
Usability and efficiency improvements of the

(GNU Mailman) mailing lists

Rudy Borgstede (Rudy.Borgstede@gmail.com)

System and Network Engineering
University of Amsterdam

July 5, 2008

Rudy.Borgstede@gmail.com

Versions

Version Date Changes

0.0.1 18 May 2008 First setup of the report

0.0.2 9 June 2008 Release Candidate 1 of the project proposal

0.1.1 17 June 2008 A rewrite of the document because of the change of
project result. The project will deliver an advice rather then
a product like a patch or add-on for GNU Mailman.
This means that the report becomes an consultancy report
instead of a project proposal.

1.0.0 30 June 2008 Final version 1 of the report.

1.0.1 1 July 2008 A spelling check of the report.

1.0.2 5 July 2008 Extending the conclusion en future work chapters.

Participants

Name Contact Information

University of Amsterdam
Rudy Borgstede (Student) Rudy.Borgstede@gmail.com
Cees de Laat (Supervisor) delaat@uva.nl

NLnet
Michiel Leenaars (Supervisor) Michiel@nlnet.nl

Rudy.Borgstede@gmail.com
delaat@uva.nl
Michiel@nlnet.nl

Abstract

This report is the result of a research project of four weeks at the NLnet Foundation1 in Amster-
dam. The NLnet Foundation is a foundation who financially supports the open-source community
and their projects. The purpose of the project is to improve the usability and the administration
of the mailing lists (of the foundation) and giving a more clear view on mailing list server software
to anyone who is interested in using mailing list server software or developing new mail or mail-
ing list server software. The report describes the research of the usability of several open-source
mailing list server software for scalable environments with several well known mail servers. The
report also describes which issues the NLnet Foundation encounters with using GNU Mailman in
a scalable and open environment with more than one administrative domain.
The result of the report exists out of two parts:

1. How to improve the mailing list server software to survive the evolution of the internet and
their flexible communities

2. How to improve the mailing lists at the NLnet Foundation

1The NLnet Foundation homepage: http://www.nlnet.nl

2

http://www.nlnet.nl

Contents

1 Introduction 6

2 Mail server software 7
2.1 Mail User Agent . 8
2.2 Mail Submission Agent . 8
2.3 Mail Transport Agent . 8
2.4 Mail Delivery Agent . 8
2.5 Mail Access Agent . 8
2.6 Mail Retrieval Agent . 8
2.7 Sendmail . 9
2.8 QMail . 9
2.9 Exim 4 . 9
2.10 Courier . 9
2.11 Postfix . 9
2.12 What mail server to choose? . 10
2.13 Security . 10

2.13.1 Configuration . 10
2.13.2 SSL . 10
2.13.3 Sender and mail server authentication . 10
2.13.4 OpenPGP . 10

3 Mailing list server software 12
3.1 Main functionalities . 12

3.1.1 Subscribe . 12
3.1.2 Unsubscribe . 13
3.1.3 List the mailing list subscribers . 13
3.1.4 Show lists where you are a member of . 13
3.1.5 Provide mailing list information . 13
3.1.6 List the mailing lists of the server . 13
3.1.7 Change password . 13
3.1.8 Receive help . 13
3.1.9 Digest mail . 13
3.1.10 Stop and start delivering mail . 14
3.1.11 Conceal your address . 14
3.1.12 Do not receive own posts . 14
3.1.13 Email plaintext or html . 14
3.1.14 Attachments . 14
3.1.15 Archive mails . 14
3.1.16 Search archive . 14
3.1.17 Personalization of mails . 14
3.1.18 Extra interfaces . 15

3.2 Administration of the mailing lists . 15

3

3.2.1 Subscriber . 15
3.2.2 List Moderator . 15
3.2.3 List Owner . 15
3.2.4 System Administrator . 15

3.3 GNU Mailman . 15
3.3.1 Consult Joost van Baal about the current status of the GNU Mailman project 16

3.4 Majordomo . 17
3.5 ListServ . 18
3.6 Sympa . 18
3.7 PHPList . 19
3.8 Compare the mailing list server software . 19

3.8.1 PHPList . 20
3.8.2 Sympa . 21
3.8.3 GNU Mailman . 22
3.8.4 Mailing lists and mail server interfaces . 22

4 The NLnet Foundation Case 23
4.1 Who is the NLnet Foundation? . 23
4.2 What are the issues of the NLnet Foundation with the current GNU Mailman

mailing lists? . 23

5 Conclusion 25
5.1 The NLnet Foundation . 25
5.2 Creating a better implementation of the mailing lists within the mail server archi-

tecture . 26

6 Future Work 27
6.1 The new mail server . 27

6.1.1 Mail User Agent . 28
6.1.2 Mail Submission Agent . 28
6.1.3 Queue . 28
6.1.4 Mail Transport Agent . 28
6.1.5 Mail Delivery Agent . 29
6.1.6 Mail Store . 29
6.1.7 Mail Access Agent . 29
6.1.8 Mail Retrieval Agent . 29
6.1.9 MRA Mailing List authentication . 29

6.2 Why not to extend the SMTP protocol . 30
6.3 The web (administration and configuration) interface 30
6.4 AAA . 30

6.4.1 Authentication . 30
6.4.2 Authorization . 31
6.4.3 Accounting . 31

6.5 Future work conclusion . 31
6.6 Getting even more scalable . 31

A Planning 33
A.1 Preparation . 33
A.2 Week 1 - Exploratory research . 33
A.3 Week 2 - Main research . 33
A.4 Week 3 - Reflection . 33
A.5 Week 4 - Closing the project . 34

B Original Research Project Description 35
B.1 Official Dutch Research Project Description . 35
B.2 The translated in English Research Project Description 35
B.3 Changing the project result . 36

Chapter 1

Introduction

This report is the result of a research project of four weeks at the NLnet Foundation[12] in
Amsterdam. The NLnet Foundation is a foundation who financially supports the open-source
community and their projects. The research project is conducted by the student Rudy Borgstede
of the University of Amsterdam[19] under supervision of Cees de Laat from the University of
Amsterdam research group[19] and Michiel Leenaars, director of strategy of the NLnet Foundation.
The purpose of the project is to improve the usability and the administration of the mailing lists
(of the foundation) and giving a more clear view on mailing list server software to anyone who
is interested in using mailing list server software or developing new mail or mailing list server
software. The report describes the research of the usability of several open-source mailing list
server software in scalable environments with well known mail servers. The report describes also
the issues that the NLnet Foundation encounters with using GNU Mailman in their scalable and
open environments. The report will generally not be focused on the past of these server software
but rather on their future, what is their potential? This choice is made because there is enough
documentation (books, websites, wikipedia’s etc.) about different mail and mailing list servers
but almost no strict reviews on what they are really worth.
The result of the report exist out of two parts:

• How to improve the mailing list server software to survive the evolution of the internet and
their flexible communities

• How to improve the mailing lists at the NLnet Foundation

The report is setup in the following chapters:

• Mail server software. This chapter explain what the main functionalities of a mail server
are and what extra functionalities each mail server has to offer. This chapter can be skipped
by people who are well familiar with the security issues of the widely used mail servers.

• Mailing list server software. This chapter reviews the popular mailing list servers which
are interesting for scalable environments with multiply administrative domains.

• The NLnet Foundation Case. This chapter explains the issues that the NLnet Founda-
tion have with their current GNU Mailman mailing list server software.

• Conclusion. In this chapter a conclusion is made about the findings about the mailing list
server software and the issues of the NLnet Foundation.

• Future Work. Within most reports this chapter is philosophical but in this report this
chapter is very important because it describes the catching up that is needed to survive the
evolution of the internet.

• Appendices. Some useful appendices that makes the project environment more clear like
the planning and the official (Dutch) project description.

6

Chapter 2

Mail server software

Before the report starts about mailing lists, first the mail servers should be discussed because
of their close relationship. In this chapter the basics of mail servers are explained and legacy
issues are addressed. Also some popular mail servers will be discussed with their strength and
weaknesses. The mail servers that are interesting for this report are mail servers that are open-
source and have a free license e.g. the GNU General Public License version 2/3. Also the mail
server must be widely used and accepted as a mature mail server. In the figure 2 the components

Figure 2.1: The mail server architecture

and the relationships between the components are shown of a mail server. Each component has it’s
own function in the mail process and is essential for a fully working mail process. It is important
to remember that all these components are abstract and could be joined together or skipped if it
delivers a better performance or architecture e.g. most graphical Microsoft Windows mail clients
can be seen as the MUA, the MSA and the MTA.

7

CHAPTER 2. MAIL SERVER SOFTWARE

2.1 Mail User Agent

The MUA is the mail client of the end user, which can be something graphical like Microsoft
Outlook1 but also a terminal client like mailx2. The main purpose of the MUA is to present mail
to the user and to create new mail to send to another user.

2.2 Mail Submission Agent

After the mail is created by the MUA it is send to the MSA. The MSA validates the mail and can
fix minor errors e.g. the Date header. If the MSA is finished it decides to either drop/delete the
mail or forward it into the queue for transport to it’s destination. The MSA can decide to drop
the mail because of restrictions of the mail server e.g. I will only send mail to my own computer
system or local area network (internal mail).

2.3 Mail Transport Agent

The MTA reads the mails out of the queue and sends it, by the use of the SMTP protocol3, to the
destination across the internet he thinks is right e.g. the destination can be an alias to another
address which only the first destination knows.

2.4 Mail Delivery Agent

The MDA can receive mails send by MTA of another mail server. When the MDA receives a mail
then he decides if he wants to accept the mail e.g. I will only accept mail for mail accounts I locally
posses or if the virus scanner recognizes the mail then it must be dropped. If the MDA accept
the mail then it puts the mail into the mail store of the right mail account, which is described by
most mail servers in an alias file. This file describes on which queue or program the mail should
be forwarded to be accessed by the Mail Access Agent. If the mail-address doesn’t exist in the
local domain an error-mail can be returned by the MAA and MRA and then back into the mail
system to the MSA.

2.5 Mail Access Agent

The MAA retrieves the right mails on request of an authenticated MUA out of the mail store and
let the MUA access it by e.g. the POP34 or IMAP5 protocol.

2.6 Mail Retrieval Agent

The MRA gets mail that can’t be retrieved by the MUA direct and is used in two cases:

1. The server must relay the mail to another mail server because he can’t deliver
it. If the server doesn’t know the mail address or can’t deliver it (an error response) then
the MRA will inject the mail into the MSA to send the mail to the next right destination.

2. The mail is delivered to the MUA by a special program which plays the role of
MRA. The MRA will act as the MAA for the MUA. This is sometimes necessary to enforce
policies onto received mails or for efficiency e.g. the real MAA isn’t always accessible or
available.

1Homepage Microsoft Outlook: http://www.microsoft.com/outlook/
2Wikipedia mailx: http://en.wikipedia.org/wiki/Mailx
3SMTP protocol: http://tools.ietf.org/html/rfc821
4POP3 protocol: http://tools.ietf.org/html/rfc1939
5IMAP protocol: http://tools.ietf.org/html/rfc3501

8

http://www.microsoft.com/outlook/
http://en.wikipedia.org/wiki/Mailx
http://tools.ietf.org/html/rfc821
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc3501

CHAPTER 2. MAIL SERVER SOFTWARE

2.7 Sendmail

Sendmail is a very old mail server original developed by Eric Allman in the early 1980’s as descen-
dant of the ARPANET Delivermail mail server and comes with his own free license. Sendmail is
one of the most used Unix mail servers today, which is probably because it is most times standard
installed on Unix (Linux) based operating systems. The basic idea of Sendmail is to do all mail
server tasks with one single heavy weight binary. With this vision Sendmail should be simple to
configure, but it isn’t, the configuration is based on complex rules which can be generated by so
called m4 macro’s. The system was effective in the age (before 2000) where effective GUI’s were
very costly or simply didn’t exist but currently you probably need to read a book to edit the
legacy based configuration. Besides the static mail server configuration there is also a so called
alias file which contains the reference between the mail addresses of the mail server and the local
users and mail queue’s which is located as files in the spool directory on a Unix based operating
system. [16]

2.8 QMail

QMail is a mail server developed by Daniel J. Bernstein which is used as the standard Freebsd
7.0 mail server. QMail need to be recompiled with any change to the mail server architecture
e.g. by inserting plugin and patches in the official source-code. QMail has a history of being
more secure then Sendmail and being distributed under the public domain license which means
it has no legal restrictions to anyone. QMail works like Sendmail with an alias file, but have a
much easier configuration file. Any complex features that QMail doesn’t have can be integrated
by patches.[15]

2.9 Exim 4

Exim 4 (once an abbreviation of Experimental Internet Mailer) is a mail server developed by
Philip Hazel in 1995 at the University of Cambridge and distributed under de GNU General
Public License version 2. Exim has compared to Sendmail and QMail an easy configuration and is
further known because of his many plugin functionalities. The configuration of Exim 4 is divided
in functional directories like acl (Access Control List), rewrite and auth (Authentication).[4]

2.10 Courier

The Courier mail server[2] is published by the Double Precision, Inc. under the GNU general
Public License. Courier is the only mail server which has a web interface and a has built-in facility
for modules which gives the external developers the possibility to create modules without have
to worry about the Courier core. These modules can be seen as a loose binary with their own
configuration script with their own syntax. While Courier is available on many Linux distributions
it isn’t well known e.g. the website Mailradar doesn’t even know the existence of Courier[10], which
can be because of a look-a-like signature, a mail signature which looks like e.g. Postfix.

2.11 Postfix

Postfix is a mail server published under the IBM Public License and can be seen as the alternative
to Sendmail because it supports the same kind of configuration and alias files and fakes even
the Sendmail binary for an easier transition to Postfix. Therefore Postfix has a lot of legacy
material but it is necessary to update the old mail servers. But Postfix is different to the Sendmail
philosophy because Postfix separate each mail sever component in loose binaries which optimizes
the mail server performance. Postfix is slowly taking over the Sendmail servers because of it’s
superior performance it’s becoming the most used open-source mail server.[20]

9

CHAPTER 2. MAIL SERVER SOFTWARE

2.12 What mail server to choose?

There can’t be one choice, if one mail server is significant better then the others I shouldn’t have
to describe all these servers. The choice of the right mail server is purely a matter of taste. What
is clear within the open-source choices available today is that Postfix, QMail and Exim can be
considered to have the biggest market share.6 The result of this is that these mail servers have
the biggest development groups and therefore should have the best prospect for the future.

2.13 Security

Most mail servers are developed many years ago and have developed security the hard way. Today
the main stream mail servers could be considered safe because of different levels of security.

2.13.1 Configuration

The basic level of security is described by the configuration rules like not being enabled to relay
mail for unknown domains or require a minimal set of information to detect e.g. mail loops. The
configuration is different described by each mail server but have the same result e.g. QMail have
a special patch and Postfix have filter rules. Besides these rules also external programs can ensure
the safety of the final destination like black lists and virus scanners.

2.13.2 SSL

If the configuration is setup right the mail process could be considered bonded to the rules of the
administrator. Only this doesn’t include the transport of the mail between different servers. While
the mail is transferred between two mail servers an attacker can modify the mail. This must be
prevented therefore the mail protocols (IMAP, POP3 and SMTP) can be secured by SSL7. SSL
delivers encryption and integrity validation for the mail transfers, which means that the sender of
the mail can be sure that the mail is still the same and unread at the destinated mail server.

2.13.3 Sender and mail server authentication

Based on configuration and the SSL technology sending a mail could be considered secure but the
complete mail process says nothing about the intensions of the administrator of the mail server
and the sender of the mail. If the server is controlled by an attacker or by an unexperienced
administrator the server may be configured wrongly so it can be used for anonymous spamming
other mail servers because the server can send mail for users from another mail domain and
can modify any mail relayed through that server. The mail server administrators of the world
are trying to prevent this situation by blacklisting open-relay mail servers, mail servers that will
forward any mail from the internet and not only for a specific mail domain. But even with this
blacklist it can’t be ensured that there aren’t mail server that supports open-relay e.g. a botnet
can act as a distributed anonymous mail server.

2.13.4 OpenPGP

OpenPGP [13] is a technology to sign and optional encrypt mail which results in a kind of end-to-
end SSL connection to transfer a mail message. OpenPGP can be enabled in almost every mail
client and is a possibility to validate the sender and makes the mail encrypted and therefore only
readable to the right receiver. This makes it possible to drop every mail that hasn’t been signed
on the client side with the simple policy anyone who I don’t know is a spammer. The problem
with this policy is that people who don’t use OpenPGP will be unable to communicate with you.

6MailRadar a mail statistics webpage: http://www.mailradar.com
7Secure Socket Layer wikipedia description: http://en.wikipedia.org/wiki/Transport_Layer_Security

10

http://www.mailradar.com
http://en.wikipedia.org/wiki/Transport_Layer_Security

CHAPTER 2. MAIL SERVER SOFTWARE

So OpenPGP is only useful for applications that need validation of the sender, the integrity of
the mail and optional the encryption of the mail. It is possible to presume that every mail needs
OpenPGP signing and encryption but this will exclude anyone who doesn’t support OpenPGP
of reading your message, but still only signing a mail is a good solution until everyone uses the
OpenPGP technology.

11

Chapter 3

Mailing list server software

Mailing list server software is software to manage lists of mail addresses which can be used to
distribute in a highly efficient way a copy of a mail to a large number of people by the use of a
special mail-adress (<listname>@mailserver) on the mail server, discussed in the previous chapter.
There are two types of mailing lists:

• The newsletter is a mailing list where anyone or well defined group can subscribe or is
subscribed but only can be send to by a single email-address or by a special email-address
(member) group.

• The (long-distance) discussion list is a member based mailing list which can be divided
into two lists[6]:

– The open discussion list is a mailing list to which everyone can join, but it still
allows for moderation for e.g. deleting misbehaving email-addresses. The main thing
about this open discussion list is that it can be followed by everyone.

– The closed discussion list is a mailing list to which nobody can subscribe or only
mail-addresses can subscribe after review of a list moderator or list owner. Besides
that not everyone simply can join, the mailing list history can only be seen by members
which makes it possible to discuss sensitive and/or secret subjects.

Next the different open-source mailing list server software[3] which are interesting for the
project are discussed. These are open-source or free mailing list servers which have at least a web
interface for subscription to the lists and administration of the lists.

3.1 Main functionalities

The next sections describes the basic mailing list functionalities[18]. This does not mean that any
mailing list have each of these functions but it should have. These sections are used to measure
the completeness of each mailing list server software.

3.1.1 Subscribe

A user can subscribe to a mailing list by admitting at least their mail-address to a e.g. a web form.
After the user asked for subscription it’s optional that a list owner or list moderator must approve
the subscription. If the subscription is approved the subscriber gets a mail with his password.
It is optional for the list owner to enforce that the user must acknowledge the mail for finishing
the subscription to prevent a subscription with a false email-address. If all these steps have been
completed then the user email-address is subscribed. Sometimes subscribing is not allowed and
members are subscribed by the list moderators and list owner.

12

CHAPTER 3. MAILING LIST SERVER SOFTWARE

3.1.2 Unsubscribe

A user can unsubscribe from a mailing list by e.g. a web form by admitting at least their mail-
address. Sometimes it is impossible to leave the list because of the functional requirements e.g.
the mailing list is the domain administrator mailing list to announce maintenance but for such a
mailing list you probably don’t need to subscribe to!

3.1.3 List the mailing list subscribers

This function shows every subscribed mail-address of a mailing list. This functionality should
only be available to non-subscribers because this information is very attractive to spammers and
therefore should never be available to regular subscribers of a list.

3.1.4 Show lists where you are a member of

This function shows all the mailing lists where a mail-address is subscribed to. As listing all
mailing list subscriber this is information which should only by available to the owner of the
mail-address and non-regular-subscribers.

3.1.5 Provide mailing list information

Providing information about the mailing list options should only be available to the list owner and
system administrator because people should subscribe to a list because of it contents not because
of it rules. Providing information about the mailing list statistics could be available to anyone
even anonymous users because it gives the potential subscriber the possibility to judge the list
first.

3.1.6 List the mailing lists of the server

Listing all the mailing lists of the server should be available to anyone even anonymous users
except for the list which only can be subscribed to by the list owner or list moderator of the
mailing list.

3.1.7 Change password

Every administrator and subscriber should be able to change their password since the given pass-
word is most times generated in the most strange sequences which are for humans hard to remem-
ber.

3.1.8 Receive help

The concept of mailing lists isn’t always clear to everyone and the mailing list server software
should be used by anyone. This means giving help to the people who need it is really important.

3.1.9 Digest mail

On busy mailing lists it is maybe better to prevent spamming behavior by sending digest mail
messages. These are mail messages which contains a number of separate mail messages of the
mailing list. This can reduce the number of mail messages send to the mailing list member mail
addresses greatly.

13

CHAPTER 3. MAILING LIST SERVER SOFTWARE

3.1.10 Stop and start delivering mail

This function can stop and starts, on command of the user who owns the mail-address, the mail
delivery to a specific mail-address. This is useful for busy mailing lists, think of a user who is away
for over a month and returns to a mailbox with over a 1000 mail messages. Also some users have
an auto-response function on their mailbox. Consider that the user is allowed to post messages to
the list and that every mail he receives from the list has the sender address of the list (which is
normal for a discussion list). If someone post a message the user that is away automatic generate
an away response. If the user also gets it’s own message then the user also gives an away response
on it’s own away response. This loop will quite fast fill up any mailing list server and therefore
should be prevented by this function. Besides the stop and start delivering mail function an user
most times is prohibited to spam (sending more then . . . messages a day) a mailing list, which
means that such a mail address with auto response will be blocked before doing to much harm.

3.1.11 Conceal your address

This function is for anonymous reactions or announcements without the return-address of the
sender but rather a no-reply-address or mailing list email-address.

3.1.12 Do not receive own posts

This function can be set if posts send to the mailing list should not be forwarded back to the
sender to confirm the post, which should be a natural thing for discussion lists.

3.1.13 Email plaintext or html

Some people are using terminal based mailboxes which do not support html, therefore it is some-
times useful to enforce plain text mail messages. HTML messages will then be converted into
plaintext without the HTML style elements.

3.1.14 Attachments

Mailing lists with a great number of members will be happier not to send big mail messages with
attachments because this will generate much data traffic on the mail server therefore it is smart
to make it possible to drop all attachments or just attachments of a certain type and size.

3.1.15 Archive mails

Archiving mail isn’t important for a newsletter but for a discussion list it is quite useful to read
back a discussion before subscribing. Since the mail messages are archived it could be made
available through multiply interfaces like HTTP, RSS, SOAP and REST which makes it easier to
connect the mailing list mail messages to other services and administrative systems.

3.1.16 Search archive

When it is useful to archive the send messages it is also useful to add a search function e.g. for
finding specific computer problem solutions within a long discussion list!

3.1.17 Personalization of mails

The personalization of mails can be useful for any kind of newsletters think about getting a
personalized mail like Dear <user name>. The disadvantage of this function is that the mailing
list does require additional user information from the describers.

14

CHAPTER 3. MAILING LIST SERVER SOFTWARE

3.1.18 Extra interfaces

Since mail and web interfaces aren’t the only interfaces available it is sometimes smart to create
multiply interface e.g. to approve subscriptions. A good example of such an interface is making
the mailing list archive available by RSS1 or making the administration interface available over a
SOAP2 webservice interface.

3.2 Administration of the mailing lists

In this section de administrative roles are described and where they are authorized to.[9]

3.2.1 Subscriber

A subscriber is someone who is subscribed to a mailing list, receives messages posted to the list,
and may also post messages for distribution to the mailing list. Who may post, and how it is
done, may be controlled by the list owners. A subscriber has no administrative power over list
operation, but can change a few of his or her own subscription settings e.g. a subscriber could
decide to receive message ”digests” rather than individual postings.

3.2.2 List Moderator

List moderators are optional for a mailing lists. List moderators are assigned by the list-owner
and can manage list subscriptions and postings for the list owner. They can be seen as a kind of
elite subscribers.

3.2.3 List Owner

List owners can manage mailing lists, adding and deleting list members and making changes to
how the list operates with an administrative webpage to setup their lists. While a list owner can
manage a list without being a member of the list, each mailing list must have an owner who is
responsible for configuration, maintenance and operation of the list. The list owner optionally
can establish other owners and have others roles such as moderating the discussion or managing
subscription requests. List owners may execute commands for their subscribers including adding
and deleting subscribers. Each list must have at least one owner.

3.2.4 System Administrator

A system administrator is responsible for the operation of the mailing list server on which many
lists reside. Administration tasks include installation and maintenance of the software and the
computers where the mailing list server software runs on as well as creation and deletion of the
individual lists. The system administrator is also entitled to act as the list owner of any mailing
list on the server.

3.3 GNU Mailman

GNU Mailman[7] is a mailing list server software distributed under de GNU General Public License
version 2. The project has been setup by Barry Warsaw but has been developed by the open-
source community. GNU Mailman is besides Sympa the only mailing list server that is available
on the popular Linux distributions (Gentoo, Debian 4.0 and Fedora 8 and 9). The current stable
version 2.1 can be found on Launchpad3 which can be retrieved by the Bazaar version control4.

1RSS protocol: http://en.wikipedia.org/wiki/Really_Simple_Syndication
2SOAP protocol: http://en.wikipedia.org/wiki/SOAP
3Launchpad website: https://code.launchpad.net/mailman
4Bazaar website: http://bazaar-vcs.org/

15

http://en.wikipedia.org/wiki/Really_Simple_Syndication
http://en.wikipedia.org/wiki/SOAP
https://code.launchpad.net/mailman
http://bazaar-vcs.org/

CHAPTER 3. MAILING LIST SERVER SOFTWARE

Version 2.2 is the development version and version 3.0 can be seen as the experimental version.[8]
GNU Mailman can been installed with different mail servers but need an extensive mail server
configuration which most times can be found in the GNU Mailman documentation. GNU Mailman
has a very simple architecture which is purely based on a queue where new mail messages can be
dropped. Then GNU Mailman writes all the received messages away in files in the filesystem even
the archive of mails exists out of simple html files. This file based architecture is great for (Unix)
file based operating systems but isn’t great for a scalable mailing list server software and easy to
handle e.g. searching through the mail requires continuous opening of files which requires a lot of
costly resources. A negative effect of this architecture reflects in the problem that GNU Mailman
have in renaming it’s mailing lists since renaming of content of files without a strict structure is
very difficult.

A big advantage of GNU Mailman is that it has an very fast and bug free web interface which
could even be loadable in text browser since it has no javascript and dynamic html. It is written
in very clean html 4 code and the GNU Mailman web interface only supports a single system
administrator with only a password without an username to adapt the lists e.g. creating lists.

3.3.1 Consult Joost van Baal about the current status of the GNU
Mailman project

At the 6th of june 2008 I spoke with Joost van Baal when the project goal was still about improving
GNU Mailman. Joost van Baal is an administrator of the University of Tilburg and he is familiar
with the GNU Mailman project because of his involvement of building a OpenPGP implementation
into GNU Mailman to validate mail messages send to a mailing list. This prevents the problem
described in the mail server chapter: a bad configured mail server relaying mail messages for
domains that they don’t own or aren’t responsible for. This makes it possible to send mail
message to a mailing list with a spoofed sender address to anonymous spam protected mailing
lists. To use OpenPGP keys GNU Mailman should know the OpenPGP keys of their list members

16

CHAPTER 3. MAILING LIST SERVER SOFTWARE

which can be enforced but block out unexperienced OpenPGP users.

3.4 Majordomo

Majordomo is developed by Brent Chapman of the Great Circle Associates[11]. It is written
in Perl and works with the Sendmail mail server or Sendmail compatible mail server like Postfix,
but only Sendmail is described in the documentation. Majordomo is being distributed under an
own Great Circle Associates license but is extendable by several 3rd parties patches and plugins.
But Majordomo has a downside it isn’t updated for a long time and doesn’t have it’s own web
interface. The web interface is available by the majorcool 3rd party web cgi application. Like
the QMail mail server, the Majordomo mailing list server has many functionalities but need a lot
of work to get it work e.g. the simple README file has already almost 600 lines of installation
exceptions and the INSTALL has laterally the sentence:

The default installation of Majordomo, including the checks that config-test does,
WILL NOT RESULT IN A SECURE INSTALLATION.

Therefore I consider Majordomo as a multifunctional[1] mailing list server software, which is still
experimental.

17

CHAPTER 3. MAILING LIST SERVER SOFTWARE

3.5 ListServ

ListServ is the first mailing list server which supported subscription without human intervention,
it’s developed in 1986 by Eric Thomas. The mailing list server software was free and open-source
until it became in 1993 commercially. ListServ now distributes still a free version but under a
strict license of the commercial L-Soft company [5] and the non-opensource free version has a
maximum of 10 lists with 500 subscriptions. The advantage of ListServ is that it works almost
on every modern operating system and architecture and is superior to any other free mailing list
server software because of it’s years of development, but because it isn’t really open-source and
free (strict license) it doesn’t apply to this report but still was important to mention because it
shows that in the case of mailing list throwing a lot of money (at least 200 dollar per month)
against the mailing list problems solves the problem. But since this gives a legacy problem e.g.
has it’s own built-in mail server and not everyone can afford it isn’t the solution for this report.

3.6 Sympa

Sympa[17] is an open-source mailing list server software distributed under the GNU General
Public License version 2. Sympa supports only full featured categorized discussion lists without
a system administrator. This means that every internet user can start a new list. Sympa has
support for customized themes, Atom/RSS version 1 and 2 interface, SOAP webservice interface
and personalized mails e.g. hello <user name >. But besides a wide range of functionalities Sympa
does have a long list of perl dependencies where some only are retrievable from CPAN5. Sympa
is the only mailing list server software that does sender authentication and encryption by the
use of S/MIME6. Sympa has chosen for this technology because it can be used to authentication
of the web interface to. The issue with S/MIME is that it isn’t easy to create a certificate for
S/MIME that is correctly signed, therefore it isn’t really scalable to generate a certificate for each
list member. Sympa is available on Redhat, Mandrake Debian, Freebsd and Solaris 7 but these
are old and much adapted versions. The latest stable version of sympa can be tested by a demo
on the sympa homepage[17].

5Comprehensive Perl Archive Network: http://www.cpan.org/
6Wikipedia S/MIME description: http://en.wikipedia.org/wiki/S/MIME

18

http://www.cpan.org/
http://en.wikipedia.org/wiki/S/MIME

CHAPTER 3. MAILING LIST SERVER SOFTWARE

3.7 PHPList

PHPList[14] is an open-source mailing list server software distributed under de GNU General
Public License version 2. It is designed for only newsletters and doesn’t have an archiving func-
tionality. PHPList can extensively tune the rights of the list owner, list moderator and system
administrators. Also there is already the start of a built-in logging function. The unique func-
tionality of PHPList is the possibility of subscribing to bulk lists, which are mailing lists which
refer to multiply other mailing lists. PHPList has webpages which are theme-able by the use of
CSS. Installing PHPList was a relieve because it has a modern database architecture. PHPList
has only a dependency of a RDBMS like a mysql database and apache web-server with PHP and
can be setup within a hour. But before installing PHPList the development and stable version
can be tested from the PHPList homepage[14]. The disadvantage PHPList is only mails can be
send to the mailing list by the administration web interface.

3.8 Compare the mailing list server software

In the next figure the main functions of mailing lists are compared to the found mailing list server
software. In the table ListServ is left out because it doesn’t fit the case of the report because it has
a strict license which limits it’s functionalities. Also Majordomo is left out of the table because it
doesn’t deliver a stable mailing list server software and web interface and therefore should never
be used as a production mailing list server software. Before I go on to the table I must note that
dropping these mailing lists from the final comparison table doesn’t make ListServ and Majordomo
a bad product but they aren’t useful to compare for the case of the NLnet foundation, described
in the next chapter. They are left in the report to keep a wide vision on the commercial, new and
recovering mailing list server software.

19

CHAPTER 3. MAILING LIST SERVER SOFTWARE

Functionalities GNU Mailman PHPList Sympa

Ease of install ?? ? ? ? ?
Newsletter functionality ? ? ? ? ??
Open discussion list functionality ?? ? ? ? ?
Closed discussion list functionality ? ? ? ? ??
Subscribe • • •
Unsubscribe • • •
List the mailing list subscribers • • •
Show lists where you are a • •
member of
Provide mailing list information •
List the mailing lists of the server • • •
Change password • •
Receive help •
Digest mail • •
Stop and start delivering mail • •
Conceal your address • • •
Do not receive own posts •
Email plaintext or html • •
Attachments •
Archive mails • •
Search archive •
Personalization of mails •
Extra interfaces Experimental RSS SOAP and RSS

The more ?’s a mailing list server software have, the more suitable it is for the task.

In the above table you can see how each mailing list server has his strength and weaknesses. But
like most software it is better to try the mailing list server software then to read about it therefore
I will describe in the next section my experience and opinion about each compared mailing list
server software.

3.8.1 PHPList

PHPList is the only mailing list server software that uses a pure modern database architec-
ture. The database is setup in logical tables that are easy to comprehend with names like ph-
plist user blacklist or phplist eventlog. PHPList is especially build for newsletters mailing lists,
therefore there are no accounts for subscribers only for administrators.
The strong points of PHPList are:

• The subscribe page is editable (HTML and CSS) from an administrative interface.

• The users can be extended by self defined attributes which can be used in the (personalized)
newsletters.

• There is an extensive administrator framework, which support administrators with different
right attributes and super administrators for managing the administrator group.

• Because of the database architecture mailing list information can be easily inserted and
backup-ed.

• PHPList is the only mailing list server that supports (event) logging. It is still primitive but
it is a good start towards a mature logging system.

20

CHAPTER 3. MAILING LIST SERVER SOFTWARE

.

.
The weak points of PHPList are:

• There is no real archiving functionality. Therefore it is rather a mailing list manager then a
mailing list server.

• PHPList isn’t standard coupled with the mail server to receive mail for it’s mailing lists.
There are hacks to accomplish this but they aren’t supported by the PHPList developers.
Officially PHPList can only send mails from their own administrative webpage.

3.8.2 Sympa

Sympa is the open discussion mailing list divided in categories. Sympa is made for online discus-
sions between social groups about any subject.
The strong points of Sympa are:

• On an University server it will probably make a great informal discussion (forum like) mailing
list.

• Because of the well defined categories it is a mailing list server software made for a big
number of mailing lists

• The main navigation is very useful because it shows everything you want to see e.g. the
subscribed mailing lists.

• Creating a new mailing list is easy because of the standard templates:

– discussion list
– hotline
– html news letter
– intranet list
– news letter
– private working group
– public web forum

• Sympa offers a wide range of several e.g. a good RSS interface to the posted messages and
LDAP, CAS and Shibboleth authentication support.

• Sympa is the only mailing list who offers efficient search capabilities to it’s archives

The weaknesses of Sympa are:

• The mailing list server software doesn’t feel like it belongs to the domain it is installed for
e.g. it hasn’t space for logo’s.

• The web interface of Sympa by long isn’t as good as the GNU Mailman and PHPList interface
(graphical and functional).

• It is easy to create new lists, but it is hard to configure them because of the messy menu
setup.

• Sympa can be rather a forum were you share data and messages then a discussion list.

• Sympa misses the system administrator role and therefore can never be used in big envi-
ronments because illegal or bad content can only by removed by people who can edit the
database.

• There is no way to block out or delete accounts.

21

CHAPTER 3. MAILING LIST SERVER SOFTWARE

3.8.3 GNU Mailman

GNU Mailman is the choice for the highly stable controlled mailing list which offers performance.
The strong points of GNU Mailman:

• GNU Mailman has a clean HTML 4 webpage, as the only interface, with most of the help
information integrated in the webpage and it will probably runs in every browser (except
from mosaic).

• It has an archive which is purely based on separate HTML files, which makes browsing
through the archive very efficient.

• GNU Mailman works with almost all mail servers, because it is based on mail queue’s.

The weaknesses of GNU Mailman are:

• GNU Mailman has no search function on the mailing list archive. Also this functionality
is hard to integrate within GNU Mailman because the archive is directly saved into HTML
files.

• Because of not using a database it is hard to develop new functionalities.

• The GNU Mailman has simple webpages without the use of Javascript, CSS or DHTML.
The effect of this is that the interface is compatible with all the browsers but is also less
efficient.

3.8.4 Mailing lists and mail server interfaces

The interface between mailing lists server software and mail server exist out of three parts:

• A program to inject mail into the mail server e.g. Sendmail or a smtp server.

• A program to configure the relay to the mailing list mailboxes. This is always implemented
by the use of the alias file (/etc/aliases) in the current mailing list server software.

• A location to receive mails on e.g. a mail queue in the mail spool or a POP3 or IMAP
address.

22

Chapter 4

The NLnet Foundation Case

In this chapter the NLnet Foundation case is described:

• Who is the NLnet Foundation?

• What are the issues of the NLnet Foundation with the current GNU Mailman mailing lists?

4.1 Who is the NLnet Foundation?

The non-profit NLnet Foundation was formally started in 1989, but incorporates networking ac-
tivities which go back as early as 1982. The foundation (in Dutch called ”Stichting NLnet” or
shortly ”NLnet”) has played a major role in raising the so-called pan-European ”UNIX” Network
and the commercial and public internet network provision in the Netherlands.[12]

Some NLnet milestones are:

• The first internet backbone in the Netherlands.

• The first local dial-in and ISDN infrastructure with full country coverage and the definition
and implementation of a low cost connectivity structure.

These activities caused Amsterdam to become the major exchange point for European internet
traffic. People like Piet Beertema, Daniel Karrenberg, Ted Lindgreen, and the employees of NLnet
have played a major role for NLnet and the internet in Europe.

In the summer of 1997, the Foundation sold its commercialized internet provision activities to
UUNET (the internet subsidiary of WorldCom), which was later renamed into Verizon.

From this money the NLnet Foundation financially supports organizations and people that
contribute to an open information society. It funds e.g. software, events and educational activ-
ities1. Also the NLnet Labs Foundation, which has close relations with the NLnet Foundation,
financially supports and shepherd student who build open-source software2.

4.2 What are the issues of the NLnet Foundation with the
current GNU Mailman mailing lists?

The NLnet Foundation has project all over the Netherlands and it uses mailing lists to commu-
nicate with the communities they financially supports and sending news letters to the press. The
NLnet Foundation uses for this an Unix(-based) environment with a Fedora 8 server with the GNU
Mailman mailing list. After speaking with Michiel Leenaars of NLnet the issues of GNU Mailman
became clear:

1Vrije Universiteit van Amsterdam - IIDS: http://www.iids.org/
2NLnet Labs homepage: http://www.nlnetlabs.nl

23

http://www.iids.org/
http://www.nlnetlabs.nl

CHAPTER 4. THE NLNET FOUNDATION CASE

• The administration of GNU Mailman isn’t optimal because GNU Mailman only supports a
single system administrator. It has no exact framework to manage the rights of the system
administrators, list owners, list moderators and subscribers. It misses a attribute or role
based authorization system.

• The current mailing list server software does not have a logging system for changes to the
mailing lists. This functionality is needed to trace faults or abuse of the mailing lists.

• It costs to much effort to administrate the multiply mailing lists with GNU Mailman, because
the web interface of GNU Mailman isn’t setup to administrate more then one list at the same
time.

• A better strategy is needed for sub-lists and super-lists, including dealing with the resulting
password reminders and authorization to modify the sub & superlists of the mailing lists
e.g. if a message has no known OpenPGP key then it is automatically spam and should be
dropped.

• GNU Mailman can only manage the mailing lists by the web interface. It would be an
improvement to manage the mailing list by e.g. a SOAP webservice interface or a REST
interface.

• GNU Mailman is a piece of software with it’s own technical components. It should fit the
NLnet Foundation to combine a mailing list server software with user management system
like a LDAP software. This means that subscribers not only subscribe their mail-address
but also other personal information like their telephone number or personal interests. So
these information can be used for interesting offerings like events.

• The developed OpenPGP functionalities of Joost van Baal should be integrated within any
solution because privacy is important for the community members that the NLnet Founda-
tion support. This new functionality of Joost van Baal also gives posibilities to improved
administration

• For any new solution or improvements at least the current functionality of GNU Mailman
should remain. Also the solution that is found should be as secure as GNU Mailman and
should have atleast the performance of GNU Mailman because the whole community (of
NLnet) is dependent on GNU Mailman.

24

Chapter 5

Conclusion

In the report there are different mailing list servers software handled which each their own ad-
vantages and disadvantages. It’s clear that no open-source and free mailing list server software is
really optimized for the discussion lists and news letters. They are all built with a special purpose:

• Open discussion lists where everyone can join and start a discussion (Sympa).

• Closed discussion lists where groups can discussion their project (GNU Mailman).

• A news letter mailing list server to send personalized news letters to specified mail-address
lists (PHPList).

5.1 The NLnet Foundation

The NLnet Foundation is searching for a complete multi functional mailing list server which have
all the functionalities of the researched mailing list server software: the stability and performance of
GNU Mailman, the database architecture, rights administration and personalization of PHPList
and the categories, RSS, SOAP and authentication interface of Sympa. Unfortunately such a
mailing list server software like ListServ is only available for a lot of money and has different legacy
problems and therefore the best solution for the NLnet Foundation should be the development of a
new mailing list software from either extending PHPList, because this mailing list server software
is easy to extend because of it’s basic (database) architecture or developing a complete new mailing
list server software with the support of well known open-source libraries like the libesmtp library
for implementing the client side SMTP protocol for the MTA component. Personally I think
that building a new mailing list server software is the best solution because then the philosophy
behind such a new server software could be setup right from the start, focused on having a good
administrative interface with the discussion list and news letter functionalities. This new mailing
list server software can be build by the NLnet Labs Foundation who have active open-source
project like DNSSEC1 and are closely related to the NLnet Foundation.

1DNSSEC Homepage: http://www.nlnetlabs.nl/projects/dnssec/

25

http://www.nlnetlabs.nl/projects/dnssec/

CHAPTER 5. CONCLUSION

5.2 Creating a better implementation of the mailing lists
within the mail server architecture

The main problem in the current mailing list server software implementations is the interface
with the mail server. The mailing list server software is so far integrated with the mail server
software that the question arise why the mailing list server software isn’t part of the mail server?
Most of the functionality already exists in the mail server architecture except of the mailing list
configuration interface. The biggest problem of mailing lists server software is making clear to
the mail server which mails should be relayed to the mailing list back-end components. On many
mailing list server software this still must be done by an administrator who has configuration
access to the mail server, because the current used mail servers aren’t build to have a variable
alias configurations. This problem can be resolved by integrating the mailing list server software
in the Mail Retrieval Agent of the mail server architecture so the mailing list server software can
use the accounting facilities of the mail server. But to integrate the mailing list server software,
a mail server should be adapted to separate the incoming and outgoing mail-addresses. This
is required because the current mail server implementations are developed to give a mailbox to
every locally known mail address which isn’t relayed. While rebuilding the mail server also the
data architecture could be upgraded to a purely database architecture, which results in a more
scalable mailing list/mail server software which can grow with the evolution of the internet e.g.
this gives the mail server administrator the possibility to locate the data on a different (database)
server also the current RDBMS based database software offers much better facilities for searching
the archives, retrieving statistics, concurrency and backing up the mailing list members and mail
messages then the current hard-disk tools.

26

Chapter 6

Future Work

In this chapter my vision on the new mail server is explained, a mail server which delivers more mail
based services then the traditional mail servers like QMail and Postfix who are more focussed on
the performance of the mail server, which in my opinion shouldn’t be an issue with the currently
available hardware and redundancy. The second part of this chapter is about integrating the
mailing list (administration) functionalities into the SMTP protocol1 or a web interface.

6.1 The new mail server

Talking about the mail server architecture is difficult and hard because it is a proven archi-
tecture, it is over 30 years old. In my opinion the current mail server architecture should not
change because the current architecture have a description which support the mailing list server
functionalities except from a configuration interface for the mailing list and the mail server itself.

1SMTP protocol: http://tools.ietf.org/html/rfc821

27

http://tools.ietf.org/html/rfc821

CHAPTER 6. FUTURE WORK

But before talking about the configuration in the SMTP protocol or the web interface, first the
new mail/mailing list server software should be defined.

6.1.1 Mail User Agent

The MUA is a component on the system of the client, which is based on the standardized interfaces
of the mail server like POP3, IMAP and the local mail sender like the Sendmail binary or internal
MS Outlook (GUI) component. This means that the new mail server implementation shouldn’t
have to posses a design for the MUA, because this component is installed on the user side (users
choice and taste) and their are enough good open-source and free MUA’s available.

6.1.2 Mail Submission Agent

The MSA is implemented in three ways:

1. The GUI mail client on the user’s system has almost always integrated this component and
therefore isn’t part of the new mail server and therefore shouldn’t be part of the new design.

2. The terminal mail client is most times located on the same system as the mail server and uses
most times the Sendmail program to send mail. This means that for backwards compatibility
this interface should be faked as done by Postfix. Also other mail servers their local program
interfaces should be faked if required.

3. A programming interface to e.g. relay the mail from the Mail Retrieval Agent e.g. error-
mails and mailing list mails. But also this interface can be used for third party application
to inject mail into the mailing process.

The mail submission agent can receive mail from any local program, mailing list or library therefore
the mail should be authenticated before sending the mail message. Also the mailing lists can
relay’s mail messages to mail-addresses of domains it isn’t responsible for these mails should be
authenticated for authorization before sending them to a separated outgoing mail-addresses listed
in a RDBMS based database (accounts) with the defined authorizations and rules. Implementing
the MSA can be done on thread or process based interfaces/programs which should write, when
accepting, the mail messages to the queue. The result of this design is that the queue should
remain stable on many concurrent processes.

6.1.3 Queue

In the current mail servers the queue is a file, but with a new mail server this should be a RDBMS
based database to decouple the data from the mailing process. This gives the system/network
administrator the possibility to centralize the data into e.g. a scalable database system which
is better in concurrency (ACID2) and most database software deliver utilities which a normal
filesystem can never deliver. The second reason to decouple the data from the mailing process is
for measuring the mail server statistics and optimizing the mail process, because databases giving
extended features for counting records and filtering data on an efficient way.

6.1.4 Mail Transport Agent

The MTA should consist out of a single process or a worker thread group which sends the mail
messages from the queue by the SMTP protocol, because a separate thread/connection for every
queued mail message will result in a spamming like mailing pattern, when sending 100 mail
messages the MTA will connect 100 times to maybe the same mail server. The problem with this
design is that the MTA doesn’t know when a MSA posts a mail message on the queue. Therefore it
is useful to notify the MTA when posting a message which is useful to optimize the MTA behavior

2ACID database transactions: http://nl.wikipedia.org/wiki/ACID

28

http://nl.wikipedia.org/wiki/ACID

CHAPTER 6. FUTURE WORK

but break with the mail server architecture like most optimizations do e.g. the MTA only starts
sending if the queue is bigger then 50 mail messages or if a message is older then 10 minutes. The
rest of the time the MTA (workers) can sleep to preserve system resources.

6.1.5 Mail Delivery Agent

The MDA receives messages by the SMTP protocol or by inserting a mail message by the use of
the MDA library interface when the mail can be delivered locally. After it is received the mail
message is validated e.g. the incoming mail-address is valid to relay or is of a incoming mail-
address described in the RDBMS based database. If the mail message is accepted and no direct
failure is returned the mail is stored into the mail store.

6.1.6 Mail Store

The mail store originally existed into /var/mail directory on Unix-based operating systems. In the
new mail server this should exist in the RDBMS based database but still could be implemented
e.g. updating only these mailbox files when they are being accessed which can be monitored by
file systems hooks3 which exists in most modern operating systems integrated for security reasons
like virus scanners and auditing validation modules.

6.1.7 Mail Access Agent

Since the backwards compatible /var/mail directory is updated when accessed the MAA can be
accessed by the terminal based MUA’s. The rest of the non-local MUA’s can access their mail by
the MAA protocols (POP3 and IMAP protocol) and the MRA can access the mail messages by
the internal MAA library.

6.1.8 Mail Retrieval Agent

The MRA has 3 functions:

• The MRA relays messages for other domains through the MSA that are described by the
RDBMS based database incoming mail-addresses.

• Error and bounce mail messages that are send back through the MSA to the sender of a
mail message e.g. if a mail loop is detected.

• Mailing list mail messages that are posted and then are forwarded by the MRA after au-
thentication to multiply mail-addresses by the use of the MSA, which can be seen as just a
complex alias function that relay’s mail messages. The mail message it self can remain in
the mailbox and the mailbox can then function as the archive for the mailing lists.

Since like the MTA the MRA, wants to know when there are mail message in the mail store which
are interesting for him the MDA should notify the MRA on mail message where the MRA is
interested in or subscribed to.

6.1.9 MRA Mailing List authentication

Posting on mailing lists on current mailing list server software can’t ensure the authenticity of the
sender, secrecy of the mail messages or the integrity of mail messages. Sympa supports S/MIME
but this requires a lot of extensive configuration. To ensure on an easy way that the posted message
comes from the right sender OpenPGP can be used. OpenPGP gives Pretty Good Privacy in the
form of integrity validation and optional encryption. In the new mail server the outgoing mail-
address list should contain keying information e.g. OpenPGP to ensure members of a list can only

3Examples of the filesystems hooks: http://www.usenix.org/events/sec02/full_papers/wright/wright_html/
node14.html or http://technet.microsoft.com/en-us/sysinternals/bb545046.aspx

29

http://www.usenix.org/events/sec02/full_papers/wright/wright_html/node14.html
http://www.usenix.org/events/sec02/full_papers/wright/wright_html/node14.html
http://technet.microsoft.com/en-us/sysinternals/bb545046.aspx

CHAPTER 6. FUTURE WORK

send a mail message if they are authorized and send secure messages to the list mail-address. By
enforcing OpenPGP the privacy of a discussion can be guaranteed, but this forces the list members
to use OpenPGP which is not always a possibility.

6.2 Why not to extend the SMTP protocol

Because so many people are using these mailing lists and they exist for over 20 years it is maybe
interesting to discuss the implementation of the mailing list functionality in the SMTP protocol
because the MDA is the most logical place to integrate the mailing list functionality. But is
shouldn’t be integrated into the SMTP protocol because it is an extension on the basic functionality
of a mail server: sending and receiving mail. Also if every function of the current mailing list server
software is integrated into the SMTP protocol then the protocol gets very messy and heavy weight
and therefore shouldn’t be integrated within the SMTP protocol.

6.3 The web (administration and configuration) interface

Since the administration and configuration of the mailing list isn’t integrated within the mail
server architecture it should be made available by an alternative interface, a web interface because
this is supported by every user with a modern browser or operating system. But like Courier mail
this interface should be a plugin or module which only have dependencies on the mail process like
the model-view-controller architecture4. This means that the mail server should have an interface
to which the web interface can connect to, to configure the mailing lists. I think the best way to
implement this interface is by integrating it into the MAA by the use of the SOAP protocol which
will be some work but because SOAP is a self describing protocol it will save the effort of creating
an interface for every separate programming language e.g. ASP, JSP and PHP then a website
can be build based on the SOAP interface. A website can then be an interface to the mailing
list for the user to subscribe and unsubscribe, but can also be an interface to the mailing list
archive. Also the SOAP interface makes it possible to reformat the mail message format because
the information isn’t already transformed in HTML and therefore the website can also offer the
archive e.g. by the RSS protocol.

6.4 AAA

Now the new mail server has a separated MVC architecture (database, mail server process, user
interface e.g. graphical webpage) the AAA5 formula should be reviewed.

6.4.1 Authentication

Within the mail server architecture the components are defined but not the authentication to
access the components. There are some possibilities like the authentication of the IMAP, POP3
and SMTP protocol, OpenPGP and S/MIME but I think it is necessary that these authentication
methods should be extended to the SOAP web service interface and the webpage, because this
prevents that people write insecure user authentication database systems and give inexperienced
developers access to advanced authentication methods like a Shibboleth single sign-on6. This
keeps the e.g. web interface (necessary for the mailing list functionality) light and easy to create
or even integrate.

4MVC: http://msdn.microsoft.com/en-us/library/ms978748.aspx
5Authentication, Authorization and Accounting: http://en.wikipedia.org/wiki/AAA_protocol
6Shibboleth: http://shibboleth.internet2.edu/

30

http://msdn.microsoft.com/en-us/library/ms978748.aspx
http://en.wikipedia.org/wiki/AAA_protocol
http://shibboleth.internet2.edu/

CHAPTER 6. FUTURE WORK

6.4.2 Authorization

In this report the mail server rules are skipped but are necessary to harden the security of the
mail server. These e.g. Postfix rules can block out mail-addresses or rewrite mail-addresses, they
are written to fine tune the mail server and are located in the a local directory of the mail server
which of course isn’t practical. These rules should be available in the new mail server for backward
compatibility by the use of a module or plugin. It is a nicer solution to separate the rules from the
mail-addresses and create a variable, rules reference and function (drop, delete, forward, accept,
OpenPGP sign, etc.) based syntax to describe universal rules which then dynamically can be
fitted to a mail-address or mail-address group which makes it possible to create a much more
precise authorization scheme e.g. one of the necessary rules should be the incoming mail-address
and outgoing mail-address rules. This means that a new user can do nothing until it’s rule based
allowed to receive and/or send mail by the outgoing and/or incoming mail-adress rule. This deny
before allow scheme has proven to be very useful and secure for e.g. firewalls and web servers like
Apache.

6.4.3 Accounting

Since now the authentication and authorization is separated the only task at hand is to create an
user database or interface to an user database like LDAP. But this is the new problem of the new
mail server: the news letter mailing list requires to personalize mail messages but the attributes in
user databases like LDAP are already defined and doesn’t always deliver configurable attributes. I
think the best solution for this problem is not to copy all records into the new mail server RDBMS
based database but rather to make a reference to the account and save the reference, authorization
rules and variable attributes for the mailing list in the new mail server RDBMS based database.
This makes it possible to support multiply user database resources but again raises the problem
of when to delete a reference because the mail server can’t expect of an user database source to
share this information with him.

6.5 Future work conclusion

The main point I as author wanted to prove is that their is a great potential to improve the
current mail and mailing list servers. I think the old mail server architecture still fits the needs
of the current mail user but the reason of writing this report shows that the current software
implementations of the mail servers are out dated and not prepared to be managed without local
access and therefore will be forced to upgrade soon. The main goal of this new mail server should
be getting out of the messy mail rules syntaxes and local queue’s so extending the basic mail server
architecture with e.g. mailing list functionalities should be easy and not a work around like the
current mailing list server implementations. On the new mail server giving the mailing list new
functionalities is nothing else then tuning the SOAP interface, because all the data that is needed
can be easily retrieved from a RDBMS based database. Now the only questions remains who will
create the new mail server and making the current loosely coupled mail (based) software obsolete?

6.6 Getting even more scalable

For people who are searching for even a more scalable design could couple each new mail server
process component by the use of Message Queue Middleware. This makes it possible to make
every component redundant which gives a better reliability and performance which is now pos-
sible because of the MVC architecture which separates the data. This solution also solves the
performance excuse of administrators for still using mail servers like e.g. QMail or Postfix.

31

Bibliography

[1] D. B. Chapman. Great circle associates, report of the lisa, october 1992, long beach ca,
majordomo: How i manage 17 mailing lists without answering ”-request” mail.

[2] Double precision inc., courier mail server. Available from: http://www.courier-mta.org
[cited 17 June 2008].

[3] emailman: Unix mailing list servers. Available from: http://www.emailman.com/unix/
mailinglist.html [cited 17 June 2008].

[4] University of cambridge, exim. Available from: http://www.exim.org [cited 17 June 2008].

[5] L-soft listserv. Available from: http://www.lsoft.com/products/listserv.asp [cited 17
June 2008].

[6] Wikipedia, electronic mailing list. Available from: http://en.wikipedia.org/wiki/
Electronic_mailing_list [cited 17 June 2008].

[7] Gnu mailman. Available from: http://www.gnu.org/software/mailman/ [cited 17 June
2008].

[8] Gnu mailman, developer wikipedia. Available from: http://wiki.list.org/display/DEV/
Home [cited 17 June 2008].

[9] University of washington, gnu mailman guide. Available from: http://www.emailman.com/
unix/mailinglist.html [cited 17 June 2008].

[10] Mailradar. Available from: http://www.mailradar.com [cited 17 June 2008].

[11] Great circle, majordomo. Available from: http://www.greatcircle.com/majordomo/ [cited
17 June 2008].

[12] Nlnet foundation. Available from: http://www.nlnet.nl [cited 17 June 2008].

[13] Openpgp message format rfc 4880. Available from: http://www.ietf.org/rfc/rfc4880.txt
[cited 17 June 2008].

[14] Phplist. Available from: http://www.phplist.com [cited 17 June 2008].

[15] Qmail. Available from: http://www.qmail.org [cited 17 June 2008].

[16] Sendmail consortium, sendmail. Available from: http://www.sendmail.org [cited 17 June
2008].

[17] Sympa. Available from: http://www.sympa.org [cited 17 June 2008].

[18] P. Tsier. Report of the university of waterloo, a comparison of three mailing list managers:
Lyris vs. sympa vs. mailman.

[19] University of amsterdam. Available from: http://www.uva.nl [cited 17 June 2008].

[20] W. Venema. Postfix. Available from: http://www.postfix.org [cited 17 June 2008].

32

http://www.courier-mta.org
http://www.emailman.com/unix/mailinglist.html
http://www.emailman.com/unix/mailinglist.html
http://www.exim.org
http://www.lsoft.com/products/listserv.asp
http://en.wikipedia.org/wiki/Electronic_mailing_list
http://en.wikipedia.org/wiki/Electronic_mailing_list
http://www.gnu.org/software/mailman/
http://wiki.list.org/display/DEV/Home
http://wiki.list.org/display/DEV/Home
http://www.emailman.com/unix/mailinglist.html
http://www.emailman.com/unix/mailinglist.html
http://www.mailradar.com
http://www.greatcircle.com/majordomo/
http://www.nlnet.nl
http://www.ietf.org/rfc/rfc4880.txt
http://www.phplist.com
http://www.qmail.org
http://www.sendmail.org
http://www.sympa.org
http://www.uva.nl
http://www.postfix.org

Appendix A

Planning

A.1 Preparation

• Create the planning

• First setup of the report

A.2 Week 1 - Exploratory research

• Research GNU Mailman. What is GNU Mailman and how does GNU Mailman exactly
work?

– Read the documentation

– Read forums and reviews about people who uses and implemented GNU Mailman

– Consult Joost van Baal at the University of Tilburg (Netherlands)

∗ Status of the GNU Mailman project
∗ Software Architecture

• Find out the issues that the NLnet Foundation have with their current mailing lists (Michiel
Leenaars)

• Compare the administrative functionalities of GNU Mailman with other popular mailing list
server software

• Identify the (GNU Mailman) mailing list security issues

A.3 Week 2 - Main research

• Research the popular mail server software useful functionalities

• Research the found popular mailing list server software

A.4 Week 3 - Reflection

• Analyse the results of the researched mailing list servers

• Define the improvements to make to the mailing list server software (GNU Mailman)

33

APPENDIX A. PLANNING

A.5 Week 4 - Closing the project

• Make the report

• Present the project results at the University of Amsterdam

34

Appendix B

Original Research Project
Description

B.1 Official Dutch Research Project Description

Usability- en efficientieverbeteringen Mailman
GNU Mailman is achter de schermen een van de belangrijkste communicatiemiddelen van onze tijd,
en wordt gebruikt voor het beheren van ettelijke honderdduizenden mailinglijsten waar dagelijks
vele tientallen miljoenen mensen gebruik van maken. Het beheer van Mailman is niet optimaal
ingesteld op meerdere lijsten tegelijk en op beheer door moderators buiten het web om, waardoor
beheerders van lijsten veel tijd kwijt zijn met het onderhoud van de abonnees en andere taken.
Ook zijn er een aantal securitytekortkomingen te identificeren. De opdracht is drieledig:

• Vergelijk de beheersmogelijkheden van Mailman en een aantal andere populaire mailinglijst-
servers, en doe suggesties voor verbeteringen van de Mailman lijst.

• Bouw een remote interface voor het beheer van Mailman (bijvoorbeeld op basis van SOAP)

• Demonstreer de succesvolle werking van de API aan de hand van een commandline client
(vergelijkbaar met de tool listadmin) en een GUI-versie.

B.2 The translated in English Research Project Description

Usability and efficiency improvements Mailman
GNU Mailman is behind the scenes one of the most important means of communication of our
time. It is used for managing several hundred thousand mailing lists which are daily used by
millions of people. The administration of Mailman isn’t setup optimal to use several lists at the
same time and for managing these lists by moderators outside the web. Therefore it costs the
administrators a lot of time and money to manage list members and other tasks. Besides this
there are also some security issues which should be identified. The assignment exists out of three
parts:

• Compare the administrative functionality of Mailman and a couple of other popular mailing
list server software. Do a suggestion based on this research to improve GNU Mailman list.

• Build a remote interface for managing Mailman e.g. based on SOAP.

• Demonstrate the API of the remote interface by the use of a GUI and commandline client
(based on the tool listadmin)

35

APPENDIX B. ORIGINAL RESEARCH PROJECT DESCRIPTION

B.3 Changing the project result

Half way the research it was clear that the world of mailing list server software was to complex to
easily find a solution which can be implemented in GNU Mailman within four weeks. Also there
seems to be more then one mailing list server as scalable and suitable as GNU Mailman which
fits within the case of the NLnet Foundation. Based on these facts it is decided to research each
relevant mailing list server software to provide an overview to decide how much every mailing list
server software is worth. From this result the best main functionalities can be concatenated and
can be used to build a new or more optimized mailing list/mail server software.

36

	1 Introduction
	2 Mail server software
	2.1 Mail User Agent
	2.2 Mail Submission Agent
	2.3 Mail Transport Agent
	2.4 Mail Delivery Agent
	2.5 Mail Access Agent
	2.6 Mail Retrieval Agent
	2.7 Sendmail
	2.8 QMail
	2.9 Exim 4
	2.10 Courier
	2.11 Postfix
	2.12 What mail server to choose?
	2.13 Security
	2.13.1 Configuration
	2.13.2 SSL
	2.13.3 Sender and mail server authentication
	2.13.4 OpenPGP

	3 Mailing list server software
	3.1 Main functionalities
	3.1.1 Subscribe
	3.1.2 Unsubscribe
	3.1.3 List the mailing list subscribers
	3.1.4 Show lists where you are a member of
	3.1.5 Provide mailing list information
	3.1.6 List the mailing lists of the server
	3.1.7 Change password
	3.1.8 Receive help
	3.1.9 Digest mail
	3.1.10 Stop and start delivering mail
	3.1.11 Conceal your address
	3.1.12 Do not receive own posts
	3.1.13 Email plaintext or html
	3.1.14 Attachments
	3.1.15 Archive mails
	3.1.16 Search archive
	3.1.17 Personalization of mails
	3.1.18 Extra interfaces

	3.2 Administration of the mailing lists
	3.2.1 Subscriber
	3.2.2 List Moderator
	3.2.3 List Owner
	3.2.4 System Administrator

	3.3 GNU Mailman
	3.3.1 Consult Joost van Baal about the current status of the GNU Mailman project

	3.4 Majordomo
	3.5 ListServ
	3.6 Sympa
	3.7 PHPList
	3.8 Compare the mailing list server software
	3.8.1 PHPList
	3.8.2 Sympa
	3.8.3 GNU Mailman
	3.8.4 Mailing lists and mail server interfaces

	4 The NLnet Foundation Case
	4.1 Who is the NLnet Foundation?
	4.2 What are the issues of the NLnet Foundation with the current GNU Mailman mailing lists?

	5 Conclusion
	5.1 The NLnet Foundation
	5.2 Creating a better implementation of the mailing lists within the mail server architecture

	6 Future Work
	6.1 The new mail server
	6.1.1 Mail User Agent
	6.1.2 Mail Submission Agent
	6.1.3 Queue
	6.1.4 Mail Transport Agent
	6.1.5 Mail Delivery Agent
	6.1.6 Mail Store
	6.1.7 Mail Access Agent
	6.1.8 Mail Retrieval Agent
	6.1.9 MRA Mailing List authentication

	6.2 Why not to extend the SMTP protocol
	6.3 The web (administration and configuration) interface
	6.4 AAA
	6.4.1 Authentication
	6.4.2 Authorization
	6.4.3 Accounting

	6.5 Future work conclusion
	6.6 Getting even more scalable

	A Planning
	A.1 Preparation
	A.2 Week 1 - Exploratory research
	A.3 Week 2 - Main research
	A.4 Week 3 - Reflection
	A.5 Week 4 - Closing the project

	B Original Research Project Description
	B.1 Official Dutch Research Project Description
	B.2 The translated in English Research Project Description
	B.3 Changing the project result

