
Security Evaluation of the disposable OV-chipkaart

v1.6

Pieter Siekerman (pjsiekerman at os3.nl)
Maurits van der Schee (mvdschee at os3.nl)

System and Network Engineering

University of Amsterdam

July 26, 2007

1

Abstract

A national RFID-based public transport payment system called ”OV-chipkaart” is currently being
introduced in the Netherlands by Trans Link Systems. It is already actively being used in Amsterdam
and Rotterdam and is considered a valid ticket.

There are currently three types of OV-chipkaart tickets available: a personal, an anonymous and a
disposable ticket. Because of the one month time limit on the project, this report focuses solely on the
disposable paper OV-chipkaart, which is based on Mifare Ultralight technology.

Based on an analysis of the data gathered throughout the project several experiments were attempted
using publicly available and affordable equipment, resulting in the discovery of three vulnerabilities. One
is the possibility of disabling the defence mechanism that normally triggers when somebody tries to
check-in with a modified card. The second vulnerability allows repeated check-outs by manipulating
data on the card. The third and most serious vulnerability allows free travel.

In addition to solutions to these specific vulnerabilities, we present several more general recommen-
dations, of which the most important is that we suggest a more open attitude towards public security
evaluations to improve the quality of systems such as the OV-chipkaart.

2

Acknowledgments

We would like to extend our gratitude to various people who have helped us at some point or another during
our project. First of all, we would like to thank Jaap van Ginkel and Cees de Laat, who advised and guided
us at various moments.

We also really appreciate the time Gerhard de Koning Gans and Roel Verdult have spent discussing our
and their projects. Our conversations with them saved us a lot of time in an already tight schedule.

We would like to commend Trans Link Systems for their constructive attitude towards us and the excellent
manner in which they responded to the issues we presented to them.

Finally we would like to thank anyone else who has contributed to our project but has not been mentioned
here.

3

Contents

1 Introduction 5

2 Mifare Ultralight and the OV-chipkaart 6
2.1 Mifare Ultralight Characteristics . 6
2.2 Mifare Ultralight Memory Organisation . 7

2.2.1 UID . 7
2.2.2 Lock Bytes . 7
2.2.3 One Time Programmable Counter . 8
2.2.4 User Area . 8

2.3 OV-chipkaart Data . 9
2.3.1 Transactions . 9
2.3.2 Transaction values . 9

3 Vulnerabilities and Solutions 12
3.1 Disabling the Defence Mechanism . 12
3.2 Repeated Check-outs . 13
3.3 Free Travel . 14
3.4 Failed Attacks . 15

4 Methodology 16
4.1 Documentation . 16
4.2 Data Gathering . 16
4.3 Resources . 16
4.4 Reflection . 17

5 Alternative Attacks 18
5.1 Imitating a Mifare Ultralight card . 18
5.2 Relaying RFID Communication . 18

6 Recommendations 20
6.1 Adopt a more open approach to security . 20
6.2 Discontinue the Mifare Ultralight disposable OV-chipkaart . 20
6.3 Encrypt all data on the disposable OV-chipkaart . 20
6.4 Improve the public information about the OV-chipkaart . 21

7 Conclusions 22

8 Epilogue 23
8.1 ovgroup.py . 31

4

1 Introduction

In response to the example set by various public transport companies in major cities around the world [1],
the decision was made several years ago [2] to create a national RFID-based public transport payment system
in the Netherlands. In order to facilitate this project, the organisation Trans Link Systems was established;
a cooperation consisting of the five major public transport operators in the Netherlands (NS, GVB, HTM,
RET, Connexxion) [3]. Trans Link Systems hired the East-West Consortium to implement the automated
fare collection system. The East-West Consortium is an international group which consists of Thales, Vialis,
Accenture and MTRCL [4].

The project was originally intended to be completed at the end of 2007. Unfortunately due to various
delays, the most recent estimated date of completion is the summer of 2009 [5]. The first results of the project
are becoming visible to the larger public though. The metro networks of the two largest cities – Amsterdam
and Rotterdam – have been outfitted with OV-chipkaart equipment. The OV-chipkaart is actively being
used in public trials in those networks and is considered a valid ticket. In addition, RFID equipment is being
installed in various other forms of public transport and PR-campaigns have been launched to familiarize the
larger public with the upcoming change. Recently it has been announced that the OV-chipkaart will be the
only valid payment method for most public transport in Rotterdam starting October 1, 2007 [6].

Although concerns have been raised regarding implications of the new system in the area of privacy [7],
specifically regarding the traceability of individuals, to our knowledge no public research has been done
regarding the technical security aspects of the RFID based OV-chipkaart. With the goal of suggesting
improvements to the system, our research focuses on discovering how the OV-chipkaart works technically,
how its security measures work, whether there are any flaws in the design or implementation and if so, how
these could be corrected.

The OV-chipkaart is based on the Mifare RFID standard created by Philips Semiconductors, currently
NXP Semiconductors [10]. The Mifare product line offers a range of cards [11], two of which are used in the
OV-chipkaart project; the Mifare Ultralight and the Mifare Standard 4k [12]. The Mifare Ultralight is used
as cheap disposable paper ticket, intended for short term use such as single rides. The Mifare Standard 4k
is used as more durable plastic ticket, intended for permanent use such as fee-based travel and personalized
cards.

An important technical difference between the two cards is the security measures they employ. Data on
the Mifare Standard 4k cards is only accessible after authentication and communication between the card
and a reader is encrypted using the proprietary CRYPTO1 algorithm, also created by Philips [13]. These
two security measures are not present in the Mifare Ultralight card. Data on the Ultralight card is publicly
readable and – with certain limitations – writable and the communication is unencrypted [14].

Because of the one month time limit placed on this project, we considered it unfeasible to analyse the
CRYPTO1 algorithm used in the Mifare Standard 4k cards. Therefore the focus in this report is directed
towards the Mifare Ultralight cards in the OV-chipkaart project.

In section 2 an analysis is made of the data on the cards by combining information found in public
documentation and observation of the data on cards in various stages of use in the travel process. In
addition, several potential attacks are described in section 3, including suggestions on how to prevent or
defend against such attacks. In section 4 a description is given of how the research was conducted. Section
5 deals with two alternative attacks. Finally section 6 offers several general recommendations and in section
7 our conclusions are presented.

5

2 Mifare Ultralight and the OV-chipkaart

Two types of Mifare cards are used in the OV-chipkaart system. In this section the technical details of the
disposable paper OV-chipkaart are discussed, which is a Mifare Ultralight card, with a focus on the layout
of the data on the card.

Most information regarding the basic functionality of the Mifare Ultralight is based on the freely available
Mifare Ultralight specification [14]. The information on the OV-chipkaart-specific use of the Mifare Ultralight
is based on our own observations.

2.1 Mifare Ultralight Characteristics

The Mifare Ultralight is a contactless RFID card, with an advertised maximum range of 10 centimetres,
which operates in the HF (High Frequency) range of 13.56 MHz. It draws all the power it requires from
the electromagnetic field of the reader it interacts with and therefore does not require its own battery. A
card reader uses anticollision to switch between multiple cards within its range, which it distinguishes based
on the Unique Identifier (UID) of each card. Mifare Ultralight is compatible with the ISO/IEC 14443A
standard [15] [16] [17] [18].

Mifare Ultralight cards contain 512 bits of non-volatile storage capacity, generally referred to as 16 pages
of 4 bytes each. These pages are numbered 0 to 15. Figure 1 shows an overview of the memory organisation
of the Mifare Ultralight and should serve as a useful aid in grasping the following paragraphs.

Figure 1: Memory Organisation of the Mifare Ultralight. Source: [14]

6

2.2 Mifare Ultralight Memory Organisation

Each Mifare Ultralight card has the same basic memory organisation, which consists of the UID, the Lock
Bytes, the OTP memory and the user area. Each serves a different purpose.

2.2.1 UID

Each Ultralight card has a 7 byte unique identifier (UID) which is written on each card by the manufacturer
and cannot be altered. The first three bytes of this UID (SN0, SN1, SN2) are stored on page 0, followed
by a Check Byte (BCC0) which is calculated as a bitwise-XOR of the three bytes SN0, SN1 and SN2 and
the value 0x88 (The Cascade Tag CT, used for compatibility with the 4 byte UID’s used in Mifare Standard
cards). The first byte of the UID - SN0 - is vendor dependent and set to 0x04 in the case of Philips.

The last four bytes of the Ultralight UID (SN3, SN4, SN5, SN6) are placed on page 1. Page 2 begins
with a Check Byte (BBC1) for the second half of the UID, which is calculated as a bitwise XOR of the 4
bytes SN3, SN4, SN5 and SN6. Following BCC1, one byte is dedicated to an ”internal” value, which is set
by the manufacturer and of which the exact purpose is unclear to us. The ”internal” byte appears to be set
to 0x48 on all OV-chipkaart Mifare Ultralight cards. All the fields mentioned so far cannot be altered; they
are read-only.

One of the characteristics UID’s should have, is unpredictability. Although an analysis of 15 to 20 cards
showed a diverse range of UID’s, with only minor overlap, there does appear to be only little variation in
UID’s from cards obtained from the same machine at the same time. This relatively small spread makes the
guessing of UID’s feasible, which might be a weakness in case an attacker tries to predict valid card numbers.

2.2.2 Lock Bytes

The last two bytes of page 2 and all four bytes on page 3 can be written, but with a specific limitation. The
default value of the bits in this area is 0. It is possible to write a 1 to each of these bits, but impossible to
change a 1 back to a 0 once it has been written.

The last two bytes of page 2 are the Lock Bytes (Lock0, Lock1). They allow a user to permanently
restrict access to individual pages from page 3 to page 15 to read-only, instead of the default read/write
state. Locking such a page to read-only cannot be undone.

In addition the Lock Bytes include three block-locking bits which can be used to prevent the other lock
bits from being activated. The block-locking bits are used to prevent a the pages on a card from being
locked. See figure 2 for more details.

Figure 2: Mifare Ultralight Lock Bytes. Source: [14]

As soon as a Mifare Ultralight OV-chipkaart card is purchased, the Lock Bytes are set to 0x00F0 (0000
0000 1111 0000). This setting turns the last four pages (12-15) into read-only memory. This cannot be
reversed. These pages contain general information about the card and will be discussed further down.

7

Normally the Lock Bytes stay the same throughout the use of the card. There is an exception though.
There are several situations in which a reader activates a defence mechanism which makes the card per-
manently invalid by locking all pages. This is done by writing 0xF8FF (1111 1000 1111 1111) to the Lock
Bytes. The mechanism is for instance triggered when a user tries to use a card to check in which has no
rides left on it.

2.2.3 One Time Programmable Counter

Page 3 is a 32 bit One Time Programmable (OTP) area. It is intended for use as an irreversible counter, for
instance to keep track of the remaining number of rides on a ticket. Because of the nature of this area, the
counter has a maximum value of 32 (each of the 32 bits set to 1).

On the Ultralight OV-chipkaart the first two bytes contain values of which the purpose is unclear. We
have encountered several values in these two bytes, but have been unable to determine their purpose.

The second two bytes contain a counter. For instance, when a card has three rides left the value is
0xFFF8 (1111 1111 1111 1000). Two rides equals 0xFFFC (1111 1111 1111 1100), one ride equals 0xFFFE
(1111 1111 1111 1110) and no rides equals 0xFFFF (1111 1111 1111 1111).

The counter is set the first time a check-in occurs with a card. During each following check-in the counter
is increased by adding a 1, until it is filled up completely. During check-outs and transfers the OTP counter
is not used.

2.2.4 User Area

Pages 4 to 15 are the fully accessible - with the exception of pages locked using the lock bits - area of the
card. Nothing has been specified regarding the use of these 48 bytes. Their use is completely implementation
specific. How these pages are used in the OV-chipkaart will be discussed in the next section.

8

2.3 OV-chipkaart Data

What remains to be discussed is the fully read/writable area from page 4 to page 15. On the OV-chipkaart,
this area has been divided into three sectors of 4 pages each. The first two sectors each offer room for one
transaction, such as checking in or checking out of a station. The last sector (pages 12-15) contains general
information about the product on the card, such as the expiry date and the amount of rides the card allows
in total. It is the area which has been locked to read-only by the Lock Bytes being set to 0x00F0 (See section
2.2.2). Locking this area makes sense, since it contains information which should remain constant after the
card has been purchased.

Which other information this area contains is unclear, because the information on pages 12 to 15 has
been encrypted and is not publicly readable. Based on the fact that three identical cards (same product,
same moment and place of purchase, same expiry date, same purchase transaction), which should only differ
in their UID’s and therefore should have identical information on pages 12 to 15, show completely different,
random-looking data on those pages, we conclude that the UID of a card is part of the key used to encrypt
the data on those pages on each card.

2.3.1 Transactions

The Mifare Ultralight card offers enough space to save information about the last two transactions the card
was involved in. Transaction 1 is placed in the second slot, transaction 2 in the first slot. Transaction 3
is placed in the second slot, overwriting transaction 1. Transaction 4 is placed in the first slot, overwriting
transaction 2, etcetera.

The encryption encountered on pages 12 to 15 is also used in parts of the transactions located on pages
4 to 7 (slot 1) and 8 to 11 (slot 2). The first two pages of each transaction are plain text, the last two pages
are encrypted. A typical example of a four page transaction is given below in hexadecimal notation.

C8002002 2778AEE0 3558075E 49A0649F

Included in the first two plain text pages are the transaction number, the type of transaction, the date
and time and what appears to be the public transport organisation or city. The last two pages must contain
the station on which the transaction occurred, but this information is encrypted.

Each transaction appears to be connected to a specific UID. Either the encrypted data contains informa-
tion about the UID the transaction belongs to or the UID is used as part of the encryption key. This was
confirmed by copying transactions from one card to another, where both cards were identical (same product,
data and place of purchase, etcetera), except for the UID. The modified card was considered invalid by the
OV-chipkaart reader.

2.3.2 Transaction values

The first two plain text pages contain quite some information. By reading the contents of various cards
before and after various transactions, it was possible to determine the use of most bits in these 8 bytes.
Table 1 shows the various values.

The first 5 bits serve an unknown purpose. The decimal values 21, 22, 23, 24, 25 (Binary: 10111, 11000,
11001, 11010, 11011) have been encountered. There appears to be a pattern in the way these values increase
and decrease throughout the various transactions on a card (0, -1, +1, -1, 0, -1, +2, -1, 0, -1, +1, -1, 0, -1,
+3, ...) which might indicate they are connected to the next value, which is the transaction counter. The
transaction counter starts at 1 and increases with each transaction.

The next value appears to be either the city in which the transaction occurred or the public transport
network, where 2 equals Amsterdam or the GVB and 5 equals Rotterdam or the RET.

The first three bits of the second byte are used to indicate the type of transaction. The value 000 equals
the purchase of a ticket, 001 equals a check in, 010 equals a checkout, 110 equals a transfer (overstap).

Next is the number of days since January 1, 1997. The 14 bits allocated to the date would allow the
maximum date to be November 9, 2041, which for now seems to be sufficient. After this the number of
minutes since the beginning of the day are placed. The final four bits appear to be unused.

9

Bits Function Comments
0-4 Unknown Values: 10101, 10110, 10111, 11000, 11001.

Appears to follow a regular pattern.
5-19 Transaction Counter Regular counter.
20-31 Location Values: 010 = Amsterdam, 101 = Rotterdam.
32-34 Transaction Type Values: 000 = Purchase, 001 = Check-in,

010 = Check-out, 110 = Transfer (Overstap).
35-48 Date Number of days since January 1, 1997.
49-59 Time Number of minutes since the start of the day.
60-63 Unknown This value is always 0. Probably unused.

Table 1: Transaction Values

Page Content Comments
0 0493100F UID Part 1 - UID Check 1
1 D1D20284 UID Part 2
2 854800F0 UID Check 2 - Internal - Lock Bytes
3 DF43FFFF OTP
4 C8002002 Transaction 2: Unknown - Counter - City
5 2778AEE0 Transaction 2: Type - Date - Time - Unknown
6 3558075E Transaction 2: (Encrypted)
7 49A0649F Transaction 2: (Encrypted)
8 C8001002 Transaction 1: Unknown - Counter - City
9 0778AEC0 Transaction 1: Type - Date - Time - Unknown
10 992F498A Transaction 1: (Encrypted)
11 5EF482EB Transaction 1: (Encrypted)
12 4BB2C471 Card details: (Encrypted)
13 E3FE49F9 Card details: (Encrypted)
14 F7C5268D Card details: (Encrypted)
15 DC1A4DCF Card details: (Encrypted)

Table 2: An example of the contents of a Mifare Ultralight OV-chipkaart.

10

Transaction Counter Type Date Time
C8001002 07732D30 1 Purchase June 12, 2007 12:03
C8002002 27732E60 2 Check-in June 12, 2007 12:22
C0003002 47733000 3 Check-out June 12, 2007 12:48
C8004002 27733100 4 Check-in June 12, 2007 13:04
C0005002 47733130 5 Check-out June 12, 2007 13:07
C0006002 C7733160 6 Transfer June 12, 2007 13:10
B8007002 47733190 7 Check-out June 12, 2007 13:13
C8008002 27733240 8 Check-in June 12, 2007 13:24

Table 3: A trace of several transaction from one card.

11

3 Vulnerabilities and Solutions

During the course of our research, we uncovered several vulnerabilities in the design and implementation
of the disposable paper OV-chipkaart, which is based on the Mifare Ultralight card. In this section the
technical details, the consequences and the possible solutions are presented for each vulnerability.

3.1 Disabling the Defence Mechanism

The Problem

As described in section 2.2.2 the last two bytes of page 2 contain the lock bits. These bits are used to
permanently change the access rights of any of the pages from 3 to 15 from read/write to read-only. The
default value of these bits is 0, indicating read/write. Setting a bit to 1, which indicates read-only, is
irreversible.

On the Ultralight OV-chipkaart the two Lock Bytes are set to 0x00F0 by the vending machines, turning
pages 12 to 15 into a read-only area (See section 2.2.2). In addition, a defence mechanism exists, which
is triggered when an attempt is made to check in using an invalid card. The Lock Bytes of the card are
then set to 0xF8FF, thereby locking each page from 3 to 15 into read-only state. This prevents any further
manipulation of the card.

When the defence mechanism is triggered, three bits in the first byte are left untouched. These are the
block-locking bits. The block-locking bits function as a lock on the lock bits. By setting these three bits to
1, changing the lock bits from 0 to 1 becomes impossible. Setting the block-locking bits to 1 is irreversible.

Setting the three block-locking bits to 1 prevents the defence mechanism from being activated. We
have verified this by taking two identical cards, activating the block-locking bits on one of them, using
them in identical transactions and finally using both cards in a transaction which should trigger the defence
mechanism.

As expected, the unmodified card was blocked by the defence mechanism. The modified card however
remained unaffected by the defence mechanism. A vital observation was the fact that setting the block-
locking bits to 1 did not have any negative effect on the validity of the modified card in regular use. Therefore
activating the block-locking bits defeats the defence mechanism.

The Consequence

The defence mechanism appears to serve the purpose of being an obstacle against repeated attempts to check
in with an invalid card. It prevents an attacker from repeatedly using the same card to attempt a check-in,
by permanently invalidating the card after the first failed attempt.

Activating the block-locking bits defeats the defence mechanism completely. As a result, the same card
can be used over and over again in invalid transactions. This makes the attack process, which often consists
of trial and – countless – error, significantly cheaper and faster.

The Solution

Defeating the attack described above could be done by adding a check which appears to be absent in the
current OV-chipkaart reader software. Each card which has any of the block-locking bits set, should be
refused and considered invalid. As this is already the case with the regular locking bits, implementing it for
the block-locking bits should be relatively straightforward.

12

3.2 Repeated Check-outs

The Problem

The typical use of a card goes as follows. To start, the card is purchased from a machine. Pages 12 to 15 are
filled with general data about the card and these pages are subsequently locked by setting the Lock Bytes
to 0x00F0. Pages 8 to 11 are filled with the purchase transaction. Pages 4 to 7 and the OTP bits on page 3
remain unused.

At the first check-in, the OTP counter is set to indicate the number of remaining rides. If for instance
it concerns a single ride ticket, the check-in consumes the only valid ride and the counter is set to 0xFFFF.
The check-in transaction is written to pages 4 to 7 (See section 2.3.1 for more details).

Following the check-in, the traveler will (hopefully) arrive at his or her destination and check out. The
only change on the card during a check-out is the replacement of transaction 1 (the purchase) with a new
check-out transaction on pages 8 to 11. The fact that nothing else changes during a check-out, is a vital
weakness.

Since the only changes between the checked-in and checked-out state occur in the user-writable transaction
area, it is possible to reverse the state of a card to the checked-in state, by overwriting the check-out
transaction with the original purchase transaction. This obviously requires that an off-card record is made
of the original purchase transaction to preserve it during use.

As far as we have been able to determine, the OV-chipkaart readers are updated once each day with data
such as new firmware and lists of invalid UID’s. Because the readers operate in an offline state, there is no
way for them to detect the change to a card by contacting a live database and comparing the current state
with a previous known state. This is only possible when the modified card is presented to the same reader
twice, in which case cached information could be used, but even then it doesn’t occur.

We have verified this vulnerability. By saving the purchase transaction and using it to overwrite the
check-out transaction it becomes possible to check-out a number of times. This does require that the card
is modified after each check-out to place back the purchase transaction.

The Consequence

The vulnerability described above enables a person to check out a number of times using the same card.
This is limited by the fact that it has to be done within the timeframe offered by the check-in. Once a
check-out is no longer allowed based on the check-in on the card, for instance because a day has passed,
resetting the check-out has no effect. Therefore, in practice this vulnerability is only relevant when multiple
travelers want to check out using a single ticket.

The Solution

The flaw described above is inherent in the way the OTP counter is used in the design of the disposable
OV-chipkaart. This flaw only applies to the check-out procedure, because during a check-in, not only the
transaction record is added, but the irreversible OTP counter is increased as well. A similar solution could
be employed to solve the problem with the check-out. The OTP counter offers more than enough space to
use two separate counters, one to keep track of check-ins, one to keep track of check-outs. By keeping an
irreversible record of the number of check-outs, the modification of the card could be detected.

13

3.3 Free Travel

The Problem

Whenever a disposable OV-chipkaart is used to check in, several things should happen.

1. The OTP counter should be checked to see how many rides are left on the ticket. If the number of
remaining rides is zero, the check-in should be refused.

2. If a valid check-in is allowed, the OTP counter should be increased to reflect the fact that a new trip
has been started.

3. The new check-in transaction should be written to the memory of the card.

We have found a way to manipulate a Mifare Ultralight card so the OV-chipkaart readers skip the first
two steps and therefore only write the new check-in transaction to the card. The third step can be reversed,
because all changes made during this step happen in fully read/write accessible memory.

The required steps are not complicated. After purchasing a single ride card from a machine, create a
backup of the data on pages 4 to 11. Pages 4 to 7 contain bogus data, pages 8 to 11 contain the purchase
transaction. Next use the card during regular travel; check-in and check-out. The check-in transaction will
be placed on pages 4 to 7, the check-out transaction will overwrite the purchase transaction on pages 8 to
11. Finally, once the trip has been completed, write back the data that was backed up earlier to its original
location on pages 4 to 11.

Once another check-in is attempted, the problem becomes apparent. Instead of being refused because
the OTP counter indicates no more rides are available, check-in is allowed. The new check-in transaction is
written to pages 4 to 7, and the OTP counter is left unchanged. As far as the system is concerned, the card
is then checked in and completely valid.

The same problem occurs on tickets which allow multiple rides. After the initial normal check-in and
check-out the OTP counter indicates only one ride remains. After the original values of pages 4 to 11 have
been placed back, a new check-in is accepted, but the OTP counter is not increased. After the second
check-in it still indicates one more ride is available.

Various tests showed this problem only occurs when the first trip (transactions 2 and 3) is overwritten with
the purchase transaction. Replacing the second trip (transactions 4 and 5) with the first trip (transactions
2 and 3) does not result in the problems described above.

This process can be repeated indefinitely, or at least until after one year the validity date expires,
effectively reducing yearly travel costs to two and a half euros.

The Consequence

A single disposable ticket can be used for an immense number of trips, by modifying it after each trip.
Modifying a ticket can be done in advance of travel, making it unnecessary to bring any equipment along
during travel.

As far as the system is concerned the ticket is completely valid after the ticket is used to check in again
and the new check-in record has been placed on the card. A ticket inspector will not be able to detect the
modification using an offline card reader.

The same vulnerability can be used to open the OV-chipkaart gates on a station repeatedly to let through
a large number of people using only one card.

The Solution

Obviously this vulnerability has a large impact. Solving this problem should have priority over the previous
two vulnerabilities. As this appears to be a problem in the implementation of the OV-chipkaart reader
software, specifically concerning the handling of the OTP counter, the efforts to locate the source of the
problem should be focused on examining that piece of software.

14

3.4 Failed Attacks

Although a few of our ideas resulted in the discovery of the vulnerabilities described in sections 3.1, 3.2 and
3.3, many of our ideas did not work out. The most interesting failed attacks are described here.

Locking the OTP counter

By writing the value 0x0800 (0000 1000 0000 0000) to the Lock Bytes (See section 2.2.2) the OTP Counter
(See section 2.2.3) can be locked permanently, preventing it from being changed to reduce the number of
remaining rides. After activating this lock bit the card was considered invalid by the OV-chipkaart readers.

Faking a Change of Trains

One of the critical aspects of security is data-integrity. Any outside modification to data has to be detected
for the data to be considered secure. This also applies to the OV-chipkaart. For example, changes to the
date or time of a transaction on the card should be noticed and result in the card being considered invalid.

An attempt was made to change the date or time of the last transaction on a ticket to make the system
believe that the ticket had been checked out very recently. It was hoped this would result in the reader
thinking the ticket was being used to change trains which would lead to the gate being opened for free.
It turned out that changing a single bit in either the date or time makes the card invalid. We think this
is because the date and time are included in an integrity check. This has probably been implemented by
storing a hash of these values in the last two encrypted pages of each transaction or using the values as part
of the encryption key.

While attempting this attack we did encounter an anomaly. When we tried changing the first 5 bits of a
transaction, we found that modifying any of those bits does not invalidate the card. Instead the transaction
in which the bits were modified was simply ignored by the reader. We suspect all other fields are checked
correctly, because flipping one of the bits on suspected field boundaries (bits 5,19,31,47,59,64,95,96,127) does
invalidate the card.

Cloning Tickets

The manufacturer gives each card a fixed, unchangeable UID. Making an exact copy of a card (also known as
cloning) would require a second card on which the UID could be modified to be identical to the UID of the
original. To our knowledge, no Mifare Ultralight cards are publicly available on which the UID is modifiable.

It is recommended by NXP to use the UID as a security measure against cloning [19]. We have verified
the fact that this is indeed done in the case of the OV-chipkaart, by copying all information on a valid
card to a blank Mifare Ultralight card, on which only the UID was set. This card was rejected as being
invalid. There are two possible explanations: either the readers are programmed to only accept UID’s within
a certain range, which the blank card’s UID was not, or information about the UID is saved in the encrypted
part of the data pages.

We expected this attack to fail, because we noticed that the number printed on the receipts from the
OV-chipkaart machines was a decimal representation of the UID. A ticket owner has no need to know this
number, so the fact that it was printed on the receipt made us assume it was being used actively for some
other purpose.

We suspect the pages 12 to 15 are encrypted using the UID as a part of the key, because these pages
differed dramatically for three identical cards we bought in a single transaction.

We have also tried to copy valid transaction records from one card to another. The resulting card was
invalid. We think this is due to the UID being part of the key for the 2 encrypted pages of each transaction.

15

4 Methodology

This section attempts to give an overview of the approach we used to tackle this project. It begins with a
quick overview of the documentation we used, continues with a description of the process of gathering data
and some remarks about the required equipment and concludes with reflection on the project.

4.1 Documentation

While information about the functional side of the OV-chipkaart is widely available – although not always
complete or correct –, information about the technical aspects of the OV-chipkaart is scarce. Consequently,
our research in this area started with limited knowledge and many assumptions.

A publicly available presentation [12] showed that the OV-chipkaart project makes use of Philips Mifare
Ultralight [14] and Standard 4k [13] cards. The Mifare documentation showed that these cards conform to
the ISO/IEC 14443A standard [15] [16] [17] [18]. These various documents served as the main and crucial
sources of technical information.

Official public documentation about the OV-chipkaart is available on the websites of the major public
transport operators and from brochures and leaflets available on most stations. These documents contain
solely non-technical information and served as background. The same information can be obtained from
OV-chipkaart staff at various points throughout Amsterdam and by telephone at various OV-chipkaart
information numbers.

4.2 Data Gathering

The technical information obtained from public sources revealed a lot about how Mifare Ultralight cards
work. Unfortunately no information was publicly available on how the OV-chipkaart has been implemented
on those cards. The only way to obtain that information, was through observation of cards in active use.

Our method of data gathering was rather straightforward; read the data on a card before a transaction,
use the card in a transaction, read the data on a card after the transaction. Throughout our project we
gathered at least 25 disposable cards from the GVB in Amsterdam and the RET in Rotterdam. We used
these cards in more than 100 transactions on a dozen stations throughout Amsterdam and Rotterdam.

In Rotterdam our work was limited to observation. In Amsterdam however we also attempted modifi-
cation of the data on the cards. Such modification allowed us to learn a great deal about the system and
resulted in the discovery of the vulnerabilities described in section 3.

It is important to keep in mind that there are risks involved in using modified cards. Although a public
device such as an OV-chipkaart reader should be designed with a concern for robustness in mind, there is
no way to exclude the possibility of a negative effect, such as a reader crashing when a modified card is
presented to it. Although we have not encountered such problems ourselves, we urge caution if any future
experiments are carried out. Additionally the aspect of legality has to be considered. It is always preferable
to ask for consent from the owner of a system before live tests are carried out.

Analysis of the data gathered through observation and manipulation was done by comparing the large
number of memory dumps that were accumulated. A great help in interpreting this data, especially the
transactions, was the possibility of printing a receipt at OV-chipkaart machines on which the details of the
most recent transaction on a card are shown.

4.3 Resources

To reproduce the research we have done, one needs an RFID reader that operates in the HF range (13.56
MHz), supports the ISO/IEC 14443A standard and is Mifare compatible. These readers are widely available
and their prices vary from 100 to 200 euro. We have used an ACG Multi ISO reader for our tests. The
advantage of this device is that it is highly scriptable (in Python) using Adam Laurie’s RFIDIOt library
[20]. The scripts we have created and used are available at the end of this report in the Appendix.

16

Although the attack described in section 3.3 can be prepared completely in advance, it would be nice to
be able to do this anywhere. Unfortunately readers are quite big and need to be connected to a computer or
laptop to operate. This is changing though; readers are getting smaller very fast. There are Compact Flash
readers such as the ”Socket RFID Reader Card 6E” [21] and Secure Digital readers such as the ”SDiD 1010
NFC / RFID SD Card” [22] for PDA’s.

Nokia has released a phone with built-in NFC capabilities (Nokia 6131 NFC) [23]. We think it might be
possible to write a MIDlet (small Java based application for a Mobile Information Device) that reads and
writes Mifare Ultralight cards that can be run on this phone. This would enable a user to reprogram the
ticket using his mobile phone. It also allows for easy distribution of the software using the same channels
that are used for distributing game software for mobile phones.

As time progresses, Mifare readers will get more portable, more flexible and more common. This inevitable
evolution will make the equipment required for the attacks described in section 3 increasingly easy to obtain.

4.4 Reflection

As it should be done in all research, a reflection on this project is in order. Although we have done
observational research in Rotterdam and Amsterdam, our experience with the vulnerabilities we uncovered
is limited to Amsterdam. Although the system in Rotterdam appears to be identical, it would be better to
verify the vulnerabilities there as well.

More generally it should be understood that due to the limited time that was available for this project,
it is by no means a full security evaluation. We could very well have overlooked other vulnerabilities in
the system. Our experiments were limited to what was possible with simple equipment, which for example
prevented us from seeing the actual read and write commands that occur.

The fact that only limited means were used in this project also has a benefit. It shows how serious the
uncovered vulnerabilities are, because they can be reproduced by virtually anyone with a limited amount of
technical knowledge and a small budget.

17

5 Alternative Attacks

All attention so far has been directed towards the OV-chipkaart specific implementation of the Mifare
Ultralight standard. In this section the attention will be focused on issues relating to Mifare Ultralight cards
or RFID cards in general.

5.1 Imitating a Mifare Ultralight card

In section 3.4 the idea of cloning a ticket was discussed. Because each Mifare Ultralight card has a fixed
unique identifier (UID) and no cards are available on which the UID can be changed by the user, it is
impossible to completely clone a card. In fact, the single barrier against cloning is the fact that as a user
you do not have full control over the card.

It is possible to work around this limitation. Basically a Mifare Ultralight card is no more than an
antenna, a bit of memory and a processor. These work according to public specifications, such as the
ISO/IEC 14443A and Mifare standards.

Using relatively cheap hardware it is possible to build a device which responds to a reader as if it is a
regular Mifare Ultralight card, while in reality it is under the full control of the user, without any of the
limitations placed on a real Mifare Ultralight card. There is no way for a reader to distinguish between a
real card and such a fake card, as long as the device conforms to the public specifications of Mifare Ultralight
cards.

Because all the data on a real Mifare Ultralight card is publicly readable, it is possible to retrieve all the
information from a card. Once a complete dump of the memory of a card is available, the fake card could
be used to imitate the real card. The only difference is the form factor, which is something a reader will not
be aware of.

We have spent some time on the creation of such a device, but were unable to complete our work due to
time constraints on our project. The idea has been implemented successfully elsewhere though, for instance
by Kasper, Carluccio and Paar [25]. The Nokia NFC phone described in section 4.3 might also be capable
of performing this task.

Such a device would not only make it possible to make an exact copy of a disposable OV-chipkaart,
it could also be used to easily test the effects of various modifications to the data on a card. Especially
interesting would be modifications that are not possible on a regular card, such as changes to the Lock Bytes
or OTP counter (See section 2.2).

In addition to the use described above, the fake card could be used as part of a relay device, which will
be discussed in the next section.

5.2 Relaying RFID Communication

A fake card, such as described in the previous section, has to be configured in advance with the data it
should pretend to contain. By connecting the fake card to a “fake” reader, for example through a wireless
internet or mobile phone connection, data could be exchanged between the two, allowing the fake card to
request the information it needs to know directly from a real card near the fake reader. To the real reader
it will appear as if the fake card is the real card. Figure 3 shows a graphical representation of this setup.

Figure 3: The setup of a relay attack.

18

Attacks based on this principle are known as relay or man-in-the-middle attacks, even though this last
name usually implies the data is not only being forwarded but also being modified. An important character-
istic of this kind of attack, is the fact that encryption of the communication between the reader and the real
card does not matter. Whenever the fake card receives an encrypted request, it simply forwards the data
to the fake reader. The fake reader sends the request to the real card and receives an encrypted response,
which is then sent back to the fake card. The fake card sends the encrypted response to the real reader.
There is no need for the fake card or the fake reader to understand the encrypted communication. As long
as the real reader receives the correct forwarded response, the attack has succeeded.

The practical feasibility of a relay attack has been demonstrated by various researchers. Both Hancke
[26] and Kasper, Carluccio and Paar [25] successfully implemented and demonstrated it. The most critical
factor in relay attacks is the timing. Due to the presence of the connection between the fake card and the
remote reader the communication between the local reader and the real tag suffers from increased latency.
According to Hancke and Kasper, timing limits are rarely enforced strictly enough for this to be a problem.

If complete Mifare functionality is implemented in the Nokia NFC phone described in section 4.3, two of
such phones might be sufficient to carry out the attack. These devices offer all required functionality: tag
emulation, reader functionality and a phone connection between the two.

This opens the way to digital pickpocketing. If an attacker presents the fake card to a reader and an
accomplice gets a connected remote reader within reading distance of a victim’s card, the attacker can use
the fake tag to complete any transaction while the real card is being charged. With this technique, it would
be possible to use the OV-chipkaart of an innocent victim to check in or check out, without the victim being
aware of it. This attack would have to be carried out twice; once to check-in at the beginning of a trip, once
to check-out at the end. Although ticket inspections in the metro are relatively rare, an inspector would
obviously not be fooled by the device.

Because encryption is irrelevant in this attack – the encrypted commands and responses are simply
directly forwarded in each direction – this attack is relevant not only to the Mifare Ultralight, but also to
the Mifare Standard 4k.

There is no way for a victim to detect this attack, because there is no way for the victim to notice his
card is being activated. Therefore a preventive solution is required. Experiments by Kasper, Carluccio and
Paar [25] show that a single layer of aluminum foil wrapped around the card is sufficient to prevent it from
being read. Unfortunately the consequence of using such a protective shell is the added need to remove it
from its shell every time it has to be used in a valid transaction.

19

6 Recommendations

Based on our experience with the OV-chipkaart system and its weaknesses, we present the following recom-
mendations. These recommendations are in addition to the specific solutions to the problems described in
section 3.

6.1 Adopt a more open approach to security

We recommend that organisations involved in the implementation of systems of this magnitude allow and
support public security evaluations of such system. We commend the use well documented standards such
as Mifare Ultralight, but regret that documentation regarding OV-chipkaart specific matters is not available
for public scrutiny.

An open approach to security allows public research, generally resulting in more robustness and stronger
security of systems. A secretive approach to security may result in many unnoticed vulnerabilities in live
systems, which may be abused by people with dubious motives. Only when you are lucky students with
good intentions find your problem first.

6.2 Discontinue the Mifare Ultralight disposable OV-chipkaart

From a security viewpoint Mifare Ultralight cards have a major disadvantage over Mifare Standard 4k cards.
While the latter are protected from reading and writing by untrusted parties that do not know a secret key,
the former are publicly readable and partly writable. It is exactly for this reason that this report focuses
mainly at Mifare Ultralight cards. Although the vulnerabilities we have uncovered can all be solved, there
is no way to defend a Mifare Ultralight card against a spoofing attack as described in section 5.1.

Switching all products to the significantly better protected Mifare Standard 4k cards would greatly
increase the security of the OV-chipkaart system. Unfortunately cost is a considerable drawback to such
a measure; the Mifare Standard 4k cards are more expensive than their less secure Ultralight cousins.
Nonetheless this would be a smart investment in the overall security of the OV-chipkaart system.

6.3 Encrypt all data on the disposable OV-chipkaart

In case the Mifare Ultralight cards are not phased out as recommended above, we recommend one significant
design change to the data on the disposable OV-chipkaart. As explained in section 2.3.1, half of each
transaction on a card is unencrypted, the other half encrypted. The unencrypted part shows information
such as the transaction counter, the city, the type of transaction, the date and the time. This information
can be read by anyone with access to the card.

There are two main arguments in favour of encrypting this information. Firstly, this information is a
precious gift to any attacker interested in learning how a disposable OV-chipkaart works, while the current
attitude of Trans Link Systems seems to be secrecy regarding security. Each bit of information gained,
makes finding potential attacks easier. Although the vulnerabilities discussed in section 3 could have been
uncovered even if the transactions had been completely encrypted, having the information made the process
significantly easier.

A second argument is related to privacy. Although the unencrypted data does not contain much more
than the data on a regular strip ticket (strippenkaart), there is no pressing need for it to be unencrypted
and publicly readable. Apart from semi-compatibility with readers that are unable to decrypt the encrypted
data, we have been unable to determine any compelling reason for leaving a part of the data unencrypted.

Based on these arguments we recommend changing the design of the data on the card so that transactions
are completely encrypted.

20

6.4 Improve the public information about the OV-chipkaart

A major part of the success of the introduction of the OV-chipkaart depends on convincing the customers
to accept the system. Critical in such a task is the need to give customers correct and consistent infor-
mation. During our research we encountered various situations in which we received incorrect, inconsistent
or incomplete information, both from documentation such as flyers and brochures and from OV-chipkaart
staff. Especially information relating to the disposable OV-chipkaart is often deficient. The training of
OV-chipkaart staff is definitely an issue which should receive some attention.

21

7 Conclusions

In this report we present a security analysis of the Mifare Ultralight based disposable OV-chipkaart, which
is currently being introduced in the Netherlands. The OV-chipkaart is intended to replace current public
transport payment methods by 2009.

Based on an analysis of the data gathered throughout the project several experiments were attempted
using publicly available and affordable equipment, resulting in the discovery of three vulnerabilities. The
most serious vulnerability allows free travel. We were very surprised to find such a critical vulnerability in
a system which is actively being used. Such an obvious and critical vulnerability should have been found,
either by the manufacturer or during earlier security reviews.

In addition to solutions to these specific vulnerabilities, we present several more general recommendations.
First of all, and the most important, we suggest a more open attitude towards public security evaluations
to improve the quality of the system. Secondly we recommend removing Mifare Ultralight cards from the
OV chipkaart product line, because the fully accessible nature of those cards opens many avenues of attack.
Our third recommendation applies if Mifare Ultralight cards remain in use and constitutes the encryption
of all data on the disposable OV-chipkaart.

Future work

Further research into this subject may focus on performing a spoofing and a relay attack on the OV-chipkaart.
Although it has been demonstrated by others that these attacks are feasible, demonstrating such an attack
in the context of the OV-chipkaart would greatly increase the awareness of people to the security problems
that are attached to the use of RFID technology. The devices that would have to be developed could also
serve the purpose of allowing more varied tests and more detailed analysis.

Another interesting subject could be the decryption of the encrypted parts of the data on the disposable
OV-chipkaart. Additionally crypto-analysis might be done on the CRYPTO1 algorithm that is used by
Mifare Standard 4k cards that are used as permanent OV-chipkaart. Our findings regarding the data on the
Mifare Ultralight cards might serve as a stepping stone in such a project.

22

8 Epilogue

July 1, 2007

The goal of this project was to evaluate and if possible improve the security of the OV-chipkaart. Therefore
we decided at the start of this project to inform Trans Link Systems of any vulnerabilities we might encounter,
before making our results public. We believed, and still do, that it is important to give the owner of a system
a chance to solve a problem before making it public, to prevent any vulnerabilities from being exploited.

Because we did indeed find several vulnerabilities, we contacted Trans Link Systems and presented our
results. We must express our gratitude to our contacts within Trans Link Systems for their constructive
attitude in their contact with us. We believe the problem was approached in a very professional manner. As
far as we have been able to determine, adequate measures have been taken to resolve the problems.

Unfortunately solving issues takes time, especially in a project as large as the OV-chipkaart. Because our
intention is to solve a problem and not create one, we have decided of our own accord not to publish the exact
details of the vulnerability that allows free travel until a later date, to allow a solution to be implemented
and prevent the vulnerability from being exploited.

July 6, 2007

On Monday July 2, 2007 the Dutch press was made aware of the problem in a joint press release sent out by
the University of Amsterdam and Trans Link Systems. The news was picked up by various information tech-
nology related news websites. In addition, on July 3, 2007 we had interviews with the free daily newspaper
Spits and the radio show Radio 1 Online.

We concluded our project by presenting our work in a public presentation on July 4, 2007. In this
presentation we did not yet release the details of the vulnerability we uncovered.

July 26, 2007

On July 18, 2007 we were asked by the RET in Rotterdam to test a new version of the reader software
which was about to be put into the OV-chipkaart readers. This new version was supposed to solve the
vulnerabilities we uncovered.

Before testing the new software, we verified that the problems were present in the old version. That was
indeed the case. Once the new software had been activated, we set about testing the three vulnerabilities
we described in section 3 of this report.

It turned out that the two most serious problems have been solved. It is no longer possible to reset a
card so that it can be used to check in indefinitely. In addition, the defence mechanism described in section
2.2.2 can no longer be disabled.

The only problem that remains, is the possibility of doing multiple check-outs, by rewriting a card after
travel to the state it was in during travel. In contrast to the previous to problems, solving this issue requires
a change in the design of the software, which makes changing it more complicated. Luckily the impact of
this vulnerability is only minor. Being able to check out is not much use if you can not check in.

Because the problem has been solved, we have decided to release the entire report including the section
containing the details of the vulnerability which allowed free travel.

23

Appendix

In this Appendix we present the scripts we created based on Adam Laurie’s RFIDIOt python library.

ovread.py

#!/usr/bin/python
#
Authors:
* M.E. van der Schee (mvdschee@os3.nl)
* P.J. Siekerman (pjsiekerman@os3.nl)
#
This program is written to simplify copying data from a
Mifare Ultralight card to disk.
#
This program is easy to use: Present a card to the reader,
wait for the beep and remove the card.
#
We thank Adam Laurie for writing RFIDIOt an making it publicly
available so that we could base this script on his tools.
We’ve used version 0.1n.
#
RFIDIOt depends on:
* python
* python-serial
* python-crypto
* python-imaging
#
Before using this script make sure you edit RFIDIOtconfig.py and
set line="/dev/ttyS0" when the reader is connected to COM1 and
line="/dev/ttyS1" when it is connected to COM2.
#
See http://www.rfidiot.org/ for more information.
#

import RFIDIOtconfig
import re
import time
import sys
import os

Use RFIDIOt library
try:
card=RFIDIOtconfig.card

except:
os._exit(False)

Endless loop
while True:
Tell the user what to do
print ’place card’
Wait for card

24

card.select()
While no card is selected
while card.data == ’N’:
Try 4 times a sec
time.sleep(0.25)
card.select()

Card is found, read its UID
uid = card.data
Tell the user what to do
print ’reading card to disk, please wait’
Create a descriptive filename
filename=’log_’+uid+’.txt’
Create an array that will hold the lines of the log file
lines=[]
Append a first log line containing the UID.
lines.append(’uid: ’ + uid)
Read the first block from the card
card.readblock(0)
Store the data that we’ve read into the ’data’ variable
data = card.data
Split the data of the first 16 bytes (32 hex characters) according to the specs
r = re.match (’(.{18})(.{2})(.{2})(.{2})(.{8})’, data)
The third group in the split is the first lock byte
lock1=int(r.group(3),16)
The fourth group in the split is the second lock byte
lock2=int(r.group(4),16)
Create an array that will contain the locked pages
lockedpages=[]
If bit 0 is set, then the OTP lock lock is enabled
if (lock1>>0)&1:
lockedpages.append(’lck_otp’)

If bit 1 is set, then the pages 4-9 lock lock is enabled
if (lock1>>1)&1:
lockedpages.append(’lck_4-9’)

If bit 2 is set, then the pages 10-15 lock lock is enabled
if (lock1>>2)&1:
lockedpages.append(’lck_10-15’)

If bit 3 is set, then the OTP lock is enabled
if (lock1>>3)&1:
lockedpages.append(’otp’)

The other 4 bits in the first lock byte represent pages 4-7
for bit in range(4):
If the bit is set the page is locked
if (lock1>>(4+bit))&1:
lockedpages.append(str(4+bit))

The 8 bits in the second lock byte represent pages 8-15
for bit in range(8):
If the bit is set the page is locked
if (lock2>>bit)&1:
lockedpages.append(str(8+bit))

Add a line to the log containing the locked locks and locked pages

25

lines.append(’lck: ’+’ ’.join(lockedpages))
The fifth group in the split are the OTP bits
otp=int(r.group(5), 16)
otpstr=’’
For all 32 OTP bits
for bit in range(32):
Print a space before the 16th bit
if bit==16:
otpstr+=’ ’

If the bit is set print ’1’ otherwise print ’0’
if (otp>>(31-bit))&1:
otpstr+=’1’

else:
otpstr+=’0’

Add a line to the log containing the OTP bits
lines.append(’otp: ’+otpstr)
For all 4 (16 byte) sectors
for sector in range(4):
Read the sector from the card
if card.readblock(sector*4):
data=card.data

else:
continue

Match the 4 blocks that a sector contains
r = re.match (’(.{8})(.{8})(.{8})(.{8})’, data)
Add a line to the log that contains the blocks of this sector seperated by spaces
lines.append(r.group(1)+’ ’+r.group(2)+’ ’+r.group(3)+’ ’+r.group(4))

Add a blank line
lines.append(’’)
Try to append to an existing file otherwise create a file
try:
f = open(filename,’a’)

except IOError:
f = open(filename,’w’)

Print all lines to the file
f.writelines([line+’\n’ for line in lines])
Close the file
f.close()
Beep and tell the user what to do
print ’\aremove card’
While card is selected
card.select()
while card.data == uid:
Try 4 times a sec
time.sleep(0.25)
card.select()

26

ovcopy.py

#!/usr/bin/python
#
Authors:
* M.E. van der Schee (mvdschee@os3.nl)
* P.J. Siekerman (pjsiekerman@os3.nl)
#
This program copies the transactions from a Dutch
"OV-chipkaart" to disk when the card is presented for the
first time. When the card is presented and transactions
for this card are available on the disk, these are copied
form the disk to the "OV-chipkaart".
#
This program is easy to use: Present a card to the reader,
wait for the beep and remove the card.
#
We thank Adam Laurie for writing RFIDIOt an making it publicly
available so that we could base this script on his tools.
We’ve used version 0.1n.
#
RFIDIOt depends on:
* python
* python-serial
* python-crypto
* python-imaging
#
Before using this script make sure you edit RFIDIOtconfig.py and
set line="/dev/ttyS0" when the reader is connected to COM1 and
line="/dev/ttyS1" when it is connected to COM2.
#
See http://www.rfidiot.org/ for more information.
#

import RFIDIOtconfig
import re
import time
import sys
import os

Use RFIDIOt library
try:
card=RFIDIOtconfig.card

except:
os._exit(False)

Endless loop
while True:
Tell the user what to do
print ’place card’
Wait for card
card.select()

27

While no card is selected
while card.data == ’N’:
Try 4 times a sec
time.sleep(0.25)
card.select()

Card is found, read its UID
uid = card.data
Read the first block from the card
card.readblock(0)
Create a descriptive filename
filename=’card_’+card.data+’.txt’
Create an array that will hold the lines of the log file
lines=[]
Assume we want to write to the card
write=True
Try to open the file from disk and read all contents to the lines array
try:
f = open(filename,’r’)
lines = f.readlines()
f.close()

except IOError:
write=False

If we were able to read from disk we want to write to the card
if write:
Tell the user what to do
print ’write disk to card, please wait’
For sector 2 and 3 (sector 2 = block 4-7, sector 3 = block 8-15)
for sector in range(1,3):
Match the blocks for this sector from the lines array
r = re.match (’(.{8}) (.{8}) (.{8}) (.{8})’, lines[sector+3])
For all blocks within this sector
for block in range(4):
Read 16 bytes of data starting at the right block
card.readblock(sector*4+block)
Change the first 8 hex characters of te data to the data read from disk
data = r.group(block+1)+card.data[8:]
Write these 16 bytes to the card (4 bytes modified)
if not card.writeblock(sector*4+block,data):

print ’failed with error: ’+card.errorcode
Read the data we’ve just written
card.readblock(sector*4+block)
Verify that the data was successfully written
if data!=card.data:

print ’verify failed’
else:
Tell the user what to do
print ’read card to disk, please wait’
Append a first log line containing the UID.
lines.append(’uid: ’ + uid)
Store the data that we’ve read into the ’data’ variable
data = card.data

28

Split the data of the first 16 bytes (32 hex characters) according to the specs
r = re.match (’(.{18})(.{2})(.{2})(.{2})(.{8})’, data)
The third group in the split is the first lock byte
lock1=int(r.group(3),16)
The fourth group in the split is the second lock byte
lock2=int(r.group(4),16)
Create an array that will contain the locked pages
lockedpages=[]
If bit 0 is set, then the OTP lock lock is enabled
if (lock1>>0)&1:
lockedpages.append(’lck_otp’)

If bit 1 is set, then the pages 4-9 lock lock is enabled
if (lock1>>1)&1:
lockedpages.append(’lck_4-9’)

If bit 2 is set, then the pages 10-15 lock lock is enabled
if (lock1>>2)&1:
lockedpages.append(’lck_10-15’)

If bit 3 is set, then the OTP lock is enabled
if (lock1>>3)&1:
lockedpages.append(’otp’)

The other 4 bits in the first lock byte represent pages 4-7
for bit in range(4):
If the bit is set the page is locked
if (lock1>>(4+bit))&1:
lockedpages.append(str(4+bit))

The 8 bits in the second lock byte represent pages 8-15
for bit in range(8):
If the bit is set the page is locked
if (lock2>>bit)&1:
lockedpages.append(str(8+bit))

Add a line to the log containing the locked locks and locked pages
lines.append(’lck: ’+’ ’.join(lockedpages))
The fifth group in the split are the OTP bits
otp=int(r.group(5), 16)
otpstr=’’
For all 32 OTP bits
for bit in range(32):
Print a space before the 16th bit
if bit==16:
otpstr+=’ ’

If the bit is set print ’1’ otherwise print ’0’
if (otp>>(31-bit))&1:
otpstr+=’1’

else:
otpstr+=’0’

Add a line to the log containing the OTP bits
lines.append(’otp: ’+otpstr)
For all 4 (16 byte) sectors
for sector in range(4):
Read the sector from the card
if card.readblock(sector*4):

29

data=card.data
else:
continue

Match the 4 blocks that a sector contains
r = re.match (’(.{8})(.{8})(.{8})(.{8})’, data)
Add a line to the log that contains the blocks of this sector seperated by spaces
lines.append(r.group(1)+’ ’+r.group(2)+’ ’+r.group(3)+’ ’+r.group(4))

Create a file for writing
f = open(filename,’w’)
Print all lines to the file
f.writelines([line+’\n’ for line in lines])
Close the file
f.close()

Beep and tell the user what to do
print ’\aremove card’
While card is selected
card.select()
while card.data == uid:
Try 4 times a sec
time.sleep(0.25)
card.select()

30

8.1 ovgroup.py

#!/usr/bin/python
#
Authors:
* M.E. van der Schee (mvdschee@os3.nl)
* P.J. Siekerman (pjsiekerman@os3.nl)
#
This program removes the last transaction from a Dutch
"OV-chipkaart" allowing one to repeat this last transaction.
#
This program is easy to use: Present a card to the reader,
wait for the beep and remove the card.
#
We thank Adam Laurie for writing RFIDIOt an making it publicly
available so that we could base this script on his tools.
We’ve used version 0.1n.
#
RFIDIOt depends on:
* python
* python-serial
* python-crypto
* python-imaging
#
Before using this script make sure you edit RFIDIOtconfig.py and
set line="/dev/ttyS0" when the reader is connected to COM1 and
line="/dev/ttyS1" when it is connected to COM2.
#
See http://www.rfidiot.org/ for more information.
#

import RFIDIOtconfig

import re
import time
import sys
import os

Use RFIDIOt library
try:
card=RFIDIOtconfig.card

except:
os._exit(False)

Endless loop
while True:
Tell the user what to do
print ’place card’
Wait for card
card.select()
While no card is selected
while card.data == ’N’:

31

Try 4 times a sec
time.sleep(0.25)
card.select()

Card is found, read its UID
uid = card.data
Tell the user what to do
print ’card found, please wait’
Read block 4
card.readblock(4)
block4 = card.data
Read block 8
card.readblock(8)
block8 = card.data
Assume we want to write to the card
write=True
We dont want to write when block 4 is empty or has a default value
if block4==’0’*4*8 or block4==’F’*8+’0’*3*8:
write=False

We dont want to write when block 8 is empty or has a default value
if block8==’0’*4*8 or block8==’F’*8+’0’*3*8:
write=False

This variable holds 0 or the sector with the highest transaction counter value
sector = 0
If no empty/default transactions are found
if write:
Determine transaction counter value of block 4
nrblock4=(int(block4[0:8],16)>>12)&int(’7fff’,16)
Determine transaction counter value of block 8
nrblock8=(int(block8[0:8],16)>>12)&int(’7fff’,16)
Choose the sector (4 blocks) with the highest transaction counter value
if nrblock4>nrblock8:
if block4>1:
sector=1

else:
if block8>1:
sector=2

If a sector is choosen
if sector>0:
Warn the user we are going to write
print ’delete last transaction’
For each block in the sector
for block in range(4):
Read 16 bytes of data starting at the right block
card.readblock(sector*4+block)
Change the first 8 hex characters (4 bytes) of the read data to zero’s
data = ’0’*8+card.data[8:]
Write these 16 bytes to the card (4 bytes modified)
if not card.writeblock(sector*4+block,data):
print ’failed with error: ’+card.errorcode

Read the data we’ve just written
card.readblock(sector*4+block)

32

Verify that the data was successfully written
if data!=card.data:
print ’verify failed’

else:
Warn the user that there was no data to delete
print ’nothing to delete’

Beep and tell the user what to do
print ’\aremove card’
While card is selected
card.select()
while card.data == uid:
Try 4 times a sec
time.sleep(0.25)
card.select()

33

References

[1] NXP - Products - Identification - Success Stories, NXP,
http://www.nxp.com/news/identification/articles/success/

[2] Kabinet steunt chipkaart, NRC Handelsblad, June 26, 2003, p. 3,
http://www.nrc.nl/

[3] Trans Link Systems - History, Trans Link Systems,
http://www.translink.nl/content.asp?languageID=UK&pageID=13

[4] APS: East-West Consortium bij laatste drie OV-Chipkaart, ANP Pers Support, July 12, 2002,
http://www.perssupport.anp.nl/Home/Persberichten/Actueel?itemId=39101

[5] Ov-chipkaart wellicht pas later ingevoerd, NRC Handelsblad, April 20, 2007, p. 13,
http://www.nrc.nl/

[6] Strippenkaart verdwijnt snel in metro Rotterdam, NRC Handelsblad, June 25, 2007, p. 3,
http://www.nrc.nl/

[7] Bits of Freedom Nieuwsbrief - Nr. 4.14, Bits of Freedom, July 5, 2006,
http://www.bof.nl/nieuwsbrief/nieuwsbrief 2006 14.html

[8] OV-chipkaart website,
http://www.ov-chipkaart.nl/

[9] Klantenservice OV-chipkaart, OV-chipkaart Customer Service, Telephone: 0900-0980.

[10] NXP Semiconductors website,
http://www.nxp.com/

[11] Mifare Products, Mifare.net,
http://www.mifare.net/products/

[12] Netherlands Nationwide Travelcard System, G. Najman, Presentation at Nordic Lokaltraffic Conference,
June 8, 2006,
http://www.nltk2006.fi/Najman%20G.pdf

[13] Mifare Standard 4 kByte Card IC - MF1 IC S70 - Functional Specification - Rev. 3.1, Philips Semicon-
ductors, October 2002,
http://www.nxp.com/acrobat download/other/identification/m043531.pdf

[14] Mifare Ultralight - MF0 IC U1 - Contactless Single-trip Ticket IC - Functional Specification - Rev. 3.0,
Philips Semiconductors, March 2003,
http://www.wontec.com.tw/images/jpg/IC/ultralight.pdf

[15] ISO/IEC 14443-1: Identification cards - Contactless integrated circuit(s) cards - Proximity cards - Part
1: Physical characteristics, First edition, April 2000,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=28728

[16] ISO/IEC 14443-2: Identification cards - Contactless integrated circuit(s) cards - Proximity cards - Part
2: Radio frequency power and signal interface, First edition, July 2001,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=28729

[17] ISO/IEC 14443-3: Identification cards - Contactless integrated circuit(s) cards - Proximity cards - Part
3: Initialization and anticollision, First edition, February 2001,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=28730

34

http://www.nxp.com/news/identification/articles/success/
http://www.nrc.nl/
http://www.translink.nl/content.asp?languageID=UK&pageID=13
http://www.perssupport.anp.nl/Home/Persberichten/Actueel?itemId=39101
http://www.nrc.nl/
http://www.nrc.nl/
http://www.bof.nl/nieuwsbrief/nieuwsbrief_2006_14.html
http://www.ov-chipkaart.nl/
http://www.nxp.com/
http://www.mifare.net/products/
http://www.nltk2006.fi/Najman%20G.pdf
http://www.nxp.com/acrobat_download/other/identification/m043531.pdf
http://www.wontec.com.tw/images/jpg/IC/ultralight.pdf
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=28728
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=28729
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=28730

[18] ISO/IEC 14443-4: Identification cards - Contactless integrated circuit(s) cards - Proximity cards - Part
4: Transmission protocol, First edition, February 2001,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31425

[19] Mifare Ultralight Features and Hints - AN 073120 - Rev. 2.0, NXP, December 2006,
http://www.nxp.com/acrobat/other/identification/M073120.pdf

[20] RFIDIOt website, Adam Laurie,
http://www.rfidiot.org/

[21] Socket Mobile CompactFlash RFID Reader Series 6E,
http://www.socketmobile.com/products/bar-code-scanning-data-collection/series6/

[22] SDiD 1010 NFC / RFID SD Card, SDiD,
http://www.sdid.com/products1010.shtml

[23] Nokia’s NFC-enabled phone taps into mobile payment, ticketing and local sharing, ContactlessNews,
January 9, 2007,
http://www.contactlessnews.com/news/2007/01/09/nokias-nfcenabled-phone-taps-
into-mobile-payment-ticketing-and-local-sharing/

[24] Nokia 6131 NFC SDK 1.0, Nokia, 2007,
http://sw.nokia.com/id/71494f51-cede-40ab-bf7f-2df241ff3796/DS 6131 NFC SDK.pdf

[25] An Embedded System for Practical Security Analysis of Contactless Smartcards, Timo Kasper, Dario
Carluccio, Christof Paar, 2006,
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/
conferences/embedded system.pdf

[26] Practical Attacks on Proximity Identification Systems (Short Paper), G. Hancke, September 2005,
http://www.cl.cam.ac.uk/∼gh275/SPPractical.pdf

35

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31425
http://www.nxp.com/acrobat/other/identification/M073120.pdf
http://www.rfidiot.org/
http://www.socketmobile.com/products/bar-code-scanning-data-collection/series6/
http://www.sdid.com/products1010.shtml
http://www.contactlessnews.com/news/2007/01/09/nokias-nfcenabled-phone-taps-
into-mobile-payment-ticketing-and-local-sharing/
http://sw.nokia.com/id/71494f51-cede-40ab-bf7f-2df241ff3796/DS_6131_NFC_SDK.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/embedded_system.pdf
http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/embedded_system.pdf
http://www.cl.cam.ac.uk/~gh275/SPPractical.pdf

	Introduction
	Mifare Ultralight and the OV-chipkaart
	Mifare Ultralight Characteristics
	Mifare Ultralight Memory Organisation
	UID
	Lock Bytes
	One Time Programmable Counter
	User Area

	OV-chipkaart Data
	Transactions
	Transaction values

	Vulnerabilities and Solutions
	Disabling the Defence Mechanism
	Repeated Check-outs
	Free Travel
	Failed Attacks

	Methodology
	Documentation
	Data Gathering
	Resources
	Reflection

	Alternative Attacks
	Imitating a Mifare Ultralight card
	Relaying RFID Communication

	Recommendations
	Adopt a more open approach to security
	Discontinue the Mifare Ultralight disposable OV-chipkaart
	Encrypt all data on the disposable OV-chipkaart
	Improve the public information about the OV-chipkaart

	Conclusions
	Epilogue
	ovgroup.py

