
Research on OpenID and its integration

within the GravityZoo framework

Jarno van de Moosdijk
jarno.vandemoosdijk@os3.nl

January 2008

1

Research on implementation of OpenID within GravityZoo

Abstract

This report covers the research on the working of OpenID and its
integration into the GravityZoo framework. The GravityZoo frame-
work can be used to deliver applications to a wide variety of devices.
Currently, it is only possible to log in with a username and password
combination. OpenID authentication eliminates the need for separate
username/password combinations bound to each service. One identi-
fier can be used to log in to multiple OpenID enabled services across
different providers. The objective of this document is to give an in
depth view on the OpenID login procedure. It covers the usability of
the most popular OpenID Providers on mobile devices. None of these
providers have custom pages for mobile users, which makes them less
usable on mobile devices. Next to this, I have looked in to the require-
ments for integrating OpenID authentication within the GravityZoo
framework.

c© 2009 Jarno van de Moosdijk <jarno.vandemoosdijk@os3.nl>

Some rights reserved: This document is licensed under the Creative Com-
mons Attribution 3.0 Netherlands license. You are free to use and share
this document under the condition that you properly attribute the origi-
nal authors. Please see the following address for the full licence conditions:
http://creativecommons.org/licenses/by/3.0/nl/deed.en

2

jarno.vandemoosdijk@os3.nl
http://creativecommons.org/licenses/by/3.0/nl/deed.en

Research on implementation of OpenID within GravityZoo

Contents

1 Introduction 5
1.1 Research Focus . 5
1.2 Structure of this report . 6

2 The GravityZoo Framework 7

3 OpenID overview 9
3.1 Why choose for OpenID? . 9
3.2 Basic terminology . 11
3.3 OpenID identifier delegation 12
3.4 Example login procedure using OpenID 12

4 OpenID in depth 14
4.1 The supplied identifier . 15
4.2 Identifier normalization . 15
4.3 Discovery . 17

4.3.1 XRI resolution . 17
4.3.2 Yadis resolution . 18
4.3.3 HTML discovery . 18
4.3.4 XRDS: Extensible Resource Descriptor Set 18

4.4 Establishing an association (Optional) 20
4.5 Redirecting the end user, requesting authentication 21
4.6 End user authentication at OP 23

4.6.1 Positive Assertion . 23
4.6.2 Negative Assertion . 24

4.7 Verifying the authentication response 25
4.7.1 Verifying the return URL 25
4.7.2 Verifying the discovered information 25
4.7.3 Checking the nonce 26
4.7.4 Verifying the signatures 26

4.8 Generating signatures . 27

5 OpenID Extensions 28
5.1 OpenID Simple Registration Extension 1.0 28
5.2 OpenID Provider Authentication Policy Extension 1.0 29
5.3 OpenID Attribute Exchange 1.0 31

6 OpenID on mobile phones 32
6.1 Notable differences between PCs and mobile phones 32
6.2 Tested OpenID Providers . 33
6.3 Tested criteria . 33
6.4 Phones used during the test 34
6.5 The results . 35

3

Research on implementation of OpenID within GravityZoo

6.6 Conclusion on mobile-friendliness 38

7 Integrating OpenID 39
7.1 Where to place the Relying Party entity? 39
7.2 Relying Party process overview 40

7.2.1 Modifications to the login screen 41
7.2.2 Supplying the identifier 42
7.2.3 Normalizing the identifier and Discovering the OP . . 42
7.2.4 Redirecting the user 42
7.2.5 Intercepting and verifying the response from the OP . 44
7.2.6 Authorizing the end user 44

7.3 The code . 45

8 Conclusion 46

9 Future considerations 47

10 Acknowledgments 47

A Screenshots taken from OpenID Providers 50

4

Research on implementation of OpenID within GravityZoo

1 Introduction

In this period I have done research on OpenID [2] and the requirements for
its integration into the GravityZoo framework [1]. OpenID is a decentralized
user identification standard that makes use of URIs [3]. It eliminates the
need for multiple usernames across different services. The URI that identi-
fies the user can be used to log in to all OpenID enabled services.

The GravityZoo framework can be used to deliver applications to a wide
variety of devices. There is no application code distributed to the devices
itself. The applications run in the back-end on application servers. This
is totally transparent to the end user because there is no difference in the
feeling of the application.

Personal data generated with (or by) the application is stored on the
storage back-end and can be accessed through any device that has the
GravityZoo client installed. The only requirement is that you log in to the
GravityZoo framework with the same account as before. The mobile and
“fat client” version of the GravityZoo client all work on the same back-end.
GravityZoo is currently focusing on the mobile version of their application
framework. This framework is compatible with phones running the Symbian
S60 operating system.

1.1 Research Focus

The focus of my research, which covered the month January, first laid on
the OpenID specification itself. I have done research on how the OpenID
authentication works and explained the working of the protocol in depth
in this report. This was needed to specify the requirements for integrating
OpenID in to the GravityZoo framework.

Because GravityZoo is currently focusing on the mobile version of their
client, I tested the most popular OpenID Providers on their mobile phone
friendliness.

After this I looked in to the requirements of integrating OpenID into
the GravityZoo framework. The requirements for all steps of the OpenID
authentication process are covered in this report. The research can be sum-
marized in the following questions:

• How does OpenID work?

• How mobile phone friendly are the most popular OpenID Providers?

• What are the requirements for integrating OpenID into the GravityZoo
framework?

5

Research on implementation of OpenID within GravityZoo

1.2 Structure of this report

The first part of the report gives an overview of the GravityZoo frame-
work. Chapter 3 gives background information about GravityZoo’s choice
for OpenID, followed by basic terminology you should know when talking
about OpenID. This chapter also visualized the steps that an end user has
to go through to log in using an OpenID account.

Chapter 4 gives a representation of all steps of the OpenID authenti-
cation procedure. This chapter covers all technical details, including ex-
planation of the messages that are exchanged between the different parties.
Chapter 5 covers extensions that are currently standardised by the OpenID
foundation.

Chapter 6 contains a test of various popular OpenID Providers. This
test covers the usability of them on a mobile device. The test is done using
several different mobile phones.

Chapter 7 focuses on the requirements that have to be looked at when
implementing OpenID. Two potential scenarios are introduced, one of them
is chosen. After that I draw my conclusions and give some ideas for further
research.

6

Research on implementation of OpenID within GravityZoo

2 The GravityZoo Framework

This chapter provides a global overview of the different layers within the
GravityZoo Framework.

The GravityZoo Framework is a framework designed for the development
and hosting of any kind of application. It can be used to deliver applications
to a wide variety of device types. The applications are available at anytime
and anyplace. Figure 1 contains an overview of the different layers of the
GravityZoo Framework.

Figure 1: Overview of the GravityZoo Framework

A small software stack is installed on each client. There is no application
code distributed to the client devices itself. The client core is a platform
independent part of the client which communicates with the back-end. Next
to this, the client core maintains the client-side state, processes updates and
enforces client side security policies. The client toolkit forms the glue be-
tween the client OS and the and the client core.

7

Research on implementation of OpenID within GravityZoo

The GravityZoo Framework uses REP [1]. This is a routing protocol
that is designed by GravityZoo itself and works over an IP network. The
protocol uses both TCP/IP and UDP/IP. TCP for reliable data transmission
and UDP for unreliable real-time data transmission. The main purpose of
REP is to act as a “vessel” for object updates, sent amongst client and
server. REP is also designed for [1]:

• Bi-directional communication, allowing the client to not only request
for new information, but also send updates to clients without a request,
that is if the client allows to do so.

• Traversing NAT1 and most existing firewalls.

• Delivering end-to-end encryption as a default functionality.

• The support of quality of service, link speed and quality monitoring.

The application processing infrastructure does the actual application
processing. The state of the application is not stored in the application in-
frastructure. It is stored, in the Central Object Store (COS) together with
the user data. The COS is also known as the storage infrastructure which
is a huge intelligent “object database”. The storage infrastructure consists
of two layers: The storage nodes and storage handlers. The latter are re-
sponsible for handling requests to the COS. They operate on a transaction
basis and ensure data integrity and the efficient distribution of data. Stor-
age nodes are responsible for the permanent storage of user and application
data. The language kits can be seen as glue between the language in which
an application is developed and the GravityZoo framework itself. Currently
there are language kits available for Python and C. Language kits for C#
and Java will be available in the near future.

The last - and especially for this research project - not least part of
the GravityZoo framework is the authentication and licensing module. This
module acts as the gatekeeper of the framework. Currently, the only op-
tion of logging in to the GravityZoo framework is by supplying a username
and password. The authentication request containing the username and
password is routed by the REP routers to a server which services the Au-
thentication and Licensing Service (ALS) role. An authentication request
has the REP packet type: “authentication request”. When a REP router
sees this, it knows that the packet has to be routed to an ALS. The ALS
checks the supplied username and password combination. It sends back a
reply to the client, confirming the login or stating that the username and
password combination is not valid.

1NAT stands for Network Address Translator, RFC 1631, http://www.faqs.org/rfcs/

rfc1631.html

8

http://www.faqs.org/rfcs/rfc1631.html
http://www.faqs.org/rfcs/rfc1631.html

Research on implementation of OpenID within GravityZoo

3 OpenID overview

OpenID is an open, decentralized user identification standard that makes
use of URIs [3]. It has arisen from the open source community to solve the
problems that could not be easily solved by other existing technologies.

People are using the Internet more and more every year. When someone
wants to use a service on a website, he (or she) normally has to register to
that service first. The user has to register an account with a corresponding
username and password. The username you use as default, may already be
taken by somebody else. Different usernames and passwords on different
sites make it hard to memorize every login. This is where OpenID comes
into play.

OpenID allows a user to log onto an OpenID enabled service with the
same identity everywhere. When a user only needs to memorize one pass-
word, this password can be more sophisticated. To make use of OpenID,
the only thing you have to do is register at an OpenID provider. When
registering at an OpenID provider, you receive a username in URL style,
for example: https://logmij.in/als/jarno. When authenticating at an OpenID
enabled service, you prove that you are the owner of the subdomain (or
page) you supplied.

3.1 Why choose for OpenID?

Why does GravityZoo want to integrate OpenID into their Cloud OS? The
main reason is simple. When integrating OpenID, a user can choose to reuse
their own OpenID identifier for authentication purposes within the Cloud
OS. The user does not need to register a new username with a password
which he needs to remember again. There are more reasons to choose for
OpenID.

The OpenID specification is owned by the OpenID Foundation which
was formed in June 2007 [4]. The foundation is formed to promote, protect
and enable the OpenID technologies and community. This ensures that
the OpenID specification will always stay freely implementable. As Brad
Fitzpatrick (the father of OpenID) said[5]:

“Nobody should own this. Nobodys planning on making any
money from this. The goal is to release every part of this under
the most liberal licenses possible, so theres no money or licens-
ing or registering required to play. It benefits the community as

9

https://logmij.in/als/jarno

Research on implementation of OpenID within GravityZoo

a whole if something like this exists, and were all a part of the
community.”

Next to the guarantee that OpenID will always be freely implementable,
it is gaining support of more and more big companies. Companies like
AOL, Google, IBM, Microsoft, MySpace, VeriSign and Yahoo! already act
as OpenID providers. Google, IBM, Microsoft, VeriSign and Yahoo! even
joined the OpenID Foundation and all have their own corporate board mem-
ber [4]. Gaining the support of these companies is a big step in the way of
becoming the standard authentication method over the Internet. The com-
panies all see the added value of a global identity and accept the OpenID
specification as being one.

Over time there have been many other initiatives which were trying to
simplify the management around digital identities. Think of Shibboleth [7],
A-Select[8] and Windows Cardspace (codename InfoCard) [6]. The latter
is now collaborating with OpenID [9]. Everybody who has registered at
Microsoft - think of all the hotmail users - already have an OpenID without
even knowing it. Same goes for users who registered at the websites of AOL,
Flickr, WordPress,Yahoo! and Google2.

Figure 2: OpenID Relying Parties as of January 1, 2009 [11]

The integration of OpenID into websites has recently seen a steep climb
as can be seen in figure 2. In January 2008 there were about 9.600 websites

2Google requires an API to support OpenID [10]

10

Research on implementation of OpenID within GravityZoo

supporting OpenID. This increased enormously: to 31.000 websites in Jan-
uary 2009.

When you registered at a website using a regular username and pass-
word, you often have the ability to add your OpenID details to your current
account. This enables you to log in with both your username/password and
through OpenID.

Summarizing the three main reasons to choose for OpenID:

• The user can reuse his own OpenID identifier to log in to GravityZoo.

• The OpenID is accepted by big companies world wide.

• The OpenID will remain intellectual property and will always be freely
implementable.

3.2 Basic terminology

To understand how OpenID works, you first have to be familiar with the
terms that are frequently used when talking about OpenID [2]:

• Identifier. An Identifier is either a “HTTP” or “HTTPS” URI or an
XRI (Extensible Resource Identifier).

• User-Agent. The user’s client software which implements HTTP/1.1.

• Relying Party (RP). A Web application that wants proof that the
end user controls an Identifier.

• OpenID Provider (OP). An OpenID Authentication server on which
a Relying Party relies for an assertion that the end user controls an
Identifier.

• OP Endpoint URL. The URL which accepts OpenID Authenti-
cation protocol messages, obtained by performing discovery on the
User-Supplied Identifier.

• OP Identifier. An Identifier for an OpenID Provider.

• User-Supplied Identifier. An Identifier that was presented by the
end user to the Relying Party, or selected by the user at the OpenID
Provider. During the initiation phase of the protocol, an end user may
enter either their own Identifier or an OP Identifier. If an OP Identifier
is used, the OP may then assist the end user in selecting an Identifier
to share with the Relying Party.

11

Research on implementation of OpenID within GravityZoo

• Claimed Identifier. An Identifier that the end user claims to own;
the overall aim of the protocol is verifying this claim. The Claimed
Identifier is either:

- The Identifier obtained by normalizing (Normalization) the User-
Supplied Identifier, if it was an URL.

- The CanonicalID (XRI and the CanonicalID Element), if it was
an XRI.

• OP-Local Identifier. An alternate Identifier for an end user that is
local to a particular OP and thus not necessarily under the end user’s
control.

3.3 OpenID identifier delegation

It is not mandatory to use the URL that is directly registered at an OpenID
Provider as your identifier. If you have your own domain name, you can use
this domain name as your OpenID identifier. There are several ways to do
this. The first one is to run your own OpenID provider on your webserver.
The second and easiest way is to link the URL that you registered at an
OpenID Provider to your domain name. This can be done by adding the
HTML code found below, to the HEAD section of your index file. The first
line specifies the OpenID Endpoint URL and the second specifies the iden-
tifier that should be used.

OpenID identifier delegation
<link rel="openid.server" href="https://logmij.in/index.php/serve">

<link rel="openid.delegate" href="https://logmij.in/als/jarno">

When - for any reason - you want to switch to another OpenID Provider,
the only thing you need to do is change the OpenID provider in your index
file. You can keep using the domain name of your choice as your OpenID
identifier.

3.4 Example login procedure using OpenID

The following example describes the user experience when logging in with
an OpenID identifier. An in depth version of this procedure can be found
in chapter 4.

In the example, website X is the Relying party (RP) which is logged
in to. This website provides two ways of authentication: (1) normal au-
thentication through username and password. (2) Authentication through
OpenID. OP Y is be the OpenID provider (OP) in this example. The example
is visualized in figure 3.

12

Research on implementation of OpenID within GravityZoo

The process of logging on to website X goes as follows:

1. Open website X as you would do normally.

2. Enter your OpenID identifier in the login box.

3. You are redirected to your OP where you will be asked to log in. This
proofs that you are the owner of the identifier you provided.

4. After logging in at OP you get a confirmation dialog that the RP re-
quested authentication for your identifier. You have several options
on this page. (1) Accept the request permanently, so the RP will be
always allowed to request authentication. (2) Accept the request only
this time. (3) Deny the request of the RP. After accepting the request
you are be redirected back to the RP and the authentication procedure
is finished.

Figure 3: OpenID: Global overview

13

Research on implementation of OpenID within GravityZoo

4 OpenID in depth

This chapter gives an in depth description of the OpenID login procedure
[2], [14]. The procedure in chapter 3.4 just describes the steps which a user
sees when logging on to a website.

All steps in figure 4 are be covered in this chapter. Each of the following
paragraphs is - according to its number - dedicated to to one of the steps in
figure 4.

Figure 4: OpenID: In depth

14

Research on implementation of OpenID within GravityZoo

All communication between the parties is serviced by HTTP commands.
OpenID Parameters are sent by appending them to the used identifiers of the
OpenID Provider and the Relying Party, prefixed with a question mark.
Listing 1 contains an example of an URL containing OpenID parameters.
All available OpenID parameters are be explained in the upcoming para-
graphs.

https : // logmi j . in / index . php/ se rve ? openid . a s soc hand l e=%7BHMAC−SHA1%7D
%7B49744372%7D%7BMEOX0w%3D%3D%7D&openid . i d e n t i t y=https%3A%2F%2
Flogmij . in%2Fals%2Fjarno&openid . mode=check id s e tup&openid .
r e t u r n t o=http%3A%2F%2Fopenidenabled . com%2Fresource s%2Fopenid−t e s t
%2Fdiagnose−s e r v e r%2FTestCheckidSetup%2F%3Fact ion%3Dresponse%26
attempt%3D1%26nonce%3DPIX42n6G&openid . t r u s t r o o t=http%3A%2F%2
Fopenidenabled . com%2Fresource s%2Fopenid−t e s t%2Fdiagnose−s e r v e r%2
FTestCheckidSetup%2F

Listing 1: An OpenID URL

4.1 The supplied identifier

A user opens the OpenID enabled service and is asked to supply his OpenID
identifier. The identifier supplied by the user is called user-supplied
identifier. The user can supply two types of identifiers:

1. A HTTP or HTTPS URL.

2. A XRI (Extensible Resource Identifier).3

4.2 Identifier normalization

The next step of the OpenID procedure is normalization (2). The user
may have supplied an incomplete identifier. The RP checks and corrects the
user-supplied identifier during the normalization process.

The input of the normalization process is the user-supplied identifier.
The output of the process is called the claimed identifier if the user sup-
plied a HTTP(S) URL, or CanonicalID if the user supplied a XRI address.

The normalization process goes as described in figure 5. First, if present,
the XRI prefix is stripped from the user-supplied identifier. The nor-
malization process stops here if the remaining string starts with a XRI global
context symbol. The XRI global context symbols are: =, @, +, $ and !.

The remaining string is processed as a HTTP(S) identifier if no XRI
global context symbols are found. The string is checked for a HTTP(S) pre-
fix. If it does not have one of both, a http:// prefix is added. Next to this,

3A XRI is a scheme compatible with URI and IRI which looks like xri://authority/

path?query#fragment [12].

15

xri://authority/path?query#fragment
xri://authority/path?query#fragment

Research on implementation of OpenID within GravityZoo

any fragments in the URL are removed. Lastly an URL identifier must be
further normalized by both following redirects when retrieving their content
and finally applying the rules in section 6 of RFC 3986: URI [3].

Figure 5: OpenID: Normalization

Table 1 contains examples of user-supplied identifiers and the ob-
tained claimed identifier or CanonicalID. [13].

User’s Input Identifier Type Comment
example.com http://example.com/ URL missing scheme URI is normalized to a http URI
http://example.com http://example.com/ URL An empty path component is normalized to a slash
https://example.com/ https://example.com/ URL https URIs remain https URIs
http://example.com/user http://example.com/user URL No trailing slash is added to non-empty path components
http://example.com/ http://example.com/ URL Trailing slashes are preserved when path is empty
xri://$dns*example.com http://example.com URL $dns is replaced with http://
=example =example XRI Normalized XRIs start with a global context symbol
xri://=example =example XRI Normalized XRIs start with a global context symbol

Table 1: User-supplied identifiers and their normalized versions

16

Research on implementation of OpenID within GravityZoo

4.3 Discovery

Discovery is the process where the RP uses the claimed identifier to look
up the necessary information for initiating authentication requests at the
OP. The following information is discovered during this process:

1. OP endpoint URL

2. Protocol version

3. Claimed identifier

4. OP-Local identifier

If the end user entered an OP Identifier, there is no Claimed Identi-
fier. For the purposes of making OpenID Authentication requests, the
value http://specs.openid.net/auth/2.0/identifier_select must be used as both the
Claimed Identifier and the OP-Local Identifier when an OP Identifier is en-
tered.

There are three types of discovery. Which type is used process depends
on the type of the claimed identifier. The types of resolution mentioned
in table 2 are covered in the next three paragraphs.

Identifier type Resolution Protocol Resultant document
XRI XRI resolution XRDS document
URL Yadis Protocol XRDS document
URL HTML discovery HTML

Table 2: The different ways of discovery

4.3.1 XRI resolution

XRI resolution resolves an XRI into metadata describing the resource iden-
tified by the XRI. This resolution is done through HTTP(S). An XRI can
be transformed into a URI by prefixing the XRI with http(s)://xri.*/.
The URI now refers to a so called proxy resolver, which resolves a URI of
this kind to an XRDS document. XRDS is covered in chapter 4.3.4.

Relying parties can take advantage of XRI proxy resolvers. This removes
the need for the RP to perform XRI resolution locally. An example of a
proxy resolver is http://www.xri.net. The XRI identifier =example becomes
http://xri.net/=example. The latter is called an HTTP XRI or short: HXRI.
The owner of the XRI =example can tell the proxy resolver what to do, if
the HXRI is called. One possible action is to do a 302 HTTP redirect to a
stored URI [15].

17

http://specs.openid.net/auth/2.0/identifier_select
http://www.xri.net
http://xri.net/=example

Research on implementation of OpenID within GravityZoo

4.3.2 Yadis resolution

The Yadis protocol can link URL based identities to an XRDS document.
This document contains metadata that is linked to the identity. The owner
of a Yadis identifier can manage the content of a XRDS document. Such
document can contain several identities. After the RP retrieves this doc-
ument, it can select an appropriate service(s) of the XRDS document. A
Yadis XRDS document can be retrieved in one of the following ways [16]:

1. By following a custom HTTP response header called X-XRDS-Location.

2. By an equivalent entry in the HTML HEAD section, called:
<meta http-equiv="X-XRDS-Location" content="http://example.com/yadis.xml">

3. By requesting a special mime type called application/xrds+xml when
performing an HTTP GET on the identity URL.

4.3.3 HTML discovery

HTML discovery is only be used if Yadis resolution fails. With HTML
discovery, the HEAD section of the HTML file is checked for the following
values:

HTML Discovery
<link rel="openid2.server" href="https://logmij.in/index.php/serve">

<link rel="openid2.local_id" href="https://logmij.in/als/jarno"/>

The second value of the listing above is optional. It should only be
present if the end user is using a delegation. With HTML discovery, the RP
discovers the OpenID provider endpoint URL and the protocol version that
is used. This enabled the RP to communicate with the OP

4.3.4 XRDS: Extensible Resource Descriptor Set

When using XRI- or Yadis-resolution, metadata is retrieved in a extensible
XML document called an XRD (Extensible Resource Descriptor). Multiple
XRD documents can be returned inside a single XRDS (Extensible Resource
Descriptor Set) container document.

This document is designed to provide information about the identifier.
In the case of OpenID, the XRDS specifies the OpenID server(s) that can
be used for authenticating the normalized identifier. The file may contain
priority parameters that indicate the user’s order of preference. The lowest
priority number takes precedence. An example XRDS file with multiple
entries can be found in listing 2, taken from [16].

18

Research on implementation of OpenID within GravityZoo

The following information can be distilled from this file:

1. The URL is a Yadis identity URL.

2. The URL supports the OpenID protocol, through two servers and two
delegates.

3. The URL supports version 1.0 and version 2.0 of the LID protocol,
with a delegate.

4. The owner of this identity URL prefers to using sign-on using their
LiveJournal account and the OpenID protocol (priority 10). If this is
not possible because OpenID is not supported, or because the Live-
Journal server is unavailable, the owner would like to use the LID
URL http://mylid.net/liddemouser. Lastly if the LID URL is not working
either, the MyOpenID service with a priority of 50 is tried.

<?xml ve r s i o n=” 1 .0 ” encoding=”UTF−8”?>
<xrds:XRDS xmlns :xrds=” x r i : //\ $xrds ” xmlns=” x r i : // $xrd ∗($v ∗2 . 0) ”
xmlns :openid=” ht tp : // openid . net /xmlns /1 .0 ”>

<XRD>
<Service priority=”50”>

<Type>h t t p : // openid . net / s ignon /1.0</Type>
<URI>h t t p : //www. myopenid . com/ server </URI>
<open id :De legate >h t t p : // smoker . myopenid . com/</open id :De legate >

</Service>
<Service priority=”10”>

<Type>h t t p : // openid . net / s ignon /1.0</Type>
<URI>h t t p : //www. l i v e j o u r n a l . com/ openid / s e r v e r . bml</URI>
<open id :De legate >h t t p : //www. l i v e j o u r n a l . com/ use r s / f rank/</

open id :De legate >
</Service>
<Service priority=”20”>

<Type>h t t p : // l i d . netmesh . org / s so /2.0</Type>
<URI>h t t p : // mylid . net / l iddemouser </URI>

</Service>
<Service>

<Type>h t t p : // l i d . netmesh . org / s so /1.0</Type>
</Service>

</XRD>
</xrds:XRDS>

Listing 2: XRDS example file

19

http://mylid.net/liddemouser

Research on implementation of OpenID within GravityZoo

4.4 Establishing an association (Optional)

The fourth step in the authentication process is the establishment of an as-
sociation between Relying Party and OpenID Provider. It is not manda-
tory to form an association, although it is recommended. The association
establishes a shared secret between both parties which enables them to com-
municate securely. Diffie-Hellman key exchange is used to generate a shared
secret-key. The security can be implemented either via the transport layer,
by using SSL/TLS, HMAC-SHA1 or HMAC-SHA256 [2]. The shared secret
is also used to sign/verify subsequent messages and to reduce round trips.
The signature generation process is described in chapter 4.8.

If there is no association established between both parties, the Relying
Party has to request authentication at the OpenID Provider itself. Subse-
quently, the RP has to send another request to the OP to verify the authenti-
cation. This allows the RP to be stateless because it would not need to keep
track of association handles.

An association is initiated by a direct request from the RP to the OP
Endpoint URL with the openid.mode key set to associate. The signing
algorithm to be used is specified by the openid.assoc_type key. The last
important key is openid.session_type. This key defines the algorithm
that is used to encrypt the association’s MAC key in transit. Unless using
SSL/TLS, the use of no-encryption is prohibited.

The result of a successful association request is an assoc_handle that
the RP and OP can use as a key to refer to this association in subsequent
messages. A full specification of the parameters used when requesting an
association can be found in table 3.

Parameter name Explanation
openid.ns Always contains the value http://specs.openid.net/auth/2.0.
openid.mode Contains value associate.
openid.assoc_type Defines the preferred signing algorithm. Two options:

HMAC-SHA1 or HMAC-SHA256 (latter is recommended).
openid.session_type Defines the preferred encryption method used.

Three options: no-encryption, DH-SHA1, DH-SHA256
openid.dh_modulus Modulus used for Diffie-Hellman.

The default modulus can be found in appendix B of [2].
openid.dh_gen base64(btwoc(g). The default g = 2.
openid.dh_consumer_public base64(btwoc(g ^ xa mod p) [2].

Table 3: Parameters used when requesting an association

The function btwoc that is used by the Diffie-Hellman key exchange
fields handles integer representation, more information on this function can
be found in chapter 4.2 of [2].

20

http://specs.openid.net/auth/2.0

Research on implementation of OpenID within GravityZoo

Parameters used in the response to a successful association request can
be found in table 4.

Parameter name Explanation
openid.ns Always contains the value http://specs.openid.net/auth/2.0.
openid.assoc_handle Association handle that is used as a key to refer to this association

in subsequent messages. A string 255 characters or less in length.
openid.session_type A copy of the value of this field during the request.
openid.assoc_type A copy of the value of this field during the request.
openid.expirs_in The lifetime, in seconds, of this association. Integer, base 10 ASCII.
openid.mac_key The shared secret for this association, Base 64 encoded.

Only included when session_type is set to no-ecnryption.
openid.dh_server_public base64(g ^ xb mod p). The OP’s Diffie-Hellman public key.
openid.enc_mac_key base64(H(btwoc(g ^(xa * xb) mod p)) XOR MAC key). MAC key,

encrypted with the DH-secret. H is either SHA1 or SHA256.
Not included when session_type is set to no-encryption.

Table 4: Parameters used when responding to a successful association

The OP responds with a unsuccessful response if it receives an association
request with a session type or association type which it does not support.
The parameters used in such response can be found in table 5.

Parameter name Explanation
openid.ns Always contains the value http://specs.openid.net/auth/2.0.
openid.error A human-readable message indicating why the request failed.
openid.error_code Contains unsupported-type.
openid.session_type A valid association session type that the OP supports (optional).
openid.assoc_type A valid association type supported by the OP (optional).

Table 5: Parameters used when responding to a unsuccesful association

4.5 Redirecting the end user, requesting authentication

The next step is step five from figure 4. The end user is asked to authenti-
cate during this step. The Relying Party asks the OpenID Provider verify
authentication of the identifier. The RP does not directly communicate with
the OP, but redirects the user to the OP. This has security advantages as it
allows the OP to read cookies from the end user. Next to this, it does not
leak authentication details to the RP. Table 6 contains all parameters used
in an authentication request.

The request can be handled in two different modes, checkid_setup and
checkid_immediate. When the latter is used, no interaction between OP and
end user is required, which makes the login procedure more user friendly.
This can be used when the front-end uses an asynchronous web technique

21

http://specs.openid.net/auth/2.0
http://specs.openid.net/auth/2.0

Research on implementation of OpenID within GravityZoo

such as AJAX4. If authentication in checkid_immediate mode fails, the RP
can place a subsequent request in checkid_setup mode. This mode requires
interaction between end user and OP.

If the OP wants you to confirm relationships with RP’s, then the first time
checkid_immediate mode is used fails from any RP. This until an authen-
tication request in checkid_setup mode is completed and the RP is given
permission to do future authentication requests from the end user at the
OP. The OP may use the realm to allow the end user to configure automatic
approval of future authentication requests by that RP.

A realm is a pattern that represents the part of URL-space for which
an OpenID Authentication request is valid. A realm is designed to give
the end user an indication of the scope of the authentication request. OPs
should present the realm when requesting the end user’s approval for an
authentication request. The realm is used by OPs to uniquely identify RPs.
A realm pattern is a URL, with the following changes:

• A realm may not contain any URI fragments.

• A realm may contain a wild-card (*.) at the beginning of the URL
authority section.

Overly general realms, like http://*.com/ or http://*.co.uk/ can be
dangerous. OPs should protect their users against overly general realms.

The values claimed_id and identity should either be both present
or both absent. If neither value is present, the assertion is not about an
identifier, and contains other information in its payload, using extensions.

Parameter name Explanation
openid.ns Always contains the value http://specs.openid.net/auth/2.0.
openid.mode Has a value of checkid_setup or checkid_immediate.
openid.claimed_id (optional) The identifier that the end user claims to own.
openid.identity (optional) If a different OP-Local Identifier is not specified, the

claimed identifier must be used as the value for this field.
openid.assoc_handle (optional) The handle that should be used between RP and OP to

sign the response. If not available, transaction will be in stateless mode.
openid.return_to (optional) URL to which the OP redirects the user to once

authentication is finished.
openid.realm (optional) URL pattern the OP asks the user to trust.

Must be present if the return_to parameter is omitted.
Default value: The return_to URL.

Table 6: Parameters used when requesting authentication

4AJAX: Asynchronous JavaScript and XML (http://nl.wikipedia.org/wiki/
Asynchronous_JavaScript_and_XML).

22

http://*.com/
http://*.co.uk/
http://specs.openid.net/auth/2.0
http://nl.wikipedia.org/wiki/Asynchronous_JavaScript_and_XML
http://nl.wikipedia.org/wiki/Asynchronous_JavaScript_and_XML

Research on implementation of OpenID within GravityZoo

4.6 End user authentication at OP

After receiving the authentication request, the OP must decide whether to
allow or reject the user’s authentication. This can be done based on whether
the end user has previously authenticated with the OP.

The authentication request from the RP has been redirected via the user
to the OP. From this point, the OP takes over the control from the RP. The
OP responds asynchronously to the authentication request. This means that
the OP can have an entire sequence of interactions with the end user before
it responds to the request. Most OPs make use of this by asking the end user
if the authentication request from the RP should be allowed or denied.

If the RP requested OP-driven identifier selection by setting openid.identity
to http://specs.openid.net/auth/2.0/identifier_select, and there are identifiers for
which the end user is authorized to issue authentication responses, the OP
should allow the end user to choose which identifier to use.

If the RP supplied an association handle with the authentication re-
quest, the OP should attempt to look up an association based on that
handle. If the association is missing or expired, the OP should send the
openid.invalidate_handle parameter as part of the response with the
value of the request’s openid.assoc_handle parameter, and should pro-
ceed as if no association handle was specified.

If no association handle is specified, the OP should use a private associ-
ation for signing the response. The OP must store this association. It must
respond to later requests of the RP to check the signature of the response
via Direct Verification.

If an authorized end user allows the authentication request, the OP should
send a positive assertion to the RP. Assertions are covered in the next two
paragraphs.

4.6.1 Positive Assertion

If authentication is successful, a positive assertion is sent by the OP. This
response is sent via a redirect through the end user to the RP. This ensures
that the RP and OP do not communicate directly during the authentication
process. A positive assertion message contains the values listed in table 7.

23

http://specs.openid.net/auth/2.0/identifier_select

Research on implementation of OpenID within GravityZoo

Parameter name Explanation
openid.ns Always contains the value http://specs.openid.net/auth/2.0.
openid.mode Value: id_res.

States that this is a response to an authentication request.
openid.op_endpoint The OpenID provider endpoint URL.
openid.claimed_id (optional) The identifier that the end user claims to own.
openid.identity (optional) Same as the openid.claimed_id

openid.return_to Verbatim copy of the return_to URL parameter sent in the request.
openid.response_nonce A string 255 characters or less in length, that must be unique to this

particular successful authentication response. It must contain the current
time on the server (in UTC), indicated with a “Z”.
Example: 2009-01-15T17:14:56ZUNIQUE.

openid.invalidate_handle (optional) If the RP sent an invalid association handle with the
request, it should be included here.

openid.assoc_handle The handle for the association that was used to sign this assertion.
openid.signed Comma-separated list of signed fields. (without the openid. prefix).
openid.sig Base 64 encoded signature.

Table 7: Parameters used when sending a positive assertion

4.6.2 Negative Assertion

The OP sends a negative assertion if he is unable to identify the end user
or the end user does not or cannot approve the authentication request. As
with the positive assertion, the response is sent through indirect commu-
nication to the RP. When receiving a negative assertion in response to a
checkid_immediate mode request, Relying Parties should construct a new
authentication request using checkid_setup mode [2].

The responses to the two modes mentioned in the last paragraph are
different. Table 8 contains the parameters used when sending a response
to a request in checkid_immediate mode. Table 9 contains the response
parameters used in response to a request in checkid_setup mode.

Parameter name Explanation
openid.ns Always contains the value http://specs.openid.net/auth/2.0.
openid.mode Value: setup_needed.

Table 8: Parameters used in a negative assertion (checkid immediate)

Parameter name Explanation
openid.ns Always contains the value http://specs.openid.net/auth/2.0.
openid.mode Value: cancel.

Table 9: Parameters used in a negative assertion (checkid setup)

24

http://specs.openid.net/auth/2.0
http://specs.openid.net/auth/2.0
http://specs.openid.net/auth/2.0

Research on implementation of OpenID within GravityZoo

4.7 Verifying the authentication response

If the RP receives a positive assertion, it must verify the assertion before
accepting it. The user is successfully authenticated after verifying all steps.
The verification process consists of the following four steps [2]:

1. The value of openid.return_to matches the URL of the current re-
quest.

2. Discovered information matches the information in the assertion.

3. An assertion has not yet been accepted from this OP with the same
value for openid.response_nonce.

4. The signature on the assertion is valid and all fields that are required
to be signed are signed.

The steps are covered in the next four paragraphs.

4.7.1 Verifying the return URL

To verify that the openid.return_to URL matches the URL that is pro-
cessing this assertion:

• The URL scheme, authority, and path must be the same between the
two URLs.

• Any query parameters that are present in the openid.return_to URL
must also be present with the same values in the URL of the HTTP
request the RP received.

4.7.2 Verifying the discovered information

The Claimed Identifier in the assertion may be an URL that contains
fragments. The fragment part and the fragment delimiter character # may
not be used for the purposes of verifying the discovered information.

If the Claimed Identifier is included in the assertion, it must have
been discovered by the RP. The information in the assertion must be present
in the discovered information. It is not allowed that the Claimed Identifier
is an OP-Identifier.

There are several scenario’s where the Claimed Identifier is not pre-
viously discovered by the RP. This happens if the openid.identity in the
request is set to http://specs.openid.net/auth/2.0/identifier_select or a different
Identifier, or if the OP is sending an unsolicited positive assertion. If the RP
has not discovered the Claimed Identifier in the response, it has to do

25

http://specs.openid.net/auth/2.0/identifier_select

Research on implementation of OpenID within GravityZoo

it during this step. This to make sure that the OP is authorized to make
assertions about the Claimed Identifier.

If no Claimed Identifier is present in the response, the assertion is not
about an identifier. The RP may not use the User-supplied Identifier as-
sociated with the current OpenID authentication transaction to identify the
user. Extensions are used in most scenario’s when the Claimed Identifier
is not present.

4.7.3 Checking the nonce

Nonces are implemented as prevention of replay attacks (although they don’t
prevent active replay attacks in my opinion). The agent checking the signa-
ture keeps track of the nonce values included in positive assertions. It
never accepts the same value more than once for the same OP Endpoint URL.

The OP is not allowed to issue more than one successful response to a
request with the same value for openid.response_nonce. The RP should
ensure that an assertion has not yet been accepted with the same value for
openid.response_nonce from the same OP Endpoint URL.

Nonces contain time-stamps. They may be used to reject responses that
shift too much from the current time. This limits the time that nonces must
be stored to prevent attacks. The OpenID specification does not contain
recommendations for this. A larger range would require storing more nonces
for a longer time. A shorter range increases the chance that clock-skew and
transaction time causes a spurious rejection.

4.7.4 Verifying the signatures

There are two ways of validating an authentication response. Which way
is used, depends on if there is an association made between the RP and the OP.

If there is an association between both parties, indirect verification
is used. The RP has stored the association with the association handle spec-
ified in the assertion. This association is used to check the signature of the
signed fields. The signature generation process is described in chapter 4.8.

The second scenario comes in to play when the RP has no association
stored under the corresponding handler. The RP must request that the OP
verifies the signature through a direct request. It does this by sending a
request to the OP with openid.mode set to check_authentication. The rest
of the fields are exact copies of the fields from the authentication response.

26

Research on implementation of OpenID within GravityZoo

The OP responds with a message containing the parameters listed in table
10.

Parameter name Explanation
openid.ns Always contains the value http://specs.openid.net/auth/2.0.
openid.is_valid Value: true or false.

Asserts whether the signature of the verification request is valid.
openid.invalidate_handle (optional) Value: The invalidate_handle value sent in the

verification request, if the OP confirms it is invalid.

Table 10: Parameters used in responding to direct verification request

The following keys should be signed at the minimum, as stated in the
specification.

• op_endpoint.

• return_to.

• response_nonce.

• assoc_handle.

• claimed_id (if present).

• identity (if present).

4.8 Generating signatures

This paragraph covers the procedure that is used to generate a message
signature. In most scenario’s, MAC (Message Authentication Code) is used
to sign OpenID authentication messages. Generating signatures goes as
follows:

1. Determine the list of keys to be signed, according to the message to
be signed. The list of keys is comma-seperated and stored with the
key openid.signed within the same message.

2. Iterate through the list of keys to be signed in the order they appear
in the openid.signed list. For each key, find the value in the message
whose key is equal to the signed list key prefixed with openid.

3. Convert the list of key/value pairs to be signed to an octet string by
encoding with Key-Value Form Encoding5.

4. Determine the signature algorithm from the association type. Apply
the specified signature algorithm to the octet string.

5A sequence of lines. Each line begins with a key, followed by a colon, and the value
associated with the key[2]

27

http://specs.openid.net/auth/2.0

Research on implementation of OpenID within GravityZoo

5 OpenID Extensions

The OpenID foundation is working on several extensions for the OpenID au-
thentication mechanism. The majority of the OpenID Providers have not
implemented the extensions yet. According to the OpenID support page
[18], MyVidoop.com is currently the only OpenID Provider which has im-
plemented all three extensions.

The three extensions that reached the final version of their specification
are covered in the upcoming paragraphs. The paragraphs do not fully cover
the message types used by these extensions. They intend to give a feature
overview of each extension.

GravityZoo wants me to focus on the implementation of the OpenID au-
thentication mechanism, and not include the extensions for now. Although
to give a complete picture of the possibilities, I have included overviews of
the extensions.

5.1 OpenID Simple Registration Extension 1.0

OpenID Simple Registration is an extension that allows for very light-weight
profile exchange [19].

When registering at an OpenID provider, you have to supply informa-
tion about yourself. This extension allows RPs to request user profile data
from the OpenID provider. After logging in at the RP, the end user gets
an overview of the data requested by the RP. The user can choose which
data is allowed to be seen by the RP. The RP can specify which data fields
are mandatory to finish the registration.

The Simple Registration Extension can supply RPs with the follow-
ing information that is frequently needed to register at a website:

Field Description
openid.sreg.nickname Any UTF-8 string that the End User wants to use as a nickname.
openid.sreg.email The email address of the End User.
openid.sreg.fullname UTF-8 string free text representation of the End User’s full name.
openid.sreg.dob The End User’s date of birth as YYYY-MM-DD.
openid.sreg.gender The End User’s gender, M for male, F for female.
openid.sreg.postcode UTF-8 string that conforms to the End User’s country’s postal system.
openid.sreg.country The End User’s country of residence as specified by ISO3166.
openid.sreg.language End User’s preferred language as specified by ISO639.
openid.sreg.timezone ASCII string from TimeZone database. Examples:

Europe/Amsterdam or America/Los_Angeles.

Table 11: Simple Registration Extension: Supplied information

28

MyVidoop.com

Research on implementation of OpenID within GravityZoo

5.2 OpenID Provider Authentication Policy Extension 1.0

OpenID Provider Authentication Policy Extension 1.0 (PAPE) is one of the
newest extensions of OpenID. PAPE 1.0 is approved on December 31, 2008
and provides an important security enhancement to OpenID Authentica-
tion. This extension is optional, though its use is recommended [20].

PAPE enables RPs to request that OPs employ specified authentication
policies when authenticating end users. It also provides a mechanism by
which an OP can inform a RP which authentication policies were used. For
example: A RP can request that the OP employs a phishing-resistant authen-
tication method for authenticating the user. The RP can request information
from the OP to see if this method is really used.

Extension overview [20]:

• As part of the Yadis Discovery process covered in chapter 4.3.2, OPs
can add the supported authentication policies to an end user’s XRDS
document. This aids RPs in choosing between multiple listed OPs de-
pending on authentication policy requirements.

• The RP includes parameters in the authentication request describing
its preferences for authentication policy for the current assertion.

• The OP processes the PAPE request, prompting the end user to fulfill
the requested policies during the authentication process.

• As part of the OP’s response to the RP, the OP includes PAPE information
around the end user’s authentication.

• When processing the OP’s response, the RP takes the PAPE information
into account when determining if the end user should be sent through
additional verification steps or if the OpenID login process cannot
proceed due to not meeting policy requirements.

PAPE can also be used to request multi-factor authentication and to learn
what NIST level the authentication conforms to. NIST authentication levels
are levels specified by the National Institute of Standards and Technology.
An overview of levels can be found in table 12 and 13. The minimum re-
quirement for level 3 and 4 is two-factor authentication, level 1 and 2 require
normal single-factor authentication. More in depth information can be found
in [21].

At the time of this writing, the specification contains the following
three predefined authentication policies [20]. The URLs included with each
method are the predefined schema locations. The descriptions are cited from
the specification.

29

Research on implementation of OpenID within GravityZoo

1. Phishing-Resistant Authentication.

http://schemas.openid.net/pape/policies/2007/06/phishing-resistant

An authentication mechanism where a party potentially under the
control of the RP can not gain sufficient information to be able to
successfully authenticate to the end user’s OP as if that party were the
end user. The potentially malicious RP controls where the User-Agent
is redirected to and thus may not send it to the end user’s actual OP.

2. Multi-Factor Authentication.

http://schemas.openid.net/pape/policies/2007/06/multi-factor

An authentication mechanism where the end user authenticates
to the OP by providing more than one authentication factor. Common
authentication factors are something you know, something you have,
and something you are. An example would be authentication using a
password and a software token or digital certificate.

3. Physical Multi-Factor Authentication

http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical

An authentication mechanism where the end user authenticates
to the OP by providing more than one authentication factor where at
least one of the factors is a physical factor such as a hardware device
or biometric. This policy also implies the Multi-Factor Authentica-
tion policy and both policies may be specified in conjunction without
conflict. An example would be authentication using a password and a
hardware token.

Token type Level 1 Level 2 Level 3 Level 4
Hard crypto token X X X X
One-time password device X X X
Soft crypto token X X X
Passwords and PINs X X

Table 12: Mechanisms used in corresponding NIST levels

Token type Level 1 Level 2 Level 3 Level 4
On-line guessing X X X X
Replay X X X X
Eavesdropper X X X
Verifier impersonation X X
Man-in-the-middle X X
Session hijacking X

Table 13: Protection against threats based on different levels

30

http://schemas.openid.net/pape/policies/2007/06/phishing-resistant
http://schemas.openid.net/pape/policies/2007/06/multi-factor
http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical

Research on implementation of OpenID within GravityZoo

5.3 OpenID Attribute Exchange 1.0

The OpenID Attribute Exchange extension services the exchange of identity
information between endpoints. An attribute is a unit of personal identity
information that is identified by a unique URI. It may refer to any kind of
information.

You are able to specify your own attributes, although not all providers
will be able to serve those requests. The attributes specified by the sim-
ple registration extension described in chapter 5.1 can be exchanged us-
ing this extension. Next to this, the website axschema.org services a list
of semi-standardized attributes. Table 14 contains attributes specified by
axschema.org.

Name Label
http://axschema.org/namePerson Full name
http://axschema.org/namePerson/friendly Alias/Username
http://axschema.org/namePerson/prefix Name prefix
http://axschema.org/namePerson/first First name
http://axschema.org/namePerson/last Last name
http://axschema.org/namePerson/middle Middle name
http://axschema.org/contact/phone/home Phone (home)
http://axschema.org/contact/phone/business Phone (work)
http://axschema.org/contact/phone/cell Phone (mobile)

Table 14: Attributes specified by www.axschema.org

This is only a selection of the attributes. Next to these, there are at-
tributes which specify information about the address of the identity, the
preferred language, various websites, instant messaging addresses and lots
more6.

There are two message types defined for exchanging attributes using this
extension: fetch and store. Fetch retrieves attribute information from an
OP, while store saves or updates attribute information on the OP. Both
messages originate from the RP and are passed to the OP via the user agent.

6A full overview can be found at http://www.axschema.org/types/

31

axschema.org
axschema.org
http://axschema.org/namePerson
http://axschema.org/namePerson/friendly
http://axschema.org/namePerson/prefix
http://axschema.org/namePerson/first
http://axschema.org/namePerson/last
http://axschema.org/namePerson/middle
http://axschema.org/contact/phone/home
http://axschema.org/contact/phone/business
http://axschema.org/contact/phone/cell
www.axschema.org
http://www.axschema.org/types/

Research on implementation of OpenID within GravityZoo

6 OpenID on mobile phones

The primary focus of this research lays on integrating the OpenID authenti-
cation standard within the mobile version of the GravityZoo client. A mobile
phone is a totally different environment comparing to a normal desktop com-
puter. Differences with the biggest impact are described in paragraph 6.1.

6.1 Notable differences between PCs and mobile phones

A mobile phone has a relatively small screen. This screen is not designed
for viewing web pages that are made to be displayed on normal computer
screens. When authenticating using OpenID, you are required to log in at
the website of the OpenID Provider of your choice. This could be difficult
if this page contains large objects or many pictures.

Most mobile phones do not supply you with a full size keyboard which
makes typing large quantities difficult. The OpenID provider can help in
lowering the amount of data to be typed by automatically filling out the
username field. This would enlarge the ease of use on a mobile phone.

Mobile phones come with stripped internet browsers. For example: Most
mobile internet browsers contain only a limited size certificate store. Due to
this, not all commercially bought certificates that are used on the Internet,
are being trusted by default. When viewing pages that are secured by SSL,
a user is often confronted with a security warning which indicates that the
certificate used to encrypt the session, is not trusted. The user has to manu-
ally choose if he trusts the certificate before he can continue to the web page.

Summarizing the above to the following constraints:

• The website of the OP should be compatible (as far as possible) with
the small screen of a mobile phone.

• The certificate used for the SSL connection should (preferably) be
trusted by the mobile internet browser.

• OPs should lower the amount of typing needed by for example, auto-
matically fill out the user field on the log in page.

32

Research on implementation of OpenID within GravityZoo

6.2 Tested OpenID Providers

A handful of OpenID providers have been selected from http://openid.net/

get/. The selected providers are generally recommended by various OpenID
members [17]. Next to the recommended OpenID providers, two dutch ones
have been added7 to the selection, which can be found in table 15. As the
OpenID foundation says:

In the end you should choose a Provider from a company which
you trust.

Provider name Website OpenID “username”
AOL http://openid.aol.com openid.aol.com/username

ClaimID http://claimid.com claimid.com/username

Google http://google.com google.com/accounts/o8/id

LiveID (INT) http://live-int.com live-int.com/username

LogMijIn https://logmij.in logmij.in/als/username

MijnOpenID http://mijnopenid.nl mijnopenid.nl/is/username

MyID http://myid.net username.myid.net

MyOpenID https://www.myopenid.com username.myopenid.com

MyVidoop https://myvidoop.com username.myvidoop.com

Verisign https://pip.verisignlabs.com username.pip.verisignlabs.com

Table 15: Tested OpenID Providers

LiveID-INT (http://login.live-int.com) is the Windows Live test cluster.
The Windows Live OpenID Provider is still in the beta phase [22]. It is
currently not possible to enable your own Windows Live ID for use with
OpenID. You have to register a separate account within the Windows Live
test cluster.

With the Google OpenID service, you do not receive a unique OpenID
URL with which you can identify yourself. You will need to enter the URL
google.com/accounts/o8/id in the OpenID login field to use your Google account
as OpenID. Google wants to promote its own API, the “Google Federated
Login API”. This enables the use of Google accounts for authentication on
third party websites [23]. I decided to include Google in this test because a
lot of people have an account at Google. I’m hoping myself that they change
their scenario and give each user a unique OpenID identifier.

6.3 Tested criteria

During the test, all OpenID providers listed in table 15 have been tested on
the mobile phones listed in chapter 6.4. Criteria that have been looked in
to during the test are summarized on the next page.

7The providers www.logmij.in and www.mijnopenid.nl have been added.

33

http://openid.net/get/
http://openid.net/get/
http://openid.aol.com
openid.aol.com/username
http://claimid.com
claimid.com/username
http://google.com
google.com/accounts/o8/id
http://live-int.com
live-int.com/username
https://logmij.in
logmij.in/als/username
http://mijnopenid.nl
mijnopenid.nl/is/username
http://myid.net
username.myid.net
https://www.myopenid.com
username.myopenid.com
https://myvidoop.com
username.myvidoop.com
https://pip.verisignlabs.com
username.pip.verisignlabs.com
http://login.live-int.com
google.com/accounts/o8/id
www.logmij.in
www.mijnopenid.nl

Research on implementation of OpenID within GravityZoo

1. Does the OpenID provider website use SSL?

- Do the mobile browsers trust this certificate by default?

2. Does the OpenID provider have a custom page for mobile users?

3. Is the login page easy to use on a mobile phone?

4. Does the OpenID provider automatically fill out the username field?

The test is done with a PHP script supplied by openidenabled.com8 It
can be used to test OpenID servers or OpenID enabled URL’s. This script
gives you the ability to log in using OpenID in openid.mode immediate and
setup. The results of the test can be found in chapter 6.5.

6.4 Phones used during the test

The providers have been tested on several mobile phones with a different
feature set. The following mobile phones have been used in the test:

1. Nokia N91. This phone runs on Symbian S60 and comes with the
Nokia Mobile web browser. It does not have touch screen functionality
or a full keyboard. The screen size is 2,1 inch and its resolution is
176*208 pixels.

2. Nokia N96. This phone runs on Symbian S60 and comes with the
Nokia Mobile web browser. It has a bigger screen than the N91: 2,8
inch, it has a resolution of 240*320 pixels.

3. HTC Touch Cruise. This phone runs on Windows Mobile 6 and
comes with Microsoft Internet Explorer Mobile. It has a touch screen
and a full featured on-screen keyboard. Next to this it is equipped
with a 2,8 inch screen with a resolution of 240*320 pixels.

The first plan was to test the mentioned OpenID providers with another
phone: The Nokia E71. This phone has a 2,4 inch screen that has a
resolution of 320*240 pixels. It has a This phone has a full size QWERTY-
keyboard which should really ease the process of supplying your OpenID
identifier and credentials. Sadly, this phone was not available during the time
frame of this research project. I used another Nokia model as a replacement:
the Nokia N95.

8The test page is located at http://openidenabled.com/resources/openid-test/.

34

openidenabled.com
http://openidenabled.com/resources/openid-test/

Research on implementation of OpenID within GravityZoo

6.5 The results

This chapter covers the results of the OpenID mobile test. After registering
an OpenID at all OpenID providers the test could start. The first thing that
leaps out in table 16 is that MijnOpenID.nl is not using SSL for session en-
cryption. This is marked with a “-”. All other tested providers do use SSL
(marked with a “+”), which is recommended in the OpenID specification [2].

The Nokia N91 contains a very small certificate store. This results in
that most certificates used by the OpenID Providers cannot be verified.
Certificates that could not be verified are marked with a “-”, the ones that
could successfully be verified are marked with a “+”. The other two phones
were able to verify most of the used SSL certificates.

Most OpenID Providers automatically filled the username field after be-
gin redirected to them. This eliminates the need to supply the username a
second time, this is useful when authenticating with a mobile phone without
a full size keyboard. The only way to use the Google OpenID provider is
to specify the supplied general identifier. Due to this, the username field
cannot be filled automatically.

Provider SSL
Certificate verified on Auto fill user-
N91 N95/N96 HTC name field?

AOL.com + - + + +
ClaimID.com + - + - -
Google.com + + + + -
LiveID-INT.com + - + + +
LogMij.in + - - + +
MijnOpenID.nl - n/a n/a n/a +
MyID.net + + + + +
MyOpenID.com + - + - +
MyVidoop.com + - + + +
VerisignLabs.com + - + + -

Table 16: OpenID provider mobile phone friendliness (part 1)

Concluding from table 17, there is no doubt that OpenID Providers are
not focusing on mobile users at all. None of the tested OpenID Providers
has a custom website for mobile users. This is marked with a “-” in the ta-
ble. Due to the lack of not having a custom page for mobile users, the page
layout is bad when displaying the page using a mobile browser. Some of
the OpenID Providers have big images on the login page. This dramatically
increases the page loading time when using your mobile internet connection.

The HTC which runs the mobile version of Internet Explorer manages to
display some pages fairly okay. This because the mobile version of Internet
Explorer it places all columns of internet pages below each other. A good

35

MijnOpenID.nl

Research on implementation of OpenID within GravityZoo

example of this is MijnOpenID.nl. This provider has next to a big image
in the banner, a lot of text on the log in page. First there is a lot of text
explaining what OpenID essentially does, unluckily, the login field that has
to be used is at the bottom of the page. On the Nokia phones there is no
scaling at all on this page. You have to scroll a lot in both ways as can be
seen in figure 6.5. The two screenshots in the top if the figure are taken on
the HTC, the lower two on a Nokia N96.

Figure 6: MijnOpenID.nl in both browsers

A selection of screenshots taken from various OpenID Providers on both
devices, can be found in appendix A.

36

MijnOpenID.nl

Research on implementation of OpenID within GravityZoo

The provider ClaimID.com scales reasonable as well on the mobile ver-
sion of Internet Explorer. Despite the fact that the login page contains a
logo beneath the page header, there is no need for a lot of scrolling to be
done.

A login page is rated with a “+” if no scrolling at all is needed and it
does not contain any large images. Pages on which you can see the login
box at first load, but which need small amounts of scrolling in one way are
marked with a “+/-”. Pages on which you do not see the login box at all
at first load, are marked with a “-”. Pages which need a large amount of
scrolling in both ways are marked with “- -”.

The Nokia N91 is not at all suitable for web browsing as can be concluded
from this test. Due to its low resolution and small screen, none of the pages
scaled well on this phone.

Provider
Custom page on Page layout
N91 N95/N96 HTC N91 N95/N96 HTC

AOL.com - - - - - - -
ClaimID.com - - - - - +/- -
Google.com - - - - - - +/-
LiveID-INT.com - - - - - - +/-
LogMij.in - - - - - - +/-
MijnOpenID.nl - - - - - - - -
MyID.net - - - - - - -
MyOpenID.com - - - - - - -
MyVidoop.com - - - - - - - - -
Verisignlabs.com - - - - - +/- -

Table 17: OpenID provider mobile phone friendliness (part 2)

During the tests, Pip.Verisignlabs.com did not allow a Relying Party
to redirect the browser to them for authentication purposes. When begin
redirected to Verisign, you get a message that redirection is not allowed. Af-
ter this, you have to navigate yourself to https://pip.verisignlabs.com/login.do.
I tested the providers again in during the last week. During this last test,
Pip.Verisignlabs.com allowed redirection again. The Verisign OpenID lo-
gin page neither scales on the Nokia phones, nor on the HTC.

Logging in by using the MyVidoop.com OpenID Provider did not succeed
on any of the phones. When visiting the MyVidoop login page for the first
time, it detects that this browser is not used to authenticate before. On a
normal computer, it pop ups a overlay window using JavaScript/Ajax tech-
nology which thats that the browser needs to be activated first. This can be
done by e-mail or SMS. The window did not pop up on any of the phones
so the browser can not be activated.

37

ClaimID.com
Pip.Verisignlabs.com
https://pip.verisignlabs.com/login.do
Pip.Verisignlabs.com
MyVidoop.com

Research on implementation of OpenID within GravityZoo

When logging in at MyOpenID.com using a Nokia phone, you get redirect
to the French version of the page. None of the Nokia phones were actually
set to use French as primary language. Due to the latter, MyOpenID.com is
rated with a “-”. Using Internet Explorer Mobile, you are redirected to the
normal English version of the login screen. Though, you do not see the login
box at first load. Due tho this, the page is rated with a “-” aswell.

6.6 Conclusion on mobile-friendliness

From this test can be concluded that none of the tested OpenID providers is
currently focusing on mobile users. None of the login pages is really mobile
browser friendly. I’m hoping that they will optimize their pages in the near
future.

It should not be that difficult for the OpenID providers to create a
lightweight version of their page for mobile users. The OpenID providers
can check the browser version of the end user visiting the website. Based on
this, they can choose to display the lightweight version of the page or the
normal page.

38

MyOpenID.com
MyOpenID.com

Research on implementation of OpenID within GravityZoo

7 Integrating OpenID

This chapter covers the implementation requirements of OpenID authenti-
cation within the mobile version of the GravityZoo framework.

Until now, OpenID is only used for authentication on internet pages.
GravityZoo is the first who actually integrates OpenID authentication within
their own application framework. As described in chapter 4, OpenID uses
the HTTP protocol for communication between the endpoints. For this rea-
son, the application framework has to be able to send HTTP requests and
process incoming HTTP messages.

The GravityZoo company wants me to focus on the implementation of
the OpenID authentication mechanism, and not include the extensions for
now. Extensions can be looked in to when doing further research on the
subject.

There are two main roles in the OpenID authentication process as de-
scribed in chapter 3.4: The Relying party to which the user wants to
authenticate and the OpenID provider which actually provides the au-
thentication service. GravityZoo wants to enable its users to authenticate
with their own OpenID. They currently have no intention to become an
OpenID provider their selves. This because there is a large chance that
users currently already have an OpenID - maybe without even knowing - is
big.

7.1 Where to place the Relying Party entity?

The most important question to be answered is: Which server role in the
GravityZoo framework should inherit the role of being the Relying Party.

The Relying Party server role has the following requirements:

• Needs to be able to construct, send and process HTTP messages.

• Needs to be able to communicate with OpenID providers on the In-
ternet for establishing associations needed for signing purposes, or to
verify signatures if no association could be established.

• Needs to be able to store association information to be able to verify
signatures on incoming responses from OpenID Providers. Next to
this, the associations are reused for future communication with this
OpenID Provider.

39

Research on implementation of OpenID within GravityZoo

• Should be located in a trusted environment, only accepting incoming
authentication requests from GravityZoo clients using the REP routing
infrastructure.

• Needs to be able to communicate with the GravityZoo ALS which pro-
vides the authorization.

Roughly there are the following two scenarios to think of here:

1. Create a new server role for handling OpenID authentication.

2. Extend the current Authentication and Licensing Servers with the
Relying Party role.

Both scenario’s have its pros and cons. The second scenario would mean
that the ALS has to host a webserver. This makes the ALS reachable from
the Internet. It would become a point to attack the framework on because it
handles all authentication, authorization and licensing for the whole frame-
work. Due to this reason, this scenario is not a good choice.

The other option is to implement the Relying Party on a new server
within the framework. It has to create associations with OpenID Providers.
These associations need to be stored in a trusted environment. The role can-
not be hosted in the trusted part because of the demand of a webserver.

A better alternative is to split the webserver from the rest of the methods.
This scenario is reviewed in chapter 7.2, together with its requirements for
each step.

7.2 Relying Party process overview

A Relying party needs to go through several steps when authenticating
an end user. The steps summarized below, are numbered with the corre-
sponding paragraphs that contain information about this specific part of the
procedure.

7.2.1 The end user needs to be able to supply its OpenID identifier to the
GravityZoo framework (as covered in chapter 4.1). A field servicing
the OpenID identifier should be created on the login screen.

7.2.2 When clicking the login button, the GravityZoo framework should be
notified that OpenID is being used for authentication. The authen-
tication request should be routed to the entity within the framework
that acts as Relying Party.

40

Research on implementation of OpenID within GravityZoo

7.2.3 The supplied identifier has to be normalized. After this, the
OpenID Provider used by the end user has to be discovered (covered
in chapters 4.2 and 4.3).

7.2.4 Since the GravityZoo client is not web-based, an Internet browser has
to be opened on the end user’s device. The browser has to be redirected
to the login page of the OpenID Provider. The URL that is used to
redirect the user to the OpenID Provider has to be constructed by
the Relying Party.
The URL contains the authentication request as well as the URL to
which the end user should be redirect to once authentication is finished
(covered in chapter 4.5). Under the bonnet, the GravityZoo framework
has to create an association with the OpenID Provider (covered in
chapter 4.4).

7.2.5 In the normal authentication process, the OpenID provider’s website
redirects the browser back to the website of the Relying Party which
is requesting authentication. The redirect contains the provider’s re-
sponse to the authentication request (chapter 4.7). This response
needs to be processed and verified by the GravityZoo framework.

7.2.6 After verifying the response from the OpenID Provider, the end user
has to be granted access to all resources he is authorized to use.

7.2.1 Modifications to the login screen

Currently, the only way to log in to the GravityZoo framework is by sup-
plying your username and password through the client. A new field has to
be added to the login screen, in which you can supply your OpenID identifier.

OpenID identifiers can be relatively long. My Verisign OpenID identifier
is a good example: jarnovandemoosdijk.pip.verisignlabs.com. Supplying such an
identifier on a mobile phone without a full-size keyboard takes long.

There are two ways to increase the ease of use of this service. The first
one is adding a “remember my OpenID” option into the GravityZoo client,
like it is common practise at username/password logins. This option requires
that the mobile browser supports cookies and that cookie support is enabled.

In the second scenario two boxes are being used: One text box and one
drop-down list box. The first box is used for entering just the username part
of the OpenID identifier. The latter contains the n most popular OpenID
providers and an option for “other provider”, in case your provider is not
listed. Statistics of the used identifiers during login, can be used to cre-
ate a representative selection of the most popular OpenID Providers used

41

jarnovandemoosdijk.pip.verisignlabs.com

Research on implementation of OpenID within GravityZoo

when signing in to the GravityZoo framework. The “remember my OpenID”
option from the first scenario, can be added to this scenario too. This sub-
stantially cuts down the amount of typing required when logging in.

7.2.2 Supplying the identifier

Currently, when logging with a username and password, the login request
is routed through the REP routers to the ALS. This request uses a special
REP packet type as described in the last part of chapter 2. To fit OpenID
into this scheme, an additional packet type has to be specified so that the
GravityZoo framework knows that OpenID authentication is being used.

The identifier is used to discover and associate with the OpenID Provider.
The association has to be created and stored in a trusted environment. Since
the newly added webserver is not in a trusted environment, the authentica-
tion request has to be forwarded to the ALS.

7.2.3 Normalizing the identifier and Discovering the OP

After the end user has supplied its OpenID identifier, the ALS has to process
the supplied identifier. The identifier is first normalized as described
in chapter 4.2. The normalization procedure has no specific requirements.
The identifier is processed locally.

The next step for the Relying Party is to discover the OpenID Provider
that is servicing authentication for the supplied identifier. This infor-
mation is discovered by using one of the three discovery methods described
in chapter 4.3. Discovering the OpenID Provider requires internet connec-
tion and the ability to send HTTP GET requests to the normalized identifier.

7.2.4 Redirecting the user

Before the end user is redirected, an association is established between the
Relying Party and the OpenID Provider (covered in chapter 4.4). The
association request is sent by the ALS to the discovered OpenID Provider.
The most important keys of this request are the encryption to be used, the
Diffie-Hellman modulus and generator to be used, next to the computed
g^xa mod p. This where g is the generator, xa is the secret integer chosen
by the ALS and p is the specified modulo.

The OpenID Provider responds to this request with the encrypted shared
secret and the value of g^xb mod p. The computed shared secret is used
to encrypt the association’s MAC key in transit. Details of this process are
covered in chapter 4.4. This step requires processing power for the Diffie-

42

Research on implementation of OpenID within GravityZoo

Hellman computations and a communication path to the OpenID Provider.

The association has to be stored together with the corresponding handle,
shared secret and the lifetime of the shared secret. If the value is not stored,
it is not possible to verify any signed messages sent by the OpenID Provider.
The association is used for all sessions to this provider until its expiration
time invalidates the handle.

After establishing an association, the URL to which the end user is redi-
rected is constructed from several keys. Background information on all keys
can be found in 4.5. One of these keys is the openid.mode. This key speci-
fies one of the following two modes that can be used: checkid_immediate
or checkid_setup.

The most userfriendly scenario is to try checkid_immediate mode first.
In immediate mode, no interaction with the end user is needed. This only
succeeds if the user is already logged in to its OpenID Provider, and per-
manently authorized the GravityZoo framework to request authentication
for its OpenID identifier. The OpenID Provider is required to answer the
request immediately. If this mode fails, a new request has to be placed in
checkid_setup mode. After the user has logged in at the OpenID Provider
and granted GravityZoo permanent permission to request authentication,
the user does not have to supply its password to log in to the framework,
until the login at the OpenID Provider for the corresponding session expires.

Another important key used in the request is openid.return_to. The
end user is redirected to this URL after having authenticated at the OpenID
Provider’s website. This is covered in chapter 7.2.5.

As described in chapter 7.2, the GravityZoo framework is not web-based.
During the normal OpenID login procedure, the end user’s internet browser
is redirected to the website of his OpenID Provider. An internet browser
needs to be launched on the end user’s device. This browser needs to be
redirected to the login page of the OpenID Provider.

This scenario has an advantage over normal OpenID authentication.
Some OpenID Providers do not allow a Relying Party to redirect the end
user the their login page (covered in chapter 6.5). There is no browser in
the first place, so the user can normally log in using the spawned browser,
without manually surfing to the OpenID Provider’s login page.

43

Research on implementation of OpenID within GravityZoo

7.2.5 Intercepting and verifying the response from the OP

The end user now has to supply its credentials at the OpenID Provider and
authorize the GravityZoo framework to receive the authentication response.
After this, the user is redirected back to the URL specified in the return_to
key.

The return_to key should contain the URL of the webserver installed to
receive the response from the OpenID Provider, as covered in chapter 7.1.
The URL to which the user is redirected contains keys that complete the au-
thentication request done by the ALS. These keys, also known as the assertion
from the OpenID Provider, need to be verified. Verification can be done
in two ways, as covered in chapter 4.7: Indirect or direct. Indirect verifi-
cation is used when an association is established with the OpenID Provider.

The webserver that received the keys has no access to the trusted envi-
ronment where the assertion is stored. This assertion is needed to verify the
signature on the keys signed by the OpenID Provider. The keys need to
be forwarded to the ALS for verification. The ALS can then verify the keys
and their signatures. Direct verification requires the ALS to send a signature
verification request to the used OpenID Provider (covered in chapter 4.7.4).

After the verification process has ended successfully, the ALS should in-
form the webserver that the process has been finished. The user should be
redirect to a web page stating something like the quoted text below.

“You now have been authenticated successfully, click [here] to close this
window and return to the GravityZoo client.”

To optimize this page for mobile usage, it should not contain any large
images or other large objects. Authorization which is needed to access the
applications in the framework is covered in the next paragraph.

7.2.6 Authorizing the end user

OpenID just covers authentication and no authorization. Authorization is
handled by the ALS server role within the GravityZoo framework.

To authorize users that are using their OpenID instead of a username/-
password combination, an extra record has to be added to each user in the
user database. This entry should contain the OpenID corresponding to that
user.

Since the ALS is verifying the response from the OpenID Provider, au-

44

Research on implementation of OpenID within GravityZoo

thorization can then be handled in the same way as with username/password
authentication. The authorization response to the client should refresh the
client, this gives the user the ability to see which programs he is authorized
access.

7.3 The code

After research I found out that there are full feature OpenID libraries avail-
able for a wide variety of programming languages. An overview of the avail-
able libraries can be found at [24].

GravityZoo is programmed in Python. Python libraries are available at
openidenabled.com. They come with documentation and implementation
examples created by the OpenID community. These libraries are used for
the integration of OpenID into a website. The GravityZoo system is not a
website: it’s an application framework. Though, some code can be reused,
e.g. the code for discovering the OpenID Provider and creating the associ-
ation can be reused.

Due to time limitations I haven’t been able to start with a POC integra-
tion of the protocol. Next to this, I would need to have some support of a
GravityZoo programmer. I have been told that they are currently on a very
tight schedule, so this was not possible.

45

openidenabled.com

Research on implementation of OpenID within GravityZoo

8 Conclusion

Reviewing my research questions as stated in the last part of chapter 1.1:

How does OpenID work?

The working of the OpenID protocol is covered in detail in chapter 4
of this report. This was needed to specify the requirements for integrating
OpenID in to the GravityZoo framework, and for my personal interest in
the concept.

How mobile phone friendly are the most popular OpenID Providers?

From the test results that can be found in chapter 6.5 can be concluded
that none of the OpenID Providers is currently focusing on its mobile users.
None of the providers have a custom lightweight page for mobile users. The
providers should create a lightweight version of their page to service its mo-
bile users.

The user friendliness of providers like Google, LiveID and LogMij.In is
fair when using a phone with the mobile version of Internet Explorer, When
using a Nokia N95 or N96, ClaimID and Verisign provide reasonable user
friendliness, though, most providers require scrolling in both browsers.

What are the requirements for integrating OpenID into the
GravityZoo framework?

GravityZoo wants its users to be able to log in with their OpenID iden-
tifier. This means that the OpenID Relying Party role needs to be imple-
mented. Detailed information on the integration requirements can be found
in chapter 7. In short, the following needs to be done.

The Relying Party role needs to store session information like shared
secret keys in a trusted location and it has to be reachable from the in-
ternet. The latter makes it impossible to integrate the whole role on the
GravityZoo Authentication and Licensing server role. This because the web
server creates an easy way to reach and possibly attack the ALS role in the
GravityZoo framework. If this role is compromised, all authentication and
authorization can be stolen or modified.

Due to the above reason, the web server has to be separated from the rest
of the OpenID Relying Party role. This way, the web server can be placed
outside the trusted environment. The rest of the Relying Party role can be
placed on the Authentication and Licensing server. The ALS processes the

46

Research on implementation of OpenID within GravityZoo

supplied OpenID identifier and discovers the OpenID provider. After this,
it places an authentication request at the OpenID Provider. It specifies the
address of the web server in the return_to key of the request. The user will
be redirected to the web server after authenticating at his OpenID Provider.
The only task of the web server is to relay the authentication response
that comes from the OpenID Provider, to the Authentication and Licensing
server. The ALS can then verify the received response and authorize the
specific user. A new field which stores the OpenID identifier has to be
added to each user in the database. This way the ALS can authorize users
that use OpenID to authenticate, the same way as users that log in with a
combination of username and password.

9 Future considerations

In this report I focussed on the working of OpenID and on the require-
ments for its implementation into the GravityZoo framework. I have not
spend any time on the ethics involved with the protocol or with trusting an
OpenID Provider.

I have not done any in depth research on how secure the protocol itself
is. Although, during the first week when reading about OpenID, I came
across an enormous amount of news items and forum threads about phish-
ing attacks on OpenID [25] [26] [27] [28] [29]. Future research can be done
on the security of the protocol, including looking in to the implementation
of the extensions.

10 Acknowledgments

I would like to thank the following people for their help while conducting
this research project.

• Marcel van Birgelen, for his guidance throughout the research project.

• Dirk Moors, for sharing his view and knowledge about the Gravity-
Zoo framework.

• Mahdi Abdulrazak, for bringing me into contact with GravityZoo.

• And lastly, those who gave their feedback on this document.

47

Research on implementation of OpenID within GravityZoo

References

[1] Marcel van Birgelen, GravityZoo Technical Overview
http://www.gravityzoo.com/support/GZF_techoverview_2_1_rc2.pdf

[2] Brad Fitzpatrick, David Recordon, Josh Hoyt, OpenID terms
http://openid.net/specs/openid-authentication-2_0.html

[3] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifier
(URI)
http://www.ietf.org/rfc/rfc3986.txt

[4] OpenID Foundation, OpenID Foundation
http://openid.net/foundation/

[5] OpenID Foundation, OpenID Intellectual Property
http://openid.net/foundation/intellectual-property/

[6] David Chappell, Introducing Windows CardSpace
http://msdn.microsoft.com/en-us/library/aa480189.aspx

[7] Internet2 Intellectual Property Framework, The Shibboleth System
http://shibboleth.internet2.edu/

[8] Bart Kerver, The innovative authentication system
http://a-select.surfnet.nl/

[9] Dick Hardt, CardSpace / OpenID Collaboration Announcement
http://www.identityblog.com/?p=668

[10] Google, Federated Login for Google Account Users
http://code.google.com/intl/nl/apis/accounts/docs/OpenID.html

[11] Larry Drebes, Relying Party Stats as of Jan 1st, 2009
http://blog.janrain.com/2009/01/relying-party-stats-as-of-jan-1st-2008.html

[12] Drummond Reed, Dave McAlpin, Extensible Resource Identifier (XRI)
Syntax V2.0
http://www.oasis-open.org/committees/download.php/15376

[13] Brad Fitzpatrick, David Recordon, Josh Hoyt, OpenID Authentication
2.0 - Final - Appendix A
http://openid.net/specs/openid-authentication-2_0.html#normalization_example

[14] Justen Stepka, Using OpenID
http://www.theserverside.com/tt/articles/article.tss?l=OpenID

[15] Gabe Wachob, Reed Drummond, Extensible Resource Identifier (XRI)
Resolution Version 2.0
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.html

48

http://www.gravityzoo.com/support/GZF_techoverview_2_1_rc2.pdf
http://openid.net/specs/openid-authentication-2_0.html
http://www.ietf.org/rfc/rfc3986.txt
http://openid.net/foundation/
http://openid.net/foundation/intellectual-property/
http://msdn.microsoft.com/en-us/library/aa480189.aspx
http://shibboleth.internet2.edu/
http://a-select.surfnet.nl/
http://www.identityblog.com/?p=668
http://code.google.com/intl/nl/apis/accounts/docs/OpenID.html
http://blog.janrain.com/2009/01/relying-party-stats-as-of-jan-1st-2008.html
http://www.oasis-open.org/committees/download.php/15376
http://openid.net/specs/openid-authentication-2_0.html#normalization_example
http://www.theserverside.com/tt/articles/article.tss?l=OpenID
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.html

Research on implementation of OpenID within GravityZoo

[16] Joaquin Miller, Yadis
http://yadis.org/papers/yadis-v1.0.pdf

[17] OpenID Foundation, How do I get an OpenID?
http://openid.net/get/

[18] Will Norris, OpenID Support
http://willnorris.com/openid-support/

[19] OpenID Foundation, OpenID Simple Registration Extension 1.0
http://openid.net/specs/openid-simple-registration-extension-1_0.html

[20] OpenID Foundation, OpenID Provider Authentication Policy Extension
1.0
http://openid.net/specs/openid-provider-authentication-policy-extension-1_0.html

[21] W. Burr, D. Dodson, W. Polk, Electronic Authentication Guideline
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf

[22] Dare Obasanjo, Windows Live is now an OpenID Provider
http://www.25hoursaday.com/weblog/2008/10/27/WindowsLiveIsNowAnOpenIDProvider.

aspx

[23] Google, Federated Login for Google Account Users
http://code.google.com/intl/nl/apis/accounts/docs/OpenID.html

[24] OpenID Foundation, OpenID Libraries
http://wiki.openid.net/Libraries

[25] Marco Slot, Beginner’s guide to OpenID phishing
http://marcoslot.net/apps/openid

[26] Simon Willison, Solving the OpenID phishing problem
http://simonwillison.net/2007/Jan/19/phishing

[27] Links.org, OpenID: Phishing Heaven
http://www.links.org/?p=187

[28] Links.org, OpenID and Phishing: Episode II
http://www.links.org/?p=188

[29] Yoeri Lauwers, OpenID beschikbaar in Nederland
http://tweakers.net/nieuws/47158/openid-beschikbaar-in-nederland.html

49

http://yadis.org/papers/yadis-v1.0.pdf
http://openid.net/get/
http://willnorris.com/openid-support/
http://openid.net/specs/openid-simple-registration-extension-1_0.html
http://openid.net/specs/openid-provider-authentication-policy-extension-1_0.html
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://www.25hoursaday.com/weblog/2008/10/27/WindowsLiveIsNowAnOpenIDProvider.aspx
http://www.25hoursaday.com/weblog/2008/10/27/WindowsLiveIsNowAnOpenIDProvider.aspx
http://code.google.com/intl/nl/apis/accounts/docs/OpenID.html
http://wiki.openid.net/Libraries
http://marcoslot.net/apps/openid
http://simonwillison.net/2007/Jan/19/phishing
http://www.links.org/?p=187
http://www.links.org/?p=188
http://tweakers.net/nieuws/47158/openid-beschikbaar-in-nederland.html

Research on implementation of OpenID within GravityZoo

A Screenshots taken from OpenID Providers

This appendix contains screenshots of the tested OpenID Providers taken
on the HTC and the Nokia N96. The two first screenshots in each figure are
taken on the HTC, the lower two are taken on the Nokia N96.

Figure 7: AOL.com in both browsers

50

Research on implementation of OpenID within GravityZoo

Figure 8: ClaimID.com in both browsers

51

Research on implementation of OpenID within GravityZoo

Figure 9: Google.com in both browsers

52

Research on implementation of OpenID within GravityZoo

Figure 10: LogMij.in in both browsers

53

Research on implementation of OpenID within GravityZoo

Figure 11: MyID.net in both browsers

54

	Introduction
	Research Focus
	Structure of this report

	The GravityZoo Framework
	OpenID overview
	Why choose for OpenID?
	Basic terminology
	OpenID identifier delegation
	Example login procedure using OpenID

	OpenID in depth
	The supplied identifier
	Identifier normalization
	Discovery
	XRI resolution
	Yadis resolution
	HTML discovery
	XRDS: Extensible Resource Descriptor Set

	Establishing an association (Optional)
	Redirecting the end user, requesting authentication
	End user authentication at OP
	Positive Assertion
	Negative Assertion

	Verifying the authentication response
	Verifying the return URL
	Verifying the discovered information
	Checking the nonce
	Verifying the signatures

	Generating signatures

	OpenID Extensions
	OpenID Simple Registration Extension 1.0
	OpenID Provider Authentication Policy Extension 1.0
	OpenID Attribute Exchange 1.0

	OpenID on mobile phones
	Notable differences between PCs and mobile phones
	Tested OpenID Providers
	Tested criteria
	Phones used during the test
	The results
	Conclusion on mobile-friendliness

	Integrating OpenID
	Where to place the Relying Party entity?
	Relying Party process overview
	Modifications to the login screen
	Supplying the identifier
	Normalizing the identifier and Discovering the OP
	Redirecting the user
	Intercepting and verifying the response from the OP
	Authorizing the end user

	The code

	Conclusion
	Future considerations
	Acknowledgments
	Screenshots taken from OpenID Providers

