
Security model for hybrid token-based networking models

Rudy Borgstede (Rudy.Borgstede@gmail.com)
University of Amsterdam

Version 1.0

February 4, 2008

Rudy.Borgstede@gmail.com

Abstract

This project report is written as a contribution to the GAAA Toolkit development project
to research on a new security model for Token Based Networking using Identity Based Cryp-
tography.

The report gives an overview of the Identity-Based Cryptography (IBC) model,
which is considered as an alternative to widely used Public Key Infrastructure (PKI). With
the use of IBC there is no need anymore for a Certificate Authority, as with Public Key
Infrastructure, which solves some key distribution and scalability issues. This gives the client
the possibility to use cryptography without even being connected to the internet. The report
investigates the possibility to use IBC based token key distribution comparing to currently
used shared secret model and alternative solution based on PKI. Two existing implementations
of IBC of Voltage called Identity-Based Encryption and the National University of Ireland in
Maynooth called Eyebee are compared and evaluated. The Eyebee solution is also tested by
a short experiment.

1

Contents

1 Introduction 4
1.1 Use Case . 5

1.1.1 Server-Based Identity . 5
1.1.2 User-Based or Service-Based Identity 5

2 Identity-Based Cryptography Basics 7
2.1 How does the RSA a-symmetric key cryptography model work? 7
2.2 How does the Identity-Based Cryptography model work? 10
2.3 The difference between Identity-Based Cryptography and Public Key Infras-

tructure . 14
2.4 The difference between Identity-Based Cryptography and Kerberos 16
2.5 The security of the Identity-Based Cryptography model 17

2.5.1 Identity length . 17
2.5.2 The private (master) key generation 17
2.5.3 The private key on the Certificate-Based Encryption system 17
2.5.4 Replay attack . 18
2.5.5 The server invalidating a stolen private master key 18

3 Implementation 19
3.1 Known Solutions . 19

3.1.1 Eyebee . 19
3.1.2 Voltage IBE . 19
3.1.3 Comparing Voltage IBE and Eyebee 20

3.2 Test Installation . 20
3.2.1 The token handeling and distribution model of the TBS-TVS project

using a shared secret . 20
3.2.2 The token handeling and distribution model of the TBS-TVS project

using an Identity-Based Cryptography 22

4 Experiment and Evaluation 26
4.1 Experiment description . 26

4.1.1 Output . 26
4.2 Evaluation of the experiment . 26

4.2.1 Output . 26
4.2.2 Performance . 27

2

5 Conclusion 28
5.1 Is Identity-Based Cryptography usefull? . 28
5.2 Is Identity-Based Cryptography usefull for the TBS-TVS project? 28

6 Further research 29
6.1 Standarization . 29
6.2 Scalability . 29

6.2.1 Key Server . 29
6.2.2 Performance . 29

6.3 Security . 30
6.4 P2P . 30

7 Appendix 31

3

Chapter 1

Introduction

Before the report starts about Identity-Based Cryptography, first the project background is
described.

This project is conducted in the framework of the System and Network Engineering[6]
master education of the University of Amsterdam[7] for the course Research Project 1. The
main goal of this course is getting a taste of the real world work. Besides the work on
the project and a presentation is the product of this course described by the master as a
consultancy like report with an analytic vision[1].

This research is done as a contribution to the GAAA Toolkit project[2] to develop IBC
based security model for token keys[19] distribution by Token Validation Service (TVS) what
components of the Token Based Networking (TBN) infrastructure, referred hereafter as TBS-
TVS project. The current TVS implementation In the form of aaauthreach-tvs package can
work with binary and XML[10] based token. The current TVS Implementation uses shared
secret security key distribution model and HMAC-SHA1 transformation for token generation.
Shared secret key distribution model has known scalability and manageability problems for
an open network environment. So could it be replaced?

As this report is focused on Identity-Based Cryptography, it concentrates on why it is a
better solution and proving why it does a better job for the TBS-TVS project then other
cryptography models like Public Key Infrastructure[4] and Kerberos[16].

The report has the following chapters:

• Identity-Based Cryptography Basics. How the Identity-Based Cryptography model
works and what advantages or disadvantages it has?

• Implementation. This chapter evaluates two opensource Identity-Based Cryptography
solutions and Java[3] classes which are written to test the Eyebee solution.

• Experiment and Evaluation. This is a short experiment to research how usefull the
Eyebee[8] solution is for the TBS-TVS project.

• Conclusion. This chapter gives an opinion about the usefullnes of Identity-Based Cryp-
tography for the TBS-TVS project.

• Further Research. This chapter contains subjects related to the Identity-Based Cryp-
tography model which should be further researched.

4

• Appendix. This last chapter has several documents which are related to the report
like the bibliography, the planning, a personal log and the original approved project
description.

1.1 Use Case

In this section two examples of the two basic implementations of Identity-Based Cryptography
model are explained.

1.1.1 Server-Based Identity

Identity-Based Cryptography systems which are based on the server identity are systems
where a token is encrypted and decrypted by the identity or so called address of the server
e.g. www.google.nl or Force10. Think of a network described by the ”Network Description
Language[5]” see figure 1.1, which is a XML[10] based markup language to describe network
resources and their location, which can make the network environment known to any identity
in the network. This makes it possible to encrypt a token for the server which contains the
right resource. So the token can be securely passed through an open network and can only
be decrypted by the right destination server.

Figure 1.1: The example network infra structure from the NDL website[5]

1.1.2 User-Based or Service-Based Identity

Identity-Based Cryptography systems which are based on the user or service identity are
systems where a token key is encrypted and decrypted by the address, identifier or name

5

of the user or service e.g. Rudy.Borgstede@gmail.com, Rudy Borgstede, Security Camera
Garage or Studentnumber: 123456789. Which means that the encrypted token doesn’t have
a complete address where it can be delivered for decryption but rather needs an external
defined address that points to the location of the user or service (identity) which decrypts the
token. This means that the location of the user or service must be known, which is not always
possible because of the architecture of the network. A good example of an User-Based or a
Service-Based Identity system, where Identity-Based Cryptography can be used, is an instant
messenger network like ”ICQ” or ”MSN”. In such systems the location of each identity is
known indirect and is referred to by a unique number or mail address, which is a User-Based
Identity. The result of such a system is that the identity could have a dynamic location in
the network and can an identity e.g. a secure mail server be replicated to multiply locations
in the network.

Figure 1.2: An abstract view of an instant messenger network. A network with many different
systems which contains similar like user-based identities.

6

Chapter 2

Identity-Based Cryptography Basics

In this chapter the Identity-Based Cryptography model is further explained and compared
against the other cryptography models. Also the security of the Identity-Based Cryptography
model is evaluated.

2.1 How does the RSA a-symmetric key cryptography model
work?

In this section the basic idea about RSA a-symmetric key cryptography[18] is explained.
The cryptography model exists out of three components generated by the RSA algorithm[18]:

• The private master key is a big generated number, which should remain a secret.
Before the private master key could be calculated first a big number (n) is generated
by two big prime numbers (p and q).

n = p× q (2.1)

The big number n is used by the modulo to encrypt and decrypt e.g. a token. Next
the totient[13] is calculated of the two base prime numbers (p and q). A totient is the
number of co-prime numbers in n.

φ(n) = (p− 1)× (q − 1) (2.2)

Now the private master key is φ(n) the torient.

• The public certificate or key is based on the identity of the destination like a server,
service or user identity. This generated public certificate or key can be seen as the
identity of the destination. The difference between a public certificate and key is that
a public certificate has a public key. The public key is used for encrypting e.g. a token.
A public certificate is a collection of information about an identity like when the public
certificate becomes valid or invalid but also the name and address of the identity. A
public certificate is used by the Public Key Infrastructure model and only a public key
by the Identity-Based Cryptography model. The extra information that comes with
a public certificate is not needed for Identity-Based Cryptography because the client
makes the public key it self. This means that it isn’t usefull to generate a public
certificate with information that the client obviously already knows, the public key is

7

used to confirm the identity of the destination. In the formula of the private master
key could n be seen as the public key, which e.g. with Identity-Based Cryptography is
being combined with the identity of the destination to form the final public key.

• The private key is a number generated from the private master key. This key is
generated so that the client can with the public certificate or key encrypt e.g. a token
but can only decrypt it with the private master key. The private key is a number
between one and the private master key (which is a big number). Also the chosen
number must be a co-prime with the private master key:

1 < privatekey < φ(n) (2.3)

After these components are initialised e.g. the token is encrypted:

encryptedtoken = tokenprivatekey mod publickey (2.4)

To decrypt e.g. the token:

calculatedkeytodecrypt× privatekey ≡ 1 mod privatemasterkey (2.5)

token = encryptedtokencalculatedprivatekeytodecrypt mod publickey (2.6)

As example the Public Key Infrastructure model is explained with these components.
First the server has to prepare the Public Key Infrastructure model:

1. Generate the server private master key.

2. Generate a public certificate.

3. Let the public certificate be signed by a trusted Certificate Authority, this is a third
party authority which is highly trusted by the clients of the server, to ensure integrity
and authenticity of the certificate. This is achieved because the Certificate Authority
can also validate, a previous signed public certificate.

4. Make the public certificate public available e.g. by an apache webserver with SSL.

8

Figure 2.1: An abstract representation of the Public Key Infrastructure.[4]

Now the Public Key Infrastructure model is setup, a client can connect with the following
procedure (The enumerated numbers are relative to the numbers from the figure 2.1):

1. The client retrieves the public certificate from the server.

2. The client validates the public certificate by contacting the Certificate Authority.

3. The client negotiates with the server for a private key by using the Diffie-Hellman(-
Merkle) algorihm and encrypt and signs e.g. the token with the public certificate and
the client private key. Then the e.g. token is send tot the server which decrypt the
token with the private key, the public key and the private master key.

The RSA a-symmetric key cryptography model ensures four important security properties[4],
if the private master keys aren’t compromised:

• Integrity means that the e.g. a token isn’t changed while transported over the network.
The integrity can be assured by signing the encrypted e.g. token. This is done by
creating a hash of e.g. the token by using a hashing algorithm[14] like MD5 or SHA-
1. Only the client and the server can (re)calculate the same hash because the hash
is encrypted so only the server can decrypt and validate the hash. If the integrity is
comprimised the recalculation of the hash on the destination server doesn’t produce the
same answer as the client generated.

• Confidenciality means that nobody except the reciever can read the original e.g.
token. This is done by the unique a-symmetric key property of the RSA algorithm.

9

With the use of a public certificate or key and a private key the client can encrypt e.g.
the token for the server but can’t decrypt it with the same public certificate or key and
the private key. For decrypting the private master key is needed. This garantees the
confidenciality because only the right destination server has the right private master
key. Only with the Identity-Based Cryptography model the client can also decrypt his
own message because the client and the server share the same private master key. This
still gives the sender confidenciality because this only lets an identity decrypt the data
if he already know the data or know the private master key.

• Authenticity means that the identity of the server, user or service can be garanteed.
This can be garanteed if the public certificate of the server is fully trusted, because
the public certificates exactly describes the server and the identity of the server but
also gives the client the public key, which the client needs to encrypts his data. This
means with the Public Key Infrastructure model that the public certificate should be
signed to prove the information about an identity is true. If the public certificate is
self-signed then it should only be used for testing because this means that the server
says ”just trust me for me”. This is a problem because the second ”me” could be
everyone also a hacker who sends a fake public certificate to steal data. To really proof
the authenticity of the server a third party authority could validate the authenticity of
the public certificate. The means that the server says ”trust me because e.g. Verisign
says the public certificate is valid”. This raises ofcourse the question how trustworthy
the Certificate Authority is? If the public certificate is valid then the only one who can
decrypt the encrypted e.g. token should be the server which identity has been described
by the public certificate. With the Identity-Based Cryptography model a public key
is created by the client it self so the authenticity of the destination identity is proven
instantly because the client trusts him self to generate the right public key, because with
Identity-Based Cryptography the client should already know the destination identity.
If the destination identity is wrong or has been changed the destination will simply not
understand the encrypted e.g. token. With the RSA a-symmetric key cryptography
model the authenticity of de client can not be validated without a two way validation
model. This means that for real authenticity the server and the client must prove their
identity to each other e.g. with the Public Key Infrastructure this is done by using the
Certificate Authority.

• Non-repudiation means that the sender can’t deny he send e.g. an encrypted token.
As a private key is used to sign and encrypt e.g. a token by a known identity and private
key and only a client could know this information so he can’t deny only he could have
send e.g. the token.

2.2 How does the Identity-Based Cryptography model work?

Identity-Based Cryptography is invented by Adi Shamir in 1984[15]. The model is based on
the RSA a-symmetric key cryptography model.[18].

The original Identity-Based Cryptography model is based on a trusted third party, the so
called Private Key Generator. The basic idea behind this model is explained with figure 2.2.
Client 1 generates a public key from the master public key, which is public available, and the
identity of the destination: client 2. Then client 1 retrieves the private key from the Private

10

Figure 2.2: The architecture of the original Adi Shamir Identity-Based Cryptography network.

Key Generator(1) for the destination identity: client 2. Now with the public key and the
private key client 1 encrypts e.g. a token and sends it to client 2 (2). Client 2 also generates
the same public key with the identity of client 2. Then client 2 retrieves the private decrypter
key from the Private Key Generator by the identity of client 1 (3). Client 2 has now enough
information to decrypt the encrypted e.g. token from client 1.

This means that the Private Key Generator knows the private master key because this
trusted third party generates all the keys for decryption and encryption for all the clients.
This also means that this trusted third party can decrypt all encrypted e.g. tokens without
authorization. This is known as the Key Escrow[17] problem e.g. a commercial company
can play the role of the Private Key Generator which means that a commercial company can
decrypt the communication between e.g. hospitals like patients their medical information.
Which ofcourse no patient wants and is even illegal in the Netherlands. But not only the
Private Key Generator can decrypt all e.g. tokens, but also any identity which plays the role
of the server because a retrieved private decrypter key can not only be used for decrypting
of e.g. tokens of a specific (server) identity but also the identity of other servers. This means
that one server can decrypt e.g. the tokens for another server which are send by the same
client if the server knows the identity of the other servers.
Another issue of the original Identity-Based Cryptography model is that it creates the same
issue as it wants to resolve. Because all encrypting and decrypting keys have to be send
between the Private Key Generator and the clients over an open network. This means that
every one who can see the network traffic can steal any private key and public keys. The
network is open because if the network was secure there was no need for encryption. Also the
orginal Identity-Based Cryptography model has like the Public Key Infrastructure a serious
scalability problem. Since all the client share the same Private Key Generator. This means
their is a maximum number of clients that could be served concurrently by the Private Key

11

Generator. Also if the private master key is stolen every client should update their keys
which ofcourse is an almost impossible task. Because of these issues several other systems are
proposed that aren’t violating the original Identity-Based Cryptography model:

• Secure Key Issuing Cryptography[15] is a cryptography model, which distributes
parts of the private (master) key over several different trusted third parties so that no
trusted third party on his self can decrypt any e.g. token. The destination server can
decrypt e.g. the token after contacting every trusted third party. This does not solve
the issue of sending keys over an open network and the scalability issue. But the model
does solve the Key Escrow issue since no single trusted third party can decrypt e.g. a
token.

• Certificateless Cryptography[15] is a cryptography model, which shares the gen-
eration of the public key and the private key between the destination server and the
trusted third party. This does solve the issue that keys are send over an open net-
work because the key that is send over the open network is only half of the public key
and private key. Also this solve the Key Escrow issue because the third party has not
enough information to decrypt any e.g. token. But this cryptography model stil has a
scalability issue because the model is still using a server shared trusted third party.

• Certificate-Based Encryption[11] is a cryptography model, which is used by the
modern Identity-Based Cryptography solutions because it solves all previous issues.
This cryptography model doesn’t need a trusted third party. But it does not violate
the original Identity-Based Cryptography model of Adi Shamir because the client and
the server shares the role of the trusted third party. With this cryptography model the
user doubly encrypt and send e.g. a token by using the public key of the destination
based on the identity of the destination and a private key. Because the client does not
know if the server can decrypt the send e.g. token the model is based on the fact that
only the right server can decrypt his own e.g. token. Which means that to make this
cryptography model work both client and server should have the same private master
key, public key and should know each other their identity.

Because the Certificate-Based Encryption model is the only Identity-Based Cryptography
model which can be considered secure in an open network environment, the report is focussed
on the Certificate-Based Encryption model.

The Certificate-Based Encryption model uses a shared private master key and public key
between the server and the client to encrypt and decrypt e.g. tokens. Also the client and
the server should have an identity which can be a user, service or server identity. Which is
needed to makes the encrypted e.g. token unique for the identity of the destination.

Before the Identity-Based Cryptography model works, the identities in the network need
an initial setup as with the Public Key Infrastructure model, but now also the clients need an
initial setup which gives the Identity-Based Cryptography model the possibility to encrypt
and sign e.g. the tokens without any cryptography initialisation between the client and
the server. When the network is setup, the identities of the users, services or servers are
distributed. Also for each relationship between two identities, like client and server(group),
a private master key and public certificate is generated and distributed to both identities.
Because the private master key and the public key are for a human impossible to remember
it should be distributed on more fashionable way e.g. by a secure mail or physically on a

12

secure medium. But sometimes this could be better done by a key distribution server e.g. for
a group of replicated servers or a group of clients in a highly trusted network like a computer
cluster so each client could use cryptography without each client have to be configured.

Figure 2.3: An example of sending a secure mail by the Identity-Based Cryptography model
by using an user-based identity.

Figure 2.3 is an example of an Certificate-Based Encryption system which send secure
mails between users Alice and Bob (The numbers in the figure are relative to the numbers in
the enumeration):

1. Alice wants to send a secure email to Bob. This means Alice knows Bob and his
identity bob@b.com, the private master key and the public key she shares
with bob@b.com. Now Alice combines the public key with identity of bob@b.com.
Then Alice generates from her private master key a private key, which is with the
identity based public key used for encryption. But also the secure mail is signed, by
hashing the encrypted e.g. token and also encrypted with the same private key and
identity based public key. When the mail is encrypted and signed by Alice the mail is
send to Bob.

2. Bob recieves the mail and sees it comes from Alice her identity, alice@a.com. So Bob
request the private master key and public key for the relation between alice@a.com and
his identity, bob@b.com, from his (shared) key server. This means the key server
knows the relationship between the identity of Bob and Alice and their
shared private master key and public certificate.

3. After Bob knows the private master key Alice used. Bob validates the integrity of the
mail by recalculating the hash, with a hash algorithm[14], of the encrypted mail and
comparing it with the decrypted hash equipped with the encrypted mail. If they are the

13

same the integrity of the encrypted mail is still valid and is it safe for Bob to decrypt
the email with the private master key and the right private decrypter key.

2.3 The difference between Identity-Based Cryptography and
Public Key Infrastructure

With the section ”How does the RSA a-symmetric key cryptography model work?” is the
Public Key Infrastructure model explained as an example. This section is devoted to define
the difference in functionality and implementation of the Certificate-Based encryption model
which is based on the Identity-Based Cryptography model and the Public Key Infrastructure
model. Both cryptography models uses the RSA a-symmetric key cryptography model but
differ in the way the private master keys and the public certificate or key are generated and
implemented.

With Public Key Infrastructure the private master key is only known by the server and
is used to generate private keys for encryption which are dispatched to the clients by the
use of the Diffie-Helman(-Merkle) algorithm. The public certificate is only generated once
and is generated out of a complex identity (the name of the person who request the signing,
organization name, postmaster, etc.) of the server and out of a description for what the
certificate may be used (may it be used for signing, a date until the certificate is valid,
etc.)[20]. The public certificate should, if it is correct implemented, signed by a trusted third
party also called a Certificate Authority. The private key in combination with the signed
public certificate is used by the client to encrypt and sign e.g. a token which could only be
decrypted by the server. So with the Public Key Infrastructure model the public certificate
is the base of the cryptography model, it is what the client needs for confirming the identity
of a server.

With the Identity-Based Cryptography model the base of the cryptography model isn’t
only the public key but also the private master key and the identity of the destination, which
all are shared between the server and the client. Because of these values this Identity-Based
Cryptography model works without a cryptography initialisation fase between the client and
the server or a trusted third party which is required for the Public Key Infrastructure model.
This is possible for this Identity-Based Cryptography model because the private key, which
is generated from the private master key and the public key combined with the destination
identity can be generated by the client. This is everything that is needed to encrypt e.g. a
token and hash e.g. a token to ensure the integrity of an encrypted token.

So what does this say about Identity-Based Cryptography and Public Key Infrastructure:

• The Public Key Infrastructure model is based on public values or values that are publicly
available to encrypt e.g. tokens. This makes it possible for any client to joins the
model. The Identity-Based Cryptography model is based on only private values to
encrypt e.g. tokens. This means the user should have information over the identities in
the netwerk and should already be known by the netwerk. This concludes that Public
Key Infrastructure model can work with anonymous clients but the Identity-Based
Cryptography model can not.

• The Public Key Infrastructure model needs a Certificate Authority to prove the in-
tegrity of the public certificate so the client knows that the certificate is still valid
but this also gives a scalability problem which the Identity-Based Cryptography model

14

solves. Imagine that millions of clients want to access different servers with the Public
Key Infrastructure model with a single trusted Certificate Authority. This means that
millions of clients validating hundreds of servers their public certificates on a single
highly trusted Certificate Authority system is obviously an impossible task. So the
role of Certificate Authority is distributed over several systems with many duplicated
servers which have very tight policies on secrecy of the private master keys. So this is a
structural problem of the Public Key Infrastructure model. The Identity-Based Cryp-
tography model solves this problem by generating any needed values for encryption on
the client. This means that these values are instantly trusted like the identity based
public key and that’s why there is no need for a Certificate Authority which validates
these values. Which raises an issue for the Identity-Based Cryptography model: How
does the Identity-Based Cryptography model distribute the private master keys, the
public keys and identities to generate these public keys? It doesn’t the Identity-Based
Cryptography model expects from a network that every server and client has his own
identity and shared private master key and public certificate between the server and the
client.

• The Public Key Infrastructure model can simply invalidate a certificate by the use of
an invalidation list on the Certificate Authority. So when the client tries to validate
an invalidated certificate, the Certificate Authority invalidate the certificate and the
client can search for a new version of the public certificate. With the Identity-Based
Cryptography model the shared private master key and public key can be invalidated by
a request of the client, which then can update every server in the network which has the
identity of the client, but if several servers has the same private master key and public
certificate of the client it is a hard task to synchronize all the servers and would maybe
need an aggressive synchronization protocol. To let the client transparent connect to
every part of the network on the same way. The synchronizing of all servers could be
accelerated by the use of a highly trusted shared key server. If the server invalidates
the private master key and public key of the user. This means the client can’t login
anymore and should get a new private master key and public key for his identity if you
isn’t yet already informed.

• In the Public Key Infrastructure model the public certificates are very complex[20]
and needs to be signed by a Certificate Authority. This means that a normal client,
which most times have a variable address, will almost never want to be validated by
a Certificate Authority. So it is technically possible to generate a public certificate for
the server as well for the client to prove a two way authenticity but it is not likely
to implement such a scheme. With the Identity-Based Cryptography model all the
information to proof a two way authenticity is already on the client and on the server.
So the server and the client can decrypt and encrypt e.g. tokens because of the shared
private master key. So when the server gets an encrypted e.g. token from the client it
could, after decryption, send it encrypted back but then with the public key with the
identity of the client. If both succeed, the authenticity of both the client and server
is proven because both the identities have proven that they know each other identity,
public key and a private key.

15

2.4 The difference between Identity-Based Cryptography and
Kerberos

Kerberos[16] is a Single Sign On system, which means that the clients have to authenticate
only once to access several Service Servers with specific resources within a specific time
frame. Kerberos uses a symmetric key cryptography to negotiate a session key with the use
of a Ticket Granting Server. This Ticket Granting Server authenticates the client by using an
Authentication Server(1). This session key, called a Ticket Granting Ticket, is used to access
several Service Servers without direct authentication. The client uses the Ticket Granting
Ticket to request a session key for a specific service from the Ticket Granting Service(2) to
access the Service Server(3).

Figure 2.4: An abstract overview of kerberos.

The main differences between Kerberos and Identity-Based Cryptography is that there is
no initialization fase between the client and server with Identity-Based Cryptography. Also
Kerberos uses symmetric key cryptography which means that the password is send encrypted
over the network but because the client does not check the authenticity of the server. This
means the client could send his encrypted password to anyone. But also the integrity of each
message in the Kerberos system isn’t checked which means that any data that is send with the
Kerberos system can be manipulated or mutalated without the server or client even knows
it. Kerberos is obvious not a real concurrent on cryptography for both RSA a-symmetric
key cryptography models. Besides the lack of several security features Kerberos is a more
complete system then the RSA a-symmetric key cryptography models because Kerberos has a
build-in authentication, accounting and authorization system and the RSA a-symmetric key
cryptography model only an authentication model and a small authorization model in the
form of a public certificate.

16

2.5 The security of the Identity-Based Cryptography model

In this section the security of the Identity-Based Cryptography model is evaluated. It is
important to mention that any of the discussed issues are pure theoretical based on an abstract
model, which means that none of them are tested.

2.5.1 Identity length

It maybe looks like the length of the identity or the form changes the strength of the public key
but the identity is purely used to ensure e.g. the token is encrypted for the right destination.
So if the client is communicating with the wrong identity the identity could not decrypt e.g.
the token. The identity is mixed in the cryptography by combining it with the public key
which is a secure big random number created from two big prime numbers which also creates
the private master key.

2.5.2 The private (master) key generation

Generating the private (master) key is the weak point of the RSA a-symmetric key cryptog-
raphy model. The private master key should be a real big number which should be calculated
from two randomly chosen prime numbers[18]. Also the private key is generated by a ran-
dom number from the private master key. So the weak point is the way a random function
work. If a hacker could predict or guess the next random number a hacker could know the
next generated two prime numbers which generates the public key and the private master
key or the next private key. So these random values must be generated with great care and
the random functions have been optimized over the years that are used for creating these big
numbers[18].

2.5.3 The private key on the Certificate-Based Encryption system

The private key is based on a random number when e.g. a token is encrypted it can’t be
distributed with the initial setup of the network. But if this is sent decrypted with the
encrypted e.g. token it should be safe because from a single random number the data could
not be decrypted but ofcourse this should not be an option. The solution which several
Identity-Based Cryptography solutions use is using a Pairing Algorithm with a map[9]. The
pairing algorithm is implemented with a bilinear map which always return the same result of
two linear functions, which needs two numbers. The pairing algorithm ensures:

Pair(a×X, b× Y) ≡ Pair(b×X, a× Y) (2.7)

The Certificate-Based Encryption system uses this fact to exchange the private keys. First
the client encrypts and signs e.g. a token with a private key which is generated by using the
pairing algorithm:

privateKey = Pair(randomNumber×identityDestination, secret×randomEllipticCurveV alue)
(2.8)

Above there is a elliptic curve value. This value is a random number which points with the
private master key to the private key from the RSA algorithm. Described as: A co-prime

17

with the private master key which has a value between one and the private master key. Now
the encrypted and signed e.g. token is send to the destination identity with the product of:

additionalSendNumber = randomNumber × randomEllipticCurveV alue (2.9)

The destination server needs the privateKey to decrypt e.g. a token. This done by the pairing
algorithm:

Pair(randomNumber× identityDestination, secret× randomEllipticCurveV alue) (2.10)

is equivelant to

Pair(secret× identityDestination, randomNumber× randomEllipticCurveV alue) (2.11)

Since we have the randomNumber×randomEllipticCurveV alue answer the new formula is:

privateKey = Pair(secret× identityDestination, additionalSendNumber) (2.12)

This can be solved and then the private key is secure transferred from the client to the server.

2.5.4 Replay attack

The Identity-Based Cryptography model could be vulnerable for replay attacks. This attack
is based on intercepting data that has been send and re-sending the same data later all over
again. If a system works right this data will be ignored, but some systems will react on the
same data more then once. These are systems that are vulnerable for replay attacks. Maybe
an attacker can’t decrypt the message but he can mess up the system by resending previous
data. The replay attack is possible because the private keys of encrypted tokens maybe
used more then once because with the Identity-Based Cryptography model the private key
isn’t negotiated with the server as with the Public Key Infrastructure model with the Diffie-
Helman(-Merkle) algorithm. So sending more then once the encrypted e.g. token by a client
is accepted by the server because the client maybe used more then once the same private key.
This can be prevented by the so called nonce: Number Only used oNCE. This means that
every private key may only be used once within a certain time frame e.g. once per week. But
then after a week the attack could be completed. So also the identity must contain the week
number of the year. This works because the random number that is chosen to generate these
client private keys is so big that it is not likely that the same number is generated more then
once but if it happens it could be corrected by a graceful re-send command from the server
so the client can re-send e.g. the token with another private key.

2.5.5 The server invalidating a stolen private master key

Another issue of the Identity-Based Cryptography model is created when the server is invali-
dating a private master key because it has been stolen. If the client doesn’t know this it could
setup a conversation with a fake server who stole the private master key. So the fake server
can steal any information what the client sends or at least the first encrypted e.g. token
because after communicating with a real server the client will be informed of the invalidation.
This problem does not exist with Public Key Infrastructure because the public certificate is
first validated or invalidated, which forces the client to search for a valid public certificate
before sending an encrypted message.

18

Chapter 3

Implementation

This chapter evaluates the Identity-Based Cryptography solution of Voltage called Identity-
Based Encryption and a soution of the National University of Ireland in Maynooth called
Eyebee. Also a short experiment is done with the Eyebee solution.

3.1 Known Solutions

The known solutions Eyebee and Identity-Based Encryption are compared.

3.1.1 Eyebee

Eyebee[8] is a Java[3] based Identity-Based Cryptography library made in 2004 by the ”Com-
puter Security and Cryptography” research group of the computer science department of the
National University of Ireland which is located in Maynoot. Eyebee is build on the Java
Cryptography Extension (JCE) which is part of the standard Java[3] library since version 1.4
is located in the ”java.security” namespace. The version of the Eyebee library that is used
for this report is version 1.0.38. Eyebee is documented by the Javadoc webpages with the
downloadable library and the source code. Also their is a short implementation example on
the website of the research group. Besides the code there is no license described on the site.

3.1.2 Voltage IBE

The Voltage Identity-Based Cryptography[9] solution is a C library. It is a professional build
library which runs on Microsoft Windows and Linux. It has several technical, mathematical
and implementation related documentation on the website and it is easy to implement, by
several different interfaces and examples. Voltage also has been awarded by the National
Institute of Standards and Technology. On the website it is referred to as:

FIPS Certification: The Toolkit’s Cryptographic Module has been awarded FIPS
140-2 Level 1 certification by NIST. FIPS, the Federal Information Processing
Standards, are a set of standards created by the National Institute of Standards
and Technology to ensure correct implementation and interoperability of crypto-
graphic systems.

19

But Voltage has a very strict license e.g. the license gives Voltage the right to change the
license without notification to their customers also their product may only be used by uni-
versities in a test environment and may not be used by more than 50 clients, which may
not be concurrent, by the test environment. The license makes the Voltage Identity-Based
Cryptography solution unsuitable for the TBS-TVS project.

3.1.3 Comparing Voltage IBE and Eyebee

In this section Voltage IBE and Eyebee are compared. I described in the previous section that
Voltage IBE have a license that is not compatible with the TBS-TVS project. But because
Voltage have such a well developed solution it isn’t a bad idea to still compare it.

Compare Voltage IBE Eyebee
Hash Algorithms SHA-1 MD2, MD5 or SHA-1
for signing
Language C and C++ Java
Supported Windows and Linux Every OS that supports
Operating Systems Java 1.4 or higher.
RSA Library OpenSSL Java Cryptography Extension (JCE)
Identity-Based Certificate-Based Certificate-Based
Cryptography Encryption Encryption
implementation

3.2 Test Installation

As this report is a sub project of the TBS-TVS project and researches the Identity-Based
Cryptography model, a Java[3] class has been written which implements the Eyebee solution.

3.2.1 The token handeling and distribution model of the TBS-TVS project
using a shared secret

In this section is explained how currently the DES symmetric key cryptography in the TBS-
TVS project is implemented.

The TBS-TVS project which is a side project of the TBS-TVS project for developing
the Token Validation Service is devided in five namespaces within the Java[3] ”org.aaaarch”
namespace:

• config. This namespace has all the classes used for the key store, which is a local key
server to hold all token keys.

• crypto. This namespace has classes that encrypt and decrypt data with the DES sym-
metric key algorithm.

• signature. This namespace has classes that sign or check the signature of a XML[10]
document.

• utils. This namespace has all kind of tools wrapped in classes like converters for hex,
XML, datetime formats and IO methods for writing and reading files.

20

• gaaapi. This namespace exist out three namespaces:

– common. This namespace exists out of some static variables for the token system
and a standard id (number) generator.

– ticktok. This namespace is for creating, editing and reading tokens.
– tvs. This is the namespace for the Ticket Validation Service. This namespace

uses mostly the ticktock namespace to validate and manage XML[10] and binary
tokens.

Next the TBS-TVS project is further explained and the position of the Ticket Validation
Service within this system.

Figure 3.1: Components involved in complex resource provisioning and basic sequences (agent,
relay, and polling) of the TBS-TVS system

In figure 3.1 the abstract setup of component of the TBS-TVS project is shown. On the
left side an User Client wants to access the network to access a resource on the system at the
right side of the figure. To get to the right side the user needs to go thru one of the three
layers in the horizontal and diagonal direction. Horizontal there are three similar layers which
are three example domains within the TBS-TVS system with each:

• The AAA layer is the Authentication, Authorization, Accounting layer. This layer
knows which users should have access to the domain (Accounting), how these users must
prove who they are to the domain (Authentication) and what rights they have if they
prove their authenticity to the domain (Authorization). In the figure it is also defined
as DC which means a Domain Controller as implemented by the different operating
systems. The TBS-TVS system is implementing these models by two model components:

– PAP means Policy Authority Point. This is the component which decides which
users may login (Accounting) and how they must authenticate(Authentication).

21

– PDP means Policy Decision Point. This is the component which decides which
rights the client has, which are defined by several policies (Authorization).

• The NRPS layer is the Network Resource Provisioning System which gives a token
access to a resource or routes the token to a NPRS who can gives the token access to
the resource. The following components provide these services:

– PEP means Policy Enforcement Point which is a component that enforces a new
policy for a domain or a domain the token is forwarded to. This means that the
authorization of the token changes.

– TVS means Token Validation Service which is a component which validates a
token and gives a resource to the token or routes the token to a domain which has
the right resource.

• The NE layer exist out of Network Elements of the domain. This component could
be seen as the network infrastructure.

The Destination Host has three layers but should only be accessed by the middle layer. The
client shouldn’t get access to the Destination Host by the top layer because this means a
client logins on the Destination Host without being authenticated and authorizated by the
TBS-TVS system. The client also shouldn’t get access to the Destination Host by the bottom
layer because this means a client is on the same network as Destination Host and gets direct
access to a service of the host with only a partial view of the entire system e.g. a resource
could be disconnected of the TBS-TVS system or the TBS-TVS system has a task for the
Destination Host with a higher priority.

The DES symmetric key cryptography[12] is implemented in the TVS library (org.aaaarch.gaaapi.tvs)
by the main ”TVS” class. This uses a ”TokenBuilder” class to decrypt tokens by using
the ”TokenKey” class which uses a DES algorithm (org.aaaarch.crypto) and SHA-1 hashing
algorithm[14] (org.aaaarch.gaaapi.HMACprocessor) wrapper classes. The Token Validation
Service needs to decrypt the tokens to reservate the right resource or routes the token to the
right domain which has the right resource.

3.2.2 The token handeling and distribution model of the TBS-TVS project
using an Identity-Based Cryptography

In this section is explained how the Eyebee, Identity-Based Cryptography, solution works and
how this replaces the current symmetric key cryptography. The org.aaaarch.ibc namespace
is created for these new Eyebee Identity-Based Cryptography test and IBC class. The IBC
class have 6 methods:

• IBC. This is an initialization method. Without an argument the default SHA-1 hash
algorithm[14] is used else MD2 or MD5 can be chosen by a first ”String” argument.

• GenerateMasterKey. This method is used to generate the private master key.

• EncryptToken. This method is used to encrypt a token or any other byte array by 3
arguments: the private master key as BigInteger, the destination identity as String and
a Byte array for the data to encrypt.

22

• DecryptToken. This method is for decrypting a token or any other byte array by 3
arguments. the private master key as BigInteger, the destination identity as String and
a Byte array for the data to encrypt.

• ToXML. This method is for the TBS-TVS system. Since the Eyebee solution uses a
Java[3] object around the encrypted data and pairing algorithm variable. First these
variables needs to be extracted and then put in a XML structure to fit to the require-
ments of the TBS-TVS project.

• ToEncryptedToken. This method is for putting the XML data back into the Java[3]
Eyebee Object so the Eyebee library can decrypt the data.

Next the process of Identity-Based Cryptography is explained. But now with the Eyebee
implementation besides it. This shows how Eyebee implement Certificate-Based Encryption,
which is an implementation of Identity-Based Cryptography.

1. Setup the Eyebee Identity-Based Cryptography network. Before the client can
send encrypted e.g. tokens to the server the network needs to be setup. This means
for the Identity-Based Cryptography model that a private master key and identity is
created and distributed between the client and the server.

(a) Generating the private master key. Eyebee uses for generating the private
key a so called map, which is also used indirect for the private master keys. The
private master key gives the starting position in the map.

BigInteger masterKey = new BigInteger(map.getQ().bitLength() - 1, new
SecureRandom());

This code creates a big number, in Java so called BigInteger, from a random
randomly chosen row.

(b) Distribute the private master key between the client and the server The
client and the server needs this private master key to decrypt and encrypt e.g.
tokens which are send to each other. So the client or server will now distribute
this key after it is generated to the other party. This isn’t part of the Identity-
Based Cryptography model and also not a part of Eyebee solution but for now lets
imagine it has been send in an encrypted file by mail.

2. The client wants to encrypt a token and send it to the server. The clients wants
to encrypt a token. This means the client has to generate a public key and a private key
to encrypt and sign the token. For creating the keys a pairing algorithm is used with
a bilinear map as discussed in the section ”The private key on the Certificate-Based
Encryption system”.

(a) Generating the public key. The public key is generated from the private master
key by the use of the map and the identity of the server. Since the map in reality
is a complex mathematical function which goes beyond the scope of this document
it is enough to say that the map can also generate the public key by the private
master key. To generate a complete public key it is combined with the identity
of the destination. Since the identity of the destination is known by the client he
could input this e.g. ”token-server@uva.nl”.

23

IbeSystemParameters systemParameters = new IbeSystemParameters(map,
hash, masterKey);
IbeKeyParameters keyParameters = new IbeKeyParameters(hash, iden-
tity);
PublicKey publicKey = new IbePublicKey(keyParameters.getPublicKey()
);
cipher.init(Cipher.ENCRYPT MODE, publicKey, systemParameters, new
SecureRandom());

First the systemParameters are initialised: the map from where every key is gen-
erated, the hash function which is needed to sign an encrypted token and the
masterKey which gives the right row of private keys. Next the keyParameters is
given which is the identity of the destination which is hashed for making it more
variable then only keyboard-based characters and make it unreadable and unre-
solvable for people on the network who should not know to easy for which identity
a token is encrypted. Next the publicKey is generated: the hashed identity. On
the last line the cipher is initialized. The publicKey, map and private masterKey
are used to create the final public key based on the identity of the destination.

(b) Generating the private key. Before the token could be encrypted a private key
is needed. This generated by choosing one from the map of the row of the master
key. So a random number combined with the master key points to a private key
in the map.

IbeSystemParameters systemParameters = new IbeSystemParameters(map,
hash, masterKey);
cipher.init(Cipher.ENCRYPT MODE, publicKey, systemParameters, new
SecureRandom());

Selecting a private key in the map is done by Eyebee by the systemParameters
which has the map and private masterKey. The systemParameters is called by the
initialization of the cipher with a secure random number.

(c) Encrypt the token Now the client can securely send the server the token after
encrypting it.

cipher.init(Cipher.ENCRYPT MODE, publicKey, systemParameters, new
SecureRandom());
encryptedToken = cipher.doFinal(token);

The function ”dofinal” seams strange but since Eyebee is build on a Java based
cryptography frameworks which supports algorithms which supports multiply blocks
it is needed to inherent these functions. Since Identity-Based Cryptography doesn’t
has multiply block support it is created with a single encryption or decryption step
which uses the mathematical procedure with the private key and public key de-
scribed by the section ”How does the RSA a-symmetric key cryptography model
work?”. The result is a byte array which is safe to send over the network to the
server.

3. The server recieved the encrypted token and decrypts it.

(a) Generating the public key. The server generates the public key by the desti-
nation identity, the private master key and the map as done by the client. The

24

destination identity is still the same identity: the server his own identity.

IbeSystemParameters systemParameters = new IbeSystemParameters(map,
hash, masterKey);
IbeKeyParameters keyParameters = new IbeKeyParameters(hash, iden-
tity, masterKey, map);
kpg.initialize(keyParameters);
KeyPair keyPair = kpg.generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();

The public key is generated from the private masterkey, map and the identity of the
destination. The masterkey and map is retrieved from the systemParameters. The
identity is retrieved from the private key from the pairing function. The private
key of the pairing function is based on the product of the private master key and
the identity the identity can be resolved since the private master key is known.
Now the public key can be created.

(b) Generating the private key. The private key which the client used can be
resolved by using the pairing algorithm with the encrypted token. To retrieve the
private key from the encrypted token the identity of the destination and the shared
secret is used. The shared secret is the private master key because this is the only
private value which is shared by the client and the server.

IbeKeyParameters keyParameters = new IbeKeyParameters(hash, iden-
tity, masterKey, map);
kpg.initialize(keyParameters);
KeyPair keyPair = kpg.generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();

The private key is resolved by the pairing key function from the encrypted token.
On the second and third line a kpg (Key Pair Generator) creates the keypair of
the product of the private masterkey and the identity of the server which can be
both found in the keyParameters and the number that has been send with the
encrypted token. With this keypair the private key is calculated by the use of the
map.

(c) Decrypting the token. Now the private key is known which the client used and
the private decryption key can be calculated. With this private decrypter key and
the public key the server can decrypt the token.

cipher.init(Cipher.DECRYPT MODE, privateKey, systemParameters);
token = cipher.doFinal(encryptedToken);

The cipher uses the systemParameters and pairing function to generate the public
key. Also the cipher uses the privateKey and the private master key from the sys-
temParameters to generate a private decryption key. Then the private decryption
key and public key are used by the cipher ”doFinal” method to decrypt the token
and return it to the server.

25

Chapter 4

Experiment and Evaluation

Now the Eyebee solution is explained a short experiment is held to see if the output of the
Eyebee solution is fits the code. How it is explained.

4.1 Experiment description

A test class is created to see if the output created by Eyebee fits the code. The test class
exists out of a simple sequence of generating the private master key, encrypting the text
”Test Token Key #1” to identity ”Rudy.Borgstede@gmail.com” and the private master key
and then the encrypted message is again decrypted with the identity and the private master
key. The most important information is extracted on different points of the process: The
input string, the identity, the private master key, the public key and the private key.

4.1.1 Output

4.2 Evaluation of the experiment

As evaluation of the experiment the output of the values of the extracted information are
shown and explained. Also a short section is devoted to the performance of the test program.

4.2.1 Output

For this report the ouput is structured and only shown once per item since e.g. the private
master key did not change for encryption and decryption.

• Input: Test Token key #1

• Identity: Rudy.Borgstede@gmail.com and hashed with SHA-1:

95 6d 74 25 69 46 a5 d0
81 14 75 e3 f9 4f 0e 83

• Private Master Key:

7c 01 fc 3e 86 c6 cf 51
60 c5 d5 95 52 1a c4 5f
c1 5e 7d bb 5e 06 6d 19

26

Figure 4.1: A screenshot of the IBM Eclipse Java Development Environment with the test
output.

• Public Key with identity:

03 26 0e 4b 97 9a cb dd
b7 9a 57 b7 29 3b cb 26
69 9e c9 75 55 9b e7 45
f9 7a f1 d1 cb 8c 04 1e
cb 13 9e 7e 38 99 8b 27
16 c3 a4 8f e6 89 bb ae
52 f9 1f a1 29 bc 20 9b
49 31 da b8 91 a7 8e 4c

• Private Key:

02 a7 86 92 99 d3 61 64
bc f7 17 4c 32 14 64 c1
4c 50 ee 8c 72 2f 1b 07
f5 5f 9c 10 79 5f 82 6f
46 45 1e cf 53 cc ef 51
f6 25 58 19 90 ae 57 1f
fc 87 65 cf ec 81 40 db
24 ce 3b e8 a0 7c 39 a7

4.2.2 Performance

As the Identity-Based Cryptography Eyebee solution is writen in Java[3] the performance
isn’t really good. It takes over a second to encrypt and decrypt a test message with a modern
macintosh which should be considered to slow for a production environment.

27

Chapter 5

Conclusion

In this chapter an opinion is given about the usefullness of the Identity-Based Cryptography
model and the usefullness of the cryptography model for the TBS-TVS project.

5.1 Is Identity-Based Cryptography usefull?

The modern Identity-Based Cryptography model like Certificate-Based Encryption is very
usefull because it gives the client the possibility to send encrypted information without show-
ing almost any information about the cryptography process to the network. The Identity-
Based Cryptography model doesn’t replaces the Public Key Cryptography model but rather
completes it because the Public Key Cryptography model only (without dismissing private
keys) supports anonymous clients while the Identity-Based Cryptography model only supports
non-anonymous clients. The use of these two models gives a client the possibility to com-
plete secure communicate between the client and the server on a personalized way, because
anonymous is also an identity.

5.2 Is Identity-Based Cryptography usefull for the TBS-TVS
project?

The Identity-Based Cryptography model is a good solution for the TBS-TVS project because
it gives a high level of security from a fast setup that does not voilate the boundries of
the Local Area Network. This means for the TBS-TVS project that resources and domains
could be reasonably fast connected to the network and disconnected on a secure way and
that domains could be setup without extensive and expensive configurations like with the
Public Key Infrastructure model. The Eyebee solution that has been tested could not be
used for TBS-TVS project because it hasn’t got enough performance to work in a production
environment. So other Identity-Based Cryptography solutions must be researched which have
a high performance library.

28

Chapter 6

Further research

In this chapter subject are discussed which should be further researched.

6.1 Standarization

The Identity-Based Cryptography model is not yet a standard, even not the model of Adi
Shamir, because it is implemented differently by every Identity-Based Cryptography system.
The Identity-Based Cryptography model just isn’t mature enough to be used in a production
environment. It needs to be further researched when it is mature enough to use in a production
environment.

6.2 Scalability

The Identity-Based Cryptography model works in a test environment and small systems but
it is not tested in a big environment. So the Identity-Based Cryptography model must be
tested for scalability in different challenging environments.

6.2.1 Key Server

A scalability issue that needs to be researched is the distribution of the keys and the identities
on the network. But also the availability of the keys for any identity on the network because
for big (server) systems the keys should be shared by a secure network database, but normal
clients will only want a small and fast local key store. This isn’t defined by the cryptography
model.

6.2.2 Performance

The performance of the Identity-Based Cryptography model must be extensively researched
and tested. Performance in the sence of the number of clients that can be served by a single
Ghz and how stable the model is. This is needed for implementing the model on systems
with a big number of participents and for creating a business model for the Identity-Based
Cryptography model.

29

6.3 Security

The security of the Identity-Based Cryptography model should not be a problem because
when the cryptography of the model is still based on the RSA a-symmetric key cryptography
it could use the vurnabilities fixes of other RSA a-symmetric key cryptography models and
systems e.g. the mature Public Key Infrastructure model. Besides looking at other systemsm
and models the security of the cryptography model should still be tested and evaluated.

6.4 P2P

Routing the tokens within a domain is hard to do without decrypting them. Which means
that optimizing the route is really optimizing the TBS-TVS system e.g. choosing identities
which says something about the address could give a domain hints to optimize the token.
To maybe further optimize this routing of tokens P2P(Peer to Peer) could be used, since the
network infrastructure should not change much. This means that routes that are used much
could be autonomous be highly optimized.

30

Chapter 7

Appendix

• Bibliography

• Planning

• Log

• Project description

31

Bibliography

[1] C. de Laat. Research project 1 presentation, januari 2008. Available from: http://
staff.science.uva.nl/~delaat/talks/CdL-2007-10-02.pdf [cited 26 januari 2008].

[2] Y. Demchenko. Aaauthreach, januari 2008. Available from: http://uazone.org/demch/
projects/aaauthreach/index.html [cited 16 januari 2008].

[3] sun Microsystem. Sun java, januari 2008. Available from: http://java.sun.com/ [cited
16 januari 2008].

[4] Surfnet. Public key infrastructure, januari 2008. Available from: http://aaa.surfnet.
nl/info/pki/home.jsp [cited 16 januari 2008].

[5] university of Amsterdam. Network description language, januari 2008. Available from:
http://www.science.uva.nl/research/sne/ndl [cited 16 januari 2008].

[6] university of Amsterdam. Os3, januari 2008. Available from: http://www.os3.nl [cited
24 januari 2008].

[7] university of Amsterdam. Universiteit of amsterdam, januari 2008. Available from:
http://www.uva.nl [cited 24 januari 2008].

[8] university of Ireland. Eyebee identity-based cryptography, januari 2008. Available from:
http://www.crypto.cs.nuim.ie/software/eyebee/ [cited 16 januari 2008].

[9] Voltage. Identity-based encryption, januari 2008. Available from: http://www.voltage.
com/ibe_dev/ [cited 16 januari 2008].

[10] Wikipedia. Xml. Available from: http://en.wikipedia.org/wiki/Xml [cited 24 januari
2008].

[11] Wikipedia. Certificate-based encryption, januari 2008. Available from: http://en.
wikipedia.org/wiki/Certificate-based_encryption [cited 27 januari 2008].

[12] Wikipedia. Des, januari 2008. Available from: http://en.wikipedia.org/wiki/Data_
Encryption_Standard [cited 16 januari 2008].

[13] Wikipedia. Euler’s totient, januari 2008. Available from: http://en.wikipedia.org/
wiki/Totient [cited 24 januari 2008].

[14] Wikipedia. Hash, januari 2008. Available from: http://en.wikipedia.org/wiki/
Cryptographic_hash_function [cited 25 januari 2008].

32

http://staff.science.uva.nl/~delaat/talks/CdL-2007-10-02.pdf
http://staff.science.uva.nl/~delaat/talks/CdL-2007-10-02.pdf
http://uazone.org/demch/projects/aaauthreach/index.html
http://uazone.org/demch/projects/aaauthreach/index.html
http://java.sun.com/
http://aaa.surfnet.nl/info/pki/home.jsp
http://aaa.surfnet.nl/info/pki/home.jsp
http://www.science.uva.nl/research/sne/ndl
http://www.os3.nl
http://www.uva.nl
http://www.crypto.cs.nuim.ie/software/eyebee/
http://www.voltage.com/ibe_dev/
http://www.voltage.com/ibe_dev/
http://en.wikipedia.org/wiki/Xml
http://en.wikipedia.org/wiki/Certificate-based_encryption
http://en.wikipedia.org/wiki/Certificate-based_encryption
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Totient
http://en.wikipedia.org/wiki/Totient
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function

[15] Wikipedia. Identity-based cryptography, januari 2008. Available from: http://en.
wikipedia.org/wiki/Identity_based_encryption [cited 27 januari 2008].

[16] Wikipedia. Kerberos, januari 2008. Available from: http://en.wikipedia.org/wiki/
Kerberos_(protocol) [cited 16 januari 2008].

[17] Wikipedia. Key escrow, januari 2008. Available from: http://en.wikipedia.org/
wiki/Key_escrow [cited 27 januari 2008].

[18] Wikipedia. Rsa, januari 2008. Available from: http://en.wikipedia.org/wiki/Rsa
[cited 24 januari 2008].

[19] Wikipedia. Security token, januari 2008. Available from: http://en.wikipedia.org/
wiki/Security_token [cited 16 januari 2008].

[20] Wikipedia. X.509, januari 2008. Available from: http://en.wikipedia.org/wiki/X.
509 [cited 26 januari 2008].

33

http://en.wikipedia.org/wiki/Identity_based_encryption
http://en.wikipedia.org/wiki/Identity_based_encryption
http://en.wikipedia.org/wiki/Kerberos_(protocol)
http://en.wikipedia.org/wiki/Kerberos_(protocol)
http://en.wikipedia.org/wiki/Key_escrow
http://en.wikipedia.org/wiki/Key_escrow
http://en.wikipedia.org/wiki/Rsa
http://en.wikipedia.org/wiki/Security_token
http://en.wikipedia.org/wiki/Security_token
http://en.wikipedia.org/wiki/X.509
http://en.wikipedia.org/wiki/X.509

Planning

Week 0 - Before the start of the project

• Make the project description

• Study the Java TBS-TVS project

• Learn more about Identity-Based Cryptography

• Find Java Identity-Based Cryptography implementations

Week 1 - 7 January 2008

• Make a test implementation of the found Identity-Based Cryptography solution for the
TBS-TVS project

• Finalize the planning and mail it to Yuri Demchenko and Cees de Laat on 11 January
2008

Week 2 - 14 January 2008

• Evaluate the Identity-Based Cryptography implementation

• Identity-Based Cryptography experiment on the TBS-TVS project

Week 3 - 21 January 2008

• Evaluate experiment

• Make report

Week 4 - 28 January 2008

• Evaluation report

• Finishing report before 4 February and sent to Cees de Laat and Yuri Demchenko

• Make presentation and evaluate

Week 5 - 4 February 2008

• Presentation on the 6th of February 20081

1At the CWI on the kruislaan in the auditorium Z009

34

Log

5 december 2007 First appointment with Yuri Demchenko at
the science park of Amsterdam

25/26 december 2007 Reading Identity-Based Cryptography information that I got
from Yuri Demchenko.

27 december 2007 Make a appointment with Yuri Demchenko by mail.
Getting feedback on some questions about the TBS-TVS project and
the concept of Identity-Based Cryptography

2 January 2008 Studied the websites that Yuri Demchenko send me by mail.
3 January 2008 Appointment Yuri Demchenko at the science park of Amsterdam.

Discussing direction of the project: Identity-Based Cryptography.
5 January 2008 Start of the report by documenting the previous discussed

planning and making a basic setup for the report.
9 January 2008 Reading the Identity-Based Cryptography documentation given

by Yuri and finding Java Identity-Based Cryptography implementations
and reading their information.

10 January 2008 Creating Java code for the Identity-Based
Cryptography implementation. Based on the eyebee project.

11 January 2008 Creating testcode for the made Identity-Based
Cryptography Java class. Optimizing the made Java
class of the eyebee implementation. Send Cees de Laat a copy
of my planning.

13 January 2008 Mailed Yuri Demchenko for a new appointment.
14 January 2008 Updating the log.
15 January 2008 Appointment with Yuri Demchenko. Updating the report structure.
16 January 2008 Creating chapters 1 and 2.1 of the report.
17 January 2008 Evaluated the report and finished

chapters 1 until 2.3 of the report.
18 January 2008 Writing chapters 1 and 2.

Email Yuri Demchenko the status of the report.
19 January 2008 A fast evaluation of the report.
20 January 2008 Making a new appointment with Yuri Demchenko.

Checking the spelling and the correctness of the report.
Updating the log.

21 January 2008 Checking the spelling of the report by a third person.
Report version 0.1.

22 January 2008 Appointment with Yuri Demchenko.
Got some changes for the report.

23 and 24 January 2008 Creating chapter 3 and moving the
Identity Based-Cryptography code to the
right namespace.

25 January 2008 Checking the logic and spelling of the report.
Finish report until chapter 2.

26 January 2008 Finished report until chapter 3.2
27 and 28 January 2008 Created a draft of the rapport except

for chapter 4. Report version 0.2.
29 January 2008 Appointment Yuri Demchenko.
30 January 2008 Wrote a section about the Pairing Algorithm

and did a final spelling check. Report version 0.3.

35

31 January 2008 Final appointment with Yuri Demchenko.
1 February 2008 Created final draft of the total report version 0.4.
4 February 2008 Fix the last faults. By the comments

of Yuri Demchenko

36

Project description

Project as described on the original project site2:

9 Security model for hybrid token-based networking models.
The Token Based Networking (TBN) is based on using security token (both binary
and XML) for controlling user access to the reserved network resources. The TBN
allows separating the reservation and authorisation stage (that is typically complex
and slow) and access or consumption stage. The project will research different
token based access control models for hybrid/combined GMPLS and RSVP based
networks that may use binary or XML tokens. The project will investigate two
basic models for token and token key generation: with the shared secret (SC) and
using Identity-Based Cryptography (Identity-Based Cryptography). Additionally,
the project will look at the security issues with the generation and distribution
of tokens and token keys. Proposed solution will be modeled as a special Token
Validation Service (TVS) that is considered as a pluggable component to major
Network Resource Provisioning Systems (NRPS) to enable TBN functionality.
Yuri Demchenko

2http://staff.science.uva.nl/~delaat/sne-2007-2008/index.html

37

http://staff.science.uva.nl/~delaat/sne-2007-2008/index.html

	1 Introduction
	1.1 Use Case
	1.1.1 Server-Based Identity
	1.1.2 User-Based or Service-Based Identity

	2 Identity-Based Cryptography Basics
	2.1 How does the RSA a-symmetric key cryptography model work?
	2.2 How does the Identity-Based Cryptography model work?
	2.3 The difference between Identity-Based Cryptography and Public Key Infrastructure
	2.4 The difference between Identity-Based Cryptography and Kerberos
	2.5 The security of the Identity-Based Cryptography model
	2.5.1 Identity length
	2.5.2 The private (master) key generation
	2.5.3 The private key on the Certificate-Based Encryption system
	2.5.4 Replay attack
	2.5.5 The server invalidating a stolen private master key

	3 Implementation
	3.1 Known Solutions
	3.1.1 Eyebee
	3.1.2 Voltage IBE
	3.1.3 Comparing Voltage IBE and Eyebee

	3.2 Test Installation
	3.2.1 The token handeling and distribution model of the TBS-TVS project using a shared secret
	3.2.2 The token handeling and distribution model of the TBS-TVS project using an Identity-Based Cryptography

	4 Experiment and Evaluation
	4.1 Experiment description
	4.1.1 Output

	4.2 Evaluation of the experiment
	4.2.1 Output
	4.2.2 Performance

	5 Conclusion
	5.1 Is Identity-Based Cryptography usefull?
	5.2 Is Identity-Based Cryptography usefull for the TBS-TVS project?

	6 Further research
	6.1 Standarization
	6.2 Scalability
	6.2.1 Key Server
	6.2.2 Performance

	6.3 Security
	6.4 P2P

	7 Appendix

