User Controlled LightPaths

Carol Meertens, Tijmen van den Brink

February 2, 2007

Contents

1 Introduction 2
2 Objectives 2
3 Design Principles 3
3.1 Service Oriented Architecture 3
3.2 Resource Management 3
3.3 Virtualization layer o oL 5
3.4 Higher Level Services and Applications 6
4 Security 7
4.1 Userroles 7
5 Installation and Usage of UCLP 7
5.1 The Testbed 7
5.2 Creating a Lightpath 8
53 Issues 9
6 UCLP and DRAC 11
6.1 DRAC 11
6.2 Similarities L. 12
6.3 Differences. 12
7 Summary and Future work 12
8 Acknowledgements 13
9 Appendix: Installing UCLPv2.0 on Debian GNU /Linux 15

List of Figures

T W N

UCLPv2 Service Oriented Architecture. [1] 4
UCLP testbed 8
Physical Network Editor: letting UCLP know about NE’s and links 9
Lightpath in a ‘scenario’ 10
Undeploying an APN 11

List of Tables

1

Differences between DRAC and UCLP 12

Abstract

UCLP is a service oriented system offering the user(-process) the abil-
ity to set up and tear down lightpaths at will. A testbed was configured
using three Nortel OME6500 SDH switches and a UCLP installation: ver-
sion 2 of the ‘Ottawa implementation’. We investigated the design and
development status of UCLP and compared it to DRAC. UCLP is built
upon existing and open SOAP technology. In its design the concept of
‘network’ is being kept very generic, so the UCLP system will well be
able to adopt to future insights. The implementation investigated isn’t
‘production ready’.

1 Introduction

This is the report of our one month internship at SARA. We have been installing
an implementation of ‘User Controlled LightPaths’, UCLP. We assembled a
working UCLP testbed and evaluated the UCLP system.

Today creating connections in the field of optical networks can be quite
a burden and costly. There is a lot of administrative labour associated with
creating a lightpath. And once that is done there often isn’t a 100% guarantee
the lightpath will be there at the right time. In some environments this is not
acceptable. Think about grid and optical network research: there is a real need
for lightpaths both dynamically configurable and reliable.

UCLP is an attempt to offer the user a way to setup and tear down light-
paths without any of the above mentioned the administrative burden and risc.
The design of UCLP is based on the broad concept of ‘Service Orientation Ar-
chitecture’. Among other things this means the ‘user’ does not need to be a
human being interacting through a GUI. The user can (and will very often) be
an application, for example a distributed system interfacing with UCLP through
UCLP’s API. It will be able to setup and tear down lightpaths at will.

2 Objectives

The primary objective of this project was to build a testbed consisting of some
optical hardware and the UCLP system. SARA was interested in the design and
in the development status of UCLP. Three Nortel OME 6500’s were available
in an existing SURFnet testbed.

Other objectives were to compare its functionality with DRAC’s and to
evaluate interoperability aspects between the two. Some examples of interesting
questions to answer:

e Is it difficult install UCLP; what is the quality of the software?
e What are the UCLP design choices made?

e What kind of user roles are defined?

e How does an end user create a lightpath?

e How does UCLP handle scheduling?

3 Design Principles

This section covers the design principles of UCLPv2. First the concept of a
Service Oriented Architecture is explained, followed by the explanation of each
layer as shown in Figure 3.1.

3.1 Service Oriented Architecture

The Service Oriented Architecture (SOA) is relatively new in the IT world.
However the foundations of SOA date from ten years ago. To understand the
design principles of UCLP it’s important to understand the concept of a SOA
and why it’s so usefull. This will be explained in this section.

The evolution of programming shows us that in the beginning monolithic
software was written. This soon led to software getting too complex. The next
step was to modularize the software so they could also reuse their code. SOA
adds the possibility to remotely use services offered by systems using their own
technology.

A SOA is an architecture in which resources (e.g. network elements, inter-
faces, lightpaths) are being exposed as services. Such a service’s interface must
be platform-independent and should be dynamically discoverable. Another re-
quirement is that it should be possible to remotely invoke this service. In a lot
of cases these services are web services because of the protocols used (HTTP,
XML, UDDI, WSDL and SOAP). By offering these seperately accessed services
that could be part of a larger application a few problems are eliminated. First
of all a service can be reused by several applications. Secondly they use the
same instance of the service and thus a bug in one service will cause only that
service to be fixed as opposed to fixing a bug in a module that has been used
in the code of several different applications.

UCLP’s SOA is depicted in Figure 3.1.The lower layer exposes web services
that manage and control network elements. For the Higher Level Services or
Applications to control the network elements the second layer provides an ab-
stract interface. This way the underlying technology is of no importance for the
Higher Level Services or Applications which makes integration into applications
less complex and more robust.

The next subsections (subsection 3.2, 3.3 and 3.4) will discuss these layers
in more detail.

3.2 Resource Management

As stated earlier in this document the lower layer exposes web services, called
Network Element Web Services (NE-WS), that control the resources of physical
network elements. The way these devices are managed depends on the technol-
ogy they use. As of today only one technology has been implemented, by the
developers of UCLPv2!, as NE-WS, which is the Cross Connect WS (XC-WS).
This WS controls physical devices and is able to create and delete “Cross Con-
nections”. As depicted in Figure 3.1 a lot more technologies are possible and
could be implemented. A few of these technologies are [1]:

INew implementations as the MPLS-WS and an Ethernet-WS are known to be imple-
mented by HEAnet which is Ireland’s National Education & Research network

.D = =l :
] Higher Lewel
— 1}
AN e ||:'.=-'=-=.-| glo Services !
== .
Applications

Ay other service GUI cliend(s)
. D Resource
LE-WE ITF-WE A Virtalization
HBervices

Fesource
8021 WS HC-WE MILEWS LE-Ws IH3-We GMELEWEL - - - Ilanagement
Services

$ } @;Lﬁ $ $ 5
.'4‘; i N % ﬁ i, @\
—i I { =3' @) (‘(ﬁl\%)

Figure 1: UCLPv2 Service Oriented Architecture. [1]

e XC-WS: Manages devices that are able to create Cross Connects on SONET /SDH
based equipment, wavelength switching based equipment and fibre cross
connects. Currently the XC-WS is the only member of the NE-WS family
that has been implemented.

e 802.1q-WS: Manages devices that use Virtual Local Area Network (VLAN)
technology to multiplex connections belonging to different users.

e LR-WS: Manages logical routers. Some routers are able to partition a
single router into multiple logical devices that perform independent rout-
ing tasks (each logical instance has its own routing table and protocols).
These logical devices are called logical routers.

e MPLS-WS: Allows UCLP to control MultiProtocol Label Switching (MPLS)
based devices.

e INS-WS: Presents a simple interface to control instruments such as sen-
sors, data sinks/sources and storage devices.

e GMPLS-WS: Allows UCLPv2 to trigger switched Generalized MPLS
(GMPLS) connections using the O-UNI (Optical User to Network Inter-
face).

To implement services the Web Service Description Language (WSDL) is
used. It’s an XML-based language that describes services with it’s functions [2].
In case of the XC-WS two port types are created. One to manage the network
element (XC ConfigPort) and one to manage the resources (XC Operational-
Port). Relatively they contain functions to create, modify and delete network
elements and to use, release, bond, partition, (un)allocate, query subLease and
return resources.

In order to remotely use these functions XML-based messages are sent invok-
ing a particular function. The protocol used to send XML-based messages over
HTTP is the Simple Object Access Protocol (SOAP)[3]. The UCLP backend

uses Apache Axis as it’s SOAP Engine. A client can connect to a web service
and query or invoke the available functions that are listed in a WSDL file.

At the moment the configuration of the physical devices relies on TL1. In the
future Command Line Interface (CLI) and NetConf? will be added. To establish
the connections between the NE-WS and the physical devices UCLPv2 supports
TCP, UDP and SSL.

3.3 Virtualization layer

As stated in subsection 3.1 the Resource Virtualization Services layer provides
an virtualized interface to the Higher Level Services or Applications in order to
control the network elements. At this moment there are two types of services,
being:

e Lightpath Web Services
e Interface Web Services

To provide a standard interface to the top layer some virtualization of the cre-
ation of a lightpath, that is technology dependent, has to be made. This is done
by the Lighpath Web Service (LP-WS). Just as the XC-WS this service provides
operations to manipulate the layer below it. These operations are [1]:

e Create: Creates a new instance of a LP-WS.

e Delete: Destroys the LP-WS instance. If it has a finite lifetime, the LP-
WS instance will destroy itself upon lifetime expiration.

e Query: Provides data about the LP-WS properties (bandwidth, endpoints,
expiration date, etc.) and status (in use, available, faulted).

e Use: Causes the LP-WS to call the NE-WS, which in turn will configure
the network element in a certain way depending on the network element
technology (create a cross-connection, create a VLAN or create an LSP).

e Release: Reverts the use operation, causes the LP-WS to call the network
element web services, which in turn clean the network element configura-
tions.

e Partition: If it is physically possible, the LP-WS is divided in N LP-WSs
with smaller bandwidth. The addition of all the bandwidths must match
the original LP-WS bandwidth.

e Bond: If it is physically possible, a group of LP-WS with the same net-
work endpoints is combined into a single LP-WS whose bandwidth is the
addition of all the original LP-WSs bandwidth.

e Lease: Changes the ownership of the LP-WS.

The same applies to the interface of a network element. An interface is a
single port on a network element and to provide it’s services to the top layer
in a standardized manner an abstraction is made. This abstraction, called
an Interface Web Service (ITF-WS) causes the underlying technology to be

2NetConf is a protocol to configure network elements.

hidden from the top layer just like the LP-WS. The operations provided by this
service are the same as the ones of the LP-WS except the partition and bond
operations which do not apply to an interface.

These two services are the building blocks of the system. They can be used
by users to create their own virtualized network but also by applications that
can interface with these services. The biggest advantage in this layered and
abstracted approach is that technology at the lower level is hidden from the
top level, which allows for easy integration into applications and it increases
robustness.

To orchestrate interactions between ITF-WS’s and LP-WS’s an XML-based
language is used called “Business Process Execution Language” (BPEL). Using
BPEL, workflows can be created like the LP-WS which is the orchestration of
two web services that both control a network enabled endpoint. Note that these
workflows can be modified to add more functionality for instance by invoking
another web service.

3.4 Higher Level Services and Applications

The previous subsection discussed the abstracted interfaces the LP-WS and
ITF-WS provide. Services and applications that reside on the top layer are now
able to manipulate the underlying physical network without having to know
what technologies are used. This great advantage can be used to build new
services (e.g. VPN services, reservation services, bandwith on demand) on top
of the existing services.

At the moment only one higher level service has been actually implemented.
The Articulated Private Network (APN) service allows users or applications to
combine the provided resources, LP-WS’s and ITF-WS’s, and create their own
virtual network. Such a virtual network is called an APN scenario. One or more
of these scenarios can be deployed to the UCLPv2 backend. After the scenarios
are deployed one particular scenario can be set by an application or user and the
underlying hardware will be configured accordingly. The following operations
are offered by the APN-WS [1]:

e Init(userID): Initializes the APN (a new process is created in the BPEL
engine). Some validation actions are performed to ensure the correctness
of the device configurations.

e SetConfig(scenariolD, userID, usageTime): Performs all the device con-
figurations specified in the scenario named scenariolD. Checks that the
user userID has the valid access rights to set up the scenario. When the
usageTime is over, the scenario is automatically unset.

e UnsetConfig(scenariolD, userID): Clears all the device configurations spec-
ified in the scenario name scenariolD. Checks that the user userID has the
valid access rights to teardown the APN.

e QueryStatus(userID): Returns the status of the APN (i.e. provides infor-
mation about the scenario being executed).

e Stop(userID): Destroys the process instance of the APN in the BPEL
engine.

4 Security

This section covers how security is imlemented by using user roles in the UCLPv2
architecture. Besides these user roles, as UCLPv2 is still under development
there are quite some security issues that need to be solved (e.g. storing pass-
words in clear text, datacommunication over an unsecured protocol). This re-
port does no security audit on UCLPv2, but will discuss the security as it is
implemented at this moment.

4.1 User roles

The UCLPv2 security architecture relies on user roles. This architecture can be
explained by the layered model depicted in Figure 3.1 where the three different
users can access and or modify services in one or more layers.

e An organization owns physical resources that are managed by one or more
Physical Network Administrators (PN-Admin). The PN-Admin is autho-
rized to create, use and modify all of the services within these layers.
Besides using the resources himself he can also lease them to others.

e A Virtual Network Administrator (VN-Admin) operates at the top two
layers. This means he will not be able to modify the physical network.
Instead he is offered LP-WS’s and ITF-WS’s that he can use himself or
lease to others. A VN-Admin is able to create APN’s for himself and third
parties and can add resources to a specific APN.

e The End User can only access the services a VN-Admin offered him.

All users can add users of their own organization that have the same or less
privileges. This is done using the User Management Web Service (UM-WS) that
is build on OpenLDAP3. Each user must be authenticated and their user role
must be known before they can access the system. WS’s use these credentials
to validate the use of the WS by this particular user.

5 Installation and Usage of UCLP

5.1 The Testbed

We assembled a testbed using three Nortel OME 6500’s that were available in
an existing SURFnet6 testbed. The OME’s are interconnected using the OC192
cards as a triangle; see Figure 5.1. One of the OME’s is used to connect the
host on which we installed UCLP system.

We have been using UCLP version 2; the 'Ottawa’ implementation®.

SLDAP stands for Lightweight Directory Access Protocol and is used to modify or query
directory services.

4Communications Research Centre Canada (CRC), University of Ottawa, i2CAT Foun-
dation and Inocybe Technologies. The software and documentation is downloaded from
http://uclp.ca

GUI
I_I
UCLP back-end

I

OME

host —L J host
OME OME

Figure 2: UCLP testbed

5.2 Creating a Lightpath

To give an impression of the ‘look and feel” of the UCLP GUI we will describe
shortly how a lightpath in UCLP is created. For more detail the user manual
that comes with UCLP is a good source of information.

When starting the GUI one first needs to log in. After logging in the user
adds the information about his network (network elements and links) to UCLP.
He does that by using the ‘Physical Network Editor’, see Figure 5.2. When
adding a network element to the Physical Network Editor one gets the oppor-
tunity to enter the required credentials, i.e. a login for a TL1 interface and/or
the path to an SSL certificate.

Each link and each network element interface can be used to create a ‘re-
source’ web service. Resources are assembled in a resource list and can be
added to or removed from an APN (Articulated Private Network). For each
APN multiple scenario’s can be created. Figure 5.2 shows a scenario resembling
a lightpath.

The user activates one scenario at the time. On activation of a scenario the
UCLP back-end system configures the network elements. In our testbed that

{1 Marquee S TR I-|

+ | | T
4= Topology Tool | ii ik —e
[= Metwork Elements A

[} Cisco ONS 15454
| Martel OME 6500

E Mortel HD¥e
¥

Figure 3: Physical Network Editor: letting UCLP know about NE’s and links

means a telnet session is being set up between UCLP and the OME’s and cross
connects are being set using TL1 commands. By setting the cross connects a
lightpath is created.

5.3 Issues

We have been installing UCLP version 2.0 on both Windows and Linux. It
had been tested on Windows and the GUI currently is available as a Windows
executable only. However: all the back-end software can be installed on Linux
without problems (see Appendix). Halfway our research we were given a pre-
release of UCLP version 2.1. The upgrade was seamless on both OS’s.

At the same time we got version 2.1 our network administrator removed
some wrong settings in the OME’s in our testbed. We didn’t try to deliberately
re-misconfigure the OME’s to test version 2.1 for this. Therefore sometimes we
couldn’t tell whether a problem has been solved by the upgrade or because of
the removal of wrong OME settings.

This is an (incomplete) list of issues we encountered. It should give a rough
idea about the development status UCLP currently is in:

e Version 2.0 sometimes hang when creating LP-WS’s. No meaningfull error
message other then a socket timeout after about 5 minutes. This problem
disappeared after the OME cleanup and installation of version 2.1. Version
2.0 seemed to hang if there were zero cross connects in one of the OME’s.

e In Version 2.0 A Java nullpointer exception was thrown when running an
APN. After a lot of searching we discovered this should be related to the
fact that UCLP does not support VCAT®. This isn’t documented very
clearly and the error message didn’t help very much to find the problem.
Error messages in version 2.1 appear to be more elaborate.

5Virtual conCATenation

A

testhed

B .

kestbed kestbed

APM | scenario_0 | scenario_1

Figure 4: Lightpath in a ‘scenario’

Sometimes, in both versions, when trying to create a connection one gets
the error message ‘TTL less than required usage time’. After cleaning up
the database and start over defining WS’s and APNs a connection can be
created without this message. We did not find out what caused this.

UCLP does not set a name in the Nortels for the cross connects it creates.
(in Nortel’s Site Manager the cross connect’s name column is empty). For
interational reasons it would be nice to have some indication that the
cross connect was created by UCLP, an organization or user name or the
endpoints of the associated lightpath.

Creating a physical network in version 2.0 involved a lot of pointing, click-
ing and repetitive work. The introduction of profiles in version 2.1 greatly
improves on this.

Scheduling is not yet implemented.

UCLP did not support the DWDM cards in the Nortel 6500. However the
developers sent us a simple patch that solved this.

Once when setting and unsetting a scenario in version 2.1 a link disap-
peared in the Physical Network Editor. We had to remove the APNs and
WS’s before being able to recreate the link.

Once in version 2.1 we removed a resource list in order to recreate it with
the same name. Removing appeared to be successful. When trying to
recreate it, we got a message it already existed. We were forced to use
another name.

Undeploying an APN in version 2.1 gives the following message:

10

¢ Undeploy Custom APN Workflow E|

- Currently the Active Endpoints BPEL Engine does not support remote
\l) undeployment, so to manually undeploy the Cuskomn APM Workflow, go to the
maching with the IP '127.0.0.1", and open the Folder
"SCATALIMA_HOME:/bpr'. There delete the file
CustomaPMwWofklow-uclpw2_10_apn.bpr' . Then open the 'work! folder, and
delete the folder 'ae_temp_CustamAPhWorkflow-uclpy2_10_apn_bpr',

Figure 5: Undeploying an APN

e The color property of links in the logical network editor cannot be changed.
The GUI suggests it can be done, but the chosen color isn’t applied. This
was a real problem: our background image and the default color of a
LP-WS were the same. Therefore links weren’t visible.

e Sometimes when deploying an APN we got ‘no target service to operate
for’. Developers sent us a updated pre-release for this, but that didn’t

solve the problem.

The pre-release of version 2.1, seems to be more stable then version 2.0. Also
the GUI shows some important improvements, i.e.:

e version 2.1 shows existing cross connects in white
e version 2.1 adds the concept of scenario’s to define different APN setups

e version 2.1 seems to be working faster i.e. when creating ITF-WS’s in PN
editor

UCLP is built upon open technology: Tomcat, Axis, JSP, ... At the time
of this writing source code and API for version 2 aren’t available. UCLP is ex-
pected to be well extensible once the technical documentation is online. Version

2.1 and the accompanying technical documentation will be released in the first
half 2007.

6 UCLP and DRAC

6.1 DRAC

Like UCLP DRAC (Dynamic Resource Allocation Control) is a service oriented
system built using Java and JSP. End users using DRAC create their lightpath
by selecting its two endpoints; i.e. by selecting two gigabit ethernet ports as
endpoints for a connection. Requesting a lightpath is done by scheduling it
using a web client or web services. The user always uses a start time and an
end time when scheduling a lightpath. If the schedule is successful, DRAC will
establish the lightpath during the given time interval.

The user explicitly needs to be authorized for the lightpath’s endpoints.
DRAC internally decides on the route between the endpoints. This decision is
based on the values of a few optimization parameters.

11

6.2 Similarities

Both UCLP and DRAC are designed around the concept of (web-)service ori-
entation. Both systems use Java technologies and existing standard toolsets to
achieve this. This can make them portable and extendable. Neither of them is
in production use today yet.

Both are meant to be used by end users, offering them a way to control
lightpaths without the need to contact a service provider by mail or phone
every time.

6.3 Differences

The main differences between DRAC and UCLP spring from their respective
design objectives. DRAC offers a way to schedule single lightpaths. Bandwidth
is guaranteed, but the topology of the network isn’t. UCLP offers the user — or
some user process — a dedicated APN. He can activate and de-activate multiple
scenario’s at will. This way he can change back and forth network topologies.
Disabled resources will keep being available to him exclusively.

DRAC supports VCAT, automatic pathfinding and scheduling. It is possible
to implement these capabilities in UCLP but this is something not yet done.
These are not among UCLP’s main objectives. Using DRAC is a means of
making optimised use of bandwith, which is a financial benefit. UCLP holds the
concept of multiple layers of services which can be delegated and subdelegated.
DRAC doesn’t. Any APN administrator can make part of his resources available
to another user. In UCLP the use of ‘Super Lightpaths’ provide a way to hide
internal network topology towards endusers.

Table 1 summarizes some important differences between UCLP and DRAC.

DRAC UCLP
Provides: short lived lightpaths long term APNs
Pathfinding: by algorithm by user(-process)
Scheduling: both start end end date end date planned
Bandwidth usage: optimising fixed
VCAT support: yes no
Strength: scheduling scenario’s, abstraction
Delegation of resources: | no yes
Client: browser windows executable
Licence: proprietary GPL

Table 1: Differences between DRAC and UCLP

7 Summary and Future work

User Controlled Lightpath is a concept that arose to fulfill the need to dynam-
ically create lightpaths. The creation of these lightpaths is done by users or
applications. It is based on a service oriented architecture that enables the
abstracted physical resources to be exposed as (web) services. Users and appli-
cations can use these web services to create their own dedicated network without
the knowledge of the underlying technology.

12

Securing UCLPv2 is done primarily by the authentication and authorization
of users. Improvements will have to be made to provide a safe UCLP environ-
ment.

Installing UCLPv2 on both Linux and Windows was without problems.
However we did encounter some problems using UCLPv2.0. Most of these prob-
lems were fixed in the pre-release of UCLPv2.16

Using the UCLP software with the SURFnet6 testbed turned out to be
quite easy. The only problem encountered was a card that initially was not
supported by the UCLP software. Thanks to the developers of i2CAT who
included support for this card in a short time frame.

The open standards used in UCLPv2 offer great extensibility; however source
code and API aren’t available yet.

Another application that offers the user great flexibility in creating their
own lightpaths is Nortel’s Dynamic Resource Allocation Controller (DRAC).
These two applications are very similar exept for the fact that UCLP is offering
resources in a more abstracted way which reduces the complexity integrating
UCLP in applications.

Future work would hopefully include:
e the release of the source code and the API.

e a pathfinding module, so that an user can create a lightpath between two
endpoints without having to worry about the resources in between.

e VCAT support

8 Acknowledgements

First of all we want to thank Ronald van der Pol and Andree Toonk by guiding
us this project. In such a short time frame we couldn’t have managed it without
them. Secondly a big thanks goes to SURFnet who provided the testbed. Also
we would like to thank Eduard Grassa (i2CAT foundation) and Scott Campbell
(CRQ) for fixing bugs and adding hardware support on the fly, answering our
questions and providing us with the pre-release UCLPv2.1. Furthermore we
thank Bram Peeters and Victor Reijs to share their view on both DRAC and
UCLP with us. It turned out to be very useful. And thanks to Paola Grosso
and Paul Wielinga for their feedback on our pre-presentation. Last but not least
we thank SARA who gave us the opportunity to do this project.

References

[1] Albert Lopez Sergi Figuerola Michel Savoie Eduard Grasa, Joaquim Recio.
Uclpv2: A network virtualization framework built on web services. 2007.

[2] Greg Meredith Sanjiva Weerawarana Erik Christensen, Francisco Curbera.
Web services description language, 2001. [Online; accessed 27-January-2007].

6Thanks to the UCLP developers of i2CAT who actually planned to release the software
in the first half of 2007 we were able to test this new release.

13

[3] M. Nottingham M. Baker. Simple object access protocol, 2004. [Online;
accessed 27-January-2007).

14

9 Appendix: Installing UCLPv2.0 on Debian
GNU/Linux

This is a log of a successfull installation of UCLPv2.0 on Debian. I'm starting

out with a clean Debian Sarge installation. This page is to be used alongside the
installation instructions found at http://www.uclp.ca/uclpv2/documents/help/uclpv2.0.2/
d.d. 9 jan 2007. 10 jan. 2007, cmeertens os3 nl

*

Install Java
downloaded jdk-1_5_0_10-linux-i586.bin from http://java.sun.com/javase/downloads/index_jdk5.jspl
(click ‘Get the JDK download’ somewhere at the top of the page — this is the
linux self-extracting file, non-RPM, d.d. 9 jan 2007).The jre would have been
sufficient. I recommend the latter as it is smaller.
installed it as a normal user from within /home/uclp/install-workdir/; got

an helloworld working
export JAVA_ HOME=/home/uclp/install_workdir/jdk1.5.0_10/

*

Install Apache Tomcat

downloaded http://apache.proserve.nl/tomcat /tomcat-5/v5.5.20/bin/ apache-
tomcat-5.5.20.tar.gz and unpacked it

export CATALINA_HOME=/home/uclp/install_workdir/apache-tomcat-5.5.20/

*

Install Apache Axis
There is axis C++ and axis Java, took Java: http://archive.apache.org/dist/ws/axis/1.3/axis-
bin-1_3.tar.gz

*

Install Axis in Tomcat
cp -Rp axis-1_3/webapps/axis/ apache-tomcat-5.5.20/webapps/
needed activation.jar

*

Install the UCLPv2 Web Services
downloaded http://www.uclp.ca/files/uclpv2/uclpv2.0.2_WS_2006_08_08.zip
install to /home/uclp/install_workdir/UCLP
it doesn’t ask for start menu items

*

Create KeyStore for NE-WS
did not perform this step

15

*

BPEL Engine

downloaded http: //www.activebpel.org/download /files /2.0 /final /activebpel-
2.0-bin.zip

ran install.sh

*

Install MySQL

downloaded static linux mysql 4.1 via http://dev.mysql.com/downloads/mysql/4.1.html
and unpacked

following INSTALL-BINARY: scripts/mysql_install_db -user=uclp

configured a mysql root password

*

Create the database for the Active Endpoints 2.0 BPEL engine
mysql -u root -p <ActiveBPEL-MySQL.sql

*

Setup a Tomcat datasource

downloaded http://apache.essentkabel.com/tomcat /tomcat-5/v5.5.20/bin/ apache-
tomcat-5.5.20-admin.tar.gz

tomcat startup.sh does not need explicit backgrounding; mysql_safe does.

Login using ‘admin’ with an empty password didn’t work. Searched the
web for it and found this thread on a java.sun.com forum’. I edited ~/in-
stall_workdir/apache-tomcat-5.5.20/conf/tomcat-users.xml to give the ‘tomcat’
user extra rights:

<tomcat-users>

<role rolename="tomcat"/>

<role rolename="rolel"/>

<role rolename="manager"/>

<role rolename="admin"/>

<user username="tomcat" password="tomcat" roles="tomcat,admin,manager"/>
<user username="both" password="tomcat" roles="tomcat,rolel"/>

<user username="rolel" password="tomcat" roles="rolel"/>

</tomcat-users>

Note that the ‘tomcat’ user has a non-empty password. Login now succeeded.
The rest of this step succeeded without any modifications to the original
installation instructions.

*

Configure BPEL Engine for Persistance
OK without modifications.

7See URL http://forum.java.sun.com/thread.jspa?threadID=596489

16

*

Configure BPEL Engine
I got a java nullpointer exception when updating. Restarted tomcat and
succeeded (unstable?)

*

Installing UCLP BPEL services
OK without modifications.

*

Install a LDAP server and a LDAP browser

Openldap does not provide precompiled packages. Debian does, but we are
trying to avoid all system wide installations. Got openldap 2.3.32 sources from
openldap.org, configured for installation in ~/install_workdir/ldap/ and com-
piled+installed (configere —aprefix=...; make depend; make; make test; make
install).

Did not copy slapd.conf from uclp, instead edited slapd.conf from install.
Command slapadd gave an error (on format of email in init.1diff?), but it did
create database entries, so I decided to continue. The decision to not copy
slapd.conf was an error. You SHOULD copy it.

libexec/slapd -d 1 -h 1dap://127.0.0.1:9009/

*

GUI

Installed WinXP-pro and downloaded the GUI and its patch. Installed the
GUL. Not the patch (not planning to use -testmode).

Installed JRE.

Login didn’t succeed: admin not in LDAP DB. Created a separate ad-
min.ldif.

Login didn’t succeed: passwd is ok, was thrown back to login screen. Wrong
LDAP version? no — see below

Created uclpv2.ini. Connect succeeded. Adding a user gives ‘bad attribute
type’.

Reconfiguring LDAP using uclp’s slapd.conf makes it work.

17

