
Faculty of Science
System and Network Engineering

Reliable network booting of cluster computers

Research project 2

Ing. Matthew Steggink
<matthew.steggink@os3.nl> <msteggink@msteggink.com>

Coordinator: Dr. Ir. C. de Laat, University of Amsterdam
Supervisor: Drs. M. de Vries, ClusterVision B.V.

Abstract

Network booting involves interaction between a client and DHCP server and TFTP
server. These protocols use UDP which is unreliable compared to TCP. When a large
number of cluster computers are booting simultaneously, some will get stuck in the
process. These errors can be caused during a DHCP session or TFTP transfers. The
errors are caused by packet loss, which UDP does not respond to well. The errors cause
the client or server to terminate the connection, halting the boot process.

I have investigated an alternative method of booting, by using a more reliable protocol:
HTTP on TCP. TCP is more reliable then UDP because it uses an acknowledgement
mechanism to ensure reliable transfers. To use HTTP booting I have investigated and
tested a gPXE implementation against the current situation.

I have found that the booting process can be more reliable using gPXE. Also the gPXE
boot ROM can be chainloaded, therefore no modifications to the clients are required.
This is very practical with a large number of clients. Using gPXE cancels the TFTP
stage, making the process more reliable. However the DHCP bottleneck still exists.

I have also investigated an alternative DHCP implementation: DNSMasq. I found
that DNSMasq is currently not suitable to implement gPXE because they are not fully
compatible.

Acknowledgement

Amsterdam, June 30, 2008

I would like to take this opportunity to thank the people who have made this thesis
possible.

First of all, I would like to thank my supervisor drs. Martijn de Vries from Cluster-
Vision B.V., for the very challanging assignment and for giving me the opportunity to
conduct this research project at their facility. Also I thank drs. Martijn de Vries for
his time, the guidance and making it possible to test my findings on physical hardware.
Without his aid I could not have finished this research project in time.

I would like to thank the System and Network Engineering team (dr. ir. Cees de
Laat, dr. Karst Koymans, Jaap van Ginkel and drs. Eelco Schatborn) for asking critical
questions at the beginning of this research project. This has given me a head start in
finding a suitable strategy and a solution.

I want to express my gratitude to the developers of the etherboot/gPXE project and
the SYSLinux project for making great products like PXELinux and gPXE.

I also thank my family and friends who have supported my through these 4 weeks.

Matthew Steggink

System and Network Engineering,
Faculty of Science, University of Amsterdam, the Netherlands

This document is c© 2008
Matthew Steggink <matthew@msteggink.com>
<Matthew.Steggink@os3.nl>

Some rights reserved: this document is licensed under the Creative Commons Attribution
3.0 Netherlands license. You are free to use and share this document under the condition
that you properly attribute the original authors. Please see the following address for the
full license conditions: http://creativecommons.org/licenses/by/3.0/nl/deed.en

Version 1.0.0 and compiled with LATEX.

matthew@msteggink.com
Matthew.Steggink@os3.nl
http://creativecommons.org/licenses/by/3.0/nl/deed.en

Contents

1 Introduction 7
1.1 Introduction . 7
1.2 Research question . 7

2 Theory 8
2.1 Theory . 8

2.1.1 Cluster computer set-up . 8
2.1.2 Concept of network booting . 9
2.1.3 Bootstrap procedure . 10
2.1.4 PXE Linux . 11
2.1.5 PXE boot sequence . 11

2.2 Booting procedure . 12
2.2.1 DHCP . 12
2.2.2 ARP . 17
2.2.3 TFTP . 18
2.2.4 Post PXE . 20
2.2.5 Components . 20

3 Traffic control 22
3.1 Virtualization and traffic control . 22
3.2 Traffic control in VMWare Workstation 22
3.3 Traffic control in Linux . 23

3.3.1 Types of qdisc’s . 25

4 Testing 30
4.1 Traffic control tests . 30
4.2 Configuring traffic control . 31

4.2.1 Test setup . 31
4.2.2 Reliability of traffic control . 32
4.2.3 Used software . 33
4.2.4 Test methodology . 33

4

CONTENTS CONTENTS

5 Observations 35
5.1 Measurements . 35

5.1.1 4.000 kilobit . 36
5.1.2 2.000 kilobit . 36
5.1.3 1.500 kilobit . 37
5.1.4 1.250 kilobit . 38
5.1.5 1.000 kilobit . 38
5.1.6 500 kilobit . 39
5.1.7 250 kilobit . 39
5.1.8 100 kilobit . 40
5.1.9 50 kilobit . 40

6 Analysis and discussion 41
6.1 Analysis . 41

6.1.1 Identified problems . 41
6.1.2 DHCP Stage . 41
6.1.3 ARP Stage . 42
6.1.4 TFTP Stage . 42
6.1.5 Boot Stage . 44
6.1.6 Problems matrix . 45
6.1.7 Conclusion . 46

7 Alternatives 48
7.1 Alternatives . 48
7.2 PoC: DHCP3 and gPXE . 49

7.2.1 gPXE flashed into NIC boot ROM 51
7.2.2 Starting with gPXE . 52
7.2.3 gPXE dataflow . 53
7.2.4 gPXE tests . 55

7.3 gPXE measurements . 56
7.3.1 Compatibility . 56
7.3.2 Performance . 56
7.3.3 1000 kbit . 57
7.3.4 500 kbit . 57
7.3.5 250 kbit . 57
7.3.6 100 kbit . 58
7.3.7 Conclusion . 58

7.4 Proof-of-concept: DNSMasq . 60
7.4.1 Installation . 60
7.4.2 Configuration . 60
7.4.3 Test setup and complications . 61
7.4.4 Test method . 64
7.4.5 Conclusion . 64

5

CONTENTS CONTENTS

8 Conclusion and future work 65
8.1 Conclusion . 65
8.2 Future work . 67

9 Appendices 71
9.1 Appendix A: Traffic control tests . 71

9.1.1 Traffic control tests . 71
9.2 Appendix-B Shellscripts . 74

9.2.1 tc-limit . 74
9.2.2 bridge . 75

9.3 Appendix-C ISC DHCP3 configuration . 76
9.4 Appendix-D DNSMasq Configuration . 77

6

Chapter 1

Introduction

1.1 Introduction

This research project is part of the Master of Science course “System and Network
Engineering” of the Faculty of Science, University of Amsterdam. The objective of a
research project is to conduct autonomous research to answer the research question,
using literature searches, study, experiments, a proof-of-concept and/or development of
software.

When network booting a large number of computers, some will get stuck in the pro-
cess. The purpose of this research project is to analyze the bottlenecks of the current
situation, and to find a solution to upscale the number of booting nodes without failing.
An analysis must be done to investigate which problems occur, and under which cir-
cumstances they appear. Time permitting, alternatives can be investigated to see what
influence they have on the current setup.

1.2 Research question

The research question consists of the subjects:

• Literature study on network booting (PXE) as implemented by PXELinux;

• Simulation of network booting (a part of) a cluster with virtualization software to
discover different characteristics on how it operates with aspects like congestion,
latency or limited bandwidth;

• Try to determine the root cause of the computers being stuck in the proces;

• Try alternative implementations of network booting and compare them to the
original implementation;

• Create a report and advice;

7

Chapter 2

Theory

2.1 Theory

Cluster computers are a group of computers that work together. They usually (but not
necessarily) have the same hardware and software configuration. To ensure that all the
cluster computers will have the same operating system and software and configuration
options, you can use a single image to boot from. This can be done using the network
as a boot method, instead of using local disks. This makes things easier, as you can
centralize disk management.

This chapter describes the setup, and the procedures the computers must follow to
boot off the network succesfully.

2.1.1 Cluster computer set-up

Figure 2.1: Cluster computers set-up

Clusters, deployed by ClusterVision consist of one (or two if there is a fail-over

8

2.1. THEORY CHAPTER 2. THEORY

master node) master node, a local network and multiple slave nodes (see figure 2.1 on
the preceding page. The master node is connected to the local network, and the internal
network which is used by the master and slaves only to communicate with eachother. The
slaves are not directly connected to the outside. The internal network can be build on
different technology like Gigabit Ethernet, Myrinet, Infiniband or any other technology
the customer wants to use.

The master node controls the slave nodes. The management is done by the master
node, it gives out IP addresses using DHCP and uploads the images using TFTP. The
master node is the only node which has contact with the local network.

The slaves are stateless, they do not remember the configuration settings. The slaves
obtain an IP address, a kernel and an initial ramdisk from the master node by booting
off the network. This procedure will be discussed in the next section.

The slaves can be powered up, rebooted or powered down remotely using an APC
powerswitch. This setup gives the administrator full control over the setup. It easy to
easily add or replace nodes, and keeps image and slave management easy.

2.1.2 Concept of network booting

Network booting is a procedure, where computers use a network source instead of a local
disk to boot from. The computers download an image from the network where they boot
from. By using the same image, they ensure that they are installed and configured in
the same manner as other computers which use the image. Using the network booting
method has several advantages:

• Network booting makes it easier to roll out new computers, as they only have to
use the network to boot themselves (remote setup);

• By centralizing the image you increase your control over your computers in the
network: each client will have the same configuration and installation;

• You can create personal bootsettings per MAC or IP address if needed;

• It is possible to use diskless computers, which limits the impact of failing harddisks.
Also this introduces more advantages: lower power consumptions and less heat
generation, this is important when a lot of computers are put in a rack;

There are several ways to use network booting [1]:

• Use the BIOS to boot from Preboot eXecution Environment or PXE (by Intel) or
Remote Program Loading also known as RPL (by Novell);

9

2.1. THEORY CHAPTER 2. THEORY

• If the NIC does not have PXE, you can use Etherboot/gPXE1 or network boot
using a supported2 network interface card (NIC) which has a network boot ROM.
More information about Etherboot in section 7.1 on page 48;

• Use etherboot/gPXE with a floppy, CD-ROM or USB-key to start the initial boot-
strap: The image contains just enough code to boot from the network. The BIOS
must support booting off these media;

The bootprocess is similar between these methods. In the next section I will write
more about this. Bootstrapping can be done using the PXE protocol (see section 2.1.5
on the following page) or by alternatives like etherboot/gPXE [2]. I will discuss the PXE
protocol used by PXELinux.

2.1.3 Bootstrap procedure

Figure 2.2: Bootstrap procedure

After the computer has been turned on and completed it’s Power-On-Self-Test (POST),
the second step will be executed by the BIOS (Basic Input Output System). When the
BIOS is initializing ROM’s in the system, the networkcard boot ROM will be found, and
hooked into the BIOS boot code.

The BIOS will go through a list of bootable devices which have been defined in the
boot order. When selected, the BIOS can then use the networkcard to boot using PXE
(see more in section 2.1.5 on the next page about PXE) by handing over control to the
networkcard boot ROM.

If the networkcard does not have PXE support, etherboot/gPXE can be flashed into
the networkcard, only when the networkcard is supported by etherboot/gPXE.

When the BIOS has transferred the control to the network boot code, the network
boot process starts as described in section 2.1.5 on the following page [1]. The first step
in the bootstrap process has been started.

1Etherboot ROM’s can be obtained here: http://rom-o-matic.net/
2The etherboot supported PCI ID’s: http://rom-o-matic.net/etherboot/etherboot-5.4.3/src/

bin/NIC

10

http://rom-o-matic.net/
http://rom-o-matic.net/etherboot/etherboot-5.4.3/src/bin/NIC
http://rom-o-matic.net/etherboot/etherboot-5.4.3/src/bin/NIC

2.1. THEORY CHAPTER 2. THEORY

2.1.4 PXE Linux

ClusterVisionOS is specifically made for clusters. It contains a set of software pack-
ages and tools which can be used to manage a cluster. ClusterVisionOS is built upon
other Linux distributions. It uses PXELinux [3] to boot linux off a network server, us-
ing a network boot ROM conforming to the Intel PXE (Pre-Execution Environment)
specification. PXELinux uses similar steps like PXE does (see section 2.1.5) to boot
computers.

2.1.5 PXE boot sequence

In this section I will document the steps PXELinux takes in booting off the network.

Figure 2.3: PXE Sequence

Preboot eXecution Environment (PXE) is a method to boot computers using the
networkcard, instead of the harddisk or other devices to boot the system [4]. PXE
leans on different mainstream protocols: Dynamic Host Configuration Protocol (DHCP),
Trivial File Transfer Protocol (TFTP), User Datagram Protocol (UDP) and the IP stack.
It uses the DHCP (or BOOTP) to obtain an IP and locate a bootserver, and uses TFTP
to download the bootstrap program.

PXE uses extensions which it puts in the option fields of the DHCP protocol, as defined
in RFC2132 [5]. PXE does not interfere with the standard operation of DHCP, as these
options are standardized in this RFC. The only difference is the extended information
which are put in the DHCP options field. A non-PXE client can just discard or ignore

11

2.2. BOOTING PROCEDURE CHAPTER 2. THEORY

the additional information without influencing the normal operation. PXELinux does
not use the PXE specific fields.

Sending out a DHCP packet with these Vendor Option values, with PXE information
encapsulated, is called an extended message [4].

The fields and options are defined in RFC2131 [6]. The PXE specific options are encap-
sulated in tagnumber 43 “Vendor Options” as described in RFC 2132. The tagnumbers
are registered by IANA3 [7] .

Because PXE is based on several protocols, I’ve split the boot procedure up per
protocol.

2.2 Booting procedure

The procedure has been split up into the protocols DHCP, ARP and TFTP.

2.2.1 DHCP

The Dynamic Host Configuration Protocol (DHCP) passes configuration information (IP
address, booting options) to hosts on the network. The DHCP protocol is a client-server
model. The packetformat of DHCP are based on BOOTP packetformats. The packet
format looks like:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| op (1) | htype (1) | hlen (1) | hops (1) |

+---------------+---------------+---------------+---------------+

| xid (4) |

+-------------------------------+-------------------------------+

| secs (2) | flags (2) |

+-------------------------------+-------------------------------+

| ciaddr (4) |

+---+

| yiaddr (4) |

+---+

| siaddr (4) |

+---+

| giaddr (4) |

+---+

| chaddr (16) |

+---+

| sname (64) |

+---+

| file (128) |

+---+

| options (variable) |

+---+

3The Internet Assigned Numbers Authority

12

2.2. BOOTING PROCEDURE CHAPTER 2. THEORY

The packet fields:

Field Octets/(bits) Description
op 1 (8) Message operation code / message type.
htype 1 (8) Hardware address type. These numbers are registered by

IANA [8]
hlen 1 (8) Hardware address length (6 bytes for ethernet MAC ad-

dresses)
hops 1 (8) Client sets to zero, optionally used by relay agents when

booting via a relay agent
xid 4 (32) Transaction ID, a random number chosen by the client,

used by both to identify messages and responses
secs 2 (16) Filled in by client, seconds elapsed since client began the

DHCP process
flags 2 (16) Flags. First bit denotes is broadcast, the remaining are

reserved
ciaddr 4 (32) Client IP address
yiaddr 4 (32) ’your’ (client) IP address. Assigned to the client by the

server
siaddr 4 (32) IP address of next server to use in bootstrap; returned in

DHCPOFFER and DHCPACK by server
giaddr 4 (32) Relay agent IP address, used in booting via a relay agent
chaddr 16 (128) Client hardware address. For MAC addresses, only 6 octets

are used
sname 64 (512) Optional server host name
file 128 (1024) Boot file name
options variable Optional parameters field.

Operation: for DHCP, RFC describes 8 different packettypes:

Client - Server Server - Client
Value Message Type Value Message Type
1 DHCPDISCOVER 2 DHCPOFFER
3 DHCPREQUEST 5 DHCPACK
4 DHCPDECLINE 6 DHCPNAK
7 DHCPRELEASE
8 DHCPINFORM

The Discover is broadcasted by the client to the network, to discover a DHCP server.
Because this is restricted to the local broadcast domain only, network administrators
can configure a local router to forward DHCP packets to a DHCP server on a different
broadcast domain [6].

The Offer is a packet type sent by the server to the client to offer an IP address [6].

13

2.2. BOOTING PROCEDURE CHAPTER 2. THEORY

The Request is the packet sent by the client to all the DHCP servers, that it has
accepted and confirmed the IP address that has been offered, and to give notice to other
DHCP servers that it has declined their IP offer [6, 9].

The Decline is sent from the client to the server indicating network address is already
in use. The client can discover that the address is already in use, through ARP. After
sending the Decline message, the configuration process will be restarted [6].

The ACK is sent from the server to the client, to confirm the configuration parame-
ters [6].

The NACK is sent from the server to the client, to notice the client that his network
address is incorrect. This can be invoked because the client has moved to another subnet
or the lease expired [6].

The Release message is sent from the client to the server, that the client does not
need his IP address anymore, and is cancelling the lease [6].

The Inform message is sent by the client to server, asking only for local configuration
parameters. In this case, the client already has externally configured network address [6].

Step 1: DHCPDISCOVER

Figure 2.4: PXE DHCP Discover

14

2.2. BOOTING PROCEDURE CHAPTER 2. THEORY

To initiate a transmission between the client and server, the PXE client will send out
a DHCPDISCOVER, with extensions in the options field [4, 7]. The DHCP discover
message is specified in paragraph 4.3.1 in RFC 2131 [6]. The first field, operations
(op), is set to 1. This means the message type is a BOOTP request.

The options contain [6, 7]:

Name Tag Comment
DHCP message type 53 Message type
Parameter request list 55 This option is used by a DHCP client to re-

quest values for specified configuration parame-
ters (RFC2132) [5]

Message length 57 This option specifies the maximum length DHCP
message that it is willing to accept (RFC2132) [5]

Vendor Class Identifier 60 This option is used by DHCP clients to optionally
identify the vendor type and configuration of a
DHCP client (RFC2132) [5]

Client identifier 61 Client Identifier (RFC2132) [5]
Client Network Device In-
terface

94 Interface type, only supported option is 1 (UNDI)
(RFC4578) [10]

Client system architecture 93 The architecture (e.g. IA x86 PC)
Client UUID 97 Unique Cient Identifier

These options are used by DHCP clients to specify their unique identifier and other
variables. DHCP servers use this values to index their database of address bindings [5].
By using the option “vendor class identifier”, it identifies the request as coming
from a client which implements the PXE protocol. Normal operations do not use this
option field.

The Vendor Class Identifier field looks like:

PXEClient:Arch:xxxxx:UNDI:yyyzzz

xxxxx = Client Sys Architecture 0 - 65535
yyy = UNDI Major version 0 - 255
zzz = UNDI Minor version 0 - 255

15

2.2. BOOTING PROCEDURE CHAPTER 2. THEORY

Step 2: DHCPOFFER

When the server understands this request, it will send out an DHCPOFFER. The
server will notice by the options that it is enabled to recieve an extended reply. The first
field, operations (op), is set to 2. This means the message type is a BOOTP reply.

Figure 2.5: PXE DHCP Discover

The options contain [6, 5, 7]:

Name Tag Comment
DHCP Message type 53 Message type
Server identifier 54 Server identifier is used by both to identify a DHCP

server as a destination address
Address lease time 51 Time in seconds. 000189C0 (hex) 100800 (dec) is 28

hours
Subnet mask 1 Subnet mask value
Router 3 Router address
Domainname 6 DNS Server
Host name 12 Client hostname
Domain name 15 Domain name

16

2.2. BOOTING PROCEDURE CHAPTER 2. THEORY

Step 3: (Optional) Select IP address

If the client selects an IP address offered by a DHCP Service, then it must complete the
standard DHCP protocol by sending a request for the address back to the Service and
then waiting for an acknowledgment from the Service [4, 6].

Name Tag Comment
Address Request 50 Requested IP address
DHCP Server ID 54 DHCP Server Identification

With tag 54, it knows which server to request it from. If there are multiple DHCP
servers, they know who it is for, when the packet is broadcasted.

Step 4: (Optional) DHCP Ack

The DHCP server will now acknowledge the configuration parameters [6]. The packet is
identical with step 2, but now it acknowledges the request.

The above 4 steps were responsible for discovering a DHCP server (1), receiving a
reply from DHCP servers (2), selecting an IP and options (3) and recieving an acknowl-
edgement (4).

Now the client can proceed to the download state. It can now receive a Network
Bootstrap Program (NBP). To read more about NBP, see section 2.2.5 on page 20

2.2.2 ARP

Step 5: ARP request and reply

Because it got the IP address of the TFTP server, it can now access it. However, it
cannot contact it, because it only has it’s IP address and not his data-layer link address
(also known as MAC address) (layer 2). To obtain the MAC address it has to do an
ARP request.

It will broadcast an ARP packet, filling in his MAC and IP address in the sender field,
and the server IP address in the target ip address field. Because he does not know the
MAC address of the server he will put all zero’s in the target mac address, and will also
put all one’s in the ethernet destination (ffffff) to denote it is a broadcast packet.

The target can reply because his sender’s MAC address is in the ethernet source field
and the sender MAC address field.

The operation field has 2 options: request (0x01) or reply (0x02).

17

2.2. BOOTING PROCEDURE CHAPTER 2. THEORY

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| hw type (2) | protocol type (2) |

+---------------+---------------+---------------+---------------+

| hw size (1) | prot size (1) | opcode (2) |

+---------------+---------------+---------------+---------------+

| sender mac (6) |

+---------------+---------------+---------------+---------------+

| | sender ip address (4) |

+---------------+---------------+---------------+---------------+

| | target mac address (6) |

+---------------+---------------+---------------+---------------+

| |

+---------------+---------------+---------------+---------------+

| target ip address (4) |

+---------------+---------------+---------------+---------------+

Figure 2.6: ARP Reply

The server will pick up the broadcast and reply to the sender with his MAC address.
Now the client can access the server, and will proceed to use TFTP.

2.2.3 TFTP

Step 6: Read request bootfile

The PXE bootrom then uses the TFTP protocol to download the bootfile. The PXE
bootrom has a limitation of only being able to load small (up to 32kb) files. It isn’t able
to load a full Linux kernel. So instead, PXELinux set it up to load a small bootloader
called ’pxelinux.0’. That bootloader is then able to load larger images, such as the Linux
kernel and the initrd image [11].

When booting, it will try to request a read operation on the pxelinux.0 bootimage.
First it wants to know the transmission size of the file (tsize). When the server has
returned that value, it will calculate the most optimal transmission size (blksize). By
default the TFTP protocol intends data transmission by 512 bytes blocks. Regarding
the fact that present local networks MTU is usually equal to 1500 bytes or more, this

18

2.2. BOOTING PROCEDURE CHAPTER 2. THEORY

Figure 2.7: Read request bootfile

block size is not effective. TFTP blksize option let change the block size, improving data
transmission effectiveness.

The PXELinux specifications describes a procedure to load the bootfile. It will
append values to the pxelinux.cfg in this order:

1. UUID (e.g. /mybootdir/pxelinux.cfg/b8945908-d6a6-41a9-611d-74a6ab80b83d)

2. MAC address (e.g. /mybootdir/pxelinux.cfg/01-88-99-aa-bb-cc-dd)

3. IP address in hex notation (e.g. /0A8D0001 (hex notation for 10.141.0.1)

4. IP address in hex notation, minus one nibble per step (e.g. /0A8D000, /0A8D00,
/0A8D0, etc.)

5. default (/mybootdir/pxelinux.cfg/default/

The bootfile can contain a bootmenu, from which several bootfiles can be chosen.
Also, the bootfile that has been downloaded can also initiate a download of other boot-
files. Regardless of what action is chosen, for every transaction it must send a read
request, calculate optimal blksize and recieve and acknowledge the datablocks. Because
TFTP is a lock-step protocol, asking a acknowledgement for each packet, it is not very
efficient.

19

2.2. BOOTING PROCEDURE CHAPTER 2. THEORY

After downloading and acknowledging each block, the client can now load the Network
Bootstrap Program into the memory. The file downloaded and the placement of the
downloaded code in memory is dependent on the clients CPU architecture [4].

Step 7: Code execution

Finally, if the authenticity test succeeded or was not required, then the PXE client
initiates execution of the downloaded NBP code. This code can be another NBP which
points to other boot files, or it can be the kernel itself.

2.2.4 Post PXE

After the NBP has downloaded the images via TFTP, the network bootstrap program
unpacks and executes the kernel. The kernel image is compressed with the zlib compres-
sion algorithm. It decompresses the kernel an the initial ramdisk images and loads them
into the system memory. Then the initial ramdisk is mounted as a temporary root. It’s
lifetime is short, only serving as a bridge to the real root file system [12]. After both
have been set up, the kernel is then executed and various hardware initializations are
performed.

2.2.5 Components

Network Bootstrap Program

Network Bootstrap Program’s are images, which are executed by the CPU of the client.
A NBP can do much more advanced operations, because it has access to the APIs of the
PXE firmware extension (protocol and UNDI extensions) [4]:

• Download other NBPs, applications, or OS images

• Communicate on the network (UNDI APIs (see section 2.2.5 on the next page))

• Shut down and stop the base code loader runtime and/or the UNDI driver.

A NBP is essentially a second stage loader. The PXE bootrom can only load small
(max. 32 kbyte) images. Therefore it needs to load a small bootrom first. This bootrom,
like PXELinux, can then load other larger images, like the kernel and the initial ramdisk.

The downloaded bootrom contains a menu with several options. After a selection has
been made, it will do the corresponding action defined in the menu. In this context the
Network Bootstrap Program’s will execute a normal slave boot. It’s task is to download
and load two components: the kernel (vmlinuz) and initial ramdisk (initrd).

20

2.2. BOOTING PROCEDURE CHAPTER 2. THEORY

Figure 2.8: A NBP with a boot screen

Universal Network Device Interface

An Universal Network Device Interface (UNDI) enables basic control of and I/O through
the clients network interface device. According to the PXE standard, PXE-enabled
network cards should support the UNDI interface. This allows the use of universal
protocol drivers such a way that the same universal driver can be used on any network
interface that implements this application programming interface (API) [4].

21

Chapter 3

Traffic control

3.1 Virtualization and traffic control

Because it is not possible to use a large number of physical machines for these tests,
another alternative had to be chosen. A virtual network has multiple advantages:

• All the traffic characteristics (bandwidth, latency, packetloss) can be tuned;

• A new network setup is created in a minimum timespan using scripts and linked
clones;

• Every node in the network can be monitored centrally;

• Using the bridge method, you can sniff traffic from the slave and master nodes off
the bridge. Using the VMWare team method, you cannot sniff traffic because the
traffic is switched;

• Creating snapshots in the virtualization software can be done quickly to revert
back to recent changes.

In this setup, there are two ways to limit the traffic. You can limit a whole LAN
using VMWare Workstation Team function, or you can limit the traffic by placing a
bridge between the slave nodes and the master node and tune the bridge. I will describe
both methods in the next 2 sections.

3.2 Traffic control in VMWare Workstation

VMWare Workstation has an option to limit traffic on a given LAN segment: Teams.
These teams are grouped together in a team, and the network settings can be influenced.
You can adjust several parameters which should impact the LAN team: bandwidth and
packetloss.

In figure 3.2 on the following page, there are 4 computers in the LAN segment.
The “virtual switch” can be considered the LAN Segment that you can influence. The

22

3.3. TRAFFIC CONTROL IN LINUX CHAPTER 3. TRAFFIC CONTROL

Figure 3.1: VMWare Team - LAN segment

Figure 3.2: VMWare team: 4 computers in one LAN segment

network traffic cannot be sniffed in this LAN, to do that, you need a bridge that connects
the LAN to the master node. A better explaination and figure can be found in section 4.1
on page 30.

3.3 Traffic control in Linux

The traffic control management is fairly unknown in Linux, but it comes standard with
the iproute2 suite. The utility is named tc. With tc you can simulate network charac-
teristics, together with netem. Netem is an extension to tc [13, 14]. To use tc, you do
not need to load an additional module. Netem however needs a module. In a standard

23

3.3. TRAFFIC CONTROL IN LINUX CHAPTER 3. TRAFFIC CONTROL

7.10 server Ubuntu installation the kernel module is not loaded by default. This can be
done by using modprobe to load it into the memory:

modprobe sch_netem

Figure 3.3: Interface traffic flow shaping

The traffic control can only shape data flows that are transmitted by the computer.
You cannot influence the data flows being sent to you, only the data sent by yourself.
If you want to shape traffic from the slave node to the master node, you have to shape
the interface that is sending data to the master node or to the slave node(see figure 3.3)
[15].

The data waiting to be transmitted is put in a queue. The queue can be influenced
in how long data may stay in the queue, how long the queue is, how fast the data gets
transmitted from the queue to an interface, when it should be dropped or discarded, how
it should be treated: should it get reordered or have a higher priority (QoS) over other
data flows. The algorithm influencing the queue is called a Queueing Discipline. The
Queueing Discipline can shape both outgoing traffic (called egress) or incoming traffic
(ingress) on the interface [15] (See section 3.3.1 on the next page for more information).

Figure 3.4: Ingress - Egress policy

24

3.3. TRAFFIC CONTROL IN LINUX CHAPTER 3. TRAFFIC CONTROL

The traffic controlling happens at a very early stage (see figure 3.4 on the preceding
page). It begins with data entering the kernel. The kernel passes the packets to the
first qdisc: the igress qdisc. The igress qdisc can apply filters to the data. If the data is
allowed to pass the igress (e.g. no filter set or positive match), it will be handed to the
IP stack where a userspace application can use the data, or the packet can be forwarded
to the egress filter. The egress qdisc can filter the data and send it out, or it can classify
the data into egress qdisc classes where they will be processed.

Applying igress filters has a distinct advantage: by early filtering of packets, it does
not have to pass through all the functions, saving CPU time.

Figure 3.4 on the previous page only shows one igress and egress filter. But each
network adapter has an igress and egress hooks.

3.3.1 Types of qdisc’s

Figure 3.5: Classful Queueing discipline tree

The qdisc is the major building block on which the of Linux traffic control is built,
and is also called a Queueing Discipline [13]. In short, it is a scheduler for the output
interface [16]. It is by default based on FIFO (First In, First Out) which makes no
distinction in data flow type or priority. This is the default behavoir for any unconfigured
linux machine. When needed, the qdisc’s can be configured to rearrange, delay or drop
the packets being injected into the queue, depending on the scheduling rules set.

There are two tyes of qdiscs, classful en classless.
The classful qdiscs can contain classes, and provide a handle to which you can attach

filters. A filter directs traffic directly to another object (parent,child or leaf) without
having to pass all the objects in it’s way. The classes form a tree (see figure 3.5). There
is no restriction on using a classful qdisc without child classes.

25

3.3. TRAFFIC CONTROL IN LINUX CHAPTER 3. TRAFFIC CONTROL

The classless qdiscs cannot contain classes, nor is it possible to attach a filter to a
classless qdisc. Because a classless qdisc contains no children of any kind, there is no
need to classifying. This means the traffic cannot be specifically directed.

There are different types of qdiscs [15, 17]:

• First In First Out (FIFO), Classless

• Token Bucket Filter (TBF), Classless [18, 19]

• Hierarchical Token Bucket (HTB), Classful [20]

• Class based queueing (CBQ), Classful [21]

There are more queueing schedulers like Clark-Shenker-Zhang (CSZ), Priority Traffic
Equalizer (TEQL), Stochastical Fairness Queueing (SFQ), Asynchronous Transfer Mode
(ATM), Random Early Drop/Detection (RED), Generalized RED (GRED) and Diff-Serv
Marker (DS MARK). Some of these only prioritize traffic and do not shape them or are
too complicated to set up. I will not discuss these, because they are beyond the scope
of this project.

First In First Out (FIFO)

First In First Out (FIFO) is the default scheduler in Linux. The FIFO scheduler can be
enabled or set with the tc command:

tc qdisc add dev $device root pfifo limit $queuesize

It is not possible to set a class or filter to use with FIFO, because it is a clasless
scheduler. The FIFO qdisc name is pfifo (Packet FIFO). The queuesize is the maximum
number of packets that can be in the queue. The benefits for using FIFO are minimal:

Figure 3.6: First In First Out Queueing

it uses the least CPU time of all schedulers. As long as the queue size remains short,
the delay will not be increased significantly. When using a large queuesize, the packets
will take longer to exit the queue, adding delay.

26

3.3. TRAFFIC CONTROL IN LINUX CHAPTER 3. TRAFFIC CONTROL

The FIFO scheduler cannot reorganise packets. They enter and leave in the same
order. It cannot prioritize packet types, because it treats all flows the same way. During
periods of congestion, FIFO queuing benefits UDP flows over TCP flows. When experi-
encing packet loss due to congestion, TCP based applications reduce their transmission
rate, but UDP based applications remain oblivious to packet loss and continue transmit-
ting packets at their usual rate because there is no throttling mechanism. Because TCP
based applications slow their transmission rate to adapt to changing network conditions,
FIFO queuing can result in increased delay, jitter, and a reduction in the amount of
output bandwidth consumed by TCP applications traversing the queue.

Token Bucket Filter

The Token Bucket Filter (TBF) is a simple classless queueing scheduler, which works
with tokens. To control the data rate, there is a buffer (the bucket) constantly being
filled with tokens (the token-rate), until the bucket is full. Each data unit (byte) is
associated with a token. Each time a new token enters the bucket, it sends out a token.

Linux uses a byte-count token bucket, this means a token refers to bytes, instead of
packets. One token is the equivalent of one byte. It is not feasable to have a packet
associate with a token, because most packets are not of the same size. In such a scenario,
the output will have peaks and lows in the data rate constantly because large and small
packets are being released. That is the reason the tokens are associated with bytes and
not packets.

For example, if you want a data rate of 2 megabit/s (250.000 bytes/s) output and you
associate one byte with one token. This means you need a token rate of 250.000 per
second entering the bucket. If a packet is 590 bytes, you need to take 590 tokens from
the bucket, and then you can release the packet. As soon as you have enough tokens, you
can release the data. An important factor is that you make your bucket large enough.

Figure 3.7: Token Bucket Filter

27

3.3. TRAFFIC CONTROL IN LINUX CHAPTER 3. TRAFFIC CONTROL

There are 3 actions possible [17, 16, 18]:

• (TBFdata = TBFtoken) : The data arrives in bucket at a rate that is equal to the
rate of incoming tokens. In this case each incoming packet has its matching token
and passes the queue without delay.

• (TBFdata < TBFtoken) : The data arrives in TBF at a rate that is smaller than
the token rate. Only a part of the tokens are deleted at output of each data packet
that is sent out the queue, so the tokens accumulate, up to the bucket size. The
unused tokens can then be used to send data at a speed that is exceeding the
standard token rate, in case short data bursts occur.

• (TBFdata > TBFtoken): The data arrives in TBF at a rate bigger than the token
rate. This means that the bucket will soon be short of tokens, which causes the
TBF to throttle itself for a while. If packets keep coming in, packets will start to
get dropped when the timer expires or if there is no space in the queue.

TBF can be used in tc with the command [19]:

tc qdisc add dev eth0 root tbf rate $rate burst $burstsize time $time
latency $latency peakrate $peakrate minburst $minburst

This configures the qdisc to use the tbf scheduler. The maximum sustained rate is the
set $rate. This is comparable to the rate the tokens enter the bucket. The buffersize
is $burstsize, also known as the bucket size. This is the maximum number of tokens
available for immediate transmission, and is the maximum burst when the bucket is
emptied at once. The peakrate (ceil) is $peakrate for short bursts, it is the absolute
ceiling: it may not pass this maximum. The data is specified in kbps (kilobyte/s, mbps
(megabytes/s), kbit (kilobits/s), mbit (megabites/s). The accumulation of tokens allows
a short burst of overlimit data to be still passed without loss, but any lasting overload
will cause packets to be constantly delayed, and then dropped [15].

The $time limits the number of bytes that can be queued waiting for tokens to become
available. The time is specified in s (seconds), ms (miliseconds), us (microseconds). The
latency is the maximum latency a packet will stay in the queue, this does not mean each
packet will suffer this latency, it is a timer on the packets. Some will leave earlier, but
no later then the latency described here. If the timer expires, the packers are to be
dropped.

The minburst specifies the size of the peakrate bucket. For perfect accuracy, should
be set to the MTU of the interface.

On the short term, the TBF allows a burst as large as the set minburst but no more.
On the long term, it cannot be more then the set rate.

The maximum possible reliable peakrate that can be shaped by the TBF, can be
calculated by multiplying the Hz rate of the kernel by the mtu in the TBF [15]. The Hz
rate is the frequency with which the system’s timer hardware is programmed to inter-
rupt the kernel. It is the rate at which the TBF can process a burst in the bucket each

28

3.3. TRAFFIC CONTROL IN LINUX CHAPTER 3. TRAFFIC CONTROL

second.
Ratemax = hzrate ∗ TBFburstsize

Because the burst size is 1540 bytes (12320 bits) and the hz rate in ClusterVisionOS on
a x86-64 architecture is 1000 [22], we can shape traffic reliable up to 12.320.000 bits/s
(12.320 kbit/s).

Hierarchical Token Bucket

Figure 3.8: Hierarchical Token Bucket Filter

Hierarchical Token Bucket (HTB) [17, 15, 18] is essentially the same as the Token
Bucket, described before. It can create multiple simulated links, to send and control data
on. You can make a distinction based on protocol or address. For example, for each
protocol you can create a simulated link. For each link you can specify delay, bandwidth
and so forth. Say you want to send http traffic over a link with 900 kbps and telnet
traffic over a link with 100 kbps. This way, you ensure a minimum data rate for each
link. Another feature is that you can ’borrow’ bandwidth from other links, until the
links is at it’s ceiling (maximum). Also links can be prioritized. It is too broad for this
project, we only want to simulate a link, and not make a distinction for each protocol.

Class based queueing

The Class Based Queing (CBQ) is the most broad and complex classful scheduler. It has
the same features as HTB like classes, bandwidth allocation and borrowing. But with
CBQ you can assign a weight to each class. Weight helps in the Weighted Round Robin
process. Each class gets a chance to send in turn. If there are classes with significantly
more bandwidth than other classes, it makes sense to allow them to send more data in
one round than the others.

29

Chapter 4

Testing

4.1 Traffic control tests

Figure 4.1: The setup scheme

The objective of these tests are to measure the maximum performance in VMWare
Workstation. This is to ensure that the VMWare networking will not be a bottleneck.
Also to have the experiments to be valid, the traffic control must be reliable. To deter-
mine this, we need to look at the following aspects:

1. does the team network limiter in VMWare Workstation work properly (does it
shape) and how accurate is it;

2. does the limiting option in Linux using tc work properly (does it shape) and how
accurate is it;

The software to test the bandwidth is iperf [23]. Iperf is capable of creating both
TCP and UDP datastreams, and measuring the throughput. The server is running on
ClusterVisionOS 3.1 (kernel 2.6.18), using iperf 2.0.2. The client has Ubuntu 7.10 (kernel
2.6.22) with iperf 2.0.2 During the tests, the CPU, memory usage and loadaverage will be
monitored by munin and tools like vmstat and top. Ofcourse the network test will impact
all running virtual machines. These tests will only test the maximum performance over

30

4.2. CONFIGURING TRAFFIC CONTROL CHAPTER 4. TESTING

the link, to see if the traffic shaping ability works and to see if the bridge can process
such data speeds.

The tests are done twice: for each run, I tested FROM the outside to the inside
(ClusterLAN) and vice versa. This means switching the iperf server and client. I’ve used
tc or VMWare Team to control the traffic. The full results can be found in Appendix
A: Traffic control tests (section 9.1 on page 71).

4.2 Configuring traffic control

The theory of traffic control is discussed in 3.1 on page 22. To execute the tests, I’ve
chosen to limit the outgoing interfaces eth0 and eth1 to xkilobits per second.

The qdisc I have chosen is a Token Bucket Filter (see section 3.3.1 on page 27). The
qdiscs have been setup with a script, see the appendices.
The commandline for ratelimiting:

tc qdisc add dev ethx tbf rate x mbit burst 1540 latency 50ms minburst 1540

Where: ethx is the device, x mbit the ceiling bandwidth. To see if your settings are
correct use:

tc -s qdisc show dev ethx

The qdisc show gives information on the interface. The -s switch gives statistic in-
formation on the interface. The -s is optional. The -s switch gives more information
about the sent bytes, sent packets, how many dropped by the bucket and the rate limit
set. To realtime follow the interface, you can use the watch command:

watch tc -s qdisc show dev ethx

This will monitor the output of the command every two seconds.

4.2.1 Test setup

The hardware I am using is a dual core AMD Athlon64 4200+ at 2200 Mhz with 4096
MB RAM. The harddisk is a 80 GB disk. The operating system I am using is Ubuntu
7.10 Server with kernel 2.6.22-14-server SMP x86 64.

On this server I’ve installed VMWare Workstation 6.0.4-93057 (x86 64). The virtual
machine testing nodes all are linked cloned from the first slave node. The settings are:
256 MB memory, 1 processor, 1 harddisk (16 GB), Ethernet: ClusterLAN. The master
node has been configured with 1024 MB memory, 1 processor, 1 harddisk (30 GB), 2
ethernet network interfaces: 1 bridged to the network, 1 to the bridge over a vmnet link.

The bridge has 384 MB memory, 1 processor, 1 harddisk (12 GB) and 3 ethernet

31

4.2. CONFIGURING TRAFFIC CONTROL CHAPTER 4. TESTING

network interfaces: 1 bridged to the network, 1 to the ClusterLAN and 1 to the master
node over a vmnet link. The second and third interfaces are bridged into bridge br0
using the bridge-utils.

See figure 4.3 on the following page for a scheme.

4.2.2 Reliability of traffic control

Figure 4.2: VMWare versus tc traffic control

The objective was to determine what the maximum rate of networking could be
achieved and how reliable the traffic control methods are.

The set rate is 100%. The results should be close to 100%, the closer the better.
Values that are above or below 100% means they are less reliable.

The X-axis are the test runs and the Y axis represents the percentage. E.g. a set
rate of 10 mbps with a measured throughput of 15mbps will give a percentage of 150%,
which is 50% off.

The set datarates are not respected by VMWare, and is therefore not reliable to
use for the experiments. It does a little throttling, but VMWare Workstation does it
very inaccurate, as it is still 3 to 4.5 times over the limit.

The tc traffic handling is correct, and is sometimes a bit above the limit. This might
be due to the burst rate in the token bucket filter and the VMWare clock skew might
also contribute to this fact.

32

4.2. CONFIGURING TRAFFIC CONTROL CHAPTER 4. TESTING

4.2.3 Used software

ClusterVisionOS

ClusterVisionOS1 is based on Scientific Linux 5.0 (Boron)2, which is based on RedHat3.
The difference is a set of tools and applications which make the management of slave
nodes easier.

ISC DHCP3

The current DHCP server used by ClusterVision in their ClusterVisionOS (CVOS), and
is the default DHCP server daemon in most BSD and Linux distributions. It is developed
and maintained by the Internet Systems Consortium (ISC), a non-profit organisation.
The current version installed by ClusterVisionOS is 3.0.5-redhat.

aTFTPD

The TFTP server used in ClusterVisionOS is aTFTPD. This server is multi-threaded
and supports all options described in RFC2347 (option extension), RFC2348 (blksize),
RFC2349 (tsize and timeout) and RFC2090 (multicast option). It also supports mtftp
as defined in the PXE specification. The server handles new connections directly by
starting new threads and kills itself after 5 minutes of inactivity. The aTFTP project
has not been updated since March 20th 2004, but it is still in use around the world. The
latest version is 0.7.

4.2.4 Test methodology

Figure 4.3: Test setup

After concluding that VMWare could not reliable control the data traffic (see fig-
ure 4.2 on the previous page), I decided to use tc in combination with a bridge. It is

1http://www.clustervision.com/products_os.php
2https://www.scientificlinux.org/
3http://www.redhat.com/

33

http://www.clustervision.com/products_os.php
https://www.scientificlinux.org/
http://www.redhat.com/

4.2. CONFIGURING TRAFFIC CONTROL CHAPTER 4. TESTING

not possible to apply tc on the slave nodes. Using a bridge also gives the possibility of
sniffing traffic. The bridge is transparant to the network, and can be viewed as the speed
knob in the network. Tests showed it could pass traffic up to 175 Mbits per second (see
section 9.1 on page 71).

Each test will be done limiting the bandwidth on the bridge. Each test will be run
multiple times. The traffic statistics will be recorded: bytes, packets, dropped packets
and over limit packets. The errorcodes have been classified into 11 unique codes. Some
errors will reboot the node, this is still recorded as a fail because it could not complete the
PXE boot sequence. Only errorcode SI (Slave Installer) will be viewed as succesful.The
tests will start at 4000 kbit per second and will scale downwards until the failrate will
reach 100% constantly, and it can be confirmed that no node can reach SI with this
bandwidth. I’ve chosen the rates 4000, 2000, 1000 and 500. Other scales will be added
when the tests need adjustment for increased accuracy (to show the point of failure).

The bucket needs to be adjusted when the packets are being held too long in the
queue, where it is unable to transfer them out of the bucket before the token bucket filter
timer expires. This is true when the bucketsize is fairly large and the latency is very low.
The rate is not enough to push enough tokens (and thus data) out of the bucket. Bursts
can only solve this for a limited timespan, because they cannot occur regularly, they are
replenished with tokens at a fixed rate so the token bucket must contain enough tokens
to allow another burst.

It is not possible to prevent drops in the token bucket when receiving too much data
as you can not influence traffic being sent to the bucket, this means these drops will
inevitably occur. It is only possible to prevent drops due to expiring packets (latency).

Steps

1. First the bridge will be started (if the bridge is not up already) with the shellscript
I made:

bridge up

2. Then set the tc limits (rate, bucket characteristics), and enable with the command

tc-limit up

3. Observe the drop rate per phase with the watch command:

watch tc -s qdisc ls dev eth0

4. Observe the results of the test (write down the tc statistics), and adjust the tc
characteristics (next rate, bucket adjustment) for the next test.

5. Iteratively perform the tests until the tests start failing, then adjust the rates to
pin-point a failure point.

34

Chapter 5

Observations

5.1 Measurements

The error messages have been uniquely identified (see section 6.1.1 on page 41), and are
represented by a 2 character code. The tables all have the same headers:

Header
no test run number
k connection speed limited

by tc in kilobits (1000)
per second

pl packet loss set by tc
N1−6 result of the corresponding

node number
fail fail percentage
comments specific comments on the

test

Errorcodes
Error Description
DO No IP offer
DB DHCP No bootfile
AT ARP timeout
AC ARP timeout, but contin-

ued booting somehow
TO TFTP open timeout
TR TFTP read timeout, can-

not read from connection
TI TFTP illegal operation
TT TFTP server does not

support tsize option
TB TFTP Boot failed
BV Loading vmlinuz, boot

failed however
XX Loading took too long
SI Succesful boot to the slave

installer

35

5.1. MEASUREMENTS CHAPTER 5. OBSERVATIONS

5.1.1 4.000 kilobit

Settings: rate 4.000 kbit, burst 16.384 (bucket size), latency 50.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 4.000 0% SI SI SI SI SI SI 0%
2 4.000 0% SI SI SI SI SI SI 0% Server rebooted before

test
3 4.000 0% SI SI SI SI SI SI 0% Server was not rebooted
4 4.000 0% SI SI SI SI SI SI 0% Server rebooted, leases

deleted, bridge rebooted
5 4.000 0% SI SI SI SI SI SI 0% Server rebooted, bridge

rebooted, VMhost re-
booted

During the tests, no DHCP, ARP or TFTP problems were observed.
During the DHCP, ARP and TFTP boot, no packages were dropped, only overlimit.
This is caused by too much data being sent at one time. However because no packages
were dropped during the initial steps (before loading vmlinuz and initrd), they could
be all processed in time (under 50 ms). The packages began to be dropped during
loading vmlinuz and the initial ramdisk. The logs in /var/log/messages tells that the
server experienced this too. It gave the error: Timeout retrying..., while serving the
initial ramdisk (initrd). In the end, all nodes booted succesfully.

The third test produced less traffic and less drops, this may be due to caching in the
server (it was not rebooted for the third test).

The table below gives interface statistics
to master to slaves

bytes packets drop o/limit bytes packets drop o/limit
1 131.695.922 351.905 2.311 28.539 45.434.374 345.936 0 0
2 149.453.516 364.127 2.013 43.608 46.036.752 359.358 0 0
3 127.989.392 349.310 1.359 24.465 45.405.020 345.744 0 0
4 129.231.006 350.181 1.777 18.336 45.411.722 345.787 0 0
5 147.749.769 362.903 922 41165 46.061.680 360.322 0 0

5.1.2 2.000 kilobit

Settings: rate 2.000 kbit, burst 16.384 (bucket size), latency 50.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 2.000 0% SI SI SI SI SI SI 0% Server rebooted, bridge

reset
2 2.000 0% SI SI SI SI SI SI 0% Server not rebooted

The first tests during DHCP phase, ARP and initial TFTP, no dropped packets
observed, only around 4.000 over limit packets. At the end of the test, only a small

36

5.1. MEASUREMENTS CHAPTER 5. OBSERVATIONS

amount (compared to the 4000k test) of packets were dropped, but there is a huge
number of over limit packets. This may be due to the fairly large bucket size. They were
sent in time before the timer expired, preventing a drop.

During the second test, again no drops during the intial boot, but there were again a
large amount of overlimits (10.000+). The booting did take longer (loading vmlinuz and
initrd), but that is no problem if they boot succesfully. The table below gives interface
statistics

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 125.616.626 347.653 1016 59760 45.383.310 345.579 0 0
2 125.537.550 347.588 1002 51567 45.385.036 345.567 0 0

Now the same test, but now with a smaller bucket. Settings: rate 2.000 kbit, burst
8.192 (bucket size), latency 25.0 ms (bucket timer), mtu 1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 2.000 0% SI SI SI SI SI SI 0% Server rebooted
2 2.000 0% SI SI SI SI SI SI 0% Server not rebooted
3 2.000 0% SI SI SI SI SI SI 0% Server not rebooted

With the smaller bucket size and lower latency, the majority of the drops only appear
near the end, at the slave installer phase.

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 125.168.572 347.416 959 78684 45.391.772 345.751 0 0
2 124.823.340 351.017 754 56681 45.382.146 345.568 0 0
3 131.469.958 351.786 685 56153 45.602.285 350.520 0 0

5.1.3 1.500 kilobit

Settings: rate 1.500 kbit, burst 8.192 (bucket size), latency 25.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 1.500 0% SI SI SI SI SI SI 0% Server rebooted
2 1.500 0% SI SI SI SI SI SI 0%
3 1.500 0% SI SI SI SI SI SI 0%

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 124.612.770 347.088 887 78.043 45.385.016 345.594 0 0
2 127.591.776 349.902 2.368 83.288 45.406.048 345.754 0 0
3 124.373.632 346.865 793 81.257 45.381.826 345.567 0 0

37

5.1. MEASUREMENTS CHAPTER 5. OBSERVATIONS

5.1.4 1.250 kilobit

Settings: rate 1.250 kbit, burst 8.192 (bucket size), latency 25.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 1.250 0% SI SI SI SI SI SI 0%
2 1.250 0% SI SI SI SI DO SI 16%
3 1.250 0% SI SI SI SI SI SI 0%

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 123.667.494 346.433 359 113.567 45.368.342 345.489 0 0
2 103.437.705 288.935 471 48.366 37.814.931 287.931 0 0
3 124.435.676 346.995 735 144.915 45.380.962 345.570 0 0

Only one error occured during this test.

5.1.5 1.000 kilobit

Settings: rate 1.000 kbit, burst 8.192 (bucket size), latency 25.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 1.000 0% BV SI SI TT SI SI 33% Server rebooted
2 1.000 0% SI SI SI DO DO DO 50% Server rebooted
3 1.000 0% SI SI SI SI SI DO 16% Server rebooted
4 1.000 0% SI SI SI SI SI DO 16% Server rebooted

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 120.258.904 300.974 4.229 209.888 38.261.969 296.382 0 0
2 62.615.341 173.843 640 36.306 22.700.491 172.815 0 0
3 104.056.711 289.407 862 199.232 37.826.489 288.000 0 0
4 104.298.796 289.589 996 141.943 37.830.487 288.021 0 0

The first test showed that node 4 did fail on the TFTP server. It gave an error,
but it rebooted automatically after that. Node 4 rebooted and failed again on another
TFTP error. The server is reporting a timeout retried. It then got the following error
from node 4:

illegal request <4>

Note: the error code has nothing to do with the node number. Node 1 failed boot trying
to load vmlinuz. The server reports lots of timeouts to node 1. The error was not fatal,
as it automatically reboots the node instead of halting. The first test sent lesser data
compared to the other tests because of the 2 fails. It also had a huge amount of drops
and over limits.

The second tests failed 3 in a very early stage. This explains the data sent is only
half of the normal amount sent. The DHCPDISCOVER sent by the clients were re-

38

5.1. MEASUREMENTS CHAPTER 5. OBSERVATIONS

cieved by the server (logged in /var/log/messages), and is responded to by the server
(DHCPOFFER). The clients however never recieved the response.

5.1.6 500 kilobit

Settings: rate 500 kbit, burst 4.096 (bucket size), latency 12.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 1.000 0% SI DO SI SI DO DO 50% Server rebooted
2 1.000 0% SI TI TI SI DB SI 50%
3 1.000 0% SI SI SI TI DB TI 50%
4 1.000 0% SI TI TI TI SI SI 50% Host rebooted

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 61.901.509 173.296 307 171.290 22.700.817 172.790 0 0
2 62.081.823 173.440 310 183.678 22.714.402 172.986 0 0
3 61.641.311 173.148 131 178.331 22.690.689 172.766 0 0
4 61.631.207 173.640 127 165.911 22.686.884 172.759 0 0

On all 500kbit tests, only 50% were succesful boots. When one clients gets to the
TFTP stage, it will take up a lot of available bandwidth because UDP does not have a
throttle mechanism. This very much limits the other nodes and their DHCP requests
get lost, and they do not get an IP and fail to load.

5.1.7 250 kilobit

Settings: rate 250 kbit, burst 4.096 (bucket size), latency 12.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 250 0% SI DB SI TB DO DO 66% Server rebooted
1 250 0% TB DB SI SI DO DO 66% Server rebooted, test ran

overnight
1 250 0% SI SI BV DB DB DO 66%

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 42.277.503 116.467 567 156.365 15.210.611 116.536 0 0
2 60.928.532 130.513 12910 175.922 17.052.013 122.496 0 0
3 43.702.141 117.378 717 144.261 15.258.367 117.513 0 0

In the first run, only 2 clients made it to the last phase. It seems randomly which
client can obtain an IP and continue to boot, because the clients do not fail in a particular
order. Loading times are extremely long.

39

5.1. MEASUREMENTS CHAPTER 5. OBSERVATIONS

5.1.8 100 kilobit

Settings: rate 100 kbit, burst 4.096 (bucket size), latency 12.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 100 0% TB XX TR TB TI DO 100% Test aborted after 45 mins
2 100 0% TB TB TI XX TI TI 100% Test aborted after 10 mins
3 100 0% TB TR XX TI DO DO 100% Test aborted after 10 mins

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 9.353.234 6708 422 13.323 338.099 6973 0 0
2 3.409.506 2556 46 4.879 131.177 2492 0 0
3 1.568.379 1221 84 2.352 71.285 1229 0 0

5 out of 6 failed the first run. The last node which is still continuing the boot process,
is getting a lot of TFTP timeouts from the server. The server reports 45 timeouts on
the vmlinuz file. I’ve aborted the test, after loading vmlinuz and the initrd took over
45 minutes. The second test only one loaded vmlinuz, and had 26 timeouts.

5.1.9 50 kilobit

Settings: rate 50 kbit, burst 4.096 (bucket size), latency 12.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 100 0% TI TB TB TB XX TB 100% Test aborted after NBP
2 100 0% TB TI TI TI DO XX 100% Test aborted after NBP
3 100 0% TI TI XX TB TB XX 100% Test aborted after NBP

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 653.636 752 268 1.646 66.948 904 0 0
2 390.787 451 141 935 42.909 515 0 0
3 498.243 679 532 1734 72.487 1060 0 0

In these tests, none booted in reasonable time. One node alone will not download
the images in time. In test 3, 2 nodes made it through the PXE sequence, but they kept
taking bandwidth from eachother, making the download even longer. The third test had
lots of timeouts and drops, due to the 2 nodes downloading.

40

Chapter 6

Analysis and discussion

6.1 Analysis

6.1.1 Identified problems

In the current setup there are 4 phases where it can fail:

1. DHCP Stage

2. ARP Stage

3. TFTP Stage

4. Kernel loading Stage

I’ve tried to analyze the problem, where it occurs and what the cause of each problem
is. I’ve looked at the server logs (/var/log/messages) to see what I serves to the client,
and sniff the bridge interfaces to see if the messages does actually pass the bridge.

I’ve categorized the identified error’s in the DHCP, ARP, TFTP and boot phase.

6.1.2 DHCP Stage

DHCP Stage: PXE-E51 not getting an IP address

Error

PXE-E51: No DHCP or proxyDHCP offers were recieved.

PXE-M0F: Exiting Intel PXE ROM

Cause: The node is not getting an IP address. The chance of getting is message is
high, especially when the network is heavily congested, and UDP packets are lost due
to packet loss. DHCP relies on UDP, which is unreliable and is very sentive to packet
loss, there is no acknowledgement of packets to ensure their arrival.

41

6.1. ANALYSIS CHAPTER 6. ANALYSIS AND DISCUSSION

The server does notice DHCPDISCOVER messages (logged to /var/log/messages),
and replies with a DHCPOFFER. This reply is never recieved by the client, although it
does pass the bridge.

Result: Client will halt.

DHCP Stage: PXE-E53 no boot filename recieved

Error:

PXE-E53: No boot filename received

PXE-M0F: Exiting Intel PXE ROM

Cause: The node claims it does not receive a boot filename. This error is rare and has
been described by several sources on the beowulf forum as a bug 1. Analyzing the packets
does show that the server has sent a boot filename as a response to a DHCPDISCOVER,
and a second time as a response to a DHCPREQUEST. Both times the DHCPOFFER
and DHCPACK contains the bootfilename. Both times, the client has not received
the filename, although the DHCP message went through the bridge where it has been
captured by Wireshark.

Result: Client will halt.

6.1.3 ARP Stage

ARP Stage: E11 ARP timeout

Error:

CLIENT IP: x.x.x.x MASK x.x.x.x DHCP IP: x.x.x.x
GATEWAY IP: x.x.x.x
PXE-E11: ARP timeout
TFTP.

Cause: When the client has recieved an IP address from the DHCP server, it must
access the TFTP server, but it does not have it’s layer 2 address yet. To get this,
he does an ARP request, but no replies have been made. This error occurs when the
network is heavily congested. ARP relies on UDP, which is unreliable and is very sentive
to packet loss, there is no acknowledgement of packets to ensure their arrival.

Result: There are 2 options, the node halts or the node continues booting. It is
unpredictable what the node will do.

6.1.4 TFTP Stage

TFTP Stage: PXE-E32 TFTP open timeout

Error:
1Donald Becker: http://www.beowulf.org/archive/2006-December/017023.html

42

http://www.beowulf.org/archive/2006-December/017023.html

6.1. ANALYSIS CHAPTER 6. ANALYSIS AND DISCUSSION

CLIENT IP: x.x.x.x MASK x.x.x.x DHCP IP: x.x.x.x
GATEWAY IP: x.x.x.x
PXE-E32: TFTP open timeout
TFTP.....

Cause: This error seems to occur when the network is heavily congested and there is
a lot of packetloss. TFTP relies on UDP, which is unreliable and is very sentive to
packet loss, there is no acknowledgement of packets to ensure their arrival. When the
server does not recieve the acknowledgements in time, it will time the node out, and the
connection is terminated.

Result: The client will halt.

TFTP Stage: PXE-E35, PXE-E39 TFTP cannot read from connection

Error:

CLIENT IP: x.x.x.x MASK x.x.x.x DHCP IP: x.x.x.x
GATEWAY IP: x.x.x.x
PXE-E35: TFTP open timeout
PXE-E39: TFTP cannot read from connection
PXE-M0F: Exiting Intel PXE ROM

Cause: This error is basically the same as the previous error, only this time it was able
to carry out a read operation before it timed out.

Result: The client will halt and not retry to establish the connection.

TFTP Stage: PXE-T04, PXE-E36, PXE-M0F Illegal TFTP operation

Error:

CLIENT IP: x.x.x.x MASK x.x.x.x DHCP IP: x.x.x.x
GATEWAY IP: x.x.x.x
TFTP......
PXE-T04: Illegal TFTP operation
PXE-E36: Error recieved from TFTP server
PXE-M0F: Exiting Intel PXE ROM

Cause: This error appears when the network is heavily congested (lagged). The server
tries to send the packets multiple times and then times out. Because UDP does not
use packet ordering, the packets may arrive in an illogical order. The client does not
understand it, and sends the server a message, after which the connection is terminated.
The node then halts. The server logged:

mylcuster atftpd[pid]: Invalid request <4> from x.x.x.x

Result: Client will halt.

43

6.1. ANALYSIS CHAPTER 6. ANALYSIS AND DISCUSSION

TFTP Stage: TFTP server does not support tsize option

Error:

TFTP server does not support the tsize option

Boot failed: press a key to retry, or wait for reset..

Cause: The error is hard to reproduce, as the server is correctly configured. The node
will reboot after a set timer (approx 30 seconds). The server reports timeouts and an
illegal operation.

Result: The client will halt, and reboot after the timer expires.

TFTP stage: Trying to load: pxelinux.cfg/default

Error:

Trying to load: pxelinux.cfg/default

Boot failed: press a key to retry, or wait for reset..........

Cause: It has failed locating the pxelinux.cfg, and the server is reporting timeouts. This
is due to heavy congestion and it times out lots of packets. The node will reboot after
the timer expires.

Result: The client will halt, and reboot after the timer expires.

6.1.5 Boot Stage

Boot stage: Loading vmlinuz: Boot failed

Error:

Loading vmlinuz....
Boot failed: press a key to retry, or wait for reset..........

Cause: It has failed loading vmlinuz, and the server is reporting timeouts. This is due
to heavy congestion and it times out lots of packets. The node will reboot after the
timer expires.

No errors have been encountered loading initrd, it only seems to appear when loading
vmlinuz.

Result: The client will halt, and reboot after the timer expires.

44

6.1. ANALYSIS CHAPTER 6. ANALYSIS AND DISCUSSION

6.1.6 Problems matrix

Description Cause Result
No IP offer Congested network will cause

packetloss, resulting in a DHCP
timeout

Node halted

DHCP No bootfile Congested network will cause
packetloss, resulting in a DHCP
timeout

Node halted

ARP timeout Packetloss (ARP packet lost) or
master node does not respond
to the ARP message in time

Node halted or node
can reboot after
timer expires

ARP timeout (same error
as above), but continued
booting somehow

(see above) Node boots

TFTP open timeout Packets are lost, causing the
server to time the connection
out

Node halted

TFTP read timeout, can-
not read from connection

Packets are lost, causing the
server to time the connection
out

Node halted

TFTP illegal operation Heavily congestion (lag) causes
packets to lag and timeout. The
packets from the clients sent are
invalid

Node halted

TFTP server does not
support tsize option

Packetloss Node can reboot af-
ter timer expires

Loading vmlinuz, boot
failed however

Lots of packetloss Node can reboot af-
ter timer expires

Succesful boot to the slave
installer

No errors Succesful

45

6.1. ANALYSIS CHAPTER 6. ANALYSIS AND DISCUSSION

6.1.7 Conclusion

Figure 6.1: Fail percentage

The objective of these tests were to characterize the network boot process under
degraded performance, and find a breaking point.

No problems have been encountered until a rate of 1250 kbit (see figure 6.1. Ofcourse
the lower you go, the longer the loading times, this go as high as 45 minutes per node.

The first problems you encounter are DHCP errors (no DHCP OFFER or no boot
file). This might be due to a congested network which is caused by nodes who are a step
further in the bootprocess and already loading data through TFTP. The TFTP traffic
creates a bigger load on the network, and these nodes can push traffic of the still starting
nodes off the network, causing them to fail.

One trend which you can see are the drops by the token bucket filter. No packet
was dropped from the master to the slaves. The packets which were dropped were the
TFTP acknowledgements. If the server has not seen an acknowledgement in a certain
timespan, it will terminate the connection. This results in the TFTP Read error and
TFTP Timeout.

46

6.1. ANALYSIS CHAPTER 6. ANALYSIS AND DISCUSSION

The further you go, the more TFTP errors you will get. The DHCP errors will
disappear. Because of the limiting network speed, all nodes will have an opportunity to
recieve a DHCP OFFER, before other nodes can clog the network with TFTP traffic.
This results in nodes arriving at the TFTP stage at the same time, preventing pushing
eachother off the network. However, until one gets an oppertunity to download TFTP
data, it will start congesting the network causing packet loss. Because DHCP and TFTP
rely on UDP, the traffic is unreliable; there is no mechnism to ensure arrival of packets.

It is also very difficult to reproduce errors. The ARP error’s were very rare and occur
sporadic, and only seen when testing the setup configuration in extreme conditions (very
low bandwidth and high packetloss) using VMWare Team’s. This error could not be
reproduced in the setup using tc and the token bucket filter.

When tracing the packets the requested information (like boot filename or IP address)
is sent by the server, and did pass the bridge but never arrived at the client. This is
probably caused by packetloss and the absence of reordering in UDP. Because UDP does
not cope well with packetloss, and the server will only try a few times to resend, the
PXE process will fail, halting the client. The server stores it’s messages about DHCP
transactions and TFTP transactions in /var/log/messages. This can help solving
problems to see if the server did recieve certain requests.

47

Chapter 7

Alternatives

7.1 Alternatives

Figure 7.1: Regular PXE and gPXE in 2 modes

Alternatives have to be found for the current solution. The most important factor is
reliability, performance has a lesser priority.

An alternative to the usual booting using TFTP, is booting through HTTP. HTTP
has the advantage that it relies on TCP, which uses acknowledgements to ensure the
arrival of packets. This makes it more reliable then a UDP based solution.

gPXE is an open source (GPL licence) network bootloader similar to PXE. It is
the successor of etherboot, but both are still maintained. It is expected that gPXE
will replace etherboot eventually. gPXE provides a direct replacement for proprietary
PXE ROMs, with many extra features such as support for DNS, HTTP, iSCSI and ATA

48

7.2. POC: DHCP3 AND GPXE CHAPTER 7. ALTERNATIVES

over Ethernet. It is fully compatible with PXE: gPXE enabled ROM’s will boot from
PXE servers.

There are two options using gPXE:

1. gPXE flashed into the NIC or BIOS boot ROM;

2. gPXE loaded as second stage (PXE chainloading)1 ;

In the first setup, gPXE bootcode will be flashed in the network or BIOS boot ROM.
The advantage of this setup is that the etherboot will use TCP/HTTP from the start,
instead of UDP/TFTP which is unreliable. This solution is fine for a low number of
nodes (e.g. less then 10 nodes). For a large number of nodes like in a cluster computer
environment, it is not feasable.

Also because not every cluster computer has the same network card or onboard net-
work card, it is not feasable to rely on one environment. In the event the computers have
exotic hardware, it may be the case that the ROM’s are not even supported. Writing
your own drivers to enable support for gPXE can be a hassle.

With the second option, the gPXE boot ROM will be downloaded through the use of
normal PXE. Instead of serving the normal NBP pxelinux.0, the DHCP server will serve
a gPXE boot ROM.

To achieve this, you can modify the DHCP server to check for gPXE extensions. If
a client does not have such an extension, you serve him a gPXE boot ROM instead of
the pxelinux.0 NBP. When the client has executed the gPXE bootrom, the normal boot
sequence will restart, but now the client has gpXE support. It can now use HTTP to
download images.

The second option is constructed in a more generic way, what means that it does not
rely on the client’s network boot ROM. As long as it is able to boot from the network
(i.e. PXE support), it can use the chainloading feature. Also, the current slaves do not
have to be flashed, only the master node needs an update of it’s files and configuration.
This situation is preferable over the first one.

7.2 PoC: DHCP3 and gPXE

In this proof-of-concept (PoC) I will enable gPXE support on current setup. gPXE
will be configured as a second stage loader. The slave nodes need no updates or any
modification, they will chainload the gPXE boot ROM’s through the DHCP server.

For this setup you need a syslinux with gPXE support. SYSLinux is a total package,
which also contains PXELinux. As of writing, Syslinux version 3.70 has gPXE support.

1http://www.etherboot.org/wiki/pxechaining

49

http://www.etherboot.org/wiki/pxechaining

7.2. POC: DHCP3 AND GPXE CHAPTER 7. ALTERNATIVES

I will install 3.70 pre-19 in this setup. It can be downloaded from the kernel.org fileserver
at http://www.kernel.org/pub/linux/utils/boot/syslinux/Testing/.

The current setup of ClusterVision OS uses SYSLinux 3.63. SYSLinux has support
for gPXE starting at version 3.70. The SYSLinux archive holds several important files:

syslinux-3.70-pre19/core/pxelinux.0 The updated pxelinux.0 NBP
syslinux-3.70-pre19/gpxe/src Sources of gPXE
syslinux-3.70-pre19/gpxe/src/bin The undionly.kpxe boot ROM

You do not need to (re)compile PXELinux. The file pxelinux.0 can be directly copied
to the boot directory. I’ve renamed the .0 extension to 3.7 to distinguish the new file.

cp core/pxelinux.0 /cvos/images/default-image/boot/pxelinux.3.7

The undi-only.kpxe file is not made by default. This file can be compiled using the
make command in the directory syslinux-3.70-pre19/gpxe/src. The output is put
in the bin/ directory, along with a lot of other files. Copy the undionly file to the boot
directory:

cp bin/undionly.kpxe /cvos/images/default-image/boot/

The ROM files are now ready for use. If you do want to recompile SYSLinux/gPXE you
need nasm 2.

The DHCP3 config needs to be adjusted to recognize gPXE clients. The DHCP3
configuration file can be found in /etc/dhcpd.conf.

Add the following lines before any subnet or group declaration, otherwise they cannot
use this information.

option space gpxe;
option gpxe-encap-opts code 175 = encapsulate gpxe;
option gpxe.bus-id code 177 = string;

The first line declares gpxe as a new space. Each gPXE DHCP packet has a private
number (i.e. not officially recognized by IANA) encapsulated in the option field with
the value 175 (0xAF). This makes it an gPXE enabled client. gPXE also has another
private number in the packet with value 177 (0xB1). These 2 lines lets DHCP3 recognize
these private options of gPXE.

Also add in the pxelinux space:

option pxelinux.pathprefix code 210 = text;

And then modify the current group:
2http://nasm.sourceforge.net/

50

http://www.kernel.org/pub/linux/utils/boot/syslinux/Testing/
http://nasm.sourceforge.net/

7.2. POC: DHCP3 AND GPXE CHAPTER 7. ALTERNATIVES

#next-server (comment this line)
option pxelinux.pathprefix "http://";

The first line must be commented, otherwise it will revert to using a TFTP server. To
force the client to address HTTP instead of TFTP, you append a prefix. A gPXE enabled
client will recognize this, other clients will fail, trying to address tftp://http://server.

In the subnet declarations, you must create an if/else statement to push the ROM’s
to the clients.

if not exists gpxe.bus-id {
filename "default-image/boot/undionly.kpxe";

}else{
filename "http://10.141.255.254/default-image/boot/pxelinux.3.7";

}

Clients who do not use gPXE enabled packets will be recognized, and they will recieve a
gPXE boot ROM. Clients who can be positively identified of using gPXE will recieve the
NBP pxelinux3.7, and will use this. Now restart the DHCP server to apply the changes:

/etc/init.d/dhcpd restart

To offer your boot image to the clients through your webserver, you have to copy the
bootimages to /var/www/html/default-image or create a symlink from default-image
to the /cvos/images/default-image. The procedure the gPXE clients will follow:

1. dhcp net0 : Request IP address for interface net0

2. kernel http://10.141.255.254/default-image/boot/pxelinux3.7 : Follow the
filename in the DHCP OFFER and ACK and load the file

3. boot : Boot with the options above.

The commands can also be typed in manually, by entering the gPXE console with
CTRL + B.

7.2.1 gPXE flashed into NIC boot ROM

In this proof-of-concept, I will use gPXE in combination with VMware. It is also possible
to use it with physical machine, by flashing the boot ROM into the networkcard. To use
Etherboot in VMWare 3 [2], you need to know which driver to emulate and which ROM
you should use. First, you can use lspci and cat /proc/bus/pci/devices to get the
PCI device type and description. When you look at the NIC description in VMWare,
the returned value is 8086100F. The first value ‘8086’ notes that the manufacturer is
Intel and the device type is 100F (e1000). At the etherboot/gPXE ROM site ROM-o-
Matic 4 [24], the device can be searched with the found string in the list:

3http://www.etherboot.org/wiki/vmwarebios
4http://rom-o-matic.net

51

http://www.etherboot.org/wiki/vmwarebios
http://rom-o-matic.net

7.2. POC: DHCP3 AND GPXE CHAPTER 7. ALTERNATIVES

e1000-0x100f 8086,100f e1000-0x100f

When you found the string, it means it is a supported NIC. To generate a ROM, go to
the gPXE section, and select the NIC. For output choose a Binary ROM Image (.rom).
Then press “get ROM” to save the ROM. When you are using physical network cards,
you need a ROM burner. In this proof-of-concept, I will be using virtual hardware in
combination with VMWare. Edit your virtual machine configuration file using a text
editor. The file extension is .vmx. Add the following lines:

ethernet0.present = "TRUE"
ethernet0.virtualDev = "e1000"
e1000bios.filename = "/root/vmware/gpxe-0.9.3-pci_8086_100f.rom"

Please note, the first 2 lines may already exist when you have added a network card.
The third line notes that that it should not use the default VMWare boot ROM image,
but your custom made one.

Figure 7.2: gPXE boot ROM in VMWare BIOS

Then start your virtual machine and press F2, then go to the boot menu and check if
your gPXE boot ROM image has been loaded (figure 7.2). Place the network card first
in the sequence and then save the settings.

7.2.2 Starting with gPXE

Figure 7.3: Etherboot boot ROM

When using a flashed ROM, the gPXE boot ROM will be the first to load. If you
are using it as a second stage loader, the regular boot ROM will download the gPXE
boot ROM and execute it. From this point, both methods are continue in the same way.

52

7.2. POC: DHCP3 AND GPXE CHAPTER 7. ALTERNATIVES

After initializing the ROM, it will give a message if you want to enter the gPXE
command line. If there is no interaction, it will continue unattended booting. When
the timer expires, it will then search for a DHCP server to start the PXE sequence, like
the normal implementations do. The server setup is similar to the procedure described
above, only you do not need to push the gPXE boot ROM to the client. If it configured
correctly, the DHCP server will detect the gPXE extensions on the client and not push
it anyway.

For an unknown reason, the flashed boot ROM is not completely bugfree. The server
says it does not recognize the gPXE extenions sent by the client. It is to be expected
that the Etherboot/gPXE project will update and correct these ROM’s.

When using it as a second stage bootloader, no problems during boot were en-
countered with virtual hardware with version 0.9.3. There are problems with virtual
hardware with 0.9.3+ (testing), where it would not find the DHCP server after loading
gPXE. Physical hardware had no problems loading 0.9.3.

7.2.3 gPXE dataflow

To check if the image is indeed transferred using TCP/HTTP instead of UDP/TFTP, I
captured the full traffic stream off the bridge using Wireshark.

gPXE Step 1: DHCP Request

Figure 7.4: Regular PXE DHCP request

The DHCP and TFTP packets are similar to the regular booting procedure, de-
scribed in section 2.2 on page 12. Instead of a NBP, the client is now recieving another
boot ROM: undionly.kpxe (see figure 7.5 on the next page). The client will execute
the ROM.

gPXE Step 2: gPXE DHCP Request

Now the gPXE is loaded and will do another DHCP Discover/Request. The difference
between the regular DHCP packet and the gPXE packet is the gPXE extension:

53

7.2. POC: DHCP3 AND GPXE CHAPTER 7. ALTERNATIVES

Figure 7.5: gPXE DHCP request

Option: (t=175,l=37) Private
Value: b105018086100f130101170101150101110101120101180101220101190101210101100102

This value is the same for all clients using the gPXE boot ROM 0.9.3+. You can
extract the network vendor (0x8086 Intel) and the card type (0x100f E1000 Gigabit
card) from the string.

After recieving the bootfile name through a DHCP OFFER or ACK package, it will
search for the image. Note that the HTTP protocol is prepended. If you do not prepend
the HTTP protocol, it will assume TFTP.

Boot file name: http://10.141.255.254/default-image/boot/pxelinux.3.7

gPXE Step 3: Download menu

The rest of the datastream is downloading the image based on TCP/HTTP.

GET /default-image/boot/pxelinux.3.7 HTTP/1.0
GET /default-image/boot/pxelinux.cfg/default HTTP/1.0
GET /default-image/boot/menu.c32 HTTP/1.0
GET /default-image/boot/pxelinux.cfg/default HTTP/1.0
GET /default-image/boot/ClusterVision.png HTTP/1.0

The code above tells that the client was downloading the menu (menu.c32). After a
4 second timeout it will boot the first option in the menu. This is by default a normal
slave boot (download vmlinuz and initrd).

gPXE Step 4: Download images

GET /default-image/boot/vmlinuz HTTP/1.0
GET /default-image/boot/initrd HTTP/1.0

After this step, it has the same steps as when using regular PXE.

54

7.2. POC: DHCP3 AND GPXE CHAPTER 7. ALTERNATIVES

Figure 7.6: gPXE with 3 physical nodes

7.2.4 gPXE tests

Because the network adapters in VMWare gave DHCP/TFTP errors with gPXE 0.9.3+,
I wanted to see if it is a VMWare specific problem (emulation of network adapers) or
a gPXE problem. I added another network interface card to the physical machine to
bridge the master node over that interface. After this, run the vmware networking script
(vmware-config.pl) to enable the second interface to be bridged [25]:

The following bridged networks have been defined:

.vmnet0 is bridged to eth0

.vmnet2 is bridged to eth1

After the wizard completes you now have 2 bridged interfaces. Use the device /dev/vmnet1
for the second interface of the master node. The eth1 interface has a physical connection
to the slave node. The settings for the master node is now:

Ethernet: bridged (to officenet)
Ethernet 2: custom, /dev/vmnet2 (to the cluster LAN)

I recieved 3 physical nodes, with a variety of Intel, Broadcom and Nvidia network
cards, this gave kernel module errors after initializing the kernel and ramdisk. This could
be fixed by adding the kernel module to the initial ramdisk and rebuilding the initial
ramdisk.

The testruns will be similar to the virtual nodes, now the traffic will be limited in
steps from 1500 kbit to 500 kbit.

55

7.3. GPXE MEASUREMENTS CHAPTER 7. ALTERNATIVES

7.3 gPXE measurements

Due to hardware shortage I conducted these tests with only 3 nodes. Because the BIOS
and hardware configurations were different, some nodes were already booting, while some
nodes were still in the POST or BIOS phase. To let them all reach the network boot
phase as close as possible to eachother, I used a stopwatch to time the average boot time
twice, until it reached the network boot phase. Then I programmed the slowest to start
up immediately, and then delay the rest in the APC so they will all reach the network
boot phase as close as possible to eachother.

7.3.1 Compatibility

Type NIC Compatible Remarks
VMWare Intel 1000 vmware rom Problems with 0.9.3+ (beta)

Intel 10000 Yes Intel Boot Agent 1.2.19
Broadcom 1000 Yes

NVidia 1000 Yes

7.3.2 Performance

I’ve taken half of the bandwidth for these tests.

Header
no test run number
k connection speed limited

by tc in kilobits (1000)
per second

pl packet loss set by tc
N1−6 result of the corresponding

node number
fail fail percentage
comments specific comments on the

test

Errorcodes
Error Description
DO No IP offer
DB DHCP No bootfile
AT ARP timeout
AC ARP timeout, but contin-

ued booting somehow
TO TFTP open timeout
TR TFTP read timeout, can-

not read from connection
TI TFTP illegal operation
TT TFTP server does not

support tsize option
TB TFTP Boot failed
BV Loading vmlinuz, boot

failed however
XX Loading took too long
SI Succesful boot to the slave

installer

56

7.3. GPXE MEASUREMENTS CHAPTER 7. ALTERNATIVES

7.3.3 1000 kbit

Settings: rate 1000 kbit, burst 8.192 (bucket size), latency 12.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 1000 0% SI SI SI NP NP NP 0%
2 1000 0% SI SI SI NP NP NP 0%
3 1000 0% SI SI SI NP NP NP 0%

Note: NP: Not present. No drops observed during retrieval of the gPXE boot ROM,
and no drops observed when the HTTP phase is active.

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 27.726.473 45.986 0 48.183 5.575.452 46.588 0 0
2 27.039.017 43.449 0 41.276 5.242.135 44.093 0 0
3 27.468.237 45.012 0 43.623 5.450.567 45.719 0 0

7.3.4 500 kbit

Settings: rate 500 kbit, burst 4.096 (bucket size), latency 12.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 500 0% SI SI SI NP NP NP 0%
2 500 0% SI SI SI NP NP NP 0% Test ran longer then first
3 500 0% SI SI SI NP NP NP 0% Test ran longer then first

Note: NP: Not present. No drops observed during retrieval of the gPXE boot ROM.
The drops occur when the HTTP transfer is active. These drops are not fatal to the
bootprocess.

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 22.156.881 23.720 599 38.377 2.474.219 25241 0 0
2 26.770.363 40.194 629 38.377 4.835.160 41860 0 0
3 34.013.368 67.029 646 96.828 8.530.162 69097 0 0

7.3.5 250 kbit

Settings: rate 250 kbit, burst 4.096 (bucket size), latency 12.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 250 0% SI SI XX NP NP NP 33% One client took a very long

time
1 250 0% SI SI SI NP NP NP 0% Client was still active, test

statistics reset to find out
if the client was stuck.

1 250 0% XX SI SI NP NP NP 33%

57

7.3. GPXE MEASUREMENTS CHAPTER 7. ALTERNATIVES

Note: NP: Not present. No drops observed during retrieval of the gPXE boot ROM.
The drops occur when the HTTP transfer is active. These drops are not fatal to the
bootprocess.

to master to slaves
bytes packets drop o/limit bytes packets drop o/limit

1 9.501.911 1.911 47 13.660 654.916 8.884 0 0
2
3 19.788.348 34.442 237 53.3252 4.376.232 37.071 0 0

7.3.6 100 kbit

Settings: rate 100 kbit, burst 4.096 (bucket size), latency 12.0 ms (bucket timer), mtu
1.540 bytes
no k pl N1 N2 N3 N4 N5 N6 Fail Remarks
1 100 0% XX XX XX NP NP NP 100%

Note: NP: Not present. This test is unusable. While the DHCP and TFTP transactions
go without errors, the loading of the menu and downloading vmlinuz and initrd takes
an extremely long time.

7.3.7 Conclusion

The objective of these tests were to characterize the network boot process under degraded
conditions. It was expected that the gPXE would be more reliable then the current setup,
but introduces a second DHCP transaction to the network.

The tests show that gPXE is more reliable in degraded conditions (low bandwidth
and packet loss). This is due to the robustness TCP/HTTP brings. The setup still has
possible failing points.

The intial DHCP and TFTP stage are the first possible failing points, similar to the
regular PXE process. When the network is congested, DHCP and TFTP errors can
occur, and the connection may fail, halting the client. The size of the gPXE boot ROM
image is 16 kbyte, which is so small it is transferred so fast that it minimizes the risk of
failing at that stage.

Once it is past the first phase, it will then load the gPXE image. The gPXE ROM
will request an IP address for the second time, introducing the second failing point. If
it does not receive an IP address it cannot contact the HTTP server and it will halt.

The first failing point can be alleviated by flashing the network cards with a gPXE boot
ROM. This is an awkward solution especially when you have hundreds of computers.

Another method is to pass the IP address to the gPXE boot ROM, so it does not
need to do the second DHCP request. At the moment of writing gPXE does not support

58

7.3. GPXE MEASUREMENTS CHAPTER 7. ALTERNATIVES

Figure 7.7: Possible failing points in the current and gPXE setups

static IP’s based on the first IP the client, this feature is planned to be implemented by
the gPXE project in the future.

The second failing point is still a problem, as you need at least one DHCP request
for a client to pass the bootfile and IP address to the client.

While the loading of vmlinuz and initrd is reliable up to very low speeds and packetloss,
although it will take a very long time.

The TCP throttling mechanism alleviates the network by sending less data. The UDP
protocol does not have such a mechanism and will try to send data at the same rate,
clogging the network and causing packetloss. This results in nodes pushing eachother
off the network.

59

7.4. PROOF-OF-CONCEPT: DNSMASQ CHAPTER 7. ALTERNATIVES

7.4 Proof-of-concept: DNSMasq

DNSMasq is a lightweight DNS, TFTP and DHCP server. It has TFTP support since
version 2.36, it has been optimised for netboot according to the changelog. Also, it has
gPXE support since version 2.41 which means it can detect gPXE options in DHCP
requests and serve the bootfile.

The reason I am considering it an alternative is that it has been deployed for cluster
computers according to users on the Beowulf forum 5. Also the combination of TFTP
and DHCP in one tool makes it a very useful and easy tool, as you only need to maintain
and update one tool.

7.4.1 Installation

I used DNSMasq version 2.426 (release date May 30th 2008). Documentation for DNS-
Masq is included in the file, but it is also available online at:http://www.thekelleys.
org.uk/dnsmasq/docs/. To compile DNSmasq, make sure you have the development
libraries and compilers present. On ClusterVisionOS 3.1, they are present. Installation
is very easy, unzip and untar the file, then invoke the make command in the directory:

make install

This will install DNSMasq in the /usr/local/sbin directory and the manpages of dns-
masq. An example configuration is included. Edit the file (see appendix D at section 9.4
on page 77).
DNSMasq assumes that the configuration file is located at: /etc/dnsmasq.conf

I’ve made a full clone of the original master node in VMware Workstation to test
DNSMasq on. The testsetup is the same as the previous setups. Because I now know
that the failpoint lies around 1250 kbit, I will start testing at 1500, and proceed to go
down to see if I get different results.

7.4.2 Configuration

To configure DNSMasq, you have to edit the /etc/dnsmasq.conf file. To see the full
configuration file, see Appendix D (Section 9.4 on page 77).

I will only discuss the most important configuration settings. First, define the inter-
face or address DNSMasq will listen on. This can be done by defining the interface or
listen addres:

interface=eth0
listen-address=10.141.255.254

Defining the DHCP range:
5http://www.beowulf.org/archive/2006-December/017023.html
6http://www.thekelleys.org.uk/dnsmasq/dnsmasq-2.42.tar.gz

60

http://www.thekelleys.org.uk/dnsmasq/docs/
http://www.thekelleys.org.uk/dnsmasq/docs/
http://www.beowulf.org/archive/2006-December/017023.html
http://www.thekelleys.org.uk/dnsmasq/dnsmasq-2.42.tar.gz

7.4. PROOF-OF-CONCEPT: DNSMASQ CHAPTER 7. ALTERNATIVES

dhcp-range=10.141.0.0,10.141.255.254,255.255.0.0,12h

Then defind the vendor class. These values are taken from the Vendor Class Identifier
field (Option 60). I took the values from the DNSMasq mailing list. The dhcp-match
defines the gpxe class, similar to DHCP3. It links DHCP messages with option 175 with
gPXE 7.

dhcp-vendorclass=pxe,PXEClient
dhcp-vendorclass=eth,Etherboot

dhcp-match=gpxe,175
dhcp-vendorclass=gpxe,gPXE

Now the vendors have been defined, it should make a distinction between the different
type’s of requests, and DNSMasq can serve the bootfiles.

When a standard PXE client has been detected, it will send the undionly.kpxe
boot ROM, when it is an etherboot or gPXE client it will serve the HTTP URL (in
this example text, the URL has been shortened).

dhcp-boot=net:pxe,default-image/boot/undionly.kpxe,,10.141.255.254
dhcp-boot=net:eth,http://10.141.255.254/.../pxelinux.3.7,10.141.255.254
dhcp-boot=net:gpxe,http://10.141.255.254/.../pxelinux.3.7,10.141.255.254

7.4.3 Test setup and complications

Figure 7.8: DNSMasq setup

I have created a setup where a single client, with a standard, unmodified client
would do a PXEBoot from a DNSMasq server. The DNSMasq configuration was gPXE
enabled (detect option 175) in the same manner as DHCP3. The client would use gPXE
as a second stage loader, it would first download and then load the undionly.kpxe
boot ROM.

During testing, the second stage did not work. It would download and execute the
undionly gPXE boot loader (first stage), but the second time it could not locate the
DHCP server. I used a packet sniffer (Wireshark) and compared the DHCP OFFERS
from the servers. The DNSMasq DHCP server does serve different OFFERS then de-
scribed in section 2.2 on page 12, which DHCP3 serves.

7http://lists.freegeek.org/pipermail/lessdisks/2005-June/000709.html

61

http://lists.freegeek.org/pipermail/lessdisks/2005-June/000709.html

7.4. PROOF-OF-CONCEPT: DNSMASQ CHAPTER 7. ALTERNATIVES

Differences in the first DHCP Offer

The first DHCP Offer sent to the PXE Client:

DHCP3 DNSMASQ
Message type 0x02 0x02
Hardware type 0x01 0x01
Hardware address length 0x06 0x06
Hops 0x00 0x00
Transaction ID Present Present
Seconds elapsed 0x0004 0x004
Bootp flags 0x8000 0x8000
Client IP address Zero Zero
Your address Present Present
Next server Present Present
Relay Zero Zero
Client MAC Present Present
Server host Not present Not present
Boot filename Present Not present
Magic cookie Present Present

And the DHCP extensions:

DHCP3 DNSMASQ
53 0x35 (DHCP Message type) 0x35 (DHCP Message typ
54 0x36 (Server identifier) 0x36 (Server identifier)
51 0x33 (IP address lease time) 0x33 (IP address lease time)
58 Not used 0x3A (Renewal Time Value)
59 Not used 0x3B (Rebinding Time Value)
67 Not used 0x43 (Boot file name)
28 Not used 0x1C (Broadcast address)
1 0x01 (Subnet mask) 0x01 (Subnet mask)
3 0x03 (Router) 0x03 (Router)
6 0x06 (Domain Name Server) 0x06 (Domain Name Server)
12 0x0C (Host name) Not used
15 0x0F (Domain name) 0x0F (Domain name)

62

7.4. PROOF-OF-CONCEPT: DNSMASQ CHAPTER 7. ALTERNATIVES

The difference in the second DHCP Offer

The second OFFERS sent to the gPXE client:

DHCP3 DNSMASQ
Message type 0x02 0x02
Hardware type 0x01 0x01
Hardware address length 0x06 0x06
Hops 0x00 0x00
Transaction ID Present Present
Seconds elapsed 0x0000 0x004
Bootp flags 0x0000 0x0000
Client IP address Zero Zero
Your address Present Present
Next server Zero Present
Relay Zero Zero
Client MAC Present Present
Server host Not present Not present
Boot filename Present Not present
Magic cookie Present Present

And the DHCP extensions:

DHCP3 DNSMASQ
53 0x35 (DHCP Message type) 0x35 (DHCP Message typ
54 0x36 (Server identifier) 0x36 (Server identifier)
51 0x33 (IP address lease time) 0x33 (IP address lease time)
58 Not used 0x3A (Renewal Time Value)
59 Not used 0x3B (Rebinding Time Value)
66 Not used 0x42 (TFTP Server Name)
67 Not used 0x43 (Boot file name)
28 Not used 0x1C (Broadcast address)
1 0x01 (Subnet mask) 0x01 (Subnet mask)
3 0x03 (Router) 0x03 (Router)
6 0x06 (Domain Name Server) 0x06 (Domain Name Server)
12 0x0C (Host name) Not used
15 0x0F (Domain name) 0x0F (Domain name)

When comparing the servers packets, it shows DNSMasq uses different fields, but
not the boot file field, like DHCP3 uses. It appends a DHCP option (67) to the
message, which the gPXE client does not seem to understand. The regular PXE bootrom
recognizes the DHCP Option 67 field, and is able to boot.

When looking at the clients DHCP DISCOVER packet, it shows that it lists a lot of
options which it requested, including the option 67. It is strange that it asks for option

63

7.4. PROOF-OF-CONCEPT: DNSMASQ CHAPTER 7. ALTERNATIVES

67, but does nothing with it. If gPXE does not request 67, DNSMasq would respond to
it, by sending the bootfile name in the regular way, instead of option 67. This behaviour
seems broken according to the DNSMasq mailing list8.

7.4.4 Test method

The plan was to use a DHCP client loader, or write a similar script that produces x
requests per second to the DHCP server with random MAC addresses, to see which
server can handle the requests the fastest and with the least cpu load.

This test was not completed due to time complications (not enough time), and the
fact that DNSMasq does not supply the correct DHCP OFFERS to the gPXE client.

7.4.5 Conclusion

DNSMasq has some advantages over DHCP3. It has support for DHCP, DNS and
TFTP in one package, using one configuration file. This makes it easy to maintain and
to configure. According to sources on the Beowulf mailing list, it should be more suitable
for cluster computers9.

The configuration is very different from DHCP3 and may seem complicated at first.
It also does not allow to make if statements to distingush types and options.

The DNSMasq DHCP performance could not be tested because DNSMasq sends the
wrong DHCP Offers because gPXE requested them and gPXE does not do anything
with the Offer.

DNSMasq is therefore, at the time of writing, not usable for deploying gPXE at this
moment.

8http://lists.thekelleys.org.uk/pipermail/dnsmasq-discuss/2007q4/001642.html
9http://www.beowulf.org/archive/2006-December/017027.html

64

http://lists.thekelleys.org.uk/pipermail/dnsmasq-discuss/2007q4/001642.html
http://www.beowulf.org/archive/2006-December/017027.html

Chapter 8

Conclusion and future work

8.1 Conclusion

When the network gets congested, packet loss will occur inevitably. The currently used
protocols DHCP and TFTP use UDP, which does not cope well with packet loss. UDP
does not guarantee reliability or ordering in the way that TCP does. Datagrams may ar-
rive out of order, appear duplicated, or go missing without notice. This causes the client
to fail. The boot failures discovered have been identified and described in section 6.1.1
on page 41.

In the current setup, I have identified four phases where the process can fail. All these
phases use UDP for data transport. This makes booting unreliable. To solve this, a
more reliable protocol must be chosen for data transport.

A newer version of PXELinux, version 3.70, supports booting over HTTP, which relies
on TCP and is therefore more reliable. To implement gPXE and the updated PXELinux
3.70 there are 2 options. These are described in section 7.2 on page 49.

1. Using PXELinux 3.70 and gPXE flashed into the boot ROM, the only bottleneck is
the DHCP stage. The server has then 4 chances to respond to the DHCP Discover
before the client halts with an error. The failures that occur during the TFTP
phase does not exist.

In theory this setup is the best solution to minimize the risk of failing nodes.
However, this solution is very awkward, because all the network boot ROM’s or
BIOS ROM’s have to be flashed. This makes it an impractical solution to large
number of clusters. Tests have also shown that the current version of the flashable
gPXE boot ROM is not fully compatible with PXELinux.

2. Use gPXE as a second stage loader. This means the default, unmodified boot ROM
will attempt a PXE session like usual, but instead of downloading a network boot
program, it will download a gPXE boot ROM. This boot ROM will be executed,

65

8.1. CONCLUSION CHAPTER 8. CONCLUSION AND FUTURE WORK

and the client will become gPXE enabled. The PXE session will be restarted by
making a DHCP DISCOVER. The connection will continue using HTTP for the
remainder of the PXE session. Packetloss is not an issue for HTTP because TCP
uses re-transmission with acknowledgement to ensure reliable delivery. Tests have
shown the connection will not halt when packet loss occurs during the HTTP boot.

The second option is the most likely to implement and has been tested succesfully. It
does not require modifications to the clients, and only few modifications to the master.
This makes it a very practical solution especially with a large number of nodes.

However this setup introduces 2 DHCP sessions, that are fragile. To limit the risk,
it should be brought back to one DHCP session. To do this, a static IP, based on the
information in the first session, must be given to the gPXE boot ROM . This is, at the
time of writing this report, not possible. This leaves the solution with bottlenecks, but
these DHCP bottlenecks have a smaller risk then the TFTP problem. The DHCP stage
takes a few seconds, while the TFTP stage might take up to several minutes whereby
the likelyhood of failure is much higher.

To alleviate the DHCP problem, I have looked at another lightweight implementation:
DNSMasq. This implementation is not ready for gPXE, even though the documentation
states that it is. Tests show that gPXE and DNSMasq are not as compatible to eachother
as gPXE and DHCP3. DNSMasq is at the time of writing not usable as an alternative
in the setup.

The conclusion is that the largest bottleneck (TFTP transactions) can be taken away
by booting off a more reliable protocol at the expense of a second DHCP session. When
a solution has been found for the second DHCP session, it will make the setup more
reliable.

66

8.2. FUTURE WORK CHAPTER 8. CONCLUSION AND FUTURE WORK

8.2 Future work

To alleviate the remaining bottlenecks, the gPXE setup needs improvement on 2 aspects:

1. The second DHCP Request when using the gPXE boot ROM;

2. Replace the DHCP server for a lighter one.

To minimize the risk of the second DHCP request when using the gPXE boot ROM,
a parameter must be given to the boot ROM. At present, this is not possible. It is
expected that the gPXE project will implement this in the future.

The DHCP implementation might be replaced by a lighter version. DNSMasq might be
an interesting alternative to look at when it fully supports gPXE. I have have described
the installation and configuration of DNSMasq in section 7.4 on page 60. To determine
the difference in the performance between DHCP3 and DNSMasq, the requests must be
benchmarked. Due to time limitations these tests could not be carried out.

67

Bibliography

[1] Ewen McNeill and Naos Limited. Linux Based Diskless Workstations.
http://www.naos.co.nz/papers/diskless/index1.html, 2000.

[2] Etherboot Project. Etherboot/gPXE Project.
http://www.etherboot.org, 2008.

[3] H. Peter Anvin. PXELinux - Syslinux for network boot.
http://syslinux.zytor.com/pxe.php, 2000.

[4] Intel Corporation. Preboot Execution Environment (PXE) Specification Version
2.1.
http://www.pix.net/software/pxeboot/archive/pxespec.pdf, 1999.

[5] S. Alexander and R. Droms. DHCP Options and BOOTP Vendor Extensions.
http://tools.ietf.org/html/rfc2132, 1997.

[6] R. Droms. Dynamic Host Configuration Protocol.
http://tools.ietf.org/html/rfc2131, 1997.

[7] IANA. Dynamic Host Configuration Protocol (DHCP) and Bootstrap Protocol
(BOOTP) Parameters.
http://www.iana.org/assignments/bootp-dhcp-parameters, 2008.

[8] IANA. Address Resolution Protocol (ARP) Parameters.
http://www.iana.org/assignments/arp-parameters, 2006.

[9] Wikipedia. Dynamic Host Configuration Protocol.
http://en.wikipedia.org/wiki/DHCP, 2008.

[10] M. Johnston and S. Venaas. DHCP Options for the Intel Preboot eXecution Envi-
ronment (PXE).
http://www.ietf.org/rfc/rfc4578.txt, 2006.

[11] Xavier Brochard. Using PXE to boot an LTSP workstation.
http://wiki.ltsp.org/twiki/bin/view/Ltsp/PXE, 2007.

[12] M. Tim Jones. Linux initial RAM disk (initrd) overview.
http://www.ibm.com/developerworks/linux/library/l-initrd.html, 2006.

68

http://www.naos.co.nz/papers/diskless/index1.html
http://www.etherboot.org
http://syslinux.zytor.com/pxe.php
http://www.pix.net/software/pxeboot/archive/pxespec.pdf
http://tools.ietf.org/html/rfc2132
http://tools.ietf.org/html/rfc2131
http://www.iana.org/assignments/bootp-dhcp-parameters
http://www.iana.org/assignments/arp-parameters
http://en.wikipedia.org/wiki/DHCP
http://www.ietf.org/rfc/rfc4578.txt
http://wiki.ltsp.org/twiki/bin/view/Ltsp/PXE
http://www.ibm.com/developerworks/linux/library/l-initrd.html

BIBLIOGRAPHY BIBLIOGRAPHY

[13] Ariane Keller. Manual tc filtering and netem.
http://tcn.hypert.net/tcmanual.pdf, 2006.

[14] Linux Foundation. Net:Netem.
http://www.linuxfoundation.org/en/Net:Netem, 2008.

[15] Bert Hubert et. al. Linux Advanced Routing & Traffic Control HOWTO.
http://lartc.org/howto/, 2004.

[16] Martin A. Brown. Traffic control.
http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html, 2006.

[17] Leonardo Balliache. Differentiated Service on Linux.
http://www.opalsoft.net/qos/DS.htm, 2003.

[18] Wikipedia. Token bucket.
http://en.wikipedia.org/wiki/Token_bucket, 2008.

[19] Alexey N. Kuznetsov. Traffic control Token Bucket Filter.
http://linux.die.net/man/8/tc-tbf.

[20] Martin Devera and Don Cohen. HTB Linux queuing discipline.
http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm, 2003.

[21] Wikipedia. Class based queueing.
http://en.wikipedia.org/wiki/Class_Based_Queueing, 2008.

[22] corbet. How fast should HZ be?
http://lwn.net/Articles/145973/, 2005.

[23] Mark Gates, Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, Kevin Gibbs,
and John Estabrook. Iperf project.
http://sourceforge.net/projects/iperf, 2008.

[24] Etherboot project. ROM-o-matic.net dynamically generates gPXE and Etherboot
network booting images.
http://rom-o-matic.net/, 2008.

[25] VMware Inc. VMWare Workstation User’s manual, 6.0 edition, 09 2007.

[26] Wikipedia. Network booting.
http://en.wikipedia.org/wiki/Network_booting, 2008.

[27] Cor Bosman. Installing and maintaining clusters of UNIX servers using PXE and
rsync.
http://www.nluug.nl/events/sane2002/papers/SANE.ps, 2002.

[28] Microsoft Knowledge Base. Description of PXE Interaction Among PXE Client,
DHCP, and RIS Server.
http://support.microsoft.com/kb/244036, 2007.

69

http://tcn.hypert.net/tcmanual.pdf
http://www.linuxfoundation.org/en/Net:Netem
http://lartc.org/howto/
http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html
http://www.opalsoft.net/qos/DS.htm
http://en.wikipedia.org/wiki/Token_bucket
http://linux.die.net/man/8/tc-tbf
http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm
http://en.wikipedia.org/wiki/Class_Based_Queueing
http://lwn.net/Articles/145973/
http://sourceforge.net/projects/iperf
http://rom-o-matic.net/
http://en.wikipedia.org/wiki/Network_booting
http://www.nluug.nl/events/sane2002/papers/SANE.ps
http://support.microsoft.com/kb/244036

BIBLIOGRAPHY BIBLIOGRAPHY

[29] Markus Gutschke Ken Yap. Etherboot Project.
http://etherboot.berlios.de/doc/html/userman/t1.html, 2006.

[30] Intel Corporation. How do I troubleshoot PXE boot with a network protocol ana-
lyzer?
http://www.intel.com/support/network/sb/cs-028533.htm, 2008.

[31] David C. Plummer. An Ethernet Address Resolution Protocol.
http://tools.ietf.org/html/rfc826, 1982.

[32] A. Emberson. TFTP Multicast Option.
http://www.ietf.org/rfc/rfc2090.txt, 1997.

[33] Tandem Systems. TFTP Protocol.
http://www.tftp-server.com/tftp-server-help/tftp-protocol.html, 2007.

[34] Remi Lefebvre. Advanced TFTP.
http://freshmeat.net/projects/atftp/, 2004.

[35] Nicolas Bouliane. Analysis of the simple token bucket filter algorithm implementa-
tion inside the netfilter’s limit module.
http://people.netfilter.org/acidfu/papers/limit-tbf-analysis.pdf,
2007.

[36] Simon Kelley. Dnsmasq.
http://thekelleys.org.uk/dnsmasq/doc.html, 2008.

[37] Kurt Wagner. Short evaluation of the Linux Token-Bucket-Filter Queueing Disci-
pline.
http://www.docum.org/docum.org/docs/other/tbf02_kw.ps, 2001.

[38] IXIA. Performance testing library: test plans.
http://www.ixiacom.com/library/test_plans/, 2008.

[39] Bruce Bahlmann. The ABCs of Understanding DHCP Performance.
http://www.birds-eye.net/article_archive/abc_of_understanding_dhcp_
performance.htm, 2001.

70

http://etherboot.berlios.de/doc/html/userman/t1.html
http://www.intel.com/support/network/sb/cs-028533.htm
http://tools.ietf.org/html/rfc826
http://www.ietf.org/rfc/rfc2090.txt
http://www.tftp-server.com/tftp-server-help/tftp-protocol.html
http://freshmeat.net/projects/atftp/
http://people.netfilter.org/acidfu/papers/limit-tbf-analysis.pdf
http://thekelleys.org.uk/dnsmasq/doc.html
http://www.docum.org/docum.org/docs/other/tbf02_kw.ps
http://www.ixiacom.com/library/test_plans/
http://www.birds-eye.net/article_archive/abc_of_understanding_dhcp_performance.htm
http://www.birds-eye.net/article_archive/abc_of_understanding_dhcp_performance.htm

Chapter 9

Appendices

9.1 Appendix A: Traffic control tests

9.1.1 Traffic control tests

Unlimited

This test is set with no limits in either VMWare or tc. The following settings apply:
Client: TCP Port random pick, TCP window size 16 Kbyte (default)
Server: TCP port 5001, tcp window size 85.3 KByte (default)

Transferred Throughput Outside-Inside Throughput Inside-Outside
Run 1 2000 MB 165 Mbits/s 159 Mbits/s
Run 2 2000 MB 162 Mbits/s 164 Mbits/s
Run 3 2000 MB 160 Mbits/s 163 Mbits/s
Run 4 2000 MB 150 Mbits/s 172 Mbits/s
Run 5 2000 MB 160 Mbits/s 175 Mbits/s

Min 150 Mbits/s 159 Mbits/s
Avg 159.4 Mbits/s 166.6 Mbits/s
Max 162 Mbits/s 175 Mbits/s

10 Mbps

This test is set with a 10Mbps (10000kbit/s) limit in VMWare and tc. The following
settings apply:
Client: TCP Port random pick, TCP window size 16 Kbyte (default)
Server: TCP port 5001, tcp window size 85.3 KByte (default)

71

9.1. APPENDIX A: TRAFFIC CONTROL TESTS CHAPTER 9. APPENDICES

Using tc
Transferred Throughput Outside-Inside Throughput Inside-Outside

Run 1 100 MB 9.42 Mbits/s 9.98 Mbits/s
Run 2 100 MB 9.26 Mbits/s 9.33 Mbits/s
Run 3 100 MB 9.38 Mbits/s 9.36 Mbits/s
Run 4 100 MB 9.79 Mbits/s 9.39 Mbits/s
Run 5 100 MB 9.27 Mbits/s 9.01 Mbits/s

Min 9.26 Mbits/s 9.01 Mbits/s
Avg 9.42 Mbits/s 9.41 Mbits/s
Max 9.79 Mbits/s 9.98 Mbits/s

Using VMWare Workstation Team
Transferred Throughput Outside-Inside Throughput Inside-Outside

Run 1 100 MB 27.5 Mbits/s 29.7 Mbits/s
Run 2 100 MB 26.0 Mbits/s 29.7 Mbits/s
Run 3 100 MB 26.4 Mbits/s 26.3 Mbits/s
Run 4 100 MB 28.1 Mbits/s 27.3 Mbits/s
Run 5 100 MB 28.1 Mbits/s 28.6 Mbits/s

Min 26.0 Mbits/s 26.3 Mbits/s
Avg 27.22 Mbits/s 28.32 Mbits/s
Max 28.1 Mbits/s 29.7 Mbits/s

2 Mbps

The following test is set to 2.000kbit, using VMWare and tc. The following settings
apply:
Client: TCP Port random pick, TCP window size 16 Kbyte (default)
Server: TCP port 5001, tcp window size 85.3 KByte (default)

Using tc
Transferred Throughput Outside-Inside Throughput Inside-Outside

Run 1 2 MB 1.84 Mbits/s 2.08 Mbits/s
Run 2 2 MB 2.03 Mbits/s 1.98 Mbits/s
Run 3 2 MB 2.00 Mbits/s 1.99 Mbits/s
Run 4 2 MB 1.97 Mbits/s 2.00 Mbits/s
Run 5 2 MB 1.98 Mbits/s 1.96 Mbits/s

Min 1.84 Mbits/s 1.96 Mbits/s
Avg 1.96 Mbits/s 2.00 Mbits/s
Max 2.03 Mbits/s 2.08 Mbits/s

72

9.1. APPENDIX A: TRAFFIC CONTROL TESTS CHAPTER 9. APPENDICES

Using VMWare Workstation Team
Transferred Throughput Outside-Inside Throughput Inside-Outside

Run 1 10 MB 6.87 Mbits/s 7.97 Mbits/s
Run 2 10 MB 6.78 Mbits/s 6.73 Mbits/s
Run 3 10 MB 6.92 Mbits/s 7.36 Mbits/s
Run 4 10 MB 6.70 Mbits/s 7.87 Mbits/s
Run 5 10 MB 7.54 Mbits/s 7.60 Mbits/s

Min 6.70 Mbits/s 6.73 Mbits/s
Avg 6.96 Mbits/s 7.51 Mbits/s
Max 7.54 Mbits/s 7.97 Mbits/s

128 kbps

The following test is set to 128kbit, using VMWare and tc. The following settings apply:
Client: TCP Port random pick, TCP window size 16 Kbyte (default)
Server: TCP port 5001, tcp window size 85.3 KByte (default)

Using tc
Transferred Throughput Outside-Inside Throughput Inside-Outside

Run 1 500kB 127 kbits/s 127 kbits/s
Run 2 500kB 129 kbits/s 133 kbits/s
Run 3 500kB 121 kbits/s 125 kbits/s
Run 4 500kB 128 kbits/s 123 kbits/s

Run 5 500kB 133 kbits/s 128 kbits/s

Min 121 kbits/s 123 kbits/s
Avg 127.6 kbits/s 127.2 kbits/s
Max 133 kbits/s 133 kbits/s

Using VMWare Workstation Team
Transferred Throughput Outside-Inside Throughput Inside-Outside

Run 1 500kB 443 kbits/s 508 kbits/s
Run 2 500kB 573 kbits/s 505 kbits/s
Run 3 500kB 519 kbits/s 553 kbits/s
Run 4 500kB 538 kbits/s 480 kbits/s
Run 5 500kB 537 kbits/s 365 kbits/s

Min 121 kbits/s 123 kbits/s
Avg 127.6 kbits/s 127.2 kbits/s
Max 133 kbits/s 133 kbits/s

73

9.2. APPENDIX-B SHELLSCRIPTS CHAPTER 9. APPENDICES

9.2 Appendix-B Shellscripts

9.2.1 tc-limit

#!/bin/bash
if [$1 = "up"];
then

echo "Setting qdiscs"
modprobe sch_netem
echo "Applying token bucket to interface eth0"
tc qdisc add dev eth0 root tbf rate 1mbit burst 1540 latency 50ms minburst 1540
echo "Applying token bucket to interface eth1"
tc qdisc add dev eth1 root tbf rate 1mbit burst 1540 latency 50ms minburst 1540
tc -s qdisc ls dev eth0
tc -s qdisc ls dev eth1

fi

if [$1 = "reset"];
then

tc qdisc del dev eth0 root
tc qdisc del dev eth1 root
echo "QDiscs resetted"

fi

if [$1 = "status"];
then

echo "Bridge configuration"
brctl show
echo "Traffic control"
tc qdisc show

fi

74

9.2. APPENDIX-B SHELLSCRIPTS CHAPTER 9. APPENDICES

9.2.2 bridge

#!/bin/bash
if [$1 = "up"];
then

brctl addbr br1
brctl addif br1 eth0
brctl addif br1 eth1
ip link set br1 up
brctl setfd br1 0
brctl show

fi
if [$1 = "down"];
then

ip link set br1 down
brctl delbr br1
brctl show
echo "Bridge deleted"

fi

75

9.3. APPENDIX-C ISC DHCP3 CONFIGURATION CHAPTER 9. APPENDICES

9.3 Appendix-C ISC DHCP3 configuration

not authoritative;
ddns-update-style none;
default-lease-time 100800;
#default-lease-time -1;
use-host-decl-names on;

option space gpxe;
option gpxe-encap-opts code 175 = encapsulate gpxe;
option gpxe.bus-id code 177 = string;

option space pxelinux;
option pxelinux.reboottime code 211 = unsigned integer 32;
option pxelinux.configfile code 209 = text;
option pxelinux.pathprefix code 210 = text;
group {
option domain-name "cvos.cluster clustervision.com";
option domain-name-servers 10.141.255.254;
option subnet-mask 255.255.0.0;
option broadcast-address 10.141.255.255;
option routers 10.141.255.254;

option pxelinux.reboottime 60;
server-identifier 10.141.255.254;
#next-server 10.141.255.254;
option pxelinux.pathprefix "http://";
#option pxelinux.configfile \\

"http://10.141.255.254/default-image/boot/pxelinux.cfg/default";

host node001 {
#filename "default-image/boot/pxelinux.0";
#filename "http://10.141.255.254/default-image/boot/pxelinux.0";
hardware ethernet 00:0C:29:81:06:5A; fixed-address 10.141.0.1;

}

subnet 10.141.0.0 netmask 255.255.0.0 {
range 10.141.232.0 10.141.239.255;
#filename "default-image/boot/pxelinux.0";
filename "http://10.141.255.254/default-image/boot/gpxelinux.0";
if not exists gpxe.bus-id {

filename "default-image/boot/undionly.kpxe";
}else{

filename "http://10.141.255.254/default-image/boot/pxelinux.3.7";
}
max-lease-time 100800;

}
}

76

9.4. APPENDIX-D DNSMASQ CONFIGURATION CHAPTER 9. APPENDICES

9.4 Appendix-D DNSMasq Configuration

Configuration file for dnsmasq.

#interface=eth0

#listen-address=10.141.255.254

domain = cvos.cluster.clustervision.com

dhcp-range=10.141.0.0,10.141.255.254,255.255.0.0,12h

dhcp-vendorclass=pxe,PXEClient
dhcp-vendorclass=eth,Etherboot

dhcp-match=gpxe,175
dhcp-vendorclass=gpxe,gPXE

dhcp-option=1,255.255.0.0 # subnet-mask
dhcp-option=3,10.141.255.254 # routers
#dhcp-option=pxe,67,/cvos/images/default-image/boot/undionly.kpxe #bootfile-name
#dhcp-option=eth,67,/cvos/images/default-image/boot/pxelinux.3.7 #bootfile-name
#dhcp-option=gpxe,67,/cvos/images/default-image/boot/pxelinux.3.7 #bootfile-name

#dhcp-boot=default-image/boot/undionly.kpxe # gpxe,undionly.kpxe
#dhcp-boot=net:gpxe,http://10.141.255.254/default-image/boot/pxelinux.3.7,,

dhcp-boot=net:pxe,default-image/boot/undionly.kpxe,,10.141.255.254
dhcp-boot=net:eth,http://10.141.255.254/default-image/boot/pxelinux.3.7,10.141.255.254
dhcp-boot=net:gpxe,http://10.141.255.254/default-image/boot/pxelinux.3.7,10.141.255.254

Enable dnsmasq’s built-in TFTP server
enable-tftp

Set the root directory for files availble via FTP.
tftp-root=/cvos/images/

77

	1 Introduction
	1.1 Introduction
	1.2 Research question

	2 Theory
	2.1 Theory
	2.1.1 Cluster computer set-up
	2.1.2 Concept of network booting
	2.1.3 Bootstrap procedure
	2.1.4 PXE Linux
	2.1.5 PXE boot sequence

	2.2 Booting procedure
	2.2.1 DHCP
	2.2.2 ARP
	2.2.3 TFTP
	2.2.4 Post PXE
	2.2.5 Components

	3 Traffic control
	3.1 Virtualization and traffic control
	3.2 Traffic control in VMWare Workstation
	3.3 Traffic control in Linux
	3.3.1 Types of qdisc's

	4 Testing
	4.1 Traffic control tests
	4.2 Configuring traffic control
	4.2.1 Test setup
	4.2.2 Reliability of traffic control
	4.2.3 Used software
	4.2.4 Test methodology

	5 Observations
	5.1 Measurements
	5.1.1 4.000 kilobit
	5.1.2 2.000 kilobit
	5.1.3 1.500 kilobit
	5.1.4 1.250 kilobit
	5.1.5 1.000 kilobit
	5.1.6 500 kilobit
	5.1.7 250 kilobit
	5.1.8 100 kilobit
	5.1.9 50 kilobit

	6 Analysis and discussion
	6.1 Analysis
	6.1.1 Identified problems
	6.1.2 DHCP Stage
	6.1.3 ARP Stage
	6.1.4 TFTP Stage
	6.1.5 Boot Stage
	6.1.6 Problems matrix
	6.1.7 Conclusion

	7 Alternatives
	7.1 Alternatives
	7.2 PoC: DHCP3 and gPXE
	7.2.1 gPXE flashed into NIC boot ROM
	7.2.2 Starting with gPXE
	7.2.3 gPXE dataflow
	7.2.4 gPXE tests

	7.3 gPXE measurements
	7.3.1 Compatibility
	7.3.2 Performance
	7.3.3 1000 kbit
	7.3.4 500 kbit
	7.3.5 250 kbit
	7.3.6 100 kbit
	7.3.7 Conclusion

	7.4 Proof-of-concept: DNSMasq
	7.4.1 Installation
	7.4.2 Configuration
	7.4.3 Test setup and complications
	7.4.4 Test method
	7.4.5 Conclusion

	8 Conclusion and future work
	8.1 Conclusion
	8.2 Future work

	9 Appendices
	9.1 Appendix A: Traffic control tests
	9.1.1 Traffic control tests

	9.2 Appendix-B Shellscripts
	9.2.1 tc-limit
	9.2.2 bridge

	9.3 Appendix-C ISC DHCP3 configuration
	9.4 Appendix-D DNSMasq Configuration

