.

17

Chapter 5

Conclusion

When we initiated this project, our main goal was to make SURFnet IDS de-
tect more diverse malicious traffic. During our research we reviewed the most
important of the currently available intrusion detection systems. We concluded
most of these products aren’t suitable for use at SURFnet IDS, and in some
cases useless in any situation. Two products initially seemed promising as they
appeared to fit our needs very well: Snort and Prelude. Unfortunately a closer
inspection of Prelude made us decide against using this application.

Snort however is more promising. It allows detection of a lot more varied
malicious traffic, which is exactly what we hoped to achieve. This application
is actively being developed and maintained. Its rule based nature makes the
program very flexible. Snort is fairly easy to implement in the current SURFnet
IDS setup by running it next to Nepenthes and making use of its PostgreSQL
database logging facilities.

We believe we found the best solution for improving SURFnet IDS by ad-
vising adding Snort to the current setup.

Future Work

As SURFnet IDS is a constantly evolving product, many more improvements
could be considered. A possible topic might be the detection of technical prob-
lems on a network, such as hosts broadcasting large numbers of bogus messages
causing the network to become slow.

During our research we reached the conclusion that there are very few high
quality open source IDS related applications. We intentionally decided to ex-
clude proprietary closed source products, for the reasons we discussed in our
introduction. It might be worth investigating whether or not there are any high
quality proprietary products on the market. This would require resources in
the form of budget to acquire such products and a lot of time to rigorously test
them.

18

Bibliography

[1] SURFnet IDS homepage,
http://ids.surfnet.nl/

[2] Onderzoeksrapport RP1: IDS, A. Dekker and C. Groen, February 2005,
http://staff.science.uva.nl/~delaat/snb-2004-2005/p16/report.
pdf

[3] SURFnet Intrusion Detection System, K. Trippelvitz and H.J. Blok, July
2005,
http://staff.science.uva.nl/~delaat/snb-2004-2005/p30/report.
pdf

[4] Onderzoek veiligheid SURFnet IDS, L. Bordewijk, J. Mace, March 2006,
http://staff.science.uva.nl/~delaat/snb-2005-2006/p11/report.
pdf

[5] Intrusion Detection System honeypots, M. Meijerink, J. Spellen, February
2006,
http://staff.science.uva.nl/~delaat/snb-2005-2006/p29/report.
pdf

[6] Nepenthes homepage,
http://nepenthes.mwcollect.org/

[7] Argos homepage,
http://www.few.vu.nl/argos

[8] Argos: an Emulator for Fingerprinting Zero-Day Attacks, G. Portokalidis,
April 2006,
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/
p15-portokalidis.pdf

[9] Tripwire homepage,
http://sourceforge.net/projects/tripwire/

[10] Samhain homepage,
http://www.la-samhna.de/samhain/

19

http://ids.surfnet.nl/
http://staff.science.uva.nl/~delaat/snb-2004-2005/p16/report.pdf
http://staff.science.uva.nl/~delaat/snb-2004-2005/p16/report.pdf
http://staff.science.uva.nl/~delaat/snb-2004-2005/p30/report.pdf
http://staff.science.uva.nl/~delaat/snb-2004-2005/p30/report.pdf
http://staff.science.uva.nl/~delaat/snb-2005-2006/p11/report.pdf
http://staff.science.uva.nl/~delaat/snb-2005-2006/p11/report.pdf
http://staff.science.uva.nl/~delaat/snb-2005-2006/p29/report.pdf
http://staff.science.uva.nl/~delaat/snb-2005-2006/p29/report.pdf
http://nepenthes.mwcollect.org/
http://www.few.vu.nl/argos
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p15-portokalidis.pdf
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p15-portokalidis.pdf
http://sourceforge.net/projects/tripwire/
http://www.la-samhna.de/samhain/

[11] Aide homepage,
http://www.sc.tut.fi/~rammer/aide.html

[12] Aide Sourceforge,
http://sourceforge.net/projects/aide/

[13] Honeyd homepage,
http://www.honeyd.org/

[14] Honeypots: Tracking Hackers, L. Spitzner, November 2002, ISBN: 0-321-
10895-7

[15] Simulating Networks with Honeyd, R. Chandran and S. Pakala, December
2003,
http://paladion.net/papers/simulating_networks_with_honeyd.
pdf

[16] Honeytrap homepage,
http://honeytrap.sourceforge.net/

[17] Honeytrap Sourceforge,
http://sourceforge.net/projects/honeytrap/

[18] Prelude homepage,
http://www.prelude-ids.org/

[19] Commercial Prelude homepage,
http://www.prelude-ids.com/

[20] IETF Intrusion Detection Working Group,
http://tools.ietf.org/wg/idwg/

[21] Experimental RFC 4765,
http://www.prelude-ids.org/IMG/txt/rfc4765.txt

[22] Snort IDMEF plugin,
http://sourceforge.net/projects/snort-idmef/

[23] Snort homepage,
http://www.snort.org/

[24] Bleeding Edge Snort signatures,
http://www.bleedingsnort.com/

[25] Oinkmaster homepage,
http://oinkmaster.sourceforge.net/

20

http://www.sc.tut.fi/~rammer/aide.html
http://sourceforge.net/projects/aide/
http://www.honeyd.org/
http://paladion.net/papers/simulating_networks_with_honeyd.pdf
http://paladion.net/papers/simulating_networks_with_honeyd.pdf
http://honeytrap.sourceforge.net/
http://sourceforge.net/projects/honeytrap/
http://www.prelude-ids.org/
http://www.prelude-ids.com/
http://tools.ietf.org/wg/idwg/
http://www.prelude-ids.org/IMG/txt/rfc4765.txt
http://sourceforge.net/projects/snort-idmef/
http://www.snort.org/
http://www.bleedingsnort.com/
http://oinkmaster.sourceforge.net/

	Introduction
	SURFnet IDS
	Current setup
	Nepenthes

	Planned additions
	Argos

	Opportunities

	IDS software
	Filesystem integrity verification
	Tripwire
	Samhain
	AIDE

	Low-interaction honeypots
	Honeyd
	Honeytrap

	Snort
	Prelude
	IPS software
	Conclusion

	Implementation
	Snort
	False-positives
	Maintenance

	Prelude

	Conclusion

