
Detecting inconsistencies in INRDB data
to identify MOAS cases and possible illegitimate internet resource usage

ing. P.Ruissen

System and Network Engineering

University of Amsterdam

December 10, 2007

Abstract

RIPE NCC has a new experimental Internet Number Resource database (INRDB). The INRDB
holds statistic data about address space allocation, routing registry information and other related
objects. The assignment in this project is to use historical resource data to correlate inconsistencies
between INRDB data sources to identify MOAS cases and detect possible illegitimate internet re-
source usage. The results show the RIS RIB table growth of one 62/8 from 1495 unique prefixes in
2004 to 2166 unique prefixes in 2007. It also shows that the average of 88% RIS entries that match
AS ORIGINS in RIPEDB exceeds expectations. The MOAS results of the implementation of the al-
gorithm (which are not listed here) showed that almost 80% percent of all MOAS keeps coming back
every month. However, correlating these MOAS cases with listings in RIPEDB and registration data
is not enough to determine if they are hijacked or not. For this we need overlap detection, timeframe
processing and resource certification validation.

CONTENTS LISTINGS

Contents

ABSTRACT 1

TABLE OF CONTENTS 2

PREFACE 3

ABBREVIATIONS 3

1 INTRODUCTION 4

1.1 BGP SECURITY . 5

1.2 RIPE NCC DATA SOURCES . 7

2 INRDB PROTOTYPE 9

2.1 DATA MODEL AND SYSTEM ARCHITECTURE . 9

2.2 INCONSISTENCIES . 12

3 VARIATIONS AND PROPERTIES OF PREFIX HIJACKING 13

4 METHODOLOGY 14

5 RESULTS AND CONCLUSIONS 15

5.1 FUTURE WORK . 17

REFERENCES 18

Listings

correlateOriginf1.pl . 20

Detecting inconsistencies in INRDB data - Peter Ruissen 2 / 23

LISTINGS LISTINGS

PREFACE

This report is written for RP1 as part of the MSc study in the field of SNE at the UVA. The timeframe
is one month and the goal is to gain practical experience and collaboration skills. During this project
I was invited to work as a trainee within the Science Group of RIPE NCC and to attend the RIPE55
and NLUUG meetings. The Science Group provides a scientific analysis and publication resource
which is independent of day-to-day operations of the company[21]. The research was performed on
behalf of RIPE NCC, Amsterdam under supervision of Daniel Karrenberg and Tiziana Refice. I want
to thank them both for their enthusiasm and excellent guidance during this project. I also want to
thank Erik Romijn and Robert Kisteleki for their expertise and useful advice. Further, I want to thank
RIPE NCC and dr.ir. C.Th.A.M. de Laat from the Faculty of Science for making this research possible.

ABBREVIATIONS

Allocation distribute address space to internet registries for the purpose of distribution by them.
Assign means delegate address space to an ISP or End User for specific use within the AS they operate.
AS stands for autonomous system, a domain of administrative authority.
ASN autonomous system numbers are represented as 2 bytes to identify an AS (0-65535)
AS Path is a sequence of AS numbers traversed from origin AS.
AS Origin The origin AS announces a prefix.
Blackholing attacker drops rerouted packets.
Bogus ASNs are marked as ”Reserved”, ”Held” or ”Designated for private use” by IANA.
Control Plane OSI layer 3 routing info, example: RIS project; AS level paths to each prefix.
Data Plane OSI layer 2, example: IPlane project. 1; daily traceroutes to prefixes.
Dark address space accessible from one provider but unreachable from competitor networks.
ERX Early Registration Transfer Project; internet numbers allocated before the RIR where established.
Imposture attacker mimics the behavior of target prefix.
Interception MiM attack, attacker forwards hijacked traffic to target prefix.
Ingress Access List filter that checks the source IP of every BGP message against a list of acceptable prefixes.
Inet Number AS number or prefix range (tuple).
INRDB Internet Number Resources database provides info about number resources from a single point.
LIR Local Internet Registries are mostly Internet Service Providers (ISP).
MOAS Multiple origin AS that announce the same prefix.
Multihomed AS maintains connections to more than one other AS. (multiple uplinks).
PA-addresses Provider Aggregated addresses are assigned from an LIR’s allocation.
Peering create a direct link between two AS and exchange local traffic.
PI-addresses Provider Independent addresses are assigned directly by RIR to an end-user without LIR.
Prefix IP network/subnet that represents a single entry in the BGP RIB.
Radix trees Patricia trie/trees, or crit bit trees are specialized set data structures.
RADB Static database similar to RIPEDB.
RIB Routing Information Base contains routes from static/dynamic protocols and directly attached networks.
RIS Routing information service, is a RIPE NCC project to collect and store Internet routing data.
RIR Regional Internet Registry, RIPE NCC is one of the five regional internet registries in the world.
SUBMOAS Subnet of an existing prefix is announced by a different (multiple) origin AS.
Stub AS only connected to one other AS (used in financial, transportation sectors).
Transit AS provides connections through itself to separate networks.

1iPlane performs traceroutes from several vantage points daily to map the Internet’s topology. http://iplane.cs.
washington.edu/

Detecting inconsistencies in INRDB data - Peter Ruissen 3 / 23

http://iplane.cs.washington.edu/
http://iplane.cs.washington.edu/

1 INTRODUCTION

1 INTRODUCTION

There are many sources on the Internet where you can find information about routing policies, regis-
tered IP space and ASN, routing table information, registered domains and contact info. One of them
is the RIPE whois database, which is part of a global system known as the Internet Routing Registry.
Other information sources include the RIS (Routing Information Service), ERX, various mail archives
and name server query logs.

However, getting an overview of all those information tends to be non-trivial. Users have to query
each source to get the complete picture, and up to now there is no single service that combines all
this data. For this reason, RIPE NCC started the Internet Number Resource Database (INRDB).
The INRDB combines various archives into one to create an overview of as much time-series and
historical data. This historical resource data can be processed and used to correlate with scientific
data, measurements and to address various problems. This research is about the using the combined
data resources of the experimental INRDB from RIPE NCC and correlating inconsistencies. The
historical data of different sources can be compared and analyzed to possibly detect prefix hijacking.

Hijacked prefixes are address blocks that are used without permissions from their rightful owners,
which is considered to be illegal. Mostly this involves duplicate IP addresses announcements or
prefixes that are not used somewhere else. Those can also be prefixes from which organizations
are not aware that they own them or old blocks that are not in active use on the Internet. Non-
legitimately used address-space can then be sold or leased, blackholed, used for deception, denial
of service attacks or spamming. Prefix hijacking makes it very difficult to backtrace spam to their
original source.

The above information leads to the following research question:

• How to correlate inconsistencies between INRDB data sources to identify MOAS cases and
detect possible illegitimate internet resource usage? How is the data in the INRDB structured,
represented and retrieved? What are the anomalies in this historical data and do we see a trends
in malicious activity?

Approach The first phase is to study the INRDB architecture, storage formats and processes. The
research topic is covered by writing a Perl script that queries the INRDB data sources, compares
RIPEDB, RIS and registry data and relates information. Section 4 covers the properties of hijacked
prefixes by using inconsistencies in the INRDB. Comparing datasources is not a trivial task, it involves
parsing classes, properties and multidimensional timeframes and writing complex data structures.
Results are plotted with the GD::Graph Perl module.

Related work The abundance of research papers about this topic show that there is already a lot of
work done in this field. When v4 of the Border Gateway Protocol (BGP) took over in 1994, it finally
supported route aggregation which was a great enhancement over previous versions. Unfortunately
security was not considered to be an important issue. Since then, a lot of papers where released
discussing the security and robustness problems which BGP faced. Misconfiguration was common,
some routers could easily flood parts of the Internet with false advertisements [9]. However, some
announcements like multiple origin AS may appear bogus, but are actually legimate. [1] For example,
the organization may use multihoming or private links.

The fact that malicious activity could also target whole organizations was proven in 2005 when an
AS originated routes of one of the prefixes assigned to Google. The result was that Google was
unreachable for an hour from a broad range of geographical locations. More can be read in ’Analysis
of BGP Prefix Origins During Googles May 2005 Outage’[8]. The range of those attacks can also
spread world-wide if ASes higher in the routing topology (tier 1) are hijacked [6].

Detecting inconsistencies in INRDB data - Peter Ruissen 4 / 23

1.1 BGP SECURITY 1 INTRODUCTION

After the first attacks became apparent, addons were designed to solve the insufficiencies in BGP.
Bolt, Beranek, and Newman (BBN) were the first to enhance the BGP protocol with the secure BGP
architecture[25] to verify the authenticity and authorization of BGP traffic[17]. CISCO came up with
their own solution [24]. Both are discussed in section 1.1. Due to the deployment costs of these
solutions many ISP stick with passive measures.. Also, the growth of the RIB routing tables do not
make it preferable to deploy cryptography, which uses a lot of resources. This caused that prefix
hijacking is still a serious problem to be reckoned with today.

Passive solutions to detect misconfiguration, bogus routes and prefix hijacking can be divided in two
categories:

• The first category uses properties from the BGP control plane by monitoring BGP updates and
status information. This input information is in almost every case captured from the Route
Views project or from RIS. The Prefix Hijack Alert System (PHAS) [16] and MyASN are good
examples of projects which alert system administrators when their BGP Origin changes. Other
papers present more complicated methods to detect hijacked prefixes like address expansion,
neighboring and address sharing heuristics [10].

• The second category use characteristics from the data plane like hop count properties, OS, IP
and ICMP timestamp based fingerprints. Other ideas are to use customer provider relations
and geographical information.

Scope Due to the limited timeframe and to produce original results, the author has chosen to focus
on inconsistencies between data sources, meaning that related information in RIS, RIPEDB and other
data sources are compared rather then focusing on inter-dynamic data. However, some papers [2]
claim that the RIPEDB WHOIS data is not consistent with the route announcements in RIS and lacks
the quality for reliable measurements. Observation and analysis in 5 shows that the historical data
in RIPEDB is quite accurate and that it’s very suitable for statistics. RIPE NCC is also continuously
improving the quality of RIPEDB with policies and scripts.

1.1 BGP SECURITY

The Internet consists out of worldwide interconnected autonomous systems (AS), mostly ISP using
BGPv4 RFC4271[20] as the core routing protocol. An AS is a collection of networks with common
routing policies and administration identified by a unique autonomous system number (ASN). BGP
is a path vector protocol, meaning that each BGP router has to maintain a huge list of IP networks
(prefixes) and peers in their routing information base (RIB).

BGP is a distance vector type protocol build
on paths of trust, without authentication verification by
default

Detector

Vector (AS_PATH)

<prefix, AS_origin> tuple

Tier X

BGP update

The term path vector is derived from the fact that BGP routing information carries a sequence of
AS that a network prefix (CIDR notation) has traversed. A BGP Session starts with the following
messages:

Detecting inconsistencies in INRDB data - Peter Ruissen 5 / 23

1.1 BGP SECURITY 1 INTRODUCTION

• Open message: sets session between peers after a TCP connection is established and confirmed
with a keepalive message. It contains the BGP version number, the AS number of sender (called
AS ORIGIN last AS in the path), hold down value (3x keepalive in sec.) and the BGP identifier
(IP of BGP speaker).

• Update messages are the most important messages in BGP. They provide reachability info about
(un)feasable routes to other BGP systems for a consistent view of the network topology. Each
update message also carries info about path attributes and NLRI except for messages with only
infeasible routes (prefixes). The path attributes define the best path to a destination. The EBGP
relevant ones are:

– The multi-exit discriminator (MED) or metric attribute is used as a suggestion to an exter-
nal AS regarding the preferred route into the AS that is advertising the metric

– Origin Attribute: indicates how BGP learned about a particular route. These are on order:
Local routes, OSPF, RIP and IBGP

– Shortest AS path: ordered list of AS that the route advertisement has traversed.
– Next Hop attribute: is the IP address of the connection between the peers (EBGP) from the

advertising BGP router

• Keepalive messages are sent to determine if peers are reachable and keeps the hold down time
from expiring. If the router declares the peering session dead; the routes are placed into a
dampening state and the session is reset.

• Notification headers are sent when there are errors. The peering session is then closed.

SECURITY MEASURES The current BGP protocol is vulnerable because it relies on a sufficient
level of trust between peering AS. The standard version of BGP also lacks means of verifying authen-
ticity and authorization of BGP traffic. Here are some measures to address these problems:

• Using route filtering such as Ingress Access lists to verify the origin AS. However, the downside
is that changes in the topology may block legitimate routes or pass fake routes.

• Setting the TTL value to a value to do ’one hop’ from the sender. This is known as the ’BGP TTL
Security Hack’ and works only for adjacent routers and not for multi-hop BGP sessions

• Protect BGP sessions with a MD5 signature hash. Applying MD5 is good for integrity but not
more than that.

There are also approaches to fix the security limitations in BGP with cryptographic means:

• Secure BGP (S-BGP) and employs three security schemes. The first mechanism is a x509 public
key infrastructure (PKI) to support authentication and authorization of Internet numbers and
routers. Second, an optional BGP path attribute is employed to carry digital signatures from
BGP updates. The receiver can then verify the signatures of BGP updates with the PKI cer-
tificates. The RIR is the centralized trusted party that issue these certificates while allocating
number resources. The last part is using IPsec to provide data integrity and authenticate BGP
routers before exchanging BGP traffic.

• Secure Origin BGP (soBGP) also uses a PKI but is a more lightweight alternative next to SBGP
proposed by Cisco. It differs from S-BGP in the way that it does not involve RIR to operate.
SoBGP uses a decentralized Web of Trust model relying on the existing relations between ISP.
SoBGP uses three certificate types. The Entity Certificate (EntityCert) ties an ASN to a key pair.
This certificate is signed by a trusted third party like Verisign. The authorization certificate
ties an AS to the prefixes it’s allowed to advertise. The Policy Certificate (PolicyCert) describes
policies related to prefix blocks and the connections between advertising AS and peers.

• Pretty Secure BGP (psBGP) uses a centralized single level PKI for AS number authentication
and decentralized trust model for prefix authentication and a rating based approach for path
integrity.

Detecting inconsistencies in INRDB data - Peter Ruissen 6 / 23

1.2 RIPE NCC DATA SOURCES 1 INTRODUCTION

• X509 Resource certification (RFC 3280) is a less ambitious project to verify and authenticate
usage of number resources (RFC 3779) without AS-path verification. This only requires a cen-
tralized PKI hierarchy of public certificates (which contains public key and contact information).
Resource certificates follow the same flow as IP resource distribution. The top layer certificates
are issued by IANA to the Internet registries and the registries issue them to LIR. The certificates
can be used with access lists to block any non-authenticated routes.

We can conclude that there are many cryptographic solutions for securing BGP. But we also know
that there aren’t many ISP in the real world which actually deploy these solutions. A major obstacle
of deploying S-BGP or certification is that it requires participation of all RIR, vendors and ISP to
work sufficiently. S-BGP is also expensive to deploy (complex PKI), needs more CPU/memory,
requires router upgrades and does not support route withdrawals. Resource certification offers a
more intermediate solution, but even that may not be enough. Before LIR even consider resource
certification there must be OpenSSL tools in place that are simple, well tested, beneficial and worth
the ’hassle’. In other worths, the world just needs one major proven BGP attack to convince large
organizations to use resource certification.

1.2 RIPE NCC DATA SOURCES

The Reseaux IP Europeens Coördination Center (RIPE NCC) is a collaborative non-profit organization
that consists of European Internet service providers. It aims to provide the necessary administration
and coordination to enable the operation of the European Internet[21]. To ensure fair and neutral
delegation of Internet Number Resources (ASN and IP addresses) a non-profit organization named
ICANN was created in 1998.

ICANN (Internet Coorporation for assigned names and numbers) operates IANA, the entity that
oversees global allocation of IP addresses, ASN and domain names. IANA delegates local registration
to five regional internet registries, which allocate addresses for a specific part of the world. RIPE is
one of the five Regional Internet Registries (RIR) that falls under the Internet Assigned Numbers
Authority (IANA). The other RIR are AfriNIC, APNIC, ARIN and LACNIC.

RIPE supports the infrastructure of the Internet and provides global resources (ASN and IPv4/6
addresses) and other services to members within its region. Members which received IP address
allocation and assign parts of these allocation to customers are generally referred as Local Internet
Registries (LIR). Most of these are Internet Service Providers (ISP) with provider aggregated (PA)
address space. Address space which is directly assigned to end users is called Provider Independent
(PI). Other responsibilities and activities include management of the K-root server, support for ENUM
delegations and providing neutral and public accessible statistics on the operation of the Internet.

RIPE Whois Database RIPE NCC provides development and maintenance of the RIPE (whois)
Database which contains registration details about IP addresses and AS numbers. The RIPE Routing
Registry is part of this database and contains routing policy information (AS objects) described by
the routing policy specification language (RPSL). Routing registries of different RIR are mirrored and
form the Internet Routing Registry (IRR). The IRR has long been used to look up peering agreements
or determine optimal policies and even to configure routers.

Although the IRR was originally build with the idea to provide reliable and consistent global routing
information, it is considered to be obsolete [12] to some point. This is because the IRR contains static
information that is primarily fed by administrators from different ISP on a voluntary basis. Parts of
the IRR are outdated, incorrect or simply missing. On the other hand, the IRR contains a lot of unique
scientific information that is valuable.

Detecting inconsistencies in INRDB data - Peter Ruissen 7 / 23

1.2 RIPE NCC DATA SOURCES 1 INTRODUCTION

RIS Routing Information Service The Routing Information Service (RIS) is a dynamic database
primary focused on storing routing data for troubleshooting and research. This includes solving
maintenance issues like outages or problems like route flapping. RIS started at October 1999 and
collects information by deployment of several Remote Route Collectors (RRC) at many Internet Ex-
changes 2. The RRC are passively monitoring many BGP peers and provide a unique view of the
Internet, similar to Oregon Route Views.

Currently RIPE NCC has 15 remote route collectors (RRC) that peer with 600 collector peers (CP)
which collect routing tables of their customers. Each RRC contains RIB information, BGP updates
and BGP status changes. The purpose of RIS within the project of the INRB to monitor actual usage
of ASN and IP addresses within a timeframe.

Detecting inconsistencies in INRDB data - Peter Ruissen 8 / 23

2 INRDB PROTOTYPE

2 INRDB PROTOTYPE

The experimental Internet Number Resource database (INRDB) holds raw data about address space
allocation, routing registry information and other related objects. The purpose of the INRDB is to
provide as much information as possible about number resources from a single point, by combining
data from the RIPE DB, RIS and various other sources.

CorrelateOrigin.pl
Perl modules

IO::Socket
Switch
Data::Dumper (debugger)
Time::Format:ISO8601
Net::Patricia

SGE Cluster
Query daemons
Written in C

Dispatcher Daemon(s) (DD)
Written in C
Schedules queries to query
daemons

TCPTCP

UDPUDP

interface interface

INDRB PROTOTYPEApplications

Figure 1: The INRDB can be queried using user applications. Queries are redirected by the dispatcher
daemon (DD) to a query daemon (QD) in the cluster.

Other goals of the INRDB are:

• provide information about data sources in a minimum time
• establishing relations between data sources, measuring quality and resolve inconsistencies
• scalability, allow parallel processing of querying different data sources and open-end design
• improving the quality from underlying data sources like RIPE DB and RIS

Some of the challenges are:

• a lot of overlapping information and different kinds of data
• enormous amount of data as input for INRDB, especially RIS data: in the amounts of terabytes

2.1 DATA MODEL AND SYSTEM ARCHITECTURE

The current INRDB design 2 has three different levels of data storage and retrieval.

Component 1 Number resource index; retrieve IP prefix (specific subtree) information
Component 2 Time index, stores time related information (like validity time) in SQL.
Component 3 Blob store(s), stores blob data of one particular data class (like RIPE DB objects)

The RIS data for resource collectors contain billions of records and the amount of data that is used as
input for the INRDB is enormous. That amount of data could not be processed in a acceptable time
by only using SQL. Therefore, the RIPE NCC Science came up with a new solution by partly storing
number resource information in memory. This involves the following phases:

• the update process retrieves information from various data sources (RIS, RIPE DB, RIR STATS)
and stores them into more condensed structures. This involves three phases. The preprocessing
phase is a manual task of rsyncing all data from various data sources for processing. The pro-
cessing phase is the most time and memory consuming and is aggregated in parallel in a cluster.

Detecting inconsistencies in INRDB data - Peter Ruissen 9 / 23

2.1 DATA MODEL AND SYSTEM ARCHITECTURE 2 INRDB PROTOTYPE

The processing phase stores blobs, time intervals, IP and ASN information in SQL structures.
The postprocessing phase converts the SQL data to highly optimized memory structures which
are a lot faster to query. The idea is that blob indexes and mappings, IP trees and time intervals
are stored in memory, while the actual data is stored on disk.

• the query process answers queries from users (figure 2) and presents answers based on previ-
ously processed information by connecting to a dispatcher daemon (DD). The requests itself are
dispatched from the dispatcher daemon using a back-end channel to all query daemons (QD) it
knows about.

Detecting inconsistencies in INRDB data - Peter Ruissen 10 / 23

2.1 DATA MODEL AND SYSTEM ARCHITECTURE 2 INRDB PROTOTYPE

DATA REPRESENTATION The basic unit of information is a blob (binary large object) which falls
in a certain object data class. Each dataclass may have multiple data sources (RIS peer, ARIN, RIPE
NCC etc.). Blobs are grouped in blob collections that are saved in compressed raw ASCII files. In this
document we only describe the high level classes RIS RIB, RIR STATS and RIPE DB. Data classes can
be divided into individual types of data, like inetnum objects or route objects.

RIPEDB Data Objects

as-block blocks of AS numbers held by RIRs; basically IANA allocations but also (ERX) blocks.

aut-num AS numbers added by RIPE NCC or users from other regions who use RIPE routing registry

inetnum IP address blocks allocated/assigned by the RIPE NCC

route specified by interAS routes contains prefix route and origin AS

domains Reverse address lookup (x.y.z.in-addr.arpa)

Route object
BLOB (RIPE_DB): route: 193.0.0.0/xx
descr: RIPE-NCC
origin: AS3333
mnt-by: RIPE-NCC-MNT
changed: xxxxxxxxxxxxx 19960812
changed: xxxxxxxxxxxxx 20000908
source: RIPE
2001-09-22T09:33:24Z-2007-10-15T00:00:00Z

Inetnum object
inetnum: 193.0.0.0 - 193.0.1.255
netname: RIPE-NCC
descr: RIPE Network Coordination Centre
descr: Amsterdam, Netherlands
country: NL
admin-c: DDL122-RIPE
tech-c: OPS4-RIPE
status: ASSIGNED PI
remarks: until 19990305
mnt-by: RIPE-NCC-MNT
mnt-lower: RIPE-NCC-MNT
changed: xxxxxxxxxxxxxxxxxxx 19960815
changed: xxxxxxxxxxxxxxxxxxx 20020410
source: RIPE
2002-04-10T12:47:09Z-2003-03-17T11:57:06Z

RIS Data
BLOB (RIS_RIB, 202.249.2.xx@rrc06):
TABLE_DUMP2||B|202.249.2.xx|4777|
193.0.12.0/xx|4777 2497 3549 1103 3333|
2007-09-18T00:00:00Z - 2007-09-18T00:00:00Z

aut-num object
BLOB (RIPE_DB): aut-num: AS3333
as-name: RIPE-NCC-AS
descr: RIPE Network Coordination Centre
import: from ASxxxxx

195.69.144.2xx at 195.69.144.xx
action pref=100;
accept ANY

export: to ASxxxxx
195.69.144.2xx at 195.69.144.xx
announce AS3333

mnt-by: RIPE-NCC-MNT
changed: xxxxxxxxxxxxxxxxxx 20041214
source: RIPE
2004-12-14T15:52:58Z-2004-12-28T17:19:31Z

RIS RRC Raw data captured with Quagga
TIME: 10/01/07 07:59:55
TYPE: TABLE_DUMP_V2/IPV4_UNICAST
PREFIX: 12.178.27.0/xx
SEQUENCE: 2092
FROM: 202.12.28.190 ASxxxxx
ORIGINATED: 09/25/07 10:46:22
ORIGIN: IGP
ASPATH: 2497 3356 14745 20141 20141 11065
NEXT_HOP: 202.12.28.xxx

RIR Statistics Exchange Format
registry|cc|type|address|length|date|status
BLOB (RIR_STATS):
ripe|EU|ipv4|193.0.0.x|256|19930901|assigned
2003-11-26T00:00:00Z-2007-08-24T00:00:00Z

BLOB (RIR_STATS):
ripe|EU|asn|33xx|1|19940519|allocated
2006-03-30T00:00:00Z-2007-08-24T00:00:00Z
2007-09-02T00:00:00Z-2007-09-05T00:00:00Z

Figure 2: Relevant RIPEDB, RIS, RIR STATS objects, classes and properties

RIPE DB The RIPE DB has 21 different types of data, but the INRDB contain only the ones rele-
vant to number resources [2]. Each object type holds information about organizations that hold the
resources, where the allocations were made and contact details.

Routing Information Base updates are collected and presented using the TABLE DUMP V2 Type
from the MRT routing information export format [15]. For example: RIS Data in [2] gives us the

Detecting inconsistencies in INRDB data - Peter Ruissen 11 / 23

2.2 INCONSISTENCIES 2 INRDB PROTOTYPE

collector peer (CP) IP: 202.249.2.xx and it’s ASN 4777. The traversed AS PATH is 4777 2497 3549 1103
3333 and AS ORIGIN 3333 which announced the route. The relation between peers is described as
AS LINKS.

RIR Statistics are collected and presented using the RIR Statistics Exchange Format. RIR statistics [2]
give more reliable information about assigned prefixes or allocated ASN. The format describes a data
source (IANA, APNIC, RIPENCC . . .), two character country code, number resource, address, prefix
length/number ASN in range and status.

2.2 INCONSISTENCIES

The definition of an inconsistency in this report refers to data that is semantically incorrect, inaccurate
or different than the data found in other data sources. For the static RIPEDB, most intra-DB inconsis-
tencies are caused by abandoned data, user errors and change of policy rules. Inconsistencies can be
overlapping inetnum objects, unreferenced contact info or wrong notation of number resources.

Dynamic intra RIS inconsistencies are caused by other means because they reflect the routing topol-
ogy of the real world. Intra RIS inconsistencies can be caused by millions of small timeframes that
may overlap, regional topology changes and time delays. Other inconsistencies are different AS
announcing the same prefix. It could also be an AS that announces a prefix that overlaps address
space of other prefixes.

Until this point, we only discussed intra datasource inconsistencies. Comparing data sources brings
in a whole new range of inconsistencies. For example, a prefix-AS tuple that is just registered will
not be immediately be routed and listed in the RIPEDB, which takes time. Timeframes between data
sources can also overlap, introduce holes or expire.

The author of this report has chosen to only look at specific cases: the number of MOAS in RIS, con-
flicting AS Origins and unregistered prefix usage. Complexity of timeframes is reduced by measuring
in hourly sample times.

Detecting inconsistencies in INRDB data - Peter Ruissen 12 / 23

3 VARIATIONS AND PROPERTIES OF PREFIX HIJACKING

3 VARIATIONS AND PROPERTIES OF PREFIX HIJACKING

Article(s)[5][6][7] already point out the various combinations of possible hijacking scenarios. These
can be summarized in hijacking only a prefix, hijacking the prefix and AS, hijacking the subnet of a
particular prefix (and AS) or hijack a supernet of a particular prefix (with or without ASN). Captured
ASN are considered undetectable on the control plane without any additional means like resource
certificates. AS ORIGINS (endnodes) which announce unauthorized prefixes will result in conflicting
MOAS which can be detected. Unfortunately, there are also legitimate cases of MOAS[5].

For example, a customer with private ASN or static links, or single/multihomed aggregated prefixes.
Note that this does not mean that multihoming always causes MOAS conflicts, this entirely depends
of the configuration of the customer. Other legitimate MOAS cases can be caused by anycasting [8]
which has gained increased popularity among DNS root servers. False positives due to anycasting
can be easily avoided by filtering ’anycast addresses’. To narrow down our search we further define
properties of hijacked prefixes:

• Hijacked prefixes are mostly dynamic and stealthy and do not correlate with history, while
legitimate routes in the control plane are more stable for a long period. Hijacked prefixes have
a short uptime.

• Hijacked prefixes are mostly small /24 from organizations that are not aware that the address
space is used by someone else.

• Any detector that receives a prefix knows it’s BGP neighbors so can detect false last hops.
(dataplane)

• Many hijacked prefixes involve sub/supernet address space. Overlap detection can be done
with radix trees. 2

• RIS prefixes that are routed/used but unregistered and MOAS cases with multiple overlapping
timeframes with origins not listed in RIPEDB are suspicious.

2Patricia Trie data structure to quickly perform IP address prefix matching for applications such as IP subnet, network or
routing table lookups

Detecting inconsistencies in INRDB data - Peter Ruissen 13 / 23

4 METHODOLOGY

4 METHODOLOGY

The following algorithm describes a way to retrieve the amount of unique RIS prefixes, unique RIS
prefixes with unlisted RIPEDB origins and unique RIS prefixes that are used while not registered.3.
The whole trick to use datastructures of hash key sequences to construct a hierarchical tree and is the
central part of the algorithm to filter millions of RIS entries that may have identical or unique prefixes,
single or multiple AS (MOAS) or multiple (non unique) timeframes. Note that this algorithm does
not support overlapping subnet/supernet detection and does not compare time intervals. Results are
plotted with the GD::Graph Perl module.

Mark
- (not) allocated/registered
- RIS Origin_AS not in RIPEDB
- Multiple Origin AS

RIS Prefixes

Unique
Prefix

Unique
Origin_AS

Unique
Timeintervals

Figure 3: The algorithm generates sequences of hashes using only hash keys to store information.
The key values are used as keys. The unique hashes create new leaves and identical ones are
overwritten.

Algorithm 1: Retrieves percentage of unregistered prefix usage, prefixes with OriginAS not
listed in RIPEDB and unique MOAS. Source code is listed in 5.1

Input: prefix list P , sampletime list T
Output: percentage of unregistered prefix usage, prefixes with OriginAS not listed in RIPEDB

and unique MOAS
Query RIS subtree P on more specifics for sampletime T and store results in hash tree;
foreach unique RIS prefix Px in RIS subtree P do

Query RIR STATS for exact match or less specifics on T ;
Query the RIPEDB for exact match or less specifics on T ;
if Px is registered/allocated then

foreach Origin AS in unique RIS prefix Px do
if RIS ORIGIN AS matches RIPEDB ORIGIN AS then

Mark the RIS ORIGIN AS as listed in RIPEDB
end

end
end
else

prefix is not registered/allocated, add to suspect list
end

end
Search the constructed hash tree for MOAS within T and add those to the suspect list.;

3Hardware: Pentium Dual Core 1.8GHZ/2GB laptop; Running Ubuntu Feisty with kernel 2.6.22-14

Detecting inconsistencies in INRDB data - Peter Ruissen 14 / 23

5 RESULTS AND CONCLUSIONS

5 RESULTS AND CONCLUSIONS

The plots [5] show a four year overview of historical RIS data of 62/8 and one hour samples of
all /8 allocated to RIPE NCC. 62/8 was chosen because it was allocated to RIPE NCC in April 97.
Early allocated address space have a higher probability rate to actually find results. There were
also anomalies found like queries on route objects that returned 839 route blobs in the RIPEDB.
Other problems were stability problems in INRDB itself and some gaps for RIS information. Some
high ratings for unregistered prefix usage are not entirely accurate because some prefixes are listed
in RIR STATS on such a way that it’s not detectable by the algorithm (for example lacking CIDR
notation).

Figure 4: Overview 62/8 2004-2005, shows a history of two years of samples with the number of
unique prefixes in the subtree, the percentage that was used and not registered, the percentage of
unique MOAS cases and the percentage of unique prefixes with no matching Origin in RIPEDB.
The results are largely the same, except for one case that has 12% MOAS. Similar MOAS cases
were found during the Google 2005 Outage [8]

Detecting inconsistencies in INRDB data - Peter Ruissen 15 / 23

5 RESULTS AND CONCLUSIONS

The plots show the RIS RIB table growth 62/8 from 1495 unique prefixes in 2004 to 2166 unique
prefixes in 2007. The quality of the RIPEDB also seems better than expected. The average of 88% RIS
entries that match AS ORIGINS in RIPEDB is a positive result. Especially if you consider the amount
of RIS bogus announcements.

Although measuring sample information provides us with lot new and unique information, there is
also lot of information ignored. The author believes that measuring in timeframes, detecting overlaps
and filtering sub/supernet overlapping gives a much more detailed and efficient results.

Figure 5: Comparison between multiple /8 on 01-10-2006 with the number of unique prefixes in the
subtree, the percentage that was used and not registered, the percentage of unique MOAS cases
and the percentage of unique prefixes with no matching Origin in RIPEDB.

Also, without resource certificate validation and analyzing repeating patterns, there can never be full
reliable estimate of prefix hijacking. With other words, resource certification is a elementary point
for proving illegitimate resource usage. Thus, we conclude and answer our research question[1] that
there is currently not enough information to actually determine whether there is a rising trend in
malicious activity.

Figure 6: Overview 62/8 2006-2007

The MOAS results of the implementation of the algorithm (which are not listed here for ethical
reasons) showed that almost 80% percent of all MOAS keeps coming back every month. However,
correlating these MOAS cases with listings in RIPEDB and registration data is not enough to de-
termine if they are hijacked or not. For this we need overlap detection, timeframe processing and
resource certification validation.

Detecting inconsistencies in INRDB data - Peter Ruissen 16 / 23

5.1 FUTURE WORK 5 RESULTS AND CONCLUSIONS

5.1 FUTURE WORK

Future work is overlap detection, timeframe processing and resource certification validation. Part of
future work that requires less time could be examining if the resulting 20% repeats MOAS behavior
(repeatedly hijacking more prefixes) or to filter MOAS on bogons. The author of this document hopes
that this short project is a small step in wide array of new research concerning the INRDB and that
we can one day solve the problem of prefix hijacking if all organizations work together by deploying
resource certification.

Detecting inconsistencies in INRDB data - Peter Ruissen 17 / 23

REFERENCES REFERENCES

References

[1] An Analysis of BGP Multiple Origin AS (MOAS) Conflicts
Xiaoliang Zhao, Dan Pei, Lan Wang, Dan Massey, Allison Mankin, S. Felix Wu, Lixia Zhang, 2001
http://www.imconf.net/imw-2001/imw2001-papers/88.pdf

[2] Analyzing BGP Policies: Methodology and Tool
Proceedings of IEEE INFOCOM, Hong Kong, China, March 2004.
http://www.cs.ucr.edu/˜siganos/papers/Nemecis.pdf

[3] A Blueprint for Improving the Robustness of Internet Routing
Georgos Siganos, Michalis Faloutsos , 2005
http://www.cs.ucr.edu/˜siganos/papers/security06.pdf

[4] A Distributed Reputation Approach to Cooperative Internet Routing Protection
Harlan Yu Jennifer Rexford Edward W. Felten, Princeton University , 2005
http://www.cs.princeton.edu/˜jrex/papers/npsec05.pdf

[5] Accurate real-time identification of IP prefix hijacking
Xin Hu, Z. Morley Mao, University of Michigan
http://www.eecs.umich.edu/techreports/cse/2006/CSE-TR-516-06.pdf

[6] A study of prefix hijacking an Interception in the Internet
Hitesh Ballani, Paul Francis, Xinyang Zhang, Cornell University, 2007
http://www.cs.cornell.edu/People/francis/sigcomm07-interception.pdf

[7] A lightweight distributed scheme for detecting IP prefix hijacking in real-time
Changxi Zhen, Lusheng Ji, Dan Pei, Jia Wang, Paul Francis, 2007
http://www.sigcomm.org/ccr/drupal/files/fp324-zheng.pdf

[8] Analysis of BGP Prefix Origins During Googles May 2005 Outage
Tao Wan Paul, C. van Oorschot, Carleton University, 2005
http://www.scs.carleton.ca/˜paulv/papers/ssn06-fine.pdf

[9] Beware of BGP Attacks)
Ola Nordstrom, Constantinos Dovrolis, College of Computing
http://www.cc.gatech.edu/˜dovrolis/Papers/ccr-bgp.pdf

[10] Detecting Bogus BGP Route Information: Going Beyond Prefix Hijacking
Jian Qiu, Lixin Gao et al, Department of ECE, Univ. of Massachusetts, 2007
http://www.ece.rice.edu/˜sranjan/publications/securecomm07-hijacking.pdf

[11] How prevalent is prefix hijacking on the internet?
Peter Boothe, James Hiebert, Randy Bush
http://rip.psg.com/˜randy/030603.nanog-sxbgp.pdf

[12] How to extract BGP peering information from the internet routing registry
Giuseppe Di Battista, Tiziana Refice and Massimo Rimondini, University of Roma Tre
http://portal.acm.org/ft_gateway.cfm?id=1162685&type=pdf&coll=portal&dl=ACM&CFID=
15151515&CFTOKEN=6184618

[13] Internet Routing Security Issues and Requirements Definition
Feki, Achemlal France telecom Research, 2006
http://www.temu.gr/2006/sessions%5C2%5C2%20ID%201502.pdf

[14] Learning Perl, 4th Edition
O’Reilly, July 2005
http://www.unix.org.ua/orelly/perl/learn/index.htm

[15] MRT routing information export format
IETF Network group
http://tools.ietf.org/id/draft-ietf-grow-mrt-04.txt

[16] PHAS: A Prefix Hijack Alert System
M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang, in Proceedings of 15th USENIX Security Symposium, 2006
http://irl.cs.ucla.edu/papers/originChange.pdf

[17] Pretty Secure BGP (psBGP)
Tao Wan Evangelos Kranakis, P.C. van Oorschot, Carleton University, Ottawa 2004
http://www.isoc.org/isoc/conferences/ndss/05/proceedings/papers/tao-psBGP.pdf

[18] Pretty Good BGP: Improving BGP by Cautiously Adopting Routes
Josh Karlin, Stephanie Forrest et all, University of New Mexico,Princeton, 2006
http://www.cs.princeton.edu/˜jrex/papers/pgbgp.pdf

Detecting inconsistencies in INRDB data - Peter Ruissen 18 / 23

http://www.imconf.net/imw-2001/imw2001-papers/88.pdf
http://www.cs.ucr.edu/~siganos/papers/Nemecis.pdf
http://www.cs.ucr.edu/~siganos/papers/security06.pdf
http://www.cs.princeton.edu/~jrex/papers/npsec05.pdf
http://www.eecs.umich.edu/techreports/cse/2006/CSE-TR-516-06.pdf
http://www.cs.cornell.edu/People/francis/sigcomm07-interception.pdf
http://www.sigcomm.org/ccr/drupal/files/fp324-zheng.pdf
http://www.scs.carleton.ca/~paulv/papers/ssn06-fine.pdf
http://www.cc.gatech.edu/~dovrolis/Papers/ccr-bgp.pdf
http://www.ece.rice.edu/~sranjan/publications/securecomm07-hijacking.pdf
http://rip.psg.com/~randy/030603.nanog-sxbgp.pdf
http://portal.acm.org/ft_gateway.cfm?id=1162685&type=pdf&coll=portal&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/ft_gateway.cfm?id=1162685&type=pdf&coll=portal&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://www.temu.gr/2006/sessions%5C2%5C2%20ID%201502.pdf
http://www.unix.org.ua/orelly/perl/learn/index.htm
http://tools.ietf.org/id/draft-ietf-grow-mrt-04.txt
http://irl.cs.ucla.edu/papers/originChange.pdf
http://www.isoc.org/isoc/conferences/ndss/05/proceedings/papers/tao-psBGP.pdf
http://www.cs.princeton.edu/~jrex/papers/pgbgp.pdf

REFERENCES REFERENCES

[19] Routing Policy Specification Language (RPSL)
RFC 2622, Network Working Group
ftp://ftp.ripe.net/rfc/rfc2622.txt

[20] RFC 4271 BGP4
The Network Working Group, Januari 2006
http://www.rfc-editor.org/rfc/rfc4271.txt

[21] RIPE NCC Science Group
http://www.ripe.net/info/ncc/staff/science_grp.html

[22] Teach Yourself Perl 5 in 21 days
David Till, 2005
http://docs.rinet.ru/P7/

[23] Using Resource Certificates
Progress Report, Geoff Huston APNIC, October 2006
http://www.ripe.net/info/ncc/staff/science_grp.html

[24] Securing BGP through Secure Origin BGP (soBGP)
Cisco Internet Protocol Journal, September. 2003
ftp://ftp-eng.cisco.com/sobgp/presentations/BCR-soBGP.pdf

[25] SBGP / SoBGP: What do we Really Need and how do we Architect a Compromise to get it
Randy Bush, David Meyer et all, Nanog Salt Lake City, 2003

[26] Understanding Resiliency of Internet Topology Against Prefix Hijack Attacks
Mohit Lad y Ricardo Oliveira, Beichuan Zhang z Lixia Zhang, UCLA, 2006
http://irl.cs.ucla.edu/papers/hijack-dsn.pdf

Detecting inconsistencies in INRDB data - Peter Ruissen 19 / 23

ftp://ftp.ripe.net/rfc/rfc2622.txt
http://www.rfc-editor.org/rfc/rfc4271.txt
http://www.ripe.net/info/ncc/staff/science_grp.html
http://docs.rinet.ru/P7/
http://www.ripe.net/info/ncc/staff/science_grp.html
ftp://ftp-eng.cisco.com/sobgp/presentations/BCR-soBGP.pdf
http://irl.cs.ucla.edu/papers/hijack-dsn.pdf

REFERENCES REFERENCES

1 # !/ usr/bin/p e r l −w−I /home/peter/workspace/prefixCheck
2 # r i r s t a t s may give no feedback : see 192/20
3 # P a t r i c i a t r e e for overlapping
4 # p a r a l l e l process ing > /8
5 # uniform format ?
6 # only r i p e DB / 8 ! ! ! not IANA, check IANA
7 # time : ISO8601 format YYYY−MM−DDTHH:mm: ssZ
8
9 package INRDB : : App : : PrefixCheck ;

10 use warnings ;
11 use d i a g n o s t i c s ;
12 use s t r i c t ;
13 use IO : : Socket ;
14 use base qw(Exporter) ;
15 use Switch ;
16 use Data : : Dumper ; # debug c l a s s
17 use DateTime : : Format : : ISO8601 ;
18 use GD: : Graph : : bars ;
19 use GD: : Graph : : hbars ;
20 use GD: : Graph : : Data ;
21 use Data : : Types qw (: a l l) ;
22
23 my $dispatcherHost = ’localhost’ ;
24 my $dispatcherPor t = ’5556’ ;
25 p r i n t "Executing $0 Please wait..\n" ;
26
27 my @xdata ;
28 my (@y1data , @y2data , @y3data , @y4data) ;
29
30 # IANA A l l o c a t i o n
31 # 62/8 Apr 97 RIPE NCC
32 my @pref ixes = (’193/8’) ;
33
34 my $sock ;
35 my %uniMOAS ;
36
37 # Sample times
38 my @sampletimes = ("2007-05-01") ;
39
40 foreach my $ p r e f i x (@pref ixes) {
41 our $ p r e f i x = $ p r e f i x ;
42 foreach my $sampledate (@sampletimes) {
43 fetchINRDBdata ($sampledate , $ p r e f i x) ;
44 }
45 }
46
47 sub fetchINRDBdata {
48
49 # Open new connect ion
50 $sock = query ($dispatcherHost , $dispatcherPort , ’-k’) ;
51 my $ s t a r t = time ;
52 my %p r e f i x e s ;
53 my $ r i s B l o b s = 0 ;
54 my $ r i s P r e f i x e s = 0 ;
55 my $r isPref ixesToCheck = 0 ;
56
57 my @ r i s P r e f i x e s R e g i s t e r e d A l l o c a t e d ;
58 my @risPref ixesMatchOrigin ;
59 my @risPref ixesListedRIPEDB ;
60 my @risPrefixesMOAS ;
61
62 my ($date , $ i n p u t P r e f i x) = @ ;
63 DateTime : : Format : : ISO8601−>parse date t ime ($date) ;
64 my $outputOptions = "+M +oc" ;
65 my $timeOptions = "+xT $date" ;
66 my @ r i s b l o b s = query2 ($ inputPref ix , ’RIS_RIB’ , $outputOptions , $timeOptions , ’-M’) ;
67
68 foreach my $ f i e l d (@ r i s b l o b s) {
69 i f ($ f i e l d =˜ /BLOB:/) {
70 my ($values , @t imeinterva ls) = s p l i t (’VALID: ’ , $ f i e l d) ;
71 my ($n1 , $n2 , $n3 , $n4 , $n5 , $ p r e f i x r i s , $ a s p a t h r i s) = s p l i t (’\|’ , $values) ;
72 my @tmp = s p l i t (’ ’ , $ a s p a t h r i s) ;
73 my $ a s o r i g i n r i s = pop (@tmp) ;
74 $ p r e f i x e s{$ p r e f i x r i s}{$ a s o r i g i n r i s} = () ;
75 }
76 }
77
78 $ r i s B l o b s = @ r i s b l o b s ;
79 $ r i s P r e f i x e s = keys %p r e f i x e s ;
80
81 # Generate f a l s e MOAS to t e s t
82 # $ p r e f i x e s{’193.0.232.0/23’}{’6666666666666666’} = () ;
83
84 foreach my $ p r e f i x (keys %p r e f i x e s) {
85 foreach my $ o r i g i n s (keys %{ $ p r e f i x e s{$ p r e f i x} }) {
86 i f (s c a l a r (keys %{ $ p r e f i x e s{$ p r e f i x} }) > 1) {
87
88 # p r i n t "prefix:" , $pre f ix , ". \n" ;
89 # p r i n t "MOAS: " , s c a l a r (keys %{ $ p r e f i x e s{$ p r e f i x} }) , "\n" ;
90 my %seen ; # lookup t a b l e
91 @seen{@risPrefixesMOAS} = () ;
92 foreach my $item (@risPrefixesMOAS) {
93 $seen{$item} = 1 ;
94 }
95 i f (! e x i s t s $seen{$ p r e f i x}) {
96 push (@risPrefixesMOAS , $ p r e f i x) ;
97 $uniMOAS{$ p r e f i x} = $date ;
98 }
99 }

100 $r isPref ixesToCheck ++;
101 }
102 }

Detecting inconsistencies in INRDB data - Peter Ruissen 20 / 23

REFERENCES REFERENCES

103
104 p r i n t "Hold your breath there are: " , $ r i sPref ixesToCheck . " to check..\n" ;
105 foreach my $ p r e f i x r i s (keys %p r e f i x e s) {
106 foreach my $ a s o r i g i n r i s (keys %{ $ p r e f i x e s{$ p r e f i x r i s} }) {
107 my @ r i r b l o b s = query2 ($ p r e f i x r i s , ’RIR_STATS’ , ’’ , $outputOptions , $timeOptions , ’’) ;
108 my @timeIntervals ;
109 my $counter = −1;
110 foreach my $ f i e l d (@ r i r b l o b s) {
111 i f ($ f i e l d =˜ /BLOB:/) {
112 $counter ++;
113 my ($none , $none1 , $none2 , $address , $none3 , $none4 , $ s t a t u s) = s p l i t (’\|’ , $ f i e l d) ;
114 p r i n t "ass/all: " , $ s ta tus , "\n" ;
115 i f ($ s t a t u s =˜ ’assigned’ || $ s t a t u s =˜ ’allocated’) {
116 p r i n t "address registration: " , $address , " " , $ s ta tus , "\n" ;
117 $ p r e f i x e s{$ p r e f i x r i s}{’registered’}{$address} = () ;
118 }
119 }
120 }
121 p r i n t "Matched " , s c a l a r (@ r i r b l o b s) , " RIR blobs\n" ;
122
123 # Query for exac t match and automat i ca l ly for 1−l a y e r l e s s s p e c i f i c
124 my @ripedb blobs = query2 ($ p r e f i x r i s , ’RIPE_DB +ds route’ , $outputOptions , $timeOptions , ’’) ;
125 i f (! defined ($r ipedb blobs [0])) {
126 p r i n t "Not listed in RIPEDB\n:" ;
127 }
128 e lse {
129 push (@risPrefixesListedRIPEDB , $ i n p u t P r e f i x) ;
130 $counter = 0 ;
131 foreach my $ f i e l d (@ripedb blobs) {
132
133 # p r i n t "FIELD: " , $ f i e l d ,"\n" ;
134 i f ($ f i e l d =˜ /BLOB:/) {
135 i f ($ f i e l d =˜ /route :.∗\n/) {
136 my $route = (s p l i t (’:\s’ , $&)) [1] ;
137 $route =˜ s/\s+ / / ;
138 $route =˜ s/\| / / ;
139 $route =˜ s/\n / / ;
140 p r i n t $route , "\n" ;
141 }
142 }
143 i f ($ f i e l d =˜ / o r i g i n :.∗\n/) {
144 my $ o r i g i n = (s p l i t (’:\s’ , $&)) [1] ;
145 $ o r i g i n =˜ s/\s+ / / ;
146 $ o r i g i n =˜ s/\| / / ;
147 $ o r i g i n =˜ s/AS / / ;
148 $ o r i g i n =˜ s/\n / / ;
149 $ a s o r i g i n r i s =˜ s/\{ / / ;
150 $ a s o r i g i n r i s =˜ s/\} / / ;
151 i f ($ o r i g i n =˜ $ a s o r i g i n r i s) {
152 $ p r e f i x e s{$ p r e f i x r i s}{$ a s o r i g i n r i s}{’origin_match’} = $ o r i g i n ;
153 }
154
155 }
156 i f ($ f i e l d =˜ /VALID:.∗\n/) {
157 my $tmp = (s p l i t (’:\s’ , $&)) [1] ;
158 $tmp =˜ s/\| / / ;
159 $tmp =˜ s/\n / / ;
160
161 # $r ipedb blobs [$counter]{val id} = $tmp ;
162 $counter ++;
163 }
164 }
165 p r i n t "Matching " , s c a l a r (@ripedb blobs) , " RIPEDB route blobs\n" ;
166 }
167 $r isPref ixesToCheck−−;
168 p r i n t "Prefixes to query.." , $r isPref ixesToCheck , "\n\n\n\n" ;
169 }
170 }
171 foreach my $ p r e f i x (keys %p r e f i x e s) {
172 foreach my $ o r i g i n s (keys %{ $ p r e f i x e s{$ p r e f i x} }) {
173 i f ($ o r i g i n s =˜ ’registered’) {
174 push (@ r i s P r e f i x e s R e g i s t e r e d A l l o c a t e d , $ p r e f i x) ;
175 }
176 foreach my $ s t a t u s (keys %{ $ p r e f i x e s{$ p r e f i x}{$ o r i g i n s} }) {
177 i f ($ s t a t u s =˜ ’origin_match’) {
178 push (@risPref ixesMatchOrigin , $ p r e f i x) ;
179 # Store the number of p r e f i x e s t h a t matches RIPEDB o r i g i n
180 }
181 }
182 }
183 }
184
185 i f (s c a l a r (@ r i s P r e f i x e s R e g i s t e r e d A l l o c a t e d) != 0) {
186 my $ p e r c e n t a l l = 100 − ((s c a l a r (@ r i s P r e f i x e s R e g i s t e r e d A l l o c a t e d) / $ r i s P r e f i x e s) ∗ 100) ;
187 push (@y1data , t o f l o a t ($ p e r c e n t a l l , 2)) ;
188 p r i n t "allocated or registered: " , s c a l a r (@ r i s P r e f i x e s R e g i s t e r e d A l l o c a t e d) , "
189 prefixes: " , $ r i s P r e f i x e s , "\n" ;
190 }
191 e lse {
192 push (@y1data , t o f l o a t (0 , 2)) ;
193 }
194 i f (s c a l a r (@risPref ixesMatchOrigin) != 0) {
195 my $percentNoOr = 100 − ((s c a l a r (@risPref ixesMatchOrigin) / $ r i s P r e f i x e s) ∗ 100) ;
196 push (@y2data , t o f l o a t ($percentNoOr , 2)) ;
197 p r i n t "match org: " , s c a l a r (@risPref ixesMatchOrigin) , " prefixes: " , $ r i s P r e f i x e s , "\n" ;
198 }
199 e lse {
200 push (@y2data , t o f l o a t (0 , 2)) ;
201 }
202 i f (s c a l a r (@risPrefixesMOAS) != 0) {
203 my $percentMOAS = ((s c a l a r (@risPrefixesMOAS) / $ r i s P r e f i x e s) ∗ 100) ;
204 push (@y3data , t o f l o a t ($percentMOAS , 2)) ;
205 p r i n t "moas " , s c a l a r (@risPrefixesMOAS) , " prefixes: " , $ r i s P r e f i x e s , "\n" ;

Detecting inconsistencies in INRDB data - Peter Ruissen 21 / 23

REFERENCES REFERENCES

206 }
207 e lse {
208 push (@y3data , t o f l o a t (0 , 2)) ;
209 }
210
211 # p r i n t Dumper(\%p r e f i x e s) ;
212 my $elapsed = t o f l o a t ((time − $ s t a r t) / 60 , 2) ;
213 push (@xdata , "$date \n $risBlobs blobs. $risPrefixes prefixes. \n in $elapsed minutes." ,) ;
214 c l o s e ($sock) ;
215
216 graph2 ([@xdata] , [@y1data] , [@y2data] , [@y3data] , "" , "Not registered (in %)" ,
217 "NO AS in RIPEDB (in %)" , , "MOAS pairs (in %)" , "$inputPrefix" , ’legenda’) ;
218 }
219
220 sub query2 {
221 my ($pref ix , $dataClass , $outputOptions , $timeOptions , $resourceOptions) = @ ;
222 my @blobs ;
223 my $query = "+dc $dataClass $outputOptions $timeOptions $resourceOptions $prefix" ;
224 p r i n t $query , "\n" ;
225 p r i n t $sock $query , "\n" ;
226 while (<$sock>) {
227 s/\007/|\n/g ;
228 i f ($ =˜ /SUM/) {
229 l a s t ;
230 }
231 i f ($ =˜ /BACKEND ! (OK|NQ)/) {
232 p r i n t "error\n for $prefix" ;
233 e x i t ;
234 }
235 push (@blobs , $) ;
236 }
237 i f (defined ($blobs [0])) {
238 return @blobs ;
239 }
240 e lse {
241 return 0 ;
242 }
243 }
244
245 sub query {
246 my ($ddhost , $ddport , $cmd) = @ ;
247 my $sock = new IO : : Socket : : INET (
248 PeerAddr => $ddhost ,
249 PeerPort => $ddport ,
250 Proto => ’tcp’ ,
251)
252 or die "Cannot connect to DD" ;
253 p r i n t $sock $cmd , "\n" ;
254 return $sock ;
255 }
256
257 sub graph2 {
258 my ($xdata , $y1data , $y2data , $y3data , $x labe l , $y1label , $y2label , $y3label , $ t i t l e , $legenda) = @ ;
259 my $data = GD: : Graph : : Data−>new([[@{$xdata}] , [@{$y1data}] , [@{$y2data}] , [@{$y3data}]])
260 or die GD: : Graph : : Data−>e r r o r ;
261 my $values = $data−>copy () ;
262 my $my graph = GD: : Graph : : bars−>new(800 , 400) ;
263 my $name = "193slash8 20070501" ;
264 $name =˜ s/\./−/g ;
265 $name =˜ s/\ / / s l a s h / g ;
266 $name =˜ s/\s/−/g ;
267
268 # p r i n t STDERR "Processing $name\n" ;
269 $my graph−>s e t (
270 x l a b e l => $xlabe l ,
271 y 1 l a b e l => $y1label ,
272 y 2 l a b e l => $y2label ,
273
274 # y1 max value => 30 ,
275 # y2 max value => 30 ,
276 y max value => 30 ,
277 t i t l e => $ t i t l e ,
278 y tick number => 8 ,
279
280 # l o n g t i c k s => 1 ,
281 # y l a b e l s k i p => 2 ,
282 bar spac ing => 6 ,
283 shadow depth => 2 ,
284 bargroup spacing => 6 ,
285 a c c e n t t r e s h o l d => 200 ,
286
287 # x l a b e l p o s i t i o n => 1 / 2 ,
288 t ransparent => 0 ,
289 l margin => 20 ,
290 b margin => 20 ,
291 r margin => 20 ,
292 t margin => 40 ,
293 show values => 1 ,
294
295 # two axes => 1 ,
296
297 y tick number => 3 ,
298 y l a b e l s k i p => 1 ,
299 x p l o t v a l u e s => 1 ,
300 y p l o t v a l u e s => 1 ,
301
302 l o n g t i c k s => 1 ,
303 x t i c k s => 0 ,
304 x l a b e l s v e r t i c a l => 1 ,
305
306 legend marker width => 24 ,
307 l ine width => 3 ,
308 marker s ize => 5 ,

Detecting inconsistencies in INRDB data - Peter Ruissen 22 / 23

REFERENCES REFERENCES

309
310 # legend placement => ’RC’ ,
311) or warn $my graph−>e r r o r ;
312
313 $my graph−>s e t l e g e n d ($y1label , $y2label , $y 3 l ab e l) ;
314 my $ f o n t s p e c = ’/usr/share/fonts/truetype/msttcorefonts/arial.ttf’ ;
315 $my graph−>s e t y l a b e l f o n t ($ font spec , 10) ;
316 $my graph−>s e t x l a b e l f o n t ($ font spec , 10) ;
317 $my graph−>s e t y a x i s f o n t ($ font spec , 10) ;
318 $my graph−>s e t x a x i s f o n t ($ font spec , 10) ;
319 $my graph−>s e t t i t l e f o n t ($ font spec , 12) ;
320 $my graph−>s e t l e g e n d f o n t ($ font spec , 10) ;
321 $my graph−>s e t v a l u e s f o n t ($ font spec , 8) ;
322 $my graph−>p l o t ($data) or die $my graph−>e r r o r ;
323
324 l o c a l (∗OUT) ;
325 my $ext = $my graph−>export format ;
326 open (OUT, ">$name.$ext")
327 or die "Cannot open $name.$ext for write: $!" ;
328 binmode OUT;
329 p r i n t OUT $my graph−>gd−>$ext () ;
330 c l o s e OUT;
331 }
332
333 # c l o s e ($sock) ;
334
335 # foreach my $moas (keys %uniMOAS){
336 # p r i n t "MOAS: " , $moas ,": " ,$uniMOAS{$moas} ,"\n" ;
337 #}
338 p r i n t "Done..\n" ;

Detecting inconsistencies in INRDB data - Peter Ruissen 23 / 23

	ABSTRACT
	TABLE OF CONTENTS
	PREFACE
	ABBREVIATIONS
	INTRODUCTION
	BGP SECURITY
	RIPE NCC DATA SOURCES

	INRDB PROTOTYPE
	DATA MODEL AND SYSTEM ARCHITECTURE
	INCONSISTENCIES

	VARIATIONS AND PROPERTIES OF PREFIX HIJACKING
	METHODOLOGY
	RESULTS AND CONCLUSIONS
	FUTURE WORK

	REFERENCES

