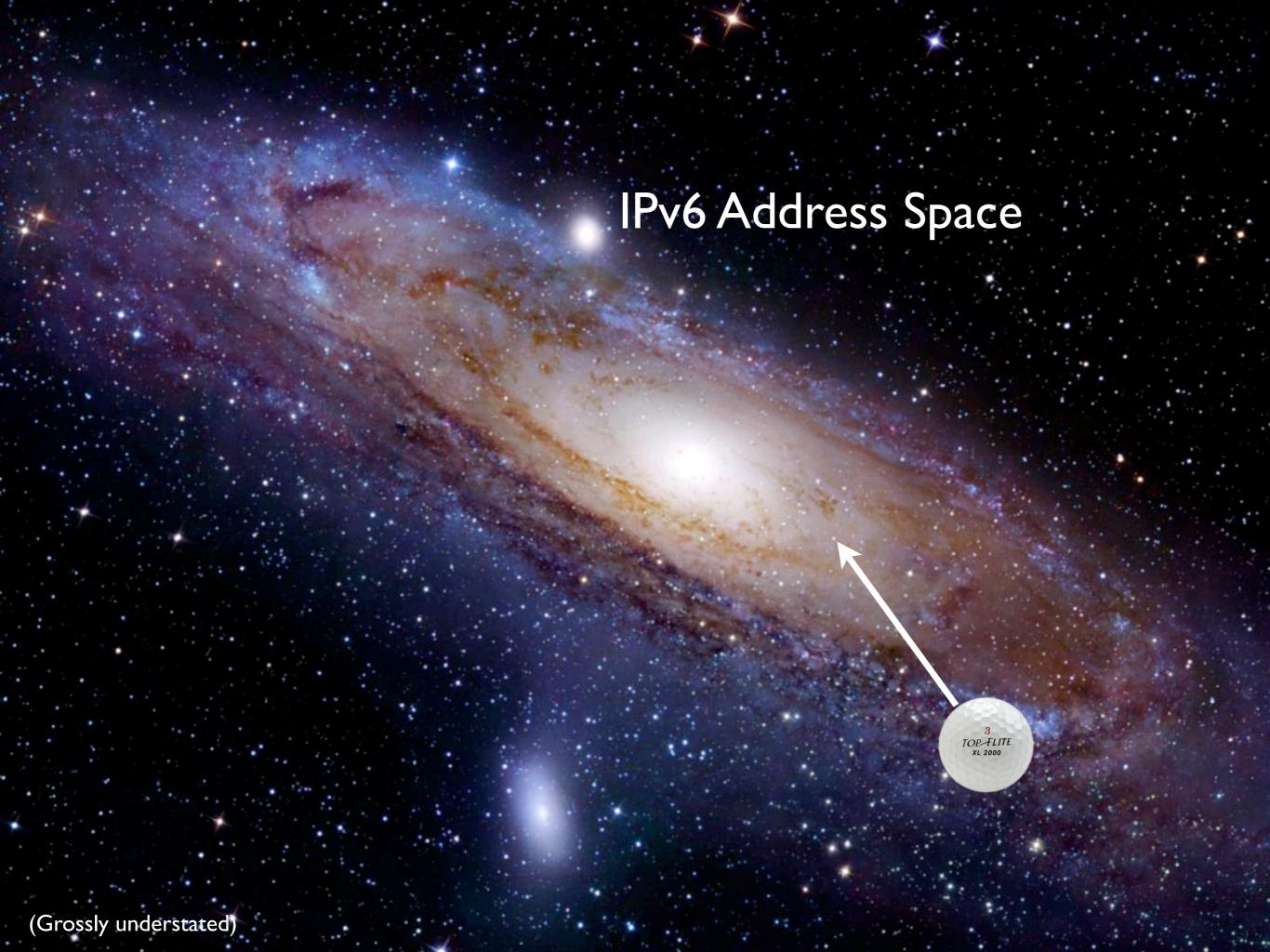
IPv6 at NPO

Bart Roos Marco Wessel

NPO Intro

- NPO: Dutch Public Broadcasting
 - NPO ICT: ISP for broadcasters
 - Large network, providing a.o.:
 - uitzendinggemist.nl
 - omroep.nl
 - live-streams of events
 - etc.

Intro


- IPv4
 - In use since 1983
 - 32-bit address space
- IPv6
 - Designed in early 1990s
 - 128-bit address space
 - Individually assigned: more than we could ever use, given only the one planet we're on.

Address Space

- 128-bits is staggeringly vast.
- Divided into two parts: Network vs. Host, both 64 bits.
 - Allows host to generate globally reachable address given only the network prefix
 - DHCP no longer needed in its current form

IPv4 Address Space

Practically Speaking...

- The end of Network Address Translation
- Some built-in obscurity
- More efficient
 - Fixed-length header
 - no checksum
- Improved multicast
- IPSec support required

Advantages for NPO

- Allows UDP use for streaming
 - Less traffic, less processing
 - Video streams don't care about a lost packet or two
- In theory, IPSec might be useful with DRM

Implementing IPv6

- First: IPv6 address space
- Second: IPv6 in the Network
- Third: IPv6 services
- Later: IPv6 office

IPv6 address space

- Request space from LIR (SURF, KPN, ...)
 - Provider dependent addresses
- Become LIR, request space from RIPE
 - Provider independent addresses
 - Allows sub-allocating to end-sites

IPv6 address space

- RIPE requirements for requesting as LIR:
 - Old: must have plan for 200 allocations within two years
 - NPO not likely to satisfy
 - New: must have plan for an allocation within two years
 - Easy!

Subnetting

- As a RIPE LIR, you will be allocated a /32.
 - 65536 /48s to assign to end-sites
 - One /48 allows 65536 /64 subnets for hosts
 - End-site:
 - NPO, NOS, VPRO, BNN, etc.

External Connectivity

- The IPv6 world uses BGP, just like IPv4
- Mostly the same, except:
 - IPv6 BGP routing protocols must send two next-hop addresses:
 - Global (2000::/3)
 - Link-local (fe80::/64 for ICMPv6 redirects)

External Connectivity

- Where to go?
 - Internet Exchanges have IPv6 in production (AMS-IX, NL-IX, etc.)
 - As do some (not all) large transit networks (Level3, Global Crossing, etc.)
 - And most (all?) NRENs (SURFnet, Belnet, etc.)

Possible Caveats

- IPv6 does away with ARP
- Instead: ND (neighbour detection)
 - Uses Multicast rather than broadcasts
 - Problem exists with some IGMP-snooping switches
 - Symptom: MAC-addresses aren't learned
 - Only solution: disable IGMP snooping

Clustered IPv6 Services

- Transitioning to IPv6, three possibilities:
 - Single-stack cluster, separate single-stack
 IPv6 node(s)
 - Dual-stack cluster, single-stack nodes
 - Dual-stack cluster, dual-stack nodes

Single Stack Nodes

Load Balancer (Single Stack IPv4)

Server IPv4

Server IPv4

Server IPv6

- IPv6 testing environment
- No chance of disruption
- Good initial configuration

Single Stack Nodes

Load Balancer (Dual Stack)

Server
IPv4

Server
IPv6

- Still mostly separate, so should not cause interference
- Intermediate configuration
- But: different configurations on servers

Dual Stack Nodes

Load Balancer (Dual Stack)

Server	Server	Server
IPv4	IPv4	IPv4
IPv6	IPv6	IPv6

- Production configuration, after testing
- All servers created equal

Load balancing

- NPO uses Linux IP Virtual Server
- Problem: does not support IPv6 (yet).
 - Use something else, or
 - Financially support IPv6 for IPVS development
- Is that really a problem?
 - Not much traffic yet, so load balancing initially not required

Services

- Name servers
 - BIND, PowerDNS: good support
- Web servers
 - Apache, Lighttpd: likewise
 - IIS: Not so much.

Streaming services

- Windows Media Services
 - Full support for IPv6 since version 9
- Darwin Streaming Server
 - Does not support IPv6 yet (old patch available)
- Shoutcast
 - Also does not support IPv6
 - Can be replaced by Icecast, which does.

Office network

- Some support needed to offer services
 - Testing, development
- Requires some more research
 - Auto configuration (DHCPv6?)
 - Host and software support
 - Firewalls

Wrap-up

- Implementing IPv6 is very possible
- Several challenges do exist
- Worthwhile for NPO?
 - Most users currently are nerds, but
 - More and more routers now support automatic 6-to-4 tunneling (2002::/16)
- Make it worthwhile for clients
 - Provide incentive to switch

Thanks

Questions?