
Xen VGA passthrough

Author: Yuri Schaeffer BSc, yuri.schaeffer@os3.nl
System & Network Engineering, Univeriteit van Amsterdam
Supervisor: Mendel Mobach, Systemhouse Mobach bv

Abstract

After a small introduction of PCI passthrough and Xen

we will discuss VGA passthrough. We will try to cover

the most important steps needed to successfully imple-

ment the passthrough and analyse why these steps are

needed. Afterwards we will reflect on the project and

look into the future of VGA passthrough.

1 Introduction

Virtualization of hardware is hardly anything new
in computer science. Decades ago large mainframes
already ran multiple operating systems simultane-
ously. Not only full (software) virtualization but
also hardware aided virtualization and paravirtual-
ization. On consumer graded products (e.g. i386
compatible hardware) such hardware support was
not available up until recent years and virtualiza-
tion was always implemented in software. This im-
plies a significant performance penalty.

Nowadays, mainstream hardware has support for
virtualization and notably paravirtualization. The
introduction of technologies as VT-x and more spe-
cific VT-d (Virtualization Technology for Directed
I/O) enables PCI passthrough. The open source
virtualization software Xen can use this function-
ality to assign a specific piece of PCI(e) hardware
exclusively to a domU machine [4]. The hypervisor
maps memory and interrupts directly to the domU
machine. Other machines, including dom0, do not
have any access to the device anymore. Since the
machine communicates directly with the hardware
it is able to use the native drivers and its full capa-
bilities.

1.1 VGA passthrough

PCI passthrough is mainly used for devices such as
network interfaces and USB ports but all modern
hardware on the PCI bus should be able to sup-
port this feature. One of the exceptions to this
are graphics controllers. Graphics controllers have
some special inherited legacy from the past. For
example not all memory is allocated dynamically
and the card carries its own BIOS that needs to be
(re-)executed.

Although hard to implement, VGA passthrough
could be very useful in certain cases. Imagine a
user working in an unprivileged domain, possibly
unaware of any virtualization going on. This user
might be able to do anything he could do on a nor-
mal computer including using full capabilities of his
graphics card. Underneath, domain 0 has control
over the virtualized OS. Being able to guard the
OS against the big bad world.

2 Xen architecture

Prior to analysing what is needed to implement
VGA passthrough we need to understand Xen’s in-
ternal architecture. This chapter will show us how
Xen is logically organised, how memory is allocated
and the basics of PCI passthrough.

2.1 Structure

Xen consists of two main parts: the hypervisor and
a management module. Xen’s hypervisor is the first
thing that boots but it does not have any direct
interface to the user. In fact, the hypervisor is a
very limited piece of software, it has for example no
notion of devices or disks. All it does is scheduling
of processes and memory management.

1



2 Xen architecture 2

The first action that the hypervisor takes (visible
for the user) is bootstrapping a privileged domain
0, dom0 for short. Dom0 usually is a Linux distri-
bution with a modified kernel to support Xen. This
operating system has the privilege to directly ad-
dress hardware with their native drivers. On top of
dom0 runs a management program, DM&C, to con-
trol Xen and administer unprivileged virtual ma-
chines (domU).

When using paravirtualization (PV), the OS is
aware it is virtualized and may not address hard-
ware directly. Instead, it uses special drivers
without any hardware capability. These front-end
drivers communicate with a back-end driver which
sits on top of the native driver in dom0, see figure
2.1. The communication takes place in a shared
memory space for dom0 and the domU, when data
is set ready the virtual machine can invoke an in-
terrupt for the other machine to pick up the data.
An important advantage for this method is that no
hardware needs to be emulated which reduces the
performance hit.

Native
device driver

XEN Driver
backend

XEN aware
device driver

Domain 0 Domain Un

XEN hypervisor

Hardware

Userspace Userspace

ETC

Fig. 1: A PV domain is aware of virtualization and
makes no attempt to directly control hard-
ware.

Another option is to run a virtual machine as
hardware virtual machine (HVM). This time the
guest OS is not aware of any virtualization and will
run as it normally would do, including ’real’ device
drivers. The hardware seen by the HVM guest OS
however is not related to any physical hardware
present but is completely emulated. In this case the
dom0 machine will run a daemon, qemu-dm, that
performs this emulation and facilitates translation
to real devices. The QEMU project is an existing
processor emulator which is patched for use in Xen.
The fully virtualized OS thinks to control some well
supported generic hardware such as a Cirrus Logic

video card and a Realtek network interface.

2.2 Memory layout and passthrough

To understand what is happening with PCI
passthrough we need a grasp at how the machines
memory is build up when running Xen. Figure 2
shows a rough sketch of the memory of a computer
running Xen. Besides the BIOS, there is a range re-
served for communication with devices. This area
is used for example by network interfaces or disk
controllers.

Then there is Xen and the virtualized machines,
each virtual machine is layout the same way as any
normal computer would be. The VM it self knows
no better than its memory starts at address 0, it is
Xen and the CPU that facilitate the translation to
physical addresses. Similarly, the VM has a BIOS
available. Because of its static nature this is just a
one on one copy of the original BIOS.

BIOS

XEN

Dom0

Dom1

Physical

BIOS

OS

Dom1

VGA

NetBoot

NV

VGA

NetBoot

NV

Copy

Map

I/O MEM I/O MEM

Fig. 2: Schematic overview of possible memory us-
age while running Xen.

When applying PCI passthrough, certain mem-
ory areas of the physical machine are mapped to the
VM. Figure 2 shows this with NetBoot. The mem-
ory area in the VM occupied by netboot is actually
living outside the VM’s memory range. When the
guest OS writes to one of those memory addresses,
Xen will make sure it is actually written at the ap-
propriate address. This implicates that no other
VM is able to make use of that device.



3 VGA passthrough 3

3 VGA passthrough

Although VGA passthrough is far from widely
available, at least one attempt has been made to
achieve native VGA in an unprivileged domain. In
May of 2008 Jean Guyader presented a patch for
Xen to allow the passthrough [2]. Although his
code is not very generic it serves well as a proof of
the concept. This chapter we will analyse the steps
the above patch takes, try to grasp the meaning
and comment on the why and how of each part.

According to Guyader’s patch notes four impor-
tant steps are made:

1. Map VGA framebuffer to guest

2. Copy VGA BIOS to guest

3. Map VGA I/O ports

4. Disable Xen’s VGA code

3.1 Map VGA framebuffer to guest

A standard VGA adapter can have memory up to
256 KiB. 128 KiB of this memory is used in normal
VGA/EGA, monochrome and CGA display modes
(In the old days multiple modes could be used si-
multaneously when having more than one adapter)
[3]. This memory is called the framebuffer and is
normally mapped to the machines main memory at
address 0xA0000 (i.e. at 640 KiB, well above what
anyone will ever need) to 0xC0000. This memory
range must be mapped to the VM’s memory in or-
der for the OS to address the video adapter.

PC’s have a mechanism to report which memory
locations are in use by the BIOS and which are free
for the OS to claim, dubbed e820 (The hexadecimal
value a register needs to be set in order to get this
information). The VGA memory and VGA BIOS
are not reported by e820 but are at a fixed location
in memory, thus every OS has the locations hard
coded.

This has two implications. First the VGA mem-
ory can not be located inside the physical VM’s
memory. When the VM’s OS tries to read or write
to that specific memory range, the logical addresses
should not be translated by Xen to physical ad-
dresses in the VM’s memory space. This requires
an extra check specially for the VGA address range.
Second, since the VGA adapter does not specify it’s

address range dynamically Xen can not use it’s nor-
mal passthrough mechanism. The VGA addresses
must always be hard coded.

Most of this work is done in
the tools/libxc/xc hvm build.c and
tools/libxc/xc linux.c files. The VGA BIOS is
copied to the guests memory (see section 3.2) and
there’s a mapping to the VGA memory.

3.2 Copy VGA BIOS to guest

As with the framebuffer memory the VGA BIOS
can be found at a fixed range, 0xC0000 –
0xCAFFF. The BIOS provides a set of functions
to control the VGA adapter, it must be copied to
the memory space of the guest and then executed.

The patch introduces a check in
tools/firmware/hvmloader.c on vendor and device
ID of the graphics card to decide which type of
adapter is present and copy range of memory for
the appropriate BIOS. In order to accommodate
this, the memory location of etherboot is shifted
with 8 KiB. Also, Xen seemed to use the memory
range of the VGA BIOS as a temporary space for
BIOS related things, this area is now relocated
elsewhere. The files responsible for this change is
tools/firmware/config.h.

At last the BIOS instructions need to be executed
to initialise the graphics adapter. This takes place
in the tools/ioemu/hw/pc.c file.

3.3 Map VGA I/O ports

To perform communication between software and
the VGA adapter memory mapped i/o is used. The
adapter virtually occupies a part of the machines
memory. To pass a message to the adapter one
would simply write a value to the appropriate mem-
ory address. The adapter would pick the address
and the value up from the memory bus and behave
accordingly.

Since the hardware is listening to a specific mem-
ory address Xen must facilitate a mapping from the
logical to the physical range. Or rather make an ex-
ception not to translate operations to that memory
area.

The file tools/libxc/xc hvm build.c is modified by
the patch to map the memory range from address
0x3C0 to 0x3E0 to the guest OS.



5 Alternatives 4

3.4 Disable Xen’s VGA code

If the video is passed through to any unprivi-
leged domain, Xen must prevent dom0 to grab
and use the VGA adapter. The patch notes im-
ply to modify a hvm.c to disable the VGA code,
this is however not implemented by the patch.
A little research did however reveal a source file
xen/arch/x86/hvm/hvm.c that included a call to
the a video initialisation function.

3.5 miscellaneous

The last thing that Guyaders patch does is reroute
the mouse and keyboard input from dom0 to domU.
This last step could also be implemented in a more
generic way as PCI passthrough. Individual USB
controllers can very well be passed through to an
unprivileged domain without any special software
modifications.

3.6 Limitations

Although the above patch looks promising and is
relatively small it appears to be quite rigid. Since
all memory locations are hard coded in to the pro-
gram it is not very flexible. A short e-mail conver-
sation with Jean Guyader revealed that currently
the patch only works correct on systems with an
Intel chipset and an Intel integrated graphics card.
The problem is that for the patch to work is that
the video BIOS needs to be executed again. This
trick does not seem to work reliable on other com-
binations of brands of hardware.

Another problem is that it only works with the
principle graphics card. It is not possible to use an
other adapter for the passthrough or use multiple
cards.

4 Future

The patch gives us a reasonable proof of con-
cept. The very first thing to do of course is try
to make the patch compatible with other adapters
and chipsets. While most important, other inter-
esting related projects could be thought of. We’d
like to envision a few cases which might not be cur-
rently possible but could be researched later on:

1. Allow multiple video cards in one system. Ei-
ther pass them to a single OS or distribute

them. e.g. dom1 gets adapter1 and dom4 gets
adapter2. This would for one thing require re-
initialising more than one VGA BIOS.

2. Might it be possible to use one card in dual-
head setup for more VM’s simultaneously?
Some graphics adapters present themselves as
two separate PCI devices. Maybe with a little
extra effort both heads could be assigned to
another VM.

3. Switch video card live between two or more
VM’s. Could it be possible to have two sepa-
rate OS’s use the same graphics adapter? Xen
could switch which of the VM’s will get to out-
put to the adapter.

At least for the first proposal multiple BIOSes
need to be executed. Having difficulty with one
already this could proof to be quite though for
Xen. A possible approach could be to initialise
one adapter, then unmap BIOS, memory and I/O,
remap them for a second one and do the initialisa-
tion again. The XFree86 project is known [1] for a
similar approach to support multiple cards simul-
taneously.

In order to have more VM’s using the same mon-
itor, Xen must be able to remap PCI devices be-
tween VM’s. The decoupled OS will still try to
control the VGA adapter. For a smooth transition
Xen must reroute the I/O to an other memory lo-
cation and might need to implement some dummy
adapter to keep the decoupled OS happy.

5 Alternatives

An other big player in virtualization, VMware has
the VGA problem tackled in a different way. In or-
der to enable graphics acceleration dom0 uses the
native drivers for the graphics card and boots in
graphics mode. Instead of just presenting the guest
OS with a simple generic VGA adapter, it will pre-
tend it has directX abilities. When directX func-
tions are called VMware will recompile the instruc-
tions to openGL which then is executed on the host
OS. A downside on this would be that the host OS
is not hidden for the user and needs to support
the hardware. A likely scenario would be that the
host is Linux based and not supported by the card’s
manufacturer.



6 Conclusion 5

6 Conclusion

The current patch shows that VGA passthrough
is doable with relatively simple code and without
breaking existing functionality in Xen. Although
it is still far from flexible at the moment it seems
possible to have generic VGA passthrough in Xen
in the future.

While doing this research we get the feeling very
few people are actively participating on this part
of Xen. For this project to catch on a few things
need to change. The patch is not available for any
current version of Xen. It was made in May 2008
and the author told us that it was not developed in
the open source tree of Xen. Looking at the current
source code reveals that Xen is a very vivid project
with still big source changes. This makes it hard
for any one else to implement the patch. Second,
the patch is not very verbose on what it precisely
does. If possible, it is even worse documented then
Xen’s own source code at current time. Finally,
PCI passthrough requires relatively new hardware
which might not be available for everyone inter-
ested.

Even so, we are sure that many with us will find
the project interesting enough to support. If this
concept becomes mature and available for other
hardware combinations in Xen’s main tree we can
not imagine what new exiting purposes people can
come up with.

References

[1] Li-Ta Lo, Gregory R. Watson, Ronald G.
Minnich “FreeVGA: Architecture Independent
Video Graphics Initialization for LinuxBIOS”
http://www.coreboot.org/data/vgabios/vgabios.html

[2] Jean Guyader “[PATCH]
Pass-through a graphic card”
http://article.gmane.org/gmane.comp.emulators.
xen.devel/51194, Xen-devel mailinglist

[3] Various “Video Graphics Array” Wikipedia,
http://en.wikipedia.org/w/index.php?title=
Video Graphics Array&oldid=267743817,
01:42, 1 February 2009

[4] Yuji Shimada “Development of I/O Pass-
through: Current Status & the Future”

Presentation Xen Tokyo Summit, Nov 21 2008,
http://www.xen.org/xensummit/xensummit fall 2008.html

[5] Xen “Xen Architecture Overview” February 13,
2008, version: 1.2


