
Top40 cache algorithm compared to LRU and LFU
SNE MSc Research Project

A. van Hoof

2 February 2009

Abstract

Describing the workings of a specially written caching algorithm unofficially called Top40
and comparing it to two more common algorithms LRU (Least Recently Used) and LFU
(Least Frequently Used) this report tries to show the effectiveness of Top40 algorithm in
a media streaming environment. Simulations where done using real data. These simula-
tions show the effectiveness of the Top40 algorithm and its main advantage in the current
environment with big media-file sizes: almost no inserts.

Preface

This report was created as part of a four week research project done as part of the System- and
Network-engineering master at the University of Amsterdam. The research was mostly done
on the NPO-ICT (Nederlandse Publieke Omroep ICT) location at Mediapark Hilversum. I
would like to thank the department NPO-ICT for providing resources and time for this research
project. A special thanks to Dick Snippe whose guidance and clear explanations gave me the
insights needed to do this project.

1 Introduction

To provide streaming media via the internet to the public (uitzeninggemist.nl and others)
mediastream-servers are used by NPO-ICT. These mediastream-servers have access to different
kinds, with regards to speed, of storage. A set of Perl-scripts has been written by D. Snippe
implementing a special for this situation optimized, cache-algorithm. The current production
environment uses the cache-algorithm without performance problems. The scripts use text-file
input data which is generated every minute and caching is done based on this data. Because
the way the created cache-algorithm works resembles the Dutch ”Top 40” radio hits chart, the
created algorithm is unofficially called: Top40-caching.

Research Question

The Top40 cache algorithm has never been compared to other more common algorithms like
LRU[4] (Least Recently Used) or LFU[7] (Least Frequently Used). This let to the following
research question used for the research in this report:

How does the by NPO-ICT created and used cache algorithm compares to other
cache algorithms in the same environment.

The Question has the ”in the same environment” part because there are some special demands
(or lack of) compared to environments in which the common cache algorithms are used.

1

2 Storage Cache Setup

As described in Section 1 the mediastream-servers at NPO-ICT use a special setup of their
storage to allow caching of their media-files. This section describes the setup. In figure 1 a

Streamservers
Streamservers

4G RAM

126G RAM

640G SSD

>50T SATA Storage Array

streamcache-
mgr

streamcache-
mgr

streamcache-
mgr

redirector/
streams-script

Admin Module

Medafile Medafile Medafile

Streamservers

A

B

C

D

Figure 1: Overview of Storage and Cache available to the mediastream-servers

schematic representation of the setup is given. Cache A and B are RAM-disks local to the
mediastream-servers and therefore the fastest. The same 4B cache A is available (mirrored)
on every stream-server, the 126GB RAM cache (B) is mirrored per two mediastream-servers
and therefore less preferred over A. The other cache (C) and the main storage D are shared
among all mediastream-servers. All the media-files are initially stored on the SATA Storage
Array (D). Every cache (A, B and C) is filled with media-files from this storage. There is
no data copied between the caches A, B and C. A process called streamcache-mgr is running
for every cache instance (A, B and C) deciding how to fill the cache managing based on data
received on a per minute basis from the admin module. Because all caches are managed by the
same algorithm , cache A is a subset of cache B which is a subset of cache C. The way the
the mediastream-servers, the caches and the streamcache-mgr work together create some cache
characteristics which are different from more common cache used in mostly hard-disks or CPUs.

Cache Read/Write Required Speed Size Cache Miss Cache Inserts
Common Read/Write micro-seconds MB Performance impact Small

Size/impact
Stream Read-Only seconds GB Compensated by

storage-hardware
Big size/impact

Table 1: Characteristics of a Common cache compared to the stream cache

2

3 Simulation Environment

Because it is not possible nor advisable to do tests in a production/live environment, a simulated
environment was created. The Top40 cache algorithm is written in Perl[5] and this program-
ming language was used to implement the cache algorithms for comparison. The simulation
environment consists of shell and AWK scripts glueing it all together. To avoid access to the
real storage environment containing all the files, a Perl Tie BTREE database was used contain-
ing filename and file sizes (StorageDB in figure 2) and a same type of database was used the act
as a cache (CacheDB in figure 2). The real requests where archived and 11 days of historical
data was used to do the simulations. The first day was removed from the results to allow the
caches to be filled and and avoid the influence of the initial fluctuations. A modified version of
the streamcache-mgr script was used to generate the same output as the LRU an LFU programs
and to avoid actual data access and cache updates on the production systems. The plots of the
input data characteristics and the results were done using gnuplot[1].

4 LRU, LFU and Top40 algorithm implementation

Both the LRU and LFU algorithm are implemented in a Perl program according to the flow
diagram presented in Figure 2. The input data (STATS) is a text file with to columns: requests

Value

Value

Value

filename

filename

size

size

filename

F

ReadLine STATS

MediaFile in
Cache?

Add to Cache

Does it Fit?F

T T

F

calculate current
cachefree

Remove Cached
MediaFile from Cache

StorageDB

CacheDB

Cache HIT!

STATS?

T

Stop/Write
Results

Start/Init

CacheDB

cachefree -= size

Wanted in
Cache? T

F

CacheDB

StorageDB

filename

CacheDB

CacheDB

cachefree += size

A

C
Found File to

Delete?

F

T

Age the Cache

B

Figure 2: Flow diagram of the LRU and LFU programs

of the pas minute R and the filename of the requested file FILENAME, ordered by R.

The used LRU cache algorithm

With LRU, every FILENAME in cache (CacheDB in Figure 2) has a time-stamp assigned when
inserted or when found in cache. This avoids the need for cache aging (A). The implemented

3

LRU algorithm does not make a decision at B (FILENAME is always wanted in cache). It
selects candidates for removal at C finding the oldest files in the cache using the time-stamp
stored in the cache with the FILENAME.
The LRU algoritm in pseudo-code:

if FILENAME in cache
value(FILENAME) = timestamp
EXIT

while cachefree < filesize(FILENAME)
find and remove candidate in cache with oldest timestamp
cachefree = cachefree + filesize(candidate)

insert value(FILENAME) = timestamp

The used LFU cache algorithm

For LFU when a file is inserted into the cache (CacheDB in Figure 2) the number of requests
R is associated with the FILENAME. Unlike pure LFU, the implemented LFU algorithm ages
the cache (in Figure 2 at A) to avoid cache pollution. The cache is aged according to:

w(t) =
w(t− 1)

2
(1)

When a file is requested (R times) and already in cache its w(t) is recalculated:

w(t) = R+
w(t− 1)

2
(2)

The LFU algorithm in pseudo-code:

Devide every value(FILENAME) in cache by 2
if FILENAME in cache
value(FILENAME) = R + value(FILENAME)
EXIT

while cachefree < filesize(FILENAME)
find and remove candidate in cache with smallest value
cachefree = cachefree + filesize(candidate)

insert value(FILENAME) = R

The Top40 cache algorithm

To manage each cache the streamcache-mgr (figure 1) scripts use a special algorithm to deter-
mine what to put in the cache and what can be removed. The algorithm is specially tailored
to take advantage of differences with the common cache setups (Table 1). Before a media-file
is inserted in the cache some extra choices are made. A media-file requested only once will not
be inserted into the cache. Using the input data to determine the weight, the weight value is
used in a replacement algorithm, based on Least Frequently Used (LFU). The weight of a file
either in or outside the cache is calculated as follows

w(t) = w(t0) ∗ 2−λ∗(t−t0) (3)

where
λ =

−log0.5
decaytime

(4)

4

The value of decaytime is a tunable parameter known as time to half value. In the current
production environment it is 120 for the 4GB and 126GB caches and 604800 for the 640 GB
cache. When a file is requested (R times) its weight is recalculated:

w(t) = R+ w(t0) ∗ 2−λ∗(t−t0) (5)

The list containing the weights is ordered by w(t) with the biggest w(t) on top: a ”chart”.
Candidates for removal are files with the smallest w(t) but they are only removed when the
file to be inserted has a w(t) bigger than a threshold value and the candidates for removal are
below the threshold level. This way media-files becoming very popular (from nothing to number
one) will enter the cache and replace files which are on their way down and are in the lower
regions of the ”chart”. This kind of hysteresis also avoids cache inserts of media file which are
requested only a few times. This part of the algorithm is the reason for its unofficial name
”Top40-caching” because radio music hit charts (Dutch Top-40) act the same way.

5 Characteristics of the Input Data

The characteristics of the input data are important for the success of the Top40 algorithm.
The input data consists of a media-file name and the number of requests for this file in the
past minute ordered from top to bottom. Figure 3(a) shows: a small number of the files are
requested many times, while many files are requested only a few times. Because the size of

(a) % of request and % of files (b) % of request and cumulative file size (log)

(c) Number of requests and file size

Figure 3: Characteristics of the input data

5

each media-file is available the graphs can be created showing the the cumulative size of the
requested files (figure 3(b)), and the size of the files requested (figure 3(c)). This behavior was
also found by Abrams e.a. for WWW data [2]. Using the input data a overview of the requests
on a per minute basis can be created (figure 4).

Figure 4: Number of requests within 10 days of January 2009 on a per minute basis

6 Results

All tests used the same input data, so all hit-rates and inserts are based on the same 10 days (11
days minus 1 day for cache settlement). The input data used to create the results consisted of
14.400 files containing a total of 18.061.817 requests for 11.150 different media-files. The Hit-rate

Cache 4GB 126GB 640GB
HR Ins HR Ins HR Ins

LRU 11.8 σ=7.9 230.3 σ=144.6 75.2 σ=6.3 96.8 σ=70.8 96.7 σ=2.4 12.4 σ=8.8

LFU 33.7 σ=9.7 219.9 σ=139.3 61.8 σ=15.7 147.1 σ=86.6 61.8 σ=15.7 147.1 σ=86.6

Top40 34.9 σ=8.0 0.014 σ=0.14 74.2 σ=6.3 0.16 σ=0.56 92.7 σ=3.3 0.026 σ=0.23

Table 2: Average Hit-Rate (%) and average Inserts of different kind of cache types and sizes

of all caches increases when the size of the cache increases. LFU is already at a maximum with
126Gb cache-size. LRU benefits the most from the biggest cache and LFU performs relatively
better in the smallest cache size. In all cache sizes Top40 keeps up with the best performing
algorithm for that cache size. Top40 has almost no inserts at any cache size while both LRU
and LFU do a lot of cache inserts. A media-file is always inserted from the main storage to a
cache and due to the size of the media-file an insert will take considerable time (in the order of
seconds) and will have a performance impact. In the production environment the inserts need
to be at a minimum. The Hit-rate is an performance indicator, but the number of inserts is
even more important. The results shows the effectiveness of the Top40 algorithm, the hit-rate
is high while the inserts are minimal. In section A graphs with the results of the simulation are
shown. To clearly show the effectiveness of the Top40 algorithm the following graphs show the
result for one day (Wednesday 12 January).

6

(a) 4GB Cache

(b) 126GB Cache

(c) 640GB Cache

Figure 5: Hit-rate/minute and Inserts/minute of LRU, LFU and Top40 on Wed-12 (1 day, 1440
samples) with different cache sizes

7

7 Conclusion and Future work

Using real input data and two simple but effective caching algorithms as comparison, the spe-
cially written Top40 caching (section 4) performs like LRU with big caches and LFU with a
small cache size, as shown in table 2), when looking at cache Hit Rate but the cache inserts
done by the Top40 algorithm are always far below the cache inserts done by the LRU algorithm
making the Top40 far more effective.

The Top40 caching algorithm has tunable parameters like threshold and decay-time (for-
mula 4). Using the test environment it is possible to do simulations with different values of
those parameters to show the influence of those parameters on the cache hit-rate and cache
inserts. It looks that for the biggest cache (640GB) a better hit-rate is possible, but this may
lead to more inserts.

There many more cache algorithms available from simple extentions to LRU and LFU [7]
to more complicated like LANDLORD[6] or ARC[3]. Using the created simulation environment
these could be compared to Top40-caching.

References

[1] gnuplot homepage, Januari 2009. http://www.gnuplot.info/.

[2] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Edward A. Fox, and Stephen
Williams. Removal policies in network caches for world-wide web documents. In SIGCOMM
’96: Conference proceedings on Applications, technologies, architectures, and protocols for
computer communications, pages 293–305, New York, NY, USA, 1996. ACM.

[3] Nimrod Megiddo and Dharmendra S. Modha. Arc: A self-tuning, low overhead replacement
cache. In In Proceedings of the 2003 Conference on File and Storage Technologies (FAST,
pages 115–130, 2003.

[4] Andrew S. Tanenbaum. Operating Systems, Design and Implementation. 1987.

[5] Larry Wall. Programming Perl. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2000.

[6] Neal E. Young. On-line file caching. In In Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 82–86. ACM Press, 1998.

[7] Yuanyuan Zhou, James F. Philbin, and Kai Li. The multi-queue replacement algorithm
for second level buffer caches. In In Proceedings of the 2001 USENIX Annual Technical
Conference, pages 91–104, 2001.

8

A 10 day graphs of the simulation results

Figure 6: HitRate an Inserts of LRU 4GB Cache

Figure 7: HitRate an Inserts of LFU 4GB Cache

Figure 8: HitRate an Inserts of Top40 4GB Cache

9

Figure 9: HitRate an Inserts of LRU 126GB Cache

Figure 10: HitRate an Inserts of LFU 126GB Cache

Figure 11: HitRate an Inserts of Top40 126GB Cache

10

Figure 12: HitRate an Inserts of LRU 640GB Cache

Figure 13: HitRate an Inserts of LFU 640GB Cache

Figure 14: HitRate an Inserts of Top40 640GB Cache

11

