
System and Network Engineering

Research Project 1

Universal Plug and Play
vulnerabilities in Eventing

Author:
Joeri Blokhuis
joeri.blokhuis@os3.nl

Supervisor:
Armijn Hemel

February 4, 2009

Contents

1 Introduction 3

2 Background 4

3 Eventing 5
3.1 GENA . 5
3.2 Subscription . 5

3.2.1 Subscription response . 6
3.2.2 Subscription renewal . 7

3.3 Cancellation . 8
3.4 Notification . 9

3.4.1 Event keys . 9

4 Eventing in practice 11
4.1 Methodology . 11

4.1.1 Testing UPnP tools . 11
4.1.2 Code analysing/writing 11

4.2 Subscription . 12
4.2.1 Callback URLs . 13

4.3 UUID . 14
4.4 Denial of Service . 15

5 Conclusion 18

6 Future research 18

Abstract

UPnP technology is used to auto-configure networked devices and to
simplify home networking. The eventing part of UPnP keeps state of
variable changes. A UPnP control point can submit a subscription to
be notified of event changes. The device will notify the control point
when state changes occur. To receive a notification a Callback URL is
submitted when subscribing to the eventing service. This URL is not
restricted to the subscribers’ IP address. Instead any IP address can be
registered. When testing devices a flaw was found in subscribing to event
notifications, causing a denial of service.

2

1 Introduction

Configuring a networked device properly often requires some knowledge of net-
working, which many people do not have. To overcome the problems resulting
from improper configuration (not properly working networked devices) tech-
nologies such as Universal Plug and Play (UPnP)[1], JINI[2] and Zeroconf[3]
were developed.

Home networking devices such as game consoles, digital picture frames and
Internet Gateways, is a rapidly growing market. Therefore in 1999 the UPnP
Forum[4] was formed by twenty major companies from various industries, like,
computers, home automation, networking, consumer electronics and mobile
products. Ten years later more than 800 companies are members of the UPnP
Forum. The UPnP Forum is an organization to help define the UPnP standards
and to simplify home networking.

UPnP technology enables data communication between two devices which
is controlled by a so called control device. UPnP is also operating system,
programming language or network independent. When two devices are com-
municating, configuration is done transparently on the background, no user
interaction is required. For instance, a MSN video chat requires a port to be
opened, to set up a peer-to-peer communication. With UPnP enabled this will
be done automatically without any user interaction. When the video chat has
finished, the port will be automatically closed.

UPnP is using industry standards including TCP, IP, UDP, HTTP, SOAP
and XML. A device can join a network, obtain an IP-Address, learn about other
devices and leave the network without leaving any unwanted state.

UPnP has a simple architecture. The device architecture can be defined by
devices, services and control points. A device is called a UPnP device when
it implements the protocols required by the UPnP architecture. A service is
no more than the functionalities provided by a device. A control point is an
entity that works with services of a UPnP device. A control point can invoke
a service, this can be a desktop PC or another UPnP device. In this way they
can form a peer-to-peer network and take advantage of each-other services. A
service might have a state table. A control point can subscribe to that service
to keep state when a variable changes. This is called eventing.

UPnP devices have several phases and will be described briefly.

Addressing A UPnP device joins a network and obtains an IP-Address.

Description Lists the functionality provided by a device. Descriptions are
written in XML-format.

Discovery Control points find a UPnP device and retrieve description infor-
mation.

Control Allows a control point to invoke actions.

Eventing A device will notify all subscribers when state changes occur.

Presentation Optionally a device will provide an HTML-based interface for
monitoring and alternating.

Because of the time frame of four weeks, it is infeasible to research all phases.
Therefore, only UPnP Eventing will be researched. The main question will be:

3

What vulnerabilities can be found in eventing? This will be done by analysing
code and testing devices.

In section 2 a brief overview is given about other researches conducted on
Universal Plug and Play. Section 3 will outline UPnP eventing in detail by
explaining how to register and cancel for event notification messages. An ap-
proach to tackle UPnP eventing is discussed in section 4. Finally section 5 will
present a conclusion and section 6 discusses future work.

2 Background

Armijn Hemel showed that UPnP is prone to various attacks. His research[8]
focussed on Internet Gateway Devices(IGD) and showed that internal ma-
chines could be exposed to outside networks. The internal machine does
not even have to know that a port on his IP-address is forwarded to the
outside network. Another vulnerability he had found was, invalidated pa-
rameters. By making a malicious port forwarding call it was possible to
reboot the device.

Adrian Pastor and Petko D. Petkov showed[9] that it was possible to abuse
a known defect in a Flash player to send UPnP requests from within a
client’s web browser to a UPnP enabled router and change the router’s
firewall settings.

Dror Shalev created a ”crazy toaster”. Shalev wants to make people aware of
what danger UPnP devices can be, by creating Trojan UPnP devices[10],
that will provide services that could do serious harm.

Jonathan Squire confirmed the previous mentioned work in his presentation[11]
and developed a tool called UPnPwn. This tool allows basic manipulation
off an IGD, such as adding, removing and listing port mappings.

4

3 Eventing

As mentioned before, eventing allows control points to register to a device when
state changes occur. Control points receive a notification and may wish to
respond to that notification, by invoking an action.

UPnP is using a publisher/subscriber model to implement eventing. The
General Event Notification Architecture (GENA) is used to implement this. A
publisher is a service which accept registrations from clients who are interested in
receiving notifications. A subscriber is called a ”client” and will subscribe itself
to a publisher. If a subscriber does not wish to receive any event notifications it
may unsubscribe itself from the publisher. The publisher will then, stop sending
event messages on state changes. Subscriptions may expire overtime. In order to
keep receiving message notifications, a renewal subscription must be submitted
by the client.

3.1 GENA

The GENA protocol is used to implement the publisher/subscriber model.
GENA uses HTTP as the transport layer for communication between publish-
ers and subscribers. To achieve this GENA has introduced three new HTTP
methods for subscription and notification:

• SUBSCRIBE to register for events and receive notifications. This is also
used for renewing existing subscriptions.

• UNSUBSCRIBE to cancel subscriptions.

• NOTIFY to send events to the subscriber.

Subscribe and unsubscribe messages are always sent by a control point and never
from a UPnP device, having an event service. A UPnP device that provides
eventing will receive subscribe and unsubscribe messages and will only send
notify messages to control points.

GENA messages use four new HTTP headers along with common headers
such as Host, Timeout, Date, Server, Content-Length and Content-Type. The
new headers are:

• CALLBACK is a URL to send notifications to the subscriber.

• NT provides the notification type. This is used to indicate the kind of
notification.

• NTS notification subtype. NTS is used when a more detailed notification
is selected.

• SID stands for Session ID. This ID is used when canceling or renewing a
subscription, but also for communication between a subscriber/publisher.

3.2 Subscription

Before any subscription can be made a control point needs to retrieve a descrip-
tion from a UPnP device that supports eventing. This description is written

5

in XML-format and contains information about subscribing to eventing. For
eventing the following should be found: an event subscription URL and a ser-
vice identifier for each service.

A subscription request will be of the following format:

SUBSCRIBE: publisher path HTTP/1.1
HOST: publisher HOST:PORT
CALLBACK: delivery URL
NT: upnp:event
Timeout: Second-subscription duration

Table 1 explains the subscription headers.

HTTP Header Type Example
Host domain or IP address and optional port num-

ber (of the service)
192.168.2.1:52896

Callback One or more URLs to deliver events <http://192.168.2.1/test>
<nextURL>

NT upnp:event Must always be
upnp:event

Timeout Second-time (in seconds or Infinite) Second-1800 or Seconds-
Infinite

Table 1: Subscription headers.

A subscription is sent without a body, a CR/LF (carriage return/line feed)
should be entered after the last HTTP header. Of all headers, only Timeout is
not required. However it is recommended that a timeout should be added to a
subscription by the control point. If no timeout is given a default value will be
set by the publisher.

3.2.1 Subscription response

When a subscription is received by a device, it will accept the subscription when
the supplied headers were parsed successfully. The service will respond with a
unique Session ID (SID) and the duration of the subscription. The SID provides
uniqueness and allows further communication between the service and control
point.

When the subscription is successful the service will send a response in the fol-
lowing format:

HTTP/1.1 200 OK
DATE: date of when the response was generated
SERVER: Operating System/version UPnP/1.0 product/version
SID: uuid:subscription-UUID
Timeout: Second-subscription duration

The response must be sent within 30 seconds.

Note: According to the UPnP specifications, the service should accept as many

6

subscriptions as it can reasonably maintain and deliver.

When a subscription is not accepted by the publisher it should return an HTTP
error. There are four error values that can occur:

Type Response
Incompatible headers 400 Bad Request
Missing or Invalid Callback 412 Precondition Failed
Invalid NT 412 Precondition Failed
Unable to Accept Subscription 5xx

Table 2: HTTP error response.

3.2.2 Subscription renewal

The duration of a subscription is determined by a control point or by the service.
When no timeout (in seconds) is submitted during a subscription by a control
point, the publisher will set a default timeout. This will be typically 1800 or
more seconds, depending on the vendor. When a subscription is not infinite the
subscription will expire at some stage and will be removed from the publisher’s
subscribers list. However, if the control point wishes to receive messages after
the subscription has expired it must renew the subscription before it expires.

The renewal subscription is sent to the same URL as the initial subscription
and is actually the same as a subscription only using different HTTP headers.
For renewal of a subscription the Callback and NT header are no longer required,
because the publisher has already registered those headers during the initial
subscription. A renewal subscription only adds the SID header, which was
returned in the response of a successful subscription.

The format of a renewal subscription is as follows:

SUBSCRIBE: publisher path HTTP/1.1
HOST: publisher HOST:PORT
SID: uuid:subscription UUID
Timeout: Second-subscription duration

The unique Session ID is stored by both the publisher and control point for
further communication. Therefore, only the SID is required to renew a sub-
scription. The Timeout field is not required, but its use is recommended.

After the renewal request is accepted by the publisher it will respond with the
same message format as the response to the original subscription request. This
includes Date, Server, SID and Timeout headers. Unlike a subscription there
will be no initial event message sent to the control point. This is not needed be-
cause the control point is already receiving event notifications on state changes.

If the renewal cannot be accepted by the publisher, it will return one of the
previous mentioned HTTP errors (table 2).

7

3.3 Cancellation

There are two main reasons to cancel a subscription. The most prominent rea-
son for a control point to cancel notification, is that it is no longer desired. The
second reason is when the control point leaves the network. The control point
must say proper goodbye to the publisher when leaving the network. If the
control point does not send a cancellation message the publisher will keep the
control point registered in the subscribers list. A control point will stay in the
subscribers list until the subscription expires or is cancelled. Meanwhile, event
messages are sent to the control point regardless of its presence. This will con-
sume unnecessary bandwidth and processing power on the publisher’s side. To
avoid unnecessary consuming the control point is ought to cancel a subscription
when leaving the network. This is done by sending an unsubscription message
to the publisher. An unsubscription message has the following format:

UNSUBSCRIBE: publisher path HTTP/1.1
HOST: publisher HOST:PORT
SID: uuid: subscription UUID

All it takes to unsubscribe a control point from receiving event notifications is
the SID, which is generated after a successful accepted subscription.

When a subscription is successfully received and processed, the service sends
an HTTP success response to the control point. This is a typically:

HTTP/1.1 200 OK

If some error occurs with the cancellation request, the service will send a re-
sponse with one of the following errors:

Error type Error return
Incompatible headers 400 Bad Request
Invalid SID 412 Precondition Failed
Missing SID 412 Precondition Failed

Table 3: Cancellation error response.

8

3.4 Notification

As mentioned previously, a service will send an initial event message immedi-
ately after a successful subscription of a control point. This message contain all
the names and values for all evented variables provided by the service in XML
format. Control points are kept informed of state changes as soon as any of the
evented variable changes state.

A notify message has the following format:

NOTIFY delivery path HTTP/1.1
HOST: delivery host:port
CONTENT-TYPE: text/xml
CONTENT-LENGTH: length of body in bytes
NT: upnp:event
NTS: upnp:propchange
SID: uuid:subscription UUID
SEQ: event key

<e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">
....<e:property>
.......<variableName>new Value</variableName>
....</e:property>
</e:propertyset>

This message is sent by using the HTTP Notify method, which is introduced
by GENA. When such a message is received, it will indicate that this is an event.
When a notify message is received by a control point is must respond with an
HTTP success.

HTTP/1.1 200 OK

If the subscriber does not respond within 30 seconds the service will stop trying
to send the message. However the subscription remains active and will try to
send future event messages (on next event) to the subscriber. The subscriber
will not be deleted from the subscribers list until the subscription is cancelled
or has expired.

3.4.1 Event keys

When a NOTIFY message is received it will contain a SEQ header. A SEQ
header contains an event key(sequence number). This number is used as a
control mechanism to ensure clients have not missed an event notification. The
event key is a 32-bit integer value and is maintained by the publisher. The
initial notification message is initialized on 0, this message is sent to the control
point when the publisher successfully accepted the subscription request. On
every subsequent message sent by the publisher, the event key will increment.
When the event key gets too large it should be handled by the publisher and
control point. The publisher is responsible for resetting the event key to 1. The
event key will not be wrapped back to 0, because this represents the initial
notification message. The control point however, must not interpret this as an
error.

9

When a control point detects it has missed an event notification message, it
must unsubscribe and re-subscribe itself. This is done to ensure that the control
point has the current state variables. By re-subscribing, the control point will
receive a new session ID and the initial notification message with a 0 event key.

10

4 Eventing in practice

In this section the practical part of eventing will be discussed. During this
research two angles of attack were researched:

• For subscribing, a Callback URL will be registered. This URL is called
by the publisher when a variable has changed. This will be researched
whether it is possible to attack a website by changing the Callback URL
into any given URL.

• If a subscriber leaves the network and does not cancel its subscription,
the publisher will think the subscriber is still alive and will not be deleted
from the subscribers list. By abrupt terminating from the network and
making a new subscription when rejoining the network, will it be possible
to fill up the subscribers list in such a way that it cannot accept any new
subscribers?

4.1 Methodology

This subsection discusses the methodology used during this research.

4.1.1 Testing UPnP tools

Two Internet Gateway Devices with UPnP capabilities were used for testing:

• Model: Edimax BR-6104K[6]
Firmware: 3.25
UPnP library: Intel libupnp 1.2.1[13]

• Model: Sitecom WL-534[5]
Firmware: 1.52
UPnP library: Intel libupnp 1.2.1[13]

To get a better understanding on the practical side of UPnP, I used a tool
Miranda[16] and a tool written by my supervisor Armijn Hemel to test and
debug the devices. Both tools are written in Python and have not fully imple-
mented all functionality which a normal UPnP device/control point might pro-
vide. However it contains basic functions, such as sending discovery messages,
retrieving and parsing XML description files and adding/deleting portmappings.
A TCP dump tool was used to analyse UPnP messages that were sent on the
network. This gave a good overview of how UPnP works in practice on the two
tested devices.

4.1.2 Code analysing/writing

Code archives of the Edimax[14] en Sitecom[15] which are publicly available
have been investigated on potential flaws in UPnP Eventing. Both stacks use
libupnp[13], a UPnP library written by Intel. It is written in C and although it
is documented it is hard to understand the source code in the limited amount
of time. A more experienced C-programmer might disagree.

Eventing was not implemented in both of the previous mentioned tools.
Therefore a tool was written (in Python) to send subscribe, re-subscribe and
unsubscribe messages.

11

4.2 Subscription

Before a subscription can be made by a control point, a description file must
be retrieved to set the right HTTP headers such as HOST and publisher path.
The description file is in XML format and contains information like manufac-
turer, model, presentation URL and services provided by the UPnP device. A
description file can be retrieved by sending a discovery message on the network
to the the multicast address 239.255.255.250 on port 1900 via UDP. A UPnP
enabled device is required to respond with a message similar to following:

NOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
CACHE-CONTROL: max-age=1800
LOCATION: http://192.168.2.1:52869/picsdesc.xml
NT: upnp:rootdevice
NTS: ssdp:alive
SERVER: Linux/2.4.18-MIPS-01.00, UPnP/1.0, Intel SDK for UPnP devices /1.2
USN: uuid:75802409-bccb-40e7-8e6c-fa095ecce13e::upnp:rootdevice

The LOCATION header from the message above contains a URL to an XML
file. This file must be retrieved, to locate the eventSubURL. The following is
an extract from the XML file and is only showing a part of the service list.

......<serviceList>

.......<service>

........<serviceType>urn:schemas-upnp-org:service:WANIPConnection:1</serviceType>

........<serviceId>urn:upnp-org:serviceId:WANIPConn1</serviceId>

........<controlURL>/upnp/control/WANIPConn1</controlURL>

........<eventSubURL>/upnp/control/WANIPConn1</eventSubURL>

........<SCPDURL>/picsconnSCPD.xml</SCPDURL>

.......</service>

......</serviceList>

The eventSubURL must be extracted, because it serves as the delivery path of
a subscription message. The LOCATION header and eventSubURL are needed
to create a proper subscription message. The LOCATION header provides in-
formation needed for the HOST header, http://192.168.2.1:52869 and the
XML file contains the publisher path, /upnp/control/WANIPconn1. The follow-
ing piece of Python code shows how a subscription message is created according
to the extracted information.

headers = {’HOST’: ’’, ’CALLBACK’: ’’, ’NT’: ’upnp:event’, ’TIMEOUT’: ’Second-infinite’}
#Host and optional port number
conn = httplib.HTTPConnection("192.168.2.1:52869")

#Assign dynamic headers with proper values
headers[’HOST’] = "192.168.2.1:52869"
headers[’CALLBACK’] = "<192.168.2.101/test>"

#create request. We want to subscribe so the HTTP method request is placed as the first argument.
#and the second argument is the selector or the delivery path (like: /index.html)

12

http://192.168.2.1:52869

conn.putrequest(’SUBSCRIBE’, "/upnp/control/WANIPConn1", skip_host=True, skip_accept_encoding=True)

Put all headers in order to the specifications
conn.putheader("HOST", headers[’HOST’])
conn.putheader("CALLBACK", headers[’CALLBACK’])
conn.putheader("NT", headers[’NT’])
conn.putheader("TIMEOUT", headers[’TIMEOUT’])
conn.endheaders()

#wait for a response and print it to the commandline
response = conn.getresponse()
print response.status, response.reason

On the network the subscription and response will be as follows:

The subscription looks like this:

SUBSCRIBE /upnp/control/WANIPConn1 HTTP/1.1
HOST: 192.168.2.1:52869
CALLBACK: <http://192.168.2.101/test>
NT: upnp:event
TIMEOUT: Second-infinite

The response looks like this:

HTTP/1.1 200 OK
DATE: Sat, 01 Jan 2000 22:30:45 GMT
SERVER: Linux/2.4.18-MIPS-01.00, UPnP/1.0, Intel SDK for UPnP devices /1.2
SID: uuid:16766c80-1dd2-11b2-a2ce-e7182fbea8a1
TIMEOUT: Second-infinite

4.2.1 Callback URLs

The Callback URL is submitted manually by the control point. In the subscrip-
tion example the IP address of the subscriber was used. While testing different
Callback URLs, it was found that any URL could be submitted by the control
point. This means that control point A could request a subscription for control
point B or any other random website. The service will accept the URL as long
as it is valid, regardless of the source of the IP address. The service will also
accept non-local IP addresses. When an event occurs the publisher will send
its notifications to the registered Callback URL. When just a regular website is
submitted as Callback URL, the website will receive the notifications. Because
a regular website most likely does not support an HTTP NOTIFY method, the
website will respond with:

501 Method Not Implemented

The devices that were researched will not cancel the subscription as one
might expect and as is required by the specification. It looks like the same prin-
ciple is applied when a control point does not respond to notifications. Instead
it will maintain subscriptions until they expire. By keeping faulty control points

13

(which can be a mistaken IP address) subscribed, sending events will consume
unnecessary resources. This contradicts with a previous statement (according
to the specifications[12]) on cancelling event notifications. When leaving the
network a cancellation message should be sent, because it will reduce the ser-
vice and network load. It could not be found why subscriptions are kept when
a 501 error is received.

The service will also allow the same URL to be registered more than once.
The service does not check its subscribers list for the same Callback URL, but
instead it registers the same URL over and over again.

Subscription requests allow more than one Callback URL to be submitted.
When submitting multiple URLs, they should be separated by angle brackets <
>. During tests using multiple URLs it was not clear why state changes were
only sent to one URL at time which also happened to be the first URL in the
subscribers list. By doing some more thorough testing it became clear that the
stack will check the URLs in order of subscription. When a ”correct” URL is
found it will be the only one used for the Callback. For example:

CALLBACK: <http://192.168.2.1/test><http://google.com/>

This example shows multiple callback URLs. When a subscription is received
by the service it will process the first URL. Because <http://192.168.2.1/test>
is a correct URL no further processing will be done. The service only checks
whether the submitted URL is valid, but does not check if it accept NOTIFY
messages.

Another example:

CALLBACK: <http://google.com/><http://192.168.2.1/test>

In this example the two URLs are switched. According to the UPnP specifica-
tions a domain should be accepted. However this is not the case. All domains
are rejected by getting a 412 precondition failed response. Processing the
second URL, which is correct, will be used as the Callback URL.

A successful subscription will reply among other HTTP headers with a unique
generated Session ID. This will be discussed in the next section.

4.3 UUID

A successful subscription will have a HTTP header with a unique, generated
Session ID. A UUID (Universally Unique IDentifier), also known as a GUID
(Globally Unique IDentifier), is 128 bits long and is used for communication
between the publisher and control point. In libupnp the UUID is generated
using a timestamp and a clock sequence to create randomness. Once a UUID
is generated it should be kept private to the subscriber/control point and the
publisher.

Every event notification message sent to a certain control point will contain
the same unique UUID and does not change during the subscription. For a
re-subscription or cancellation the UUID is used to extend a subscription or
unsubscribe from receiving events. The sender of these messages will not be
checked. This means a cancellation could be sent from any local IP address.

14

This implementation has one advantage: when an IP address of a host suddenly
changes, it can still send a proper cancellation message and subscribe itself again
by setting the Callback URL to the new IP address. The only downside of this
implementation is that a UUID can be sniffed by ARP-spoofing the network.
If a NOTIFY message is captured a cancellation message is easily sent to the
publisher.

4.4 Denial of Service

Although the initial plan was to attack the service its subscribers list by leaving
and rejoining the network, a simpler way was found. The same Callback URL is
allowed to be used for an unlimited amount of times and thereby it has become
suitable for the same attack: Fill the subscribers list of the service in such a way
that it cannot accept any new subscriptions. By setting the timeout to ’infinite’
a subscribed message will never expire until UPnP is disabled.

This attack is done by creating a while-loop in which a new subscription
request is sent over and over again. The Callback URL is set to the same IP
address and contains a unique part, which is simply the iteration number of
the while-loop. This means when the loop is at 421 the Callback URL will
look something like: http://192.168.2.1/421. In this way output can be easily
monitored on the control point. This approach was tested on both IGD devices
and both were prone to this attack, which was to be expected since both stacks
use libupnp. On the Sitecom device it took on average around 14000 subscrip-
tions to create a denial of service. The Edimax device needed around 18000
subscriptions on average before it stopped working.

Before the mass subscription request the output of Nmap looked like this:

joeri@localhost#nmap -v -PN -p 52869 192.168.2.1
Interesting ports on 192.168.2.1:
PORT STATE SERVICE
52869/tcp open unknown

After the mass subscription request the output of Nmap looked like this:

joeri@localhost#nmap -v -PN -p 52869 192.168.2.1
Interesting ports on 192.168.2.1:
PORT STATE SERVICE
52869/tcp closed unknown

It clearly shows that UPnP is no longer working.

15

While testing devices different values for the sleep commands were used in
the while-loop. A sleep function is used to influence the amount of subscrip-
tions being sent. The following two tables 4 and 5 show how long and how many
subscriptions it took to cause a denial of service. It also shows the amount of
milliseconds for the sleep function in the while-loop, because this has a notice-
able effect on the Edimax device.

Sleep(ms) Subscriptions(average amount) Time(minutes)
0.2 14187 98
0.2 13567 94
0.15 13895 95

Table 4: Sitecom statistics

Sleep(ms) Subscriptions(average amount) Time(minutes)
0.2 23744 102
0.10 18567 46
0.0 17485 42

Table 5: Edimax statistics

When testing the Edimax router the program was set to sleep to 0.2 seconds
on every loop. It took around 23000 subscriptions and about 1,5 hour on average
to cause a denial of service. When choosing a lower timing on the sleep function
it took less subscriptions to stop UPnP from working. Eventually with no sleep
function it took around 18000 subscriptions and only 42 minutes on average.
On the Sitecom router a sleep function had to be used otherwise it would receive
a timeout response from the service. Using different sleep values did not have
much influence on the average of subscriptions or the amount of time it took to
cause a denial of service. The Sitecom device will only accept a certain amount
of subscriptions each time. The amount varies as different sleep values are being
used. For example if the amount is 256, the Sitecom will stop responding after
every 256 subscriptions being sent, causing a timeout around 45 seconds before
continuing. Because of these timeouts it will take roughly 1,5 hour (despite
the different sleep values) for the Sitecom router to cause a denial of service on
UPnP, which is significantly more than the Edimax router.

When a denial of service is caused the device will still work, only UPnP
will be completely down. This means that no event notification messages or
responses to discovery messages are sent and no control, such as portmapping,
will be possible. The only way to recover from this is to reset the router by
powering down the device or disable and re-enable UPnP from the router’s
webinterface.

16

The denial of service might be caused for a few reasons. Both devices set a
maximum number of subscriptions as resources allow. The maximum number
will be set each time when UPnP is enabled. This number may vary when less re-
sources are available. The maximum number of subscriptions is checked against
the subscribers list when new subscriptions are accepted. When the subscribers
list contain as much subscriptions as the maximum number of subscriptions al-
lowed, no more subscriptions will be accepted (but also no subscriptions will
be deleted).. However it is suspected that more resources are being used than
initially were allowed. This can be due to the fact of the service accepting and
handling too many subscriptions at once. When more resources are being used
the maximum number of subscriptions that can be stored will be actually lower
than the initial value, causing a premature failure of the service. This explains
why the number of subscriptions is not consistent to cause a denial of service.

17

5 Conclusion

No harmful vulnerabilities were found in the UPnP eventing code in Intel’s
libupnp. By using UUIDs for communication between the publisher and control
points a cancellation can only be performed by the subscriber itself and cannot
easily cancel the subscription for another control point, without going through
a lot of effort (sniffing the UUID). In case a different Callback URL is used
by the subscriber only three entities should be aware of that unique UUID
(control point, subscriber and publisher). However when sniffing is successful a
subscription is easily cancelled, because the source of the unsubscription is not
checked. The publisher only checks the UUID of the unsubscription message
and matches it against its own entries of UUIDs. Testing showed that Callback
URLs are not checked. This causes no real threat to websites, because they will
reply with an error response. The fact that such subscriptions are not deleted
from the subscribers list is in contradiction to Intels own specifications: ”No
unnecessary consuming of resources”. A more intolerable point is the denial
of service, which can be generated by sending as many subscriptions, until the
service cannot handle any more.

6 Future research

Further research into this subject may focus on testing other UPnP stacks/devices.
Vendors should have implemented the amount subscriptions it can maintain and
deliver. Testing multiple devices of different vendors and UPnP stacks should
show if this is the case.

18

References

[1] Universal Plug and Play: website, http://www.upnp.org/

[2] JINI website, http://www.jini.org/

[3] Zero Configuration Networking website, http://www.zeroconf.org/

[4] UPnP forum: Website, http://www.upnp.org/

[5] Sitecom router WL-534 website,
http://www.sitecom.com/drivers_result.php?groupid=
5&productid=522&version=CA;001

[6] Edimax BR-6104 router website,
http://www.edimax.com/en/support_detail.php?pl1_id=3&pl1_
idSelect=support.php%3Fpl1_id%3D3%26mwsp%3D1&pd_id=144

[7] Intel UPnP stack website, http://www.intel.com/cd/ids/developer/
asmo-na/eng/downloads/upnp/overview/index.htm

[8] UPnP hacks by Armijn Hemel. website/paper,
http://www.upnp-hacks.org/, http://www.upnp-hacks.org/
sane2006-paper.pdf

[9] Hacking the interwebs - Reseach about UPnP by Adrian Pastor
and Petko D. Petkov. website, http://www.gnucitizen.org/blog/
hacking-the-interwebs/

[10] Presentation about the Crazy Toaster. presentation, http://sec.
drorshalev.com/dev/upnp/DC-15-Shalev-005.ppt

[11] Presentation of Jonathan Squire on UPnP vulnerabilities. presentation,
http://nchovy.kr/uploads/3/302/D1T2%20-%20Jonathan%20Squire%
20-%20A%20Fox%20in%20the%20Hen%20House.pdf

[12] UPnP Design by Example, by Michael Jeronimo and Jack Weast book,
ISBN-13: 978-0971786110

[13] Intel’s UPnP Library documentation website, http://sourceforge.net/
project/showfiles.php?group_id=7189&package_id=74114

[14] Edimax code archive website, http://edimax.nl/images/Image/
products/BR-6104K/BR-6104K_GPL.tar.gz

[15] Sitecom code archive website, http://www.sitecom.com/documents/
WL-160_GPL_11282006.tgz

[16] Miranda UPnP debugging tool website, http://www.sourcesec.com/
2008/11/07/miranda-upnp-administration-tool/

19

http://www.upnp.org/
http://www.jini.org/
http://www.zeroconf.org/
http://www.upnp.org/
http://www.sitecom.com/drivers_result.php?groupid=5&productid=522&version=CA;001
http://www.sitecom.com/drivers_result.php?groupid=5&productid=522&version=CA;001
http://www.edimax.com/en/support_detail.php?pl1_id=3&pl1_idSelect=support.php%3Fpl1_id%3D3%26mwsp%3D1&pd_id=144
http://www.edimax.com/en/support_detail.php?pl1_id=3&pl1_idSelect=support.php%3Fpl1_id%3D3%26mwsp%3D1&pd_id=144
http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/upnp/overview/index.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/upnp/overview/index.htm
http://www.upnp-hacks.org/
http://www.upnp-hacks.org/sane2006-paper.pdf
http://www.upnp-hacks.org/sane2006-paper.pdf
http://www.gnucitizen.org/blog/hacking-the-interwebs/
http://www.gnucitizen.org/blog/hacking-the-interwebs/
http://sec.drorshalev.com/dev/upnp/DC-15-Shalev-005.ppt
http://sec.drorshalev.com/dev/upnp/DC-15-Shalev-005.ppt
http://nchovy.kr/uploads/3/302/D1T2%20-%20Jonathan%20Squire%20-%20A%20Fox%20in%20the%20Hen%20House.pdf
http://nchovy.kr/uploads/3/302/D1T2%20-%20Jonathan%20Squire%20-%20A%20Fox%20in%20the%20Hen%20House.pdf
http://sourceforge.net/project/showfiles.php?group_id=7189&package_id=74114
http://sourceforge.net/project/showfiles.php?group_id=7189&package_id=74114
http://edimax.nl/images/Image/products/BR-6104K/BR-6104K_GPL.tar.gz
http://edimax.nl/images/Image/products/BR-6104K/BR-6104K_GPL.tar.gz
http://www.sitecom.com/documents/WL-160_GPL_11282006.tgz
http://www.sitecom.com/documents/WL-160_GPL_11282006.tgz
http://www.sourcesec.com/2008/11/07/miranda-upnp-administration-tool/
http://www.sourcesec.com/2008/11/07/miranda-upnp-administration-tool/

	Introduction
	Background
	Eventing
	GENA
	Subscription
	Subscription response
	Subscription renewal

	Cancellation
	Notification
	Event keys

	Eventing in practice
	Methodology
	Testing UPnP tools
	Code analysing/writing

	Subscription
	Callback URLs

	UUID
	Denial of Service

	Conclusion
	Future research

