
.

GNU Radio
Wireless protocol analysis approach

Author:
Alex Verduin

Supervisors:
Maurits van der Schee

Karst Koymans

October 26, 2008

Final version

Master program System and Network Engineering

Abstract

This paper describes how GNU Radio software combined with the
Universal Software Radio Peripheral (USRP) can be used to perform a
wireless protocol analysis. GNU Radio and the USRP are an implemen-
tation of software defined radio (SDR). The design principle behind SDR
is to bring the software as near to the radio antenna as possible, and to
do most of the signal processing in software.

This research consists out of two phases. The first phase contains a
literature study about the working and design of the USRP and GNU
Radio. The second phase consist out of practical work which delivers
an general approach, used to perform a wireless protocol analysis. This
approach is structured in steps.

The first step of the approach begins with understanding the work-
ing of SDR and the GNU Radio software with the USRP. The second
step involves setting up the test system. Analysing the protocol specifica-
tions and retrieve protocol specific parameters like the used frequency and
modulation technique, is the next step. Derived from the protocol speci-
fications, a flow graph can be created. The flow graph is a representation
of the radio, connecting the signal process blocks together.

The following steps involve translating the flow graph to Python and
C++ code and to capture sample data. The capture of sample data is
very useful in a protocol analysis. This gives the opportunity to replay
the sample and to fulfil analyses on different levels of the protocol and
to correlate them. The last step describes how the gathered data can be
analysed and could be interpreted.

As example protocol to demonstrate the general approach, this re-
search involved analysing the Radio Data System (RDS) protocol. RDS
is used to broadcast radio station information and for example, artist/song
information next to the FM broadcast.

1

1 Acknowledgement

I would like to thank both supervisors for their assistance and information during
my research. I also would like to thank Dawei Shen [48] for writing such an
excellent explanation about creating signal processing blocks. His article gave
me a very good insight in how signal blocks are constructed and work.

2

Contents

1 Acknowledgement 2

2 Introduction 4
2.1 Structure . 4
2.2 Research question . 5
2.3 Scope . 5
2.4 Related Work . 5

3 Dataflow in USRP hardware and GNU Radio software 7
3.1 SDR basics . 7
3.2 USRP . 8

3.2.1 USB 2.0 Controller . 9
3.2.2 ADC (Analog to Digital Converter) 9
3.2.3 DAC (Digital to Analog Converter) 10
3.2.4 PGA(Programmable Gain Amplifier) 10
3.2.5 Daughterboards . 10
3.2.6 FPGA (Field Programmable Gate Array) 11

3.3 GNU Radio . 12
3.3.1 GNU Radio Companion 12
3.3.2 Python . 12
3.3.3 C++ . 15

3.4 Example projects . 15

4 Wireless protocol analysis approach 16
4.1 Understand the design of the USRP and GNU Radio 16
4.2 Installing, configuring and code examples 16
4.3 Study protocol specification and search for existing code 17
4.4 Create flow graph . 18
4.5 Capture raw wireless samples . 19
4.6 Create the C++ and Python code 20
4.7 Analyse the protocol . 20

5 Considerations 33

6 Conclusion 33

7 Future Work 33

8 Bibliography 35

9 Appendix 38
9.1 GNU Radio installation . 38
9.2 GRC Dial Tone . 39
9.3 RDS Capture . 39
9.4 RDS Sample converter . 40
9.5 RDS Decode application . 40
9.6 Example C++ code . 42

3

2 Introduction

Wireless protocols, like WiFi [35] or Bluetooth [4] are being used more and
more. These protocols are mostly implemented into firmware [12] or hardware.
This makes it difficult for system and network engineers to analyse the pro-
tocol on the lowest level. For this purpose it would be interesting to receive
raw wireless traffic. This could be achieved by using a Software Defined Ra-
dio (SDR) [27]. With a software defined radio it is possible to modulate and
demodulate the radio signal in software.

An implementation of SDR could be GNU Radio [42] in combination with
Universal Software Radio Peripheral (USRP) [43]. The USRP hardware device
is used to digitalize the received analog radio signal, so it can be imported into
a computer. On the computer it is possible to build your own radio receiver
or transmitter by the use of GNU Radio software. This creates the flexibility
to build almost every kind of receiver or transmitter in software. There are of
course limitations, for example performance.

In this paper is argued that GNU Radio in combination with the USRP is
a useful tool in the work field of a System and Network Engineer. The System
and Network Engineer could use the tool to analyse wireless protocols. The goal
of this research project is to investigate what approach should be followed to
use GNU Radio in combination with the USRP in a wireless protocol analysis.
This approach is explained by an example of an analysis of a well known and
documented protocol, namely the Radio Data System (RDS) [41]. RDS is a
wireless protocol standard for sending small amounts of digital information using
FM radio broadcasts. The RDS system transmit several types of information
like track/artist info and station identification. The standard is maintained by
the European Broadcasting Union [11].

2.1 Structure

This research is conducted into two phases. The first phase is a literature study
about SDR (Software Defined Radio), the working of GNU Radio and the USRP.
The result of the literature study is described in paragraph 2.4 combined with
chapter 3. This study is essential to fully understand how to use the approach,
defined in chapter 4.

The second phase describes the results of the practical work. In this phase
an approach is proposed to perform a wireless protocol analysis. This is done
by setting up a system with GNU radio and the USRP to perform a protocol
analysis on a simple protocol, namely RDS.

The approach, described in chapter 4, consist out of a number of steps which
will guide you to perform a protocol analysis. The steps defined in the approach
are illustrated with examples of the RDS protocol, because the RDS protocol
is analysed to create this approach. Even though RDS is a simple protocol this
approach can also be used to perform more complex wireless protocol analysis.

The document finishes with the considerations, conclusions and future work.
Installation instructions and the created source code can be found in the ap-
pendix.

4

2.2 Research question

The research question is formulated as follows:

”How can a system and network engineer use the USRP and
GNU Radio to fulfil a wireless protocol analysis?”

Derived from the research question, the following sub questions are defined:

• How does the USRP work?

• What are the limitations of the USRP and GNU Radio?

• How difficult is it to write your own code?

• What kind of approach should be followed in a protocol analysis?

• Which prior knowledge is required to use GNU Radio in a protocol anal-
ysis?

The above questions result in a clear view of the possibilities and limitations
of GNU Radio and an approach to use GNU radio in a wireless protocol analysis.
The research is split into two phases. The first is a literature study and the
second phase consist out of practical work.

2.3 Scope

The scope of the project is to create an approach that can be followed to use
Software Defined Radio in a wireless network analysis. This approach is il-
lustrated with an analysis of an example protocol, namely RDS. The defined
approach is generally defined. This means that the created approach also can
be used for more complicated protocols.

2.4 Related Work

In [46] David A. Scaperoth describes the results of his research in which he uses
GNU Radio as an Cognitive Radio. This research showed me that SDR can be
used to configure a flexible radio platform with use of GNU Radio. The research
also describes some limitations of the USRP, like the used USB connection and
the calculation power needed on the host to process the signal.

Philip Balister and Jeffrey H. Reed describes in [38] the results of their
research to use USRP in common software architectures for the Joint Tactical
Radio System. This report helped me to understand the working of the USRP.

In [52] Kalen Watermeyer describes a design for a hardware platform for
SDR that must be compatible with GNU Radio software. This demonstrates
that GNU Radio software can be used with different kind of hardware peripheral
and is not bound to the USRP.

Zang Li, Wenyuan Xu, Rob Miller and Wade Trappe from the state univer-
sity of New Jersey describes in [53] how GNU Radio and the USRP can be
used in experiments to secure wireless networks. This paper showed me that
GNU Radio with the USRP is a good tool to perform prototyping of wireless
protocols.

In [47] Thomas Schmid, Oussama Sekkat and Mani B. Srivastava describe
their conducted research to the network performance impact of increased latency

5

in Software Defined Radios. They focused in their research on GNU Radio and
the USRP. This research gives a clear view of the bad performance of SDR
compared to dedicated radio, which is a limitation.

Lee K. Patton describes in [45] how GNU Radio and the USRP can be imple-
mented to create a software defined radar. This research shows the limitations
in performance and the synchronisation between the send and receive path.

In [40] Prateek Mohan Dayal describes the method of quadrature sampling
used in the USRP. The understanding of quadrature sampling is not essential
knowledge needed to use GNU Radio with the USRP, but it gave me a clearer
view of how the sampling works with GNU Radio and the USRP.

Dominic Spill and Andrea Bittau of the University College London Describes
in [49] how they used GNU Radio to perform eavesdropping on the Bluetooth
protocol. This researched shows how GNU Radio with the USRP can be imple-
mented to sniff wireless traffic. Their way of creating a set-up was inspiring for
my research.

Ketan Mandke describes in [44] the early results of the research done at
Hydra: A Flexible MAC/PHY Multihop Testbed. This research proves that
GNU Radio with the USRP is flexible and well suited to create different kind
of radios. This research showed me that GNU Radio can be used as a test bed
for different protocols. This proved to me that it is possible to fulfil a wireless
protocol analysis with GNU Radio and the USRP on different protocols.

Stefan Valentin, Holger von Malm and Holger Karl from the University of
Paderborn describe in this [51] [50]two papers how to create a wireless network
test bed and how to implement a physical and data-link control layer with GNU
Radio software defined radio platform. The research described in [51] contains a
performance test which shows that GNU Radio with the USRP is not suited for
protocols that have data rates in the mega bits domain. The paper [50] gives a
good explanation of how wireless protocols are constructed, and discusses some
simple examples which helped to understand GNU Radio and the USRP.

6

3 Dataflow in USRP hardware and GNU Radio
software

The USRP is the hardware element that combined with software tool kit GNU
Radio is an implementation of SDR [27]. This section describes the flow of
data though the USRP hardware and GNU Radio software. Before the specific
details of the USRP [43] hardware and GNU Radio software are discussed, first
some basics of SDR are described, because SDR is the design principle behind
GNU Radio and the USRP

3.1 SDR basics

The design principle, shown in figure 1, is to bring the software code as near to
the radio antenna as possible. This is achieved by using hardware that translates
radio waves [23] to a data stream a computer can handle. The hardware should
be transparent, from the view of the software.

Figure 1: SDR design principle

A good definition of Software Defined Radio can be found on the SDR Forum
[28]. The definition is stated as follows:

”Radio in which some or all of the physical layer functions are Soft-
ware Defined.”

In above definition, the physical layer is by the SDR Forum defined as fol-
lows:

”The layer within the wireless protocol in which processing of RF(Radio
frequency), IF(intermediate frequency), or base-band signals includ-

7

ing channel coding occurs. It is the lowest layer of the ISO 7-layer
model as adapted for wireless transmission and reception.”

3.2 USRP

Wireless communication makes use of electromagnetic waves as a medium be-
tween nodes. Electromagnetic waves are characterized by frequency and ampli-
tude [23]. This is shown in figure 2. The frequency is the number of waves
per second. So a frequency of 101 MHz corresponds with 101.000.000 waves
in one second. The amplitude is the maximum deviation of the wave from the
centre. Wireless communication can use high frequencies to communicate. To
sample and transfer those high frequencies the SDR implementation must use
down converting which will be discussed in 3.2.6.

The USRP is used to create the connection between the RF-world (radio
frequent [24]) and the computer (See figure 3). It takes the input of the antenna
which receives radio waves and digitalizes those. The USRP must do as little
as possible and only digitalize the signal and deliver it to the computer where
all the calculations can be done in software.

Figure 2: Radio wave. Source: [50]

To use the USRP in a wireless project it is necessary to know what compo-
nents are used inside the USRP and what their functions are. This knowledge is
necessary to understand to perform a wireless protocol analysis. GNU Radio is
an open source project, the schematics of the USRP are also freely obtainable.
The USRP is constructed out of the different components, which are described
in detailed below:

• USB Controller

• ADC (Analog to Digital Converter)

• DAC (Digital to Analog Converter)

• PGA(Programmable Gain Amplifier)

• Daughterboards

• FPGA (Field Programmable Gate Array)

8

Figure 3: SDR hardware

3.2.1 USB 2.0 Controller

USB is used to connect the USRP to the computer as described in this quote
from [34]. The FPGA will be described in paragraph 3.2.6.

”The FPGA, in turn, connects to a USB2 interface chip, the Cy-
press FX2, and on to the computer. The USRP connects to the
computer via a high speed USB2 interface only, and will not work
with USB1.1.”

As you can see the USRP only works with USB 2.0. In [33] can be found that
this delivers a data throughput of maximal 32 MB/sec. The USB connection
has a serious impact on the performance. This is researched in [47]. There is
stated that the latency is on average 41.33 µsec. Also the data throughput can
be a limitation like discussed in [18] were is tried to receive HDTV.

3.2.2 ADC (Analog to Digital Converter)

The analog to digital converter (ADC) has the function to digitize analog signals.
This is used on the USRP to receive radio signals. The following quote from
[1] shows the technical specifications:

”There are 4 high-speed 12-bit AD converters. The sampling rate
is 64M samples per second. In principle, it could digitize a band as
wide as 32MHz”

The quote above also illustrates a limitation, because it is not possible to receive
signals without any loss in a bigger bandwidth then 32 Mhz. The 32 Mhz is
calculated by the use of the Nyquist theorem [19].

9

3.2.3 DAC (Digital to Analog Converter)

The digital to analog converter, converts a digital constructed signal to an analog
signal. This is used in the USRP to transmit a analog radio signal. This quote
from [6] shows the technical specifications:

”At the transmitting path, there are also 4 high-speed 14-bit DA
converters. The DAC clock frequency is 128 MS/s, so Nyquist fre-
quency is 64MHz. However, we will probably want to stay below it
to make filtering easier. A useful output frequency range is from DC
(Direct Current)to about 44MHz.”

The above quote also describes a limitation. For transmission it is not pos-
sible to send signals without loss above the 44MHz bandwidth. An explanation
of Nyquist can be found in [19]

3.2.4 PGA(Programmable Gain Amplifier)

In the receive path, the programmable gain amplifier amplifies the received
signal. This quote from [20] describes the function of the PGA:

”There is a programmable gain amplifier (PGA) before the ADCs
to amplify the input signal to utilize the entire input range of the
ADCs, in case the signal is weak. The PGA is up to 20dB”

3.2.5 Daughterboards

Daughterboards make it possible to use the USRP in different frequency spec-
trum’s. This is, because there are are other physically RF components needed
to receive different frequency spectrum’s. In [43] the follow description about
daughterboards is given :

”On the mother board there are four slots, where you can plug in up
to 2 RX basic daughterboards and 2 TX basic daughterboards or 2
RFX boards. The daughterboards are used to hold the RF receiver
interface or tuner and the RF transmitter. There are slots for 2
TX daughterboards, labeled TXA and TXB, and 2 corresponding
RX daughterboards, RXA and RXB. Each daughterboard slot has
access to 2 of the 4 high-speed AD / DA converters (DAC outputs
for TX, ADC inputs for RX).”

The above quote shows that it is possible to connect multiple daughterboards
on the USRP. This enables the USRP to send and receive simultaneously.

The next quote from [43] describes the technique used to identify a daugh-
terboard. This means that the USRP will automatically be configured if a
daughterboard is changed.

”Every daughterboard has an I2C EEPROM (24LC024 or 24LC025)
onboard which identifies the board to the system. This allows the
host software to automatically set up the system properly based on
the installed daughterboard.”

10

The following enumeration shows the available daughterboards with their
corresponding frequencies and transmission power. This information is retrieved
from [3] [2].

Basic RX and Basic TX Receiving and transmitting from 1MHz to 250MHz.

LFRX and LFTX Receiving and transmitting up to 30 MHz with 100 mW
transmitting power.

DBSRX Receiving in the range from 800MHz up to 2.4GHz with 100 mW
transmitting power.

TVRX Complete receiver system in the 50-860 MHz range based on a TV
tuner module. It receive a 6 MHz wide block of spectrum and all tuning
and functions can be controlled from software.

RFX400 Receiving and transmitting in the range from 400 MHz up to 500
MHz with 100 mW transmitting power.

RFX900 Receiving and transmitting in the range from 800 MHz up to 1000
MHz with 200 mW transmitting power.

RFX1200 Receiving and transmitting in the range from 1150 MHz up to 1450
MHz with 200 mW transmitting power.

RFX1800 Receiving and transmitting in the range from 1.5 GHz up to 2.1
GHz with 100 mW transmitting power.

RFX2400 Receiving and transmitting in the range from 2.3 GHz up to 2.9
GHz with 10 mW transmitting power.

3.2.6 FPGA (Field Programmable Gate Array)

The FPGA (Field Programmable Gate Array) is the hart of the USRP. This
quote from [14] explains the functions.

”(..)all the ADCs and DACs are connected to the FPGA. This piece
of FPGA plays a key role in the GNU Radio system. Basically
what it does is to perform high bandwidth math, and to reduce the
data rates to something you can squirt over USB2.0. The FPGA
connects to a USB2 interface chip, the Cypress FX2. Everything
(FPGA circuitry and USB Microcontroller) is programmable over
the USB2 bus.”

The performed high bandwidth math is called Digital Down Converting(DDC).
The next quote from [15] explains how DCC works and gives an example.

”First, it down converts the signal from the IF (Intermediate Fre-
quency) band to the base band. Second, it decimates the signal so
that the data rate can be adapted by the USB 2.0 and is reasonable
for the computer’s computing capability. (. . .)

For example, suppose we want to design an FM receiver. The band-
width of a FM station is generally 200kHz. So we can select the

11

decimation factor to be 250. Then the data rate across the USB
is 64MHz/250 = 256kHz , which is well suited for the 200kHz
bandwidth without losing any spectral information. We can set the
IF frequency of the DDC using usrp.set rx freq() method and set
the decimation factor using usrp.set decim rate() method in Python.
The decimation rate must be in [1, 256].”

The example in the previous quote, describes how DDC works and how it is
used. It also describes that the correct value for the decimation is important to
correctly sample the radio signal.

3.3 GNU Radio

The GNU Radio tool kit [42] provides all the functionality to create radios in
software. To realise this, there are different kind of program languages involved,
all with their special purpose. GNU Radio also includes a library of signal
processing blocks like modulators, demodulators, filters etc. which are used to
construct a radio. Essentially it needs the USRP to receive real radio waves or
to transmit. You do not necessarily need a USRP. There is also the possibility
to use a (pre-recorded) file as input.

GNU Radio’s software is organized using a two-tier structure. All the
performance-critical signal processing blocks are implemented in C++ [5], while
the higher-level organizing, connecting and gluing the signal blocks together is
done using Python [22]. There is also a graphical environment available to
create a custom radio. This is called GNU Radio Companion (GRC).

3.3.1 GNU Radio Companion

The GNU Radio Companion [16] is a graphical user interface which allows
GNU Radio components to be put together graphically. It is currently under
development by Josh Blum. Figure 4 shows a screen shot of GRC. The screen
shot shows a dial-tone example of which the working of the example is explained
in figure 5.

figure 4 shows that a radio is constructed out of blocks. In the figure
the blocks are two signal sources and one audio sink. Those blocks are called
”signal processing blocks” and are part of GNU Radio. A flow graph represents
a collection of signal processing blocks connected together.

GRC creates from the created flow graph an XML [37] file that is translated
to Python code (discussed in paragraph 3.3.2). References to the signal process-
ing blocks of the GNU Radio library are also included in GRC by the means of
XML definition files. This creates the possibility to include custom made signal
processing blocks by defining an XML file for the new blocks. The Python code
of the dial-tone example shown in figure 4, can be found in appendix 9.2.

3.3.2 Python

The Python [22] script language is used to connect the signal processing blocks
together. In Python the necessary signal sources, sinks and processing blocks are
selected and configured with the correct parameters. The flow of data through
the flow graph exists out of data in one of the following data-types:

12

Figure 4: GNU Radio Companion screenshot

• Byte - 1 byte of data (8 bits)

• Short - 2 byte integer

• Int - 4 byte integer

• Float - 4 byte floating point

• Complex - 8 bytes

As mentioned previously, all sources, sinks and blocks are implemented as classes
in C++. This results, no matter how complicated the radio is, in good readable
Python code. The real heavy load is done in C++. Figure 5 shows an example
of a Python code sample from [8]. As you can see it is not difficult to create a
radio in Python.

13

Author : Eric Blossom

#!/usr/bin/env python

from gnuradio import gr
from gnuradio import audio

def build_graph ():
sampling_freq = 48000
ampl = 0.1

fg = gr.flow_graph ()
src0 = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE, 350, ampl)
src1 = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE, 440, ampl)
dst = audio.sink (sampling_freq)
fg.connect ((src0, 0), (dst, 0))
fg.connect ((src1, 0), (dst, 1))

return fg

if __name__ == ’__main__’:
fg = build_graph ()
fg.start ()
raw_input (’Press Enter to quit: ’)
fg.stop ()

”We start by creating a flow graph to hold the blocks and connections between
them. The two sine waves are generated by the gr.sig source f calls. The f
suffix indicates that the source produces floats. One sine wave is at 350 Hz, and
the other is at 440 Hz. Together, they sound like the US dial tone.
audio.sink is a sink that writes its input to the sound card. It takes one or more
streams of floats in the range -1 to +1 as its input. We connect the three blocks
together using the connect method of the flow graph.
connect takes two parameters, the source endpoint and the destination endpoint,
and creates a connection from the source to the destination. An endpoint has
two components: a signal processing block and a port number. The port number
specifies which input or output port of the specified block is to be connected.
In the most general form, an endpoint is represented as a python tuple like this:
(block, port number). When port number is zero, the block may be used alone.
These two expressions are equivalent:
fg.connect ((src1, 0), (dst, 1))
fg.connect (src1, (dst, 1))

Once the graph is built, we start it. Calling start forks one or more threads to
run the computation described by the graph and returns control immediately
to the caller. In this case, we simply wait for any keystroke.”

Figure 5: Code Sample. Source [8]

14

3.3.3 C++

Signal processing blocks process streams of data from their input port to their
output port. The input and output ports of a signal process block are variable.
So a block can have multiple outputs and multiple inputs. The signal processing
blocks are written in C++. To use the C++ code in Python SWIG [31] is used.

SWIG is the wrapper [36] for the C++ modules and generate the corre-
sponding Python code and library so that these classes and functions can be
called from Python. As mentioned previously, most default signal blocks are
already created in the GNU Radio project [42], or by third parties. So you
only touch the C++ environment to create your own special signal processing
blocks.

In appendix 9.6 you can see some example code of a signal processing block
needed for decoding the RDS [41] signal. As you can see it requires some
experienced C++ skills to create these blocks. If you do not have much C++
experience try to use signal blocks that are already part of the GNU Radio
library, or try to find code from third parties.

3.4 Example projects

Software Defined Radios are already used for different kinds of projects. This
section describes some of them:

FM Receiver Demodulates the FM-signal. Created by the GNU Radio project

Analog Television Receiver Demodulates the TV-signal. Created by the
GNU Radio project

HDTV Reception Demodulates the HDTV-signal. Created by the GNU Ra-
dio project

GSM Demodulate the GSM signal. Created by Henrik Omma and Heather
Stern

CDMA Demodulating CDMA signals. Created by Zackary Anderson and Rus-
sell Ryan

DVB-T Receive digital television. Created by Vincenzo Pellegrini

Bluetooth Signal processing software for bluetooth. Created by Dominic Spill

WiFi Signal processing software for WiFi. Created byVivek Raghunathan

GPS Signal processing software for GPS. Created by F.Firas

15

4 Wireless protocol analysis approach

GNU Radio is too complicated to just take the equipment out of the box and
conduct a protocol analysis with it. This chapter describes how to approach
such a project. Every paragraph describes a step in the process. The following
steps are defined:

• Understand the design of the USRP and GNU Radio

• Installing, configuring and code examples

• Study protocol specification and search for existing code

• Create flow graph

• Capture raw wireless samples

• Create the C++ and Python code

• Analyse the protocol

4.1 Understand the design of the USRP and GNU Radio

Before GNU Radio with the USRP can be used in a wireless protocol analysis,
it is important to understand how GNU Radio and the USRP work. This is
described in paragraph 3.2 and 3.3. Next, try to read the code example in para-
graph 3.3.2, line by line and understand what is happening. Also understand
what sampling [26] is and how digital to analog (and vice versa) converters
work. This is described in paragraph 3.2.2 and paragraph 3.2.3.

Some basic knowledge of Python and C++ are essential. Python skills are
necessary to program the flow graph (discussed in paragraph 3.3.1). C++
knowledge is necessary to understand how signal processing blocks are con-
structed. Also pay attention to the limitations of GNU Radio and USRP men-
tioned in chapter 3.2. Important limitations are the frequencies supported by
the USRP. Check in paragraph 3.2.5 if there exist a suitable daughterboard
for the frequency of interest. Latencies, bandwidth and timing issues between
receiving, transmitting and the USRP, described in paragraph 3.2.1 could also
be a problem.

4.2 Installing, configuring and code examples

GNU Radio can be installed on different kinds of operating systems, like MS
Windows, Apple Mac OS X and Linux. GNU Radio is provided with good instal-
lation instructions. There are specific instructions for some operating systems
like:

• Debian

• Fedora

• SuSE

• Ubuntu

16

• Mandriva

• Mac OS X

• NetBSD

• Windows

There are different versions of GNU Radio available. The latest stable release
is currently version 3.1. The most recent development version can be retrieved
through SVN [29] from [30]. Before compiling and installing the source code,
install all the necessary binary packages. After installing the software try some of
the example scripts, to verify that the installation and hardware work properly.
Pay some extra attention to the dial tone and FM-radio [39] example. Make
sure the correct daughterboard is installed. From there adjust the sample code
so that it is possible to write the signal to a file, and to read the recorded samples
from file. With these exercises one can learn to work with different sources and
sinks.

Problems encountered during this step was the compiling and installing of
the trunk version of GNU Radio (Retrieved from SVN). The trunk version was
needed because, the binary version of Ubuntu [32] contains an older version,
which is discouraged to be used by the GNU radio project. In the trunk version
a lot of bugs are solved [9]. In appendix 9.1 is described how GNU Radio is
installed.

Most of the provided example code that is part of GNU Radio did not work.
The code gave errors that libraries and specific modules could not be found.
After analysing the problems, the cause was that some libraries were renamed
and the implementation of methods where changed in the most recent version.
This required rewriting of the code examples before they properly work.

4.3 Study protocol specification and search for existing
code

The protocol specifications are essential to understand how a protocol works.
Retrieve the protocol specifications and study them. Especially the parts dis-
cussing the physical layer [21] and the data link [7] layer. Interesting parame-
ters are; used frequency spectrum, modulation and speed of the data transfers.
These values provides the parameters for the demodulation and decoding blocks.

Next to studying the protocol specifications, search for existing code. As
shown in paragraph 3.4 already a lot of code exist. Maybe somebody else has
already created GNU Radio software blocks for the specific protocol. If code is
available check the version it was built for.

For the RDS [41] analysis the specifications are maintained by the European
Broadcasting Union [11] and are freely obtainable from their website. The
specific specifications for the RDS protocol analysis are the following:

Frequency FM broadcast between 87.5 MHz and 108.0 MHz

Sub carrier frequency 57 kHz (suppressed) (This is the third harmonic of
the pilot tone). See figure 6

Clock signal Retrieved from the pilot tone. (3×19kHz)
48 = 1187, 5 bits per second

as described in [41]

17

Modulation Customised form of two-phase phase-shift-keying

Figure 6: The figure (Source: [13]) shows a part of the FM spectrum, containing
one broadcast station. On the left of the figure is shown the audio base-band
signal. In a stereo broadcast this means the left + right channel. On 19 kHz is
the pilot tone pictured. From around the 22 kHz the differences signal between
the left and right (L - R) channel are pictured. On the 57 kHz the RDS signal
is broadcasted with a suppressed carrier wave.

Because the RDS protocol is widely used, there is already some example code
available [17]. This code was created by Ronnie Gaensli, and later adapted by
Ryan Shoff followed by Matteo Campanella. The code consists out of four
custom signal processing blocks and two Python library files. The four custom
signal blocks that are written in C++ are more complicated to understand.
Lack of comment in the code also contributes to this.

4.4 Create flow graph

Derived from protocol specifications it should be possible to create a flow graph
(An example of a flow graph can be found in figure 7). The flow graph holds all
the process signal blocks necessary to receive and decode the signal. Flow graphs
start with a source. This could be for example the USRP or a file containing
captured samples. The next signal processing block will be a filter (or multiple
filters) to extract the radio spectrum [24] of interest from the incoming signal.
After the radio signal is filtered it must be demodulated. Depending on the
used modulation technology this delivers a binary stream. Next to this, will be
a block that handles the error correction [10] and combining the binary data
to its original format.

The last processing block is one of the kind sink. Examples of sinks are :

File The file sink gives the ability to write the signal to disk.

Sound card Directs the signal to the sound card.

Scope Useful to visualise the signal.

Screen Prints the samples to screen.

18

Figure 7 shows the flow graph of the RDS receiver. This graph is constructed
using the RDS specifications [41] and the provided RDS sample code [17].

Figure 7: RDS Flow graph: 1. Source The source could be the USRP (provided
with tuning and decimation parameters) or a captured sample file. 2. Channel
filter Channel Filter cuts off all frequencies, 80 kHz above the tuned frequency.
3. Guts Signal processing block for demodulating a broadcast FM signal. 4.
Audio Sink Connects the audio to the sound card. 5. FM filter FM-Filter
cuts off all frequencies, 70 kHz above the tuned frequency. 6. Pilot filter
Pilot filter only let the frequencies trough between 18 kHz and 20 kHz. 7.
RDS Filter RDS Filter only let the frequencies trough between 54 kHz and
60 kHz. 8. Mixer Mixer adds the frequencies. It triples the 19 kHz pilot tone
to reconstruct the suppressed 57 kHz carrier wave of the RDS signal. 9. Data
Clock Data clock takes the 19 kHz pilot tone and use it to reconstruct a clock
signal. 10. RDS BB Filter RDS Data filter, filters all the high frequencies
above 1.5 kHz. 11. Biphase Decoder Synchronises the signal with the clock
signal and extracts the binary bits. 12. Differential Decoder Determines by
the difference between two receives bits the real data bit. 13. RDS Decoder
Implements the data link (and higher) layer(s). Does error correction etc. and
translates the bits to characters.

4.5 Capture raw wireless samples

In this step code will be created to capture raw wireless signal. This step
is important because this creates a signal source of a constant quality which

19

delivers a reliable reference source for the following (steps) analysis. For this
step you need the frequency parameters of the protocol.

To capture RDS signal samples I created the capture code, which can be
found in appendix 9.3. The code is based on examples provided by the GNU
Radio software.

After gathering raw wireless samples, I created a script which takes the
file created by the capture script as input. This convert script skips the first
20.000.000 samples and writes the following 500.000 samples to a new file. This
is done to remove the tuning process at the beginning of the file, and to create
a sample file with an exact number of samples. The convert script can be found
in appendix 9.4.

4.6 Create the C++ and Python code

Start with creating the custom signal processing blocks. A good explanation of
how this can be done is described in the article How to Write a Signal Processing
Block [48]. This involves writing the C++ code and compiling and installing
the code.

After constructing the custom blocks, put everything together. This is done
in Python or in GRC (GNU Radio Companion). If the flow graph is more
complex it is advisable to use Python over GRC, because the resulting Python
code will be less clear with GRC, and there is no ability to add comments to
the code. Also if you have created custom signal processing blocks you need to
import them into GRC.

In the RDS protocol analysis the starting point was the sample code pro-
vided by [17]. First the brief install instructions provided with the code where
performed. After fully understand the instructions it was possible to configure
and compile the custom C++ RDS signal processing blocks. The document
How to Write a Signal Processing Block [48] was a big help. The provided
Python code from [17] makes use of the custom C++ RDS signal processing
blocks. However this code did not function. The cause of this was (again) the
difference in the used GNU Radio version. From there I re-wrote the Python
code step by step. The result of the created code can be found in appendix 9.4.

4.7 Analyse the protocol

The final step is the analysis of the protocol. Described previously, an advantage
of GNU Radio is the possibility to analyse the radio signal before it is translated
into bits. This is in contradiction to dedicated RDS enabled radio receivers,
where all converting is done in hardware and it is not easy to visualize the radio
signal after the different processing stages. With GNU Radio it is relatively
easy to visualise (plot) the signal after every signal processing block, as will be
shown in this paragraph. Visualisation of the signal is done by connecting a file
sink after every signal process block of the flow graph, and write the samples
to file. From those files can be made graphical plots. The GNU Radio Software
library provides Python code to create those plots. The code plots the relative
amplitude against the recorded samples in time.

This approach of analysing can be used to perform root-cause [25] analysis.
An example could be Why do I have good RDS reception outside, but poor
reception inside the building? There are (at least) two ways of approaching

20

this. The first approach includes making plots of the proper working situation
and compare them with the poor working situation. This could show after which
signal processing block the signal is not sufficient any more. If it is not possible
to create reference material in a good working environment use the protocol
specification to reason what is going wrong after every process signal block.

If the plot functionality of GNU Radio is used, it is important that the
correct number of samples is plot. This is because the frequency of a signal is
related to time (see paragraph 3.2). So to plot a defined period of time, we need
to know how many samples represents that period. The following calculation
shows how to interpret samples versus time.

Sample rate
Decimation

= 1 second of data (1)

The figures 8 to 20 show the protocol analysis of the RDS protocol. As men-
tioned in paragraph 4.3, the RDS signal is transmitted by use of FM broad-
cast. This means that the USRP must be tuned to a FM broadcast station that
transmits RDS. In the beginning of the research I experienced, with the FM-
Radio receiver sample script (part of GNU Radio) that the Dutch radio station
SkyRadio had a good reception. Figure 8 shows that the station transmit RDS
information. This radio station is used to perform the RDS protocol analysis.

Figure 8: This figure shows a screen shot taken from GNU Radio example code
usrp wfm rcv.py, tuned to the SkyRadio broadcast. In this figure we can see
the 19 kHz pilot tone and the RDS broadcast with the suppressed carrier wave
on the 57 kHz. This corresponds to figure 6, showing the FM spectrum of a
broadcast.

Before starting the analysis, a sample file is created as described in paragraph
4.5. The created sample file is used as source for the RDS decode application,
described in appendix 9.5. This means that the USRP is no longer needed.
To perform the analysis, file sinks were placed after every signal process block.
This resulted in multiple files from different stages of the RDS reception. From
those files are made plots by using a plot script provided with GNU Radio. This
creates the possibility to debug the protocol after every signal processing block.
All figures in this analysis represent the same data. A little shift in data between
the figures can be seen, which is probably caused by buffers in the processing
blocks.

21

First the pilot tone will be analysed. As described in the protocol specifica-
tions, the pilot tone is an important part of the RDS protocol. The pilot tone
is used to distract the clock signal and to reconstruct the carrier wave of the
RDS signal. Figure 9 shows the pilot tone after the pilot filter.

The pilot filter is a generic GNU Radio signal processing block and functions
as a bandpass filer. The bandpass filter is configured to reduces the amplitude of
signals below 18 kHz and above the 20 kHz. In figure 8 is shown in the marked
area around the 19 kHz which frequency spectrum will be let through by the
filter.

To verify if the pilot tone is correct, we need to know if the signal represents
a 19 kHz signal. This can be done by plotting the signal after the pilot filter and
choosing a convenient block size to visualise the signal. In figure 9 is chosen to
visualize 320 samples, because the sample rate in the RDS decode application
is configured to 64.000.000 and the decimation is set to 200. This results in a
representation of 320.000 samples to 1 second in time. This means that the plot
must show 19 waves. This can been verified in figure 9, so we can assume that
the pilot tone is valid.

Figure 9: This plot shows the signal after the pilot filter. The plot shows exactly
320 samples which represents 1 thousands of a second, because the decimation
rate is 320.000. The pilot tone is a 19 kHz signal which means that this plot
must show 19 waves, which is correct.

22

Now we assuming that the pilot tone is correct, we can go to the next step.
According to figure 7 we see that the next signal processing block is the data
clock. The data clock is a custom signal processing block, which means that it
is written for RDS decoding. The C++ code of this signal processing block can
be found in appendix 9.6.

The function of the block is to generate a clock signal from the 19 kHz pilot
tone. The C++ code does this by counting the number of zero crossings of the
pilot tone. Every wave has two zero crossings. After every 16 zero crosses the
clock signal changes from high to low, or from low to high. The next calculation
shows how many zero crossings the pilot tone makes in one second (this is before
the data clock).

19000 Hz× 2 = 38000 zero crossings (2)

If we divide the 38000 zero crossings by 16 we get the number of zero crossings
the signal should have after the data clock signal block :

38000 zero crossings
16

= 2375 zero crossings (3)

The above calculation shows that the signal after the data clock should have
2375 zero crossings. To know how many waves this represents, the number of
zero crossings is divide by two, because in this case every wave has two zero
crossings. The result should be the bit rate of the RDS specifications [41]
(1187,5 bit per second)

2375 zero crossings
2

= 1187,5 (4)

Figure 10 shows the plot of the data clock signal. The block size is set to
2695 samples which shows much more samples then the plot of the pilot tone,
shown in figure 9. This block size is chosen, so it should represent 10 periods
of the data clock, which it does. Figure 11 shows a full bit in samples 20 - 290.

23

Figure 10: This plot shows the reconstructed data clock as described in the
protocol specifications. The clock signal corresponds to 1187,5 bits per second.
In the figure, one period (block signal) is marked. The plot shows 2695 samples
which should represent 10 periods, which is correct.

Figure 11: This plot shows the reconstructed data clock (blue) together with
the pilot tone (red). Looking at the plot we can see that it shows a little bit
more then one data bit. We can also see that 16 zero crosses of the pilot tone
will change the data clock from high to low or from low to high.

Besides the data clock recovery, also the data signal has to be recovered from
the FM signal. This is done in a number of steps. The first step is to filter the

24

RDS signal out of the FM signal. This is done by the RDS filter. The RDS
filter is a bandpass filter, configured to reduces the amplitude of signals below
54 kHz and above the 60 kHz. In figure 8 is shown which frequency spectrum
will be let through using a marked area around 57 kHz.

The protocol specifications [41] describes that the used modulation is a
customised form of two-phase phase-shift-keying using biphase symbols. This
means that two symbols eventually will correspond to one bit.

To verify if the RDS signal is correct the signal will be visualized. This is
done with the same block size as described in the data clock recovery, because
(again) we want to visualize 10 bits of data. Figure 12 shows the signal after
the RDS Filter. This figure should show 20 recognisable symbols, which is true.

Figure 12: This plot shows the RDS signal after the RDS Filter. This plot,
just like the plot of the data clock (see figure 10),represents 2695 samples, so it
should represents 10 bits of data. As described in the RDS protocol specification,
the used modulation makes use of biphase symbols, which means that there
should be 20 symbols. We can also see that a low pas filter is needed, because
the plot shows up black of the high frequent signals.

25

The RDS protocol specifications [41] describe that RDS makes use of a
suppressed carrier wave. This carrier needs to be reconstructed and added to
the RDS data signal which is visualised in figure 12. The carrier wave is
reconstructed from the pilot tone. This is done by tripling the 19 kHz tone to
57 kHz and added to the RDS data signal. This is done in the mixer. Figure
13 shows the signal after the mixer.

The mixer is a generic GNU Radio signal processing block which takes mul-
tiple signals as input and mixes them all together. Figure 7 shows that the
mixer receives three times the signal from the pilot filter. This reconstructs the
carrier wave. Next to this, the RDS data signal is added.

To verify if the mixed signal is correct, we need to know if the signal rep-
resents 20 symbols or 10 biphase symbols, and is mixed with the reconstructed
carrier wave. This is done by visualising the signal after the mixer, again with
a block size of 2695 samples. Figure 13 shows the signal after the mixer. In the
figure can been seen that the carrier wave has been added to the RDS signal.
(Notice that the values on the y-axis have changed). There can also be seen
that some samples are more amplified then others. Figure 13 still shows 20
symbols or 10 biphase symbols, so we can assume the signal is correct.

Figure 13: This plot shows the signal after the mixer. The mixer combines the
filtered RDS signal with three times the pilot tone. This plot also shows 2695
samples so there are still 20 symbols or 10 biphase symbols recognisable. Also
notice that the values on the x-axis are bigger in contradiction to the plot shown
in figure 12. Looking at this plot, we can assume the signal is correct.

26

After the mixer, the signal still holds a high frequency signal. This is shown
in figure 12 and figure 13. To create a clear signal as shown in figure 14 the
RDS BB (Base Band) filter is implemented.

The RDS BB filter is a generic GNU Radio signal processing block and
functions as a low pass filter. This filter reduces the amplitude of signals above
the 1.5 kHz. This creates a more clear signal, as can been seen in figure 14

To verify if the filtered signal is correct, we need to show that the signal
still represents 20 symbols or 10 biphase symbols and does not hold the high
frequencies any more. This is done by visualising the signal after the RDS BB
filter, with a block size of 2695 samples. This is shown in figure 14. In the plot
can be seen that the signal does not hold the high frequencies any more and
there are still 20 symbols or 10 biphase symbols recognisable. This means we
can assume that the signal is correct.

Figure 15 shows the relation between the signal before the RDS BB filter
and after the RDS BB filter.

Figure 14: This plot shows the signal after the RDS BB Filter. The RDS BB
Filter should reduces the amplitude of signals above the 1.5 kHz. The plot
holds a sample block of 2695 samples so there should still 20 symbols or 10
biphase symbols recognisable. In the plot we can see that the high frequencies
are filtered out of the signal, and that we still can recognise the symbols. This
means we can assume that the signal is correct.

27

Figure 15: This plot shows the relation between the RDS signal before the RDS
BB filter (blue) and the same signal after the (red) RDS BB filter. In this plot
can be seen that the high frequency signals are filtered.

Now the RDS signal should be completely recovered and filtered from the
FM signal. The next step is to translated the analog signal to a digital signal.
How this should be done is described in the protocol specifications [41]. To do
this, a biphase decoder is used.

The biphase decoder is a custom signal processing block. It has the function
to retrieve the bits from the biphase symbols. It does this by aligning the
data signal with the clock signal in such a way that the zero crossings of the
data signal are in sync with the clock signal. When the signals are synced the
RDS biphase symbols are translated to binary data. Figure 16 shows how the
symbols are translated to a logical ”1” or ”0”. Figure 17 shows how the symbols
correspond to the reconstructed and filtered signal.

To verify if the data after the biphase decoder is correct, the signal after the
biphase decoder can be visualised and matched to the manual recovered bits.
The signal after the biphase decoder is shown in figure 18.

Plotting of the binary signal (figure 18) does not prove that the retrieved
information is correct, because there is no knowledge about the transmitted bits.
To determine of the bits are correct, the remaining signal processing blocks need
to be implemented so the bits are converted to readable characters. Because
the biphase decoder does synchronise both signals and outputs binary data we
can assume that the stream is correct.

28

Figure 16: This figures shows how the symbols correspond to a logical ” 1 ” or
” 0 ”. Source : [41]

Figure 17: This plot shows the signal after the RDS BB Filter. The recon-
structed symbols are shown under the plot. From those symbols the logical ”1”
or ”0” can be distracted. The output of the biphase decoder should be : 1, 1,
1, 0, 0, 0, 1, 1, 0

Assuming that the biphase decoder outputs the correct bits the stream is still

29

Figure 18: This figures shows the signal after the biphase decoder. The plot
shows the translated bits. The biphase decoder should output digital data,
which it clearly does.

differentially encoded, as described in the RDS protocol specifications [41]. This
is done for robustness of the protocol. Differentially encoding means that the
difference between two received bits is determines what the data bit represents.

The differential decoder is a custom signal processing block. It has the
function to determine the differential between the previous and the current bit.
The output of this signal processing block should hold the originally transmitted
data. Figure 19 shows the digital signal after the differential decoder.

To verify the signal, the output of the biphase decoder needs to be translated
by the use of the decoding rules described in the RDS protocol specifications
[41]. The table (from [41]), shows those decoding rules.

Previous input New input New output
0 0 0
0 1 1
1 0 1
1 1 0

To check of the encoding did work correctly we can perform the encoding
manually, with the values we take from figure 18. The result is shown in the
table below.

30

Previous input New input Result
1 1 0
1 1 0
1 0 1
0 0 0
0 0 0
0 1 1
1 1 0
1 0 1
0 0 0

The above table shows that the output of the differential decoder must be
a stream of bits of 0,0,1,0,0,1,0,1,0. This corresponds to the signal visualised
after the differential decoder, shown in figure 19. This means that we can
assume that the differential encoding is done properly.

Figure 19: This figure shows the signal after the differential decoder. It should
be a digital signal and correspond to the manual retrieved bits.

31

Assuming that all the previous signal processing blocks function correct,
then the received and decoded bits can be converted into readable characters.
Converting to characters is done by the RDS decoder signal processing block,
as can be seen in figure 7.

The RDS decoder is a custom signal processing block, which implements
the higher layer functionality of the RDS protocol. The RDS decoder block
implements amongst other functionality, message discovery, error detection and
also translation of the bits to readable characters. To verify that the data after
the RDS Decoder is correct, we need to read the outputted characters and decide
whether this text make sense or not.

If we look at the output of the RDS decode block, shown in figure 20, we
see the station name of the FM broadcast station. This is the finale step of the
RDS analysis and, we can assume that the received and captured RDS signal is
correct.

usrp_decim = 200
chanfilt_decim = 1
audio_decimation = 10
adc_rate = 64000000
usrp_rate = 320000
demod_rate = 320000
audio_rate = 32000
usrp_rate = 320000
>>> gr_fir_ccf: using 3DNow!
>>> gr_fir_fff: using 3DNow!
>>> biphase decoder enter_looking
>>> biphase decoder enter_locked
Sync State Detected
==> YR <== -TP- -Music-STEREO-Pop Music
==> YRAD <== -TP- -Music-STEREO-Pop Music
==> YRADIO <== -TP- -Music-STEREO-Pop Music
==>SKYRADIO <== -TP- -Music-STEREO-Pop Music

Figure 20: The RDS Decoder, decodes the signal and converts it to readable
information.

32

5 Considerations

Because the research period spanned only two weeks, the scope of the research
was limited to the analysis of a single wireless protocol. Since the analysed
protocol is relative simple it can not be guaranteed that the created approach is
the most optimal approach for all protocols. This research could have been done
much faster and more in depth if there was more knowledge of Python and C++
available in the research. In the analysis of the RDS protocol there is assumed
that the retrieved data is correct, because the application layer outputs readable
characters. This does not prove that the received data is correct, because of
implemented error correction (etc.) in the data link layer. Furthermore having
to touch the trunk version instead of a stable release of GNU Radio was time
consuming. As an System and Network Engineer it was hard to understand some
specific radio characteristics because there was not much knowledge available
in the research about radio technologies, like a physical scientist or a radio
technician would have.

6 Conclusion

To fulfil a wireless protocol analyses the approach defined in chapter 4 can be
followed, because it is possible to analyse a wireless protocol with the approach.

The USRP device works as described in section 3.2 and is suitable to use in
a RDS protocol analysis. It may not be possible to analyse wireless protocols
because of the limitations also mentioned in section 3.2.

Writing your own code is possible, but with the knowledge available at an
average System and Network Engineer it is not easy to write your own signal
processing code in C++, but lots of decoding blocks are available as mentioned
in section 3.4. Gluing all the signal processing parts together in GRC is simple,
but even writing the code in Python is not difficult.

To use GNU Radio in a wireless protocol analysis the System and Network
Engineer must have basic knowledge about RF signals and how SDR are de-
signed.

GNU Radio software in combination with the USRP hardware creates a good
tool to perform wireless protocol analysis. This because it creates the possibility
to analyse all the steps done in the physical layer of the protocol as shown in
paragraph 4.7.

GNU Radio software includes already a lot of example scripts to perform
a wireless protocol analysis. In this research also custom scripts (see appendix
9.3 and appendix 9.4), based on GNU Radio scripts are created. The RDS
decode application, see appendix 9.5, is a rewrite of an already existing RDS
decode application.

7 Future Work

This research was limited to analysing just one simple protocol. Applying the
created general approach to multiple protocols would prove that the approach
works for different protocols. The research was also limited to only receiving
signals. Investigating what the added value of transmitting would be in protocol
analysis would be a good extending of this research.

33

The defined approach is created for analysing protocols of which the specifi-
cations are available. The experience gathered in this research, with the specifi-
cations available, tell that without available specifications (reverse engineering)
an analysis will be very difficult. To fulfil such an analysis there must be a lot
of GNU Radio and radio experience present. Although this approach can not
be used for such an analysis, the steps of capturing sample data an visualising
signals can be helpful. Defining an general approach for such analysis can be a
challenge.

In the protocol analysis of RDS, only the physical layer is addressed. Re-
searching the upper layers can still be interesting. What could be investigated
is: how many bits are reconstructed by the error correction, and how does this
match to other radio broadcast stations?

34

8 Bibliography

References

[1] ADC explained. Website. http://gnuradio.org/trac/wiki/UsrpFAQ/
Intro/ADC.

[2] Available miscellaneous daugtherboards. Website. http://www.ettus.
com/downloads/miscdboards_v3b.pdf.

[3] Available transeiver daugtherboards. Website. http://www.ettus.com/
downloads/transceiver_dbrds_v3b.pdf.

[4] Bluetooth. Website. https://www.bluetooth.org/apps/content/.

[5] C++. Website. http://www.cplusplus.com/doc/tutorial/.

[6] DAC explained. Website. http://gnuradio.org/trac/wiki/UsrpFAQ/
Intro/DAC.

[7] Data link layer. Website. http://en.wikipedia.org/wiki/Data_link_
layer.

[8] Dial-tone example explained. Website. http://www.gnu.org/software/
gnuradio/doc/exploring-gnuradio.html.

[9] Discuss-gnuradio mailing list. Website. http://www.mail-archive.com/
discuss-gnuradio@gnu.org/msg04587.html.

[10] Error correction. Website. http://en.wikipedia.org/wiki/Error_
correction.

[11] European Broadcasting Union. Website. http://www.ebu.ch/.

[12] Firmware. Website. http://en.wikipedia.org/wiki/Firmware.

[13] FM spectrum explained. Website. http://radioforum.nl/viewtopic.
php?start=240&t=11566.

[14] FPGA explained. Website. http://www.nd.edu/~jnl/sdr/docs/
tutorials/4.html.

[15] FPGA introduction. Website. http://www.gnuradio.org/trac/wiki/
UsrpFAQ/Intro/FPGA.

[16] GNU Radio Companion. Website. http://www.joshknows.com/?key=grc.

[17] GNU Radio RDS signal blocks. Website. http://digilander.libero.
it/iz2eeq/#rds.

[18] HDTV reception. Website. http://www.mail-archive.com/
discuss-gnuradio@gnu.org/sg01926.html.

[19] Nyquist theorem. Website. http://www.cs.cf.ac.uk/Dave/Multimedia/
node149.html.

35

http://gnuradio.org/trac/wiki/UsrpFAQ/Intro/ADC
http://gnuradio.org/trac/wiki/UsrpFAQ/Intro/ADC
http://www.ettus.com/downloads/miscdboards_v3b.pdf
http://www.ettus.com/downloads/miscdboards_v3b.pdf
http://www.ettus.com/downloads/transceiver_dbrds_v3b.pdf
http://www.ettus.com/downloads/transceiver_dbrds_v3b.pdf
https://www.bluetooth.org/apps/content/
http://www.cplusplus.com/doc/tutorial/
http://gnuradio.org/trac/wiki/UsrpFAQ/Intro/DAC
http://gnuradio.org/trac/wiki/UsrpFAQ/Intro/DAC
http://en.wikipedia.org/wiki/Data_link_layer
http://en.wikipedia.org/wiki/Data_link_layer
http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html
http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html
http://www.mail-archive.com/discuss-gnuradio@gnu.org/msg04587.html
http://www.mail-archive.com/discuss-gnuradio@gnu.org/msg04587.html
http://en.wikipedia.org/wiki/Error_correction
http://en.wikipedia.org/wiki/Error_correction
http://www.ebu.ch/
http://en.wikipedia.org/wiki/Firmware
http://radioforum.nl/viewtopic.php?start=240&t=11566
http://radioforum.nl/viewtopic.php?start=240&t=11566
http://www.nd.edu/~jnl/sdr/docs/tutorials/4.html
http://www.nd.edu/~jnl/sdr/docs/tutorials/4.html
http://www.gnuradio.org/trac/wiki/UsrpFAQ/Intro/FPGA
http://www.gnuradio.org/trac/wiki/UsrpFAQ/Intro/FPGA
http://www.joshknows.com/?key=grc
http://digilander.libero.it/iz2eeq/#rds
http://digilander.libero.it/iz2eeq/#rds
http://www.mail-archive.com/discuss-gnuradio@gnu.org/sg01926.html
http://www.mail-archive.com/discuss-gnuradio@gnu.org/sg01926.html
http://www.cs.cf.ac.uk/Dave/Multimedia/node149.html
http://www.cs.cf.ac.uk/Dave/Multimedia/node149.html

[20] PGA explained. Website. http://www.nd.edu/~jnl/sdr/docs/
tutorials/4.html.

[21] Physical layer. Website. http://en.wikipedia.org/wiki/Physical_
layer.

[22] Python. Website. http://www.python.org/.

[23] Radio waves explained. Website. www.wisegeek.com/
what-are-radio-waves.htm.

[24] RF-world explained. Website. http://en.wikipedia.org/wiki/Radio_
frequency.

[25] Root cause analysis. Website. http://en.wikipedia.org/wiki/Root_
cause.

[26] Sampling explained. Website. http://en.wikipedia.org/wiki/
Sampling_rate.

[27] SDR explained. Website. http://en.wikipedia.org/wiki/Software_
defined_radio.

[28] SDR forum. Website. http://www.sdrforum.org/.

[29] SVN. Website. http://subversion.tigris.org/.

[30] SVN location GNU Radio development version. Website. http://
gnuradio.org/svn/gnuradio/trunk.

[31] SWIG explained. Website. http://www.swig.org/.

[32] Ubuntu. Website. http://www.ubuntu.com/.

[33] USB data speed. Website. http://www.gnu.org/software/gnuradio/
doc/exploring-gnuradio.html.

[34] USB explained. Website. http://www.olifantasia.com/gnuradio/usrp/
files/usrp_guide.pdf.

[35] Wi-Fi. Website. http://en.wikipedia.org/wiki/Wifi.

[36] Wrapper explained. Website. http://en.wikipedia.org/wiki/Wrapper_
pattern.

[37] XML explained. Website. http://www.w3.org/XML/.

[38] Philip Balister and Jeffrey H. Reed. Usrp hardware and software de-
scription. 2006. http://www.ece.vt.edu/swe/chamrad/crdocs/CRTM09_
060727_USRP.pdf.

[39] Eric Blossom. Listening to FM radio in software, step by step. 2004.
http://www.linuxjournal.com/article/7505.

[40] Prateek Mohan Dayal. Software based radio signal processing. 2004. http:
//www.geocities.com/pmd_iitgw/second.pdf.

36

http://www.nd.edu/~jnl/sdr/docs/tutorials/4.html
http://www.nd.edu/~jnl/sdr/docs/tutorials/4.html
http://en.wikipedia.org/wiki/Physical_layer
http://en.wikipedia.org/wiki/Physical_layer
http://www.python.org/
www.wisegeek.com/what-are-radio-waves.htm
www.wisegeek.com/what-are-radio-waves.htm
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Root_cause
http://en.wikipedia.org/wiki/Root_cause
http://en.wikipedia.org/wiki/Sampling_rate
http://en.wikipedia.org/wiki/Sampling_rate
http://en.wikipedia.org/wiki/Software_defined_radio
http://en.wikipedia.org/wiki/Software_defined_radio
http://www.sdrforum.org/
http://subversion.tigris.org/
http://gnuradio.org/svn/gnuradio/trunk
http://gnuradio.org/svn/gnuradio/trunk
http://www.swig.org/
http://www.ubuntu.com/
http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html
http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html
http://www.olifantasia.com/gnuradio/usrp/files/usrp_guide.pdf
http://www.olifantasia.com/gnuradio/usrp/files/usrp_guide.pdf
http://en.wikipedia.org/wiki/Wifi
http://en.wikipedia.org/wiki/Wrapper_pattern
http://en.wikipedia.org/wiki/Wrapper_pattern
http://www.w3.org/XML/
http://www.ece.vt.edu/swe/chamrad/crdocs/CRTM09_060727_USRP.pdf
http://www.ece.vt.edu/swe/chamrad/crdocs/CRTM09_060727_USRP.pdf
http://www.linuxjournal.com/article/7505
http://www.geocities.com/pmd_iitgw/second.pdf
http://www.geocities.com/pmd_iitgw/second.pdf

[41] RDS Forum. The new RDS IEC 62106:1999 standard. Website. http:
//www.rds.org.uk/rds98/pdf/IEC%2062106-E_no%20print.pdf.

[42] Free Software Foundation. GNU Radio. Website. http://gnuradio.org/
trac.

[43] Firas Abbas Hamza. The USRP under 1.5x magnifying lens!
2008. http://gnuradio.org/trac/attachment/wiki/UsrpFAQ/USRP_
Documentation.pdf.

[44] Ketan Mandke. Early Results on Hydra: A Flexible MAC/PHY Multihop
Testbed. 2007. http://users.ece.utexas.edu/~rheath/papers/2007/
vtc1/paper.pdf.

[45] Lee K. Patton. A GNU Radio based software-defined radar. 2007. http:
//www.pattoncentral.org/download/patton_msthesis.pdf.

[46] David A. Scaperoth. Configurable SDR operation for cognitive ra-
dio applications using GNU Radio and the universal software radio
peripheral. 2007. http://scholar.lib.vt.edu/theses/available/
etd-05182007-235204/unrestricted/01thesis_whole5.pdf.

[47] Thomas Schmid and Mani B. Srivastava. An experimental study of network
performance impact of increased latency in software defined radios. 2007.
http://www.winlab.rutgers.edu/~wenyuan/papers/Seville.pdf.

[48] Dawei Shen. How to write a signal processing block. 2008. http://www.
nd.edu/~jnl/sdr/docs/tutorials/10.pdf.

[49] Dominic Spill and Andrea Bittau. Bluesniff: Eve meets Alice and
Bluetooth. 2007. http://www.usenix.org/event/woot07/tech/full_
papers/spill/spill.pdf.

[50] Holger von Malm Stefan Valentin and Holger Karl. Implementing
physical and data link control layer on the GNU software-defined ra-
dio platform. 2005. http://typo3.cs.uni-paderborn.de/fileadmin/
Informatik/AG-Karl/Pubs/vmalm05-sa-gsr_aloha.pdf.

[51] Holger von Malm Stefan Valentin and Holger Karl. Evaluat-
ing the GNU software radio platform for wireless testbeds. 2006.
http://www.cs.uni-paderborn.de/fileadmin/Informatik/AG-Karl/
Pubs/TR-RI-06-273-gnuradio_testbed.pdf.

[52] Kalen Watermeyer. Design of a hardware platform for narrow-band soft-
ware defined radio applications. 2006. http://rrsg.ee.uct.ac.za/
theses/msc_theses/kwatermeyer_thesis.pdf.

[53] Rob Miller Zang Li, Wenyuan Xu and Wade Trappe. Securing wireless
systems via lower layer enforcements. 2006. http://nesl.ee.ucla.edu/
fw/thomas/wintech401-schmid.pdf.

37

http://www.rds.org.uk/rds98/pdf/IEC%2062106-E_no%20print.pdf
http://www.rds.org.uk/rds98/pdf/IEC%2062106-E_no%20print.pdf
http://gnuradio.org/trac
http://gnuradio.org/trac
http://gnuradio.org/trac/attachment/wiki/UsrpFAQ/USRP_Documentation.pdf
http://gnuradio.org/trac/attachment/wiki/UsrpFAQ/USRP_Documentation.pdf
http://users.ece.utexas.edu/~rheath/papers/2007/vtc1/paper.pdf
http://users.ece.utexas.edu/~rheath/papers/2007/vtc1/paper.pdf
http://www.pattoncentral.org/download/patton_msthesis.pdf
http://www.pattoncentral.org/download/patton_msthesis.pdf
http://scholar.lib.vt.edu/theses/available/etd-05182007-235204/unrestricted/01thesis_whole5.pdf
http://scholar.lib.vt.edu/theses/available/etd-05182007-235204/unrestricted/01thesis_whole5.pdf
http://www.winlab.rutgers.edu/~wenyuan/papers/Seville.pdf
http://www.nd.edu/~jnl/sdr/docs/tutorials/10.pdf
http://www.nd.edu/~jnl/sdr/docs/tutorials/10.pdf
http://www.usenix.org/event/woot07/tech/full_papers/spill/spill.pdf
http://www.usenix.org/event/woot07/tech/full_papers/spill/spill.pdf
http://typo3.cs.uni-paderborn.de/fileadmin/Informatik/AG-Karl/Pubs/vmalm05-sa-gsr_aloha.pdf
http://typo3.cs.uni-paderborn.de/fileadmin/Informatik/AG-Karl/Pubs/vmalm05-sa-gsr_aloha.pdf
http://www.cs.uni-paderborn.de/fileadmin/Informatik/AG-Karl/Pubs/TR-RI-06-273-gnuradio_testbed.pdf
http://www.cs.uni-paderborn.de/fileadmin/Informatik/AG-Karl/Pubs/TR-RI-06-273-gnuradio_testbed.pdf
http://rrsg.ee.uct.ac.za/theses/msc_theses/kwatermeyer_thesis.pdf
http://rrsg.ee.uct.ac.za/theses/msc_theses/kwatermeyer_thesis.pdf
http://nesl.ee.ucla.edu/fw/thomas/wintech401-schmid.pdf
http://nesl.ee.ucla.edu/fw/thomas/wintech401-schmid.pdf

9 Appendix

9.1 GNU Radio installation

In this project Ubuntu 8 is used, the following package need to be installed to
compile and install GNU Radio:

sudo apt-get -y install g++ automake1.9 libtool python-dev fftw3-dev
libcppunit-dev libboost-dev sdcc libusb-dev libasound2-dev libsdl1.2-dev
python-wxgtk2.6 subversion guile-1.6 libqt3-mt-dev python-numpy-ext swig
portaudio19-dev jack gkrellm wx-common libwxgtk2.6-dev alsa-base autoconf
xorg-dev g77 gawk bison openssh-server emacs cvs usbview octave

The next code repairs the ability to test code and libraries before installing them

cp /etc/ld.so.conf /tmp/ld.so.conf
echo /usr/local/lib >> /tmp/ld.so.conf
sudo mv /tmp/ld.so.conf /etc/ld.so.conf

Download the source code, configure it and make it:

svn co http://gnuradio.org/svn/gnuradio/trunk gnuradio
cd gnuradio
./bootstrap
./configure
make

After the compiling has been completed, check to ensure that every component
was correctly configured:

make check

If the check was correct, install the software:

sudo make install

After the installation one more step must be done to ensure that GNU Radio
will operate correctly. Ubuntu uses udev to handle hotplug devices, and does
not give by default non-root access to the USRP. That is why a group must be
made to handle the USRP via USB, the steps taken were:

sudo addgroup usrp
sudo addgroup <YOUR_USERNAME> usrp
echo ’ACTION=="add", BUS=="usb", SYSFS{idVendor}=="fffe",

SYSFS{idProduct}=="0002", GROUP:="usrp", MODE:="0660"’ > tmpfile
sudo chown root.root tmpfile
sudo mv tmpfile /etc/udev/rules.d/10-usrp.rules
sudo ldconfig

Now that the installation process has been completed successfully, it is a
good idea to restart the computer before connecting the USRP to ensure that
everything loads correctly.
After this is done tests can be done with USRP connected to the computer to
ensure that everything is working fine.

38

ls -lR /dev/bus/usb | grep usrp

The steps given above were based on the instructions on: http://gnuradio.
org/trac/wiki/UbuntuInstall.

9.2 GRC Dial Tone
#!/usr/bin/env python

##

Gnuradio Python Flow Graph

Title: untitled

Author: unknown

Description: gnuradio flow graph

Generated: Wed Jun 25 11:54:47 2008

##

from gnuradio import audio

from gnuradio import gr

tb = gr.top_block()

##

Callbacks

##

def _set_samp_rate(_samp_rate):

global samp_rate

samp_rate = _samp_rate

gr_sig_source_x.set_sampling_freq(samp_rate)

gr_sig_source_x0.set_sampling_freq(samp_rate)

##

Variables

##

samp_rate = 32000

##

Blocks

##

audio_sink = audio.sink(32000, "", True)

gr_sig_source_x = gr.sig_source_f(samp_rate, gr.GR_SIN_WAVE, 400, 1, 0)

gr_sig_source_x0 = gr.sig_source_f(samp_rate, gr.GR_SIN_WAVE, 350, 1, 0)

##

Connections

##

tb.connect((gr_sig_source_x0, 0), (audio_sink, 0))

tb.connect((gr_sig_source_x, 0), (audio_sink, 1))

tb.start()

raw_input(’Press Enter to quit: ’)

tb.stop()

9.3 RDS Capture
##

#

Author: Alex verduin,

Credits : This script is based on example code provided with GNU Radio

Description: Captures samples from the USRP and writs them to disk

Generated: Wed Jun 25 11:54:47 2008

##

#!/usr/bin/env python

write to disk

#>>> bring in blocks from the main gnu radio package

from gnuradio import gr

from gnuradio import usrp

limit=1000000

u = usrp.source_c() # usrp is data source

freq=101.21

gain=50

adc_rate = u.adc_rate() # 64 MS/s

usrp_decim = 200

u.set_decim_rate(usrp_decim)

usrp_rate = adc_rate / usrp_decim # 320 kS/s

chanfilt_decim = 1

demod_rate = usrp_rate / chanfilt_decim

subdev_spec = usrp.pick_rx_subdevice(u)

u.set_mux(usrp.determine_rx_mux_value(u, subdev_spec))

subdev = usrp.selected_subdev(u, subdev_spec)

subdev.set_gain(gain)

u.tune(0, subdev, freq)

#>>> create the flow graph

tb = gr.top_block()

skip=gr.skiphead(gr.sizeof_gr_complex, limit)

head=gr.head(gr.sizeof_gr_complex, limit)

39

http://gnuradio.org/trac/wiki/UbuntuInstall
http://gnuradio.org/trac/wiki/UbuntuInstall

sink=gr.file_sink (gr.sizeof_gr_complex, "input.bin")

tb.connect(u,skip)

tb.connect(skip,head)

tb.connect(head,sink)

tb.run()

9.4 RDS Sample converter
##

#

Author: Alex verduin,

Credits : This script is based on example code provided with GNU Radio

Description: Takes a configured domain of samples out of a bigger sample file

Generated: Wed Jun 25 11:54:47 2008

##

#!/usr/bin/env python

write to disk

#>>> bring in blocks from the main gnu radio package

from gnuradio import gr

limit=500000 # Number of recorded samples

skipnumber = 20000000 # Skip the first number of samples

u = gr.file_source (gr.sizeof_gr_complex, "input.bin", 0) # Input is a file

tb = gr.top_block() # Create the top block

skip=gr.skiphead(gr.sizeof_gr_complex, skipnumber) # create a skip block

head=gr.head(gr.sizeof_gr_complex, limit) # Create a head block

sink=gr.file_sink (gr.sizeof_gr_complex, "output.bin") # The output is a file

tb.connect(u,skip) #Connect the source to the skip

tb.connect(skip,head) #Connect the skip to the head

tb.connect(head,sink) #connect the head to the sink

tb.run() #Run the graph

9.5 RDS Decode application
##

#

Author: Alex verduin,

Credits : This script is a rewrite of code from http://digilander.libero.it/iz2eeq/#rds

Description: Decodes RDS FM broadcast.

Generated: Wed Jun 25 11:54:47 2008

##

#!/usr/bin/env python

from gnuradio import gr, gru

from gnuradio import rds

from gnuradio import optfir

from gnuradio import blks2

from gnuradio import audio

from gnuradio import eng_notation

import sys

import math

import wx

level= int(sys.argv[1])

usrp_decim = 200 #usrp_decim = 200

chanfilt_decim = 1 #chanfilt_decim = 1

audio_decimation = 10 #audio_decimation = 10

adc_rate = 64000000 #adc_rate = 64000000

usrp_rate = adc_rate / usrp_decim #usrp_rate = 320000

demod_rate = usrp_rate / chanfilt_decim #demod_rate = 320000

audio_rate = demod_rate / audio_decimation #audio_rate = 32000

usrp_rate = adc_rate / usrp_decim #usrp_rate = 320000

print "Debug level = " +str(level)

#Print all the variables

print"usrp_decim = " +str(usrp_decim)

#print"chanfilt_decim = " +str(chanfilt_decim)

#print"audio_decimation = " +str(audio_decimation)

print"adc_rate = " +str(adc_rate)

#print"usrp_rate = " +str(usrp_rate)

#print"demod_rate = " +str(demod_rate)

#print"audio_rate = " +str(audio_rate)

#print"usrp_rate = " +str(usrp_rate)

tb = gr.top_block() # create the flow graph

file = gr.file_source (gr.sizeof_gr_complex, "RDSSampleSmall.bin", 0)# Recorded sample with RDS (sample) as input file. 0 =! non loop , 1 == loop behavior

#sink=gr.file_sink (gr.sizeof_gr_complex, "output"+str(level)+".bin")#Write the data to file. Datatype complex

#probe=gr.file_sink (gr.sizeof_float, "probe"+str(level)+".bin") #Write the data to file. Datatype float

audio_sink = audio.sink(audio_rate,’plughw:0,0’, False) # Create an audio output with a audio rate of 32K

#Channel Filter cuts off al frequnties above 80 kHz

40

chan_filt_coeffs = optfir.low_pass (1, # gain

usrp_rate, # sampling rate

80e3, # passband cutoff

115e3, # stopband cutoff

0.1, # passband ripple

60) # stopband attenuation

chan_filt = gr.fir_filter_ccf (chanfilt_decim, chan_filt_coeffs)

#FM-demodulator. Hierarchical block for demodulating a

#broadcast FM signal. The input is the down converted

#complex baseband signal.The output is the demodulated audio (float).

#demod_rate: input sample rate of complex baseband input.

#audio_decimation :much to decimate quad_rate to get to audio.

guts = blks2.wfm_rcv (demod_rate, audio_decimation)

#FM-Filter cuts off al frequnties above 70 kHz

coeffs = gr.firdes.low_pass (100.0, # gain

demod_rate, # sampling rate

70e3,# cutoff_freq

10e3,# transition_width

gr.firdes.WIN_HAMMING) #

fm_filter = gr.fir_filter_fff (1, coeffs)

#Piloot filter only let the frequenties trough between 18 kHz and 20 kHz

pilot_filter_coeffs = gr.firdes_band_pass(1, #

demod_rate, #sample rate

18e3, #center of low transition band

20e3, #center of high transition band

3e3, #transition_width

gr.firdes.WIN_HAMMING) #

pilot_filter = gr.fir_filter_fff(1, pilot_filter_coeffs)

#RDS Filter only let the frequenties trough between 54 kHz and 60 kHz

rds_filter_coeffs = gr.firdes.band_pass (1,

demod_rate,#sample rate

54e3,#center of low transition band

60e3,#center of high transition band

3e3,#transition_width

gr.firdes.WIN_HAMMING)#

rds_filter = gr.fir_filter_fff (1 , rds_filter_coeffs)

#RDS Data filter only let the frequenties lower then 1.5 kHz trough

rds_bb_filter_coeffs = gr.firdes.low_pass (5, # Gain

demod_rate,# sampling rate

1500, # Cut off

2000, # transition_width

gr.firdes.WIN_HAMMING) # window type

rds_bb_filter = gr.fir_filter_fff (1, rds_bb_filter_coeffs)

#Mixer adds the frequenties

mixer = gr.multiply_ff()

Data clock reconstruction. It takes the 19kHz Pilot tone and use it to construct a clock signal

data_clock = rds.freq_divider(16)

Biphase decoder

biphase_decoder = rds.biphase_decoder(audio_rate)

Differential decoder

differential_decoder = rds.diff_decoder()

RDS data decoder

msgq = gr.msg_queue()

rds_decoder = rds.data_decoder(msgq)

######

###Here all the blocks are connected

#####

tb.connect(file, chan_filt)

tb.connect(chan_filt, guts)

tb.connect(guts, audio_sink)

tb.connect(guts.fm_demod, fm_filter)

tb.connect(fm_filter, pilot_filter)

tb.connect(fm_filter, rds_filter)

tb.connect(pilot_filter, (mixer, 0))

tb.connect(pilot_filter, (mixer, 1))

tb.connect(pilot_filter, (mixer, 2))

tb.connect(rds_filter, (mixer, 3))

tb.connect(pilot_filter, data_clock)

tb.connect(mixer, rds_bb_filter)

tb.connect(rds_bb_filter, (biphase_decoder, 0))

tb.connect(data_clock, (biphase_decoder, 1))

tb.connect(biphase_decoder, differential_decoder)

#tb.connect(differential_decoder, rds_decoder)

#These connects can be used to create sample files.

if level == 2:

probe2=gr.file_sink (gr.sizeof_gr_complex, "probe"+str(2)+".bin") #Write the data to file. Datatype float

tb.connect(chan_filt, probe2)

if level == 3:

probe3=gr.file_sink (gr.sizeof_float, "probe"+str(3)+".bin") #Write the data to file. Datatype float

41

tb.connect(guts.fm_demod, probe3)

if level == 5:

probe5=gr.file_sink (gr.sizeof_float, "probe"+str(5)+".bin") #Write the data to file. Datatype float

tb.connect(fm_filter, probe5)

if level == 6:

probe6=gr.file_sink (gr.sizeof_float, "probe"+str(6)+".bin") #Write the data to file. Datatype float

tb.connect(pilot_filter, probe6)

if level == 7:

probe7=gr.file_sink (gr.sizeof_float, "probe"+str(7)+".bin") #Write the data to file. Datatype float

tb.connect(rds_filter, probe7)

if level == 8:

probe8=gr.file_sink (gr.sizeof_float, "probe"+str(8)+".bin") #Write the data to file. Datatype float

tb.connect(mixer, probe8)

if level == 9:

probe9=gr.file_sink (gr.sizeof_float, "probe"+str(9)+".bin") #Write the data to file. Datatype float

tb.connect(data_clock, probe9)

if level == 10:

probe10=gr.file_sink (gr.sizeof_float, "probe"+str(10)+".bin") #Write the data to file. Datatype complex

tb.connect(rds_bb_filter, probe10)

if level == 11:

probe11=gr.file_sink (gr.sizeof_float, "probe"+str(11)+".bin") #Write the data to file. Datatype complex

tb.connect(biphase_decoder, probe11)

if level == 12:

probe12=gr.file_sink (gr.sizeof_float, "probe"+str(12)+".bin") #Write the data to file. Datatype complex

tb.connect(differential_decoder, probe12)

tb.run() # Execute the graph

9.6 Example C++ code

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gr_rds_freq_divider.h>
#include <gr_io_signature.h>

gr_rds_freq_divider_sptr
gr_rds_make_freq_divider (int divider)
{
return gr_rds_freq_divider_sptr (new gr_rds_freq_divider (divider));

}
static const int MIN_IN = 1; // mininum number of input streams
static const int MAX_IN = 1; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams

gr_rds_freq_divider::gr_rds_freq_divider (int divider)
: gr_sync_block ("gr_rds_freq_divider",

gr_make_io_signature (MIN_IN, MAX_IN, sizeof (float)),
gr_make_io_signature (MIN_OUT, MAX_OUT, sizeof (float)))

{
d_divider = 0;
DIVIDER = divider;
d_sign_last = d_sign_current = false;
d_out = 1;
}

42

/*
* Our virtual destructor.
*/
gr_rds_freq_divider::~gr_rds_freq_divider ()
{

// nothing else required in this example
}
int
gr_rds_freq_divider::work (int noutput_items,

gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

{
const float *in = (const float *) input_items[0];
float *out = (float *) output_items[0];
for (int i = 0; i < noutput_items; i++){

d_sign_current = (in[i] > 0 ? true : false);
if(d_sign_current != d_sign_last) {
// A zero cross
if(++d_divider == DIVIDER) {
d_out *= -1;
d_divider = 0;
}
}
out[i] = d_out;
d_sign_last = d_sign_current;
}
// Tell runtime system how many output items we produced.
return noutput_items;

43

	Acknowledgement
	Introduction
	Structure
	Research question
	Scope
	Related Work

	Dataflow in USRP hardware and GNU Radio software
	SDR basics
	USRP
	USB 2.0 Controller
	ADC (Analog to Digital Converter)
	DAC (Digital to Analog Converter)
	PGA(Programmable Gain Amplifier)
	Daughterboards
	FPGA (Field Programmable Gate Array)

	GNU Radio
	GNU Radio Companion
	Python
	C++

	Example projects

	Wireless protocol analysis approach
	Understand the design of the USRP and GNU Radio
	Installing, configuring and code examples
	Study protocol specification and search for existing code
	Create flow graph
	Capture raw wireless samples
	Create the C++ and Python code
	Analyse the protocol

	Considerations
	Conclusion
	Future Work
	Bibliography
	Appendix
	GNU Radio installation
	GRC Dial Tone
	RDS Capture
	RDS Sample converter
	RDS Decode application
	Example C++ code

