
System and Network Engineering

Research Project 1

Master of Science Program

Academic year 2008–2009

802.1ah in NetherLight:
An application proposal

by

Sevickson KWIDAMA
sevickson.kwidama ⇒ os3.nl

UvA Supervisor : Dr. Ir. Cees de Laat

Project Supervisors : Ronald van der Pol

Mark Meijerink

Research Project report for System and Network Engineering, University of Amsterdam, the
Netherlands, for RP1 academic year 2008–2009.

This document is c© 2008
Sevickson Kwidama | sevickson.kwidama ⇒ os3.nl.

Some rights reserved: this document is licensed under the Creative Commons Attribution 3.0
Netherlands license. You are free to use and share this document under the condition that you
properly attribute the original authors. Please see the following address for the full license condi-
tions: http://creativecommons.org/licenses/by/3.0/nl/deed.en

Cover image: This image symbolizes the interconnection of different lightpaths in a GOLE, like
NetherLight. Source: http://www.stockxpert.com/.

Version 1.0.0 and compiled with LATEX on February 17, 2009.

Abstract

NetherLight is the place where customers can interconnect their lightpaths.
The lightpaths in NetherLight can be service instances, VLANs, in Gigabit Ethernet. This
setup has the problem of scalability and separation. The service instance IDs that can be
used are limited to 4094 IDs and there is no separation between the customer MAC addresses
and NetherLight’s backbone MAC addresses.

PBB can be the solution. PBB solves the scalability problem by inserting a whole new
field in the MAC-frame, this field is called I-SID, this increases the possible service instances
to up to 16 million.
The separation problem is solved by inserting a dedicated MAC-header for the backbone net-
work to separate the MAC-addresses and VLANs used.

Different connection models can be built in PBB. For instance, a connection model that
does not make a distinction between the traffic that passes through the backbone network.
Connection models that put customer traffic in different I-SIDs based on the C-VID and/or
the S-VID.
Also by changing the VLAN ID of a customer, a connection model can be made of “VLAN-
interconnection”, meaning the VLAN ID of a customer changes in the VLAN ID of the party,
which the customer wants to communicate with.

Having a PBB backbone network increases the need to connect to other PBB backbone
networks to improve on the connections between different customer networks. To connect to
other PBB backbone networks you can use a hierarchical model or a more peer-to-peer like
model.

Contents

1 Introduction 5

2 NetherLight 6

3 PBB 7
3.1 Operation . 7
3.2 Frame Format . 9

4 PBB Connection Models 11
4.1 Configuration . 11
4.2 Transparent . 12
4.3 Switched . 12
4.4 Retagging . 13
4.5 Q-in-Q . 13

5 Multi-Domain 15
5.1 Hierarchical PBBNs . 15
5.2 Peer PBBNs . 16

6 Future Work 17

7 Conclusion 17

8 Acknowledgments 18

Bibliography 19

Appendices 20

A Configuring the PBB Connection Models 20
A.1 Transparent Connection Model . 21

A.1.1 Device Manager . 21
A.2 Switched Connection Model . 25

A.2.1 Device Manager . 25
A.3 Retagging Connection Model . 26

A.3.1 Device Manager . 26
A.4 Q-in-Q Connection Model . 26

A.4.1 Device Manager . 26

B Testing 26

List of Tables

1 PBB frame fields explained. 9

List of Figures

1 GLIF World Map. 6
2 Frame Encapsulation in BEB . 8
3 Different frame formats used in PBB. 9
4 Detailed frame format of PBB. 10
5 Setup used to test PBB connection models. 11
6 Transparent Connection Model concept. 12
7 Switched Connection Model concept. 13
8 Retagging Connection Model concept. 13
9 Q-in-Q Connection Model concept 1. 14
10 Q-in-Q Connection Model concept 2. 14
11 Hierarchical PBBN example. 15
12 Peer PBBN example. 16
13 Screenshot: NJDM Main window . 20
14 Screenshot: Port configuration window . 21
15 Screenshot: B-VLAN configuration window . 22
16 Screenshot: I-SID configuration window . 23
17 Screenshot: I-SID endpoint configuration window 24
18 Screenshot: I-SID table window . 25

4

1 INTRODUCTION

1 Introduction

NetherLight [1] is one of the network exchange points that interconnect different research networks
all over the world.
NetherLight makes use of lightpaths to connect the different networks to each other. These net-
works are connected via SDH/SONET circuits, Virtual Local Area Networks (VLANs) in Gigabit
Ethernet or a combination of both.

When you look at the currently used switching setup of NetherLight, it is clear that they aren’t
using the full potential of NetherLight. The reason for this is that they are using VLAN-tagged
and untagged ports.
One of the disadvantages of this setup is that there is no separation between the VLANs of the
customers and the VLANs of NetherLight itself. The solution used, is careful planning of VLAN
IDs between NetherLight and its customers. This setup can be used as long as the overview stays
clear and the network does not grow.

The overview is soon lost in NetherLight, because of the fact that there are different networks
connected to NetherLight. Different VLAN configurations must be coördinated between the net-
works and NetherLight. Also VLAN planning is an exhaustive job. The network of NetherLight
is still growing making the limitation of 4094 VLAN IDs a problem.

This is the reason to look for other solutions.
The IEEE standard 802.1ah [2] implemented as Provider Backbone Bridges (PBB) or Mac-in-Mac
(M-in-M) can be the solution for this problem.
This standard is a technology that makes it possible to separate the NetherLight backbone VLANs
from the customers VLANs and dramatically increase the amount of VLANs that can be used. I
will use the term PBB in the rest of this report.

With PBB as the center of my research I will be looking at different aspects of PBB. The aspects
that I will be looking at are summarized as research questions below:

1. How can PBB be used to support several connection models in NetherLight?

2. Can PBB be used in a multi-domain environment?

This report is divided as follows:
The first part gives some background information about NetherLight in chapter 2.

After discussing the background, PBB and his operational model will be discussed in chapter 3
on page 7.
The different connection models are discussed in chapter 4 on page 11.
The second research question is discussed in chapter 5 on page 15.

Closing this report I will give future work in chapter 6 and some conclusions in chapter 7 on
page 17.

5

2 NETHERLIGHT

2 NetherLight

Global Lambda Integrated Facility (GLIF) is a virtual international organization that promotes
the paradigm of ‘lambda’ networking to support demanding scientific applications.
Lambda networking is the use of different colors or wavelengths of (laser) light in fibres for separate
connections. Each wavelength is called a lambda. [3]
These lambdas are interconnected in the different GLIF Open Lightpath Exchanges (GOLEs).

NetherLight is the GOLE in Amsterdam, the Netherlands. This GOLE is an advanced open op-
tical infrastructure for network services optimized for high-performance applications.
The heart of NetherLight consists of a Nortel HDXc [4] optical cross connect that interconnects
multiple 10 Gbps lambdas in order to connect lightpaths between multiple national and interna-
tional network facilities. NetherLight also provides Gigabit Ethernet switching capabilities. [1]

In figure 1 1 I give the most recent map of the lambda connections around the world.

Figure 1: GLIF World Map.

1Source: [3]

6

3 PBB

3 PBB

PBB is an architecture and set of protocols for forwarding primarily Ethernet frames of customers
over a service providers backbone network, allowing interconnection of multiple networks without
losing each customers individually defined VLANs. [5]

Ethernet was initially defined to interconnect computers in a Local Area Network (LAN), within
a small organization.
Over the years, Ethernet has become vastly popular technology and became the default Open
Systems Interconnection (OSI) Layer 2 mechanism for any data transport.
This created the need for extending the Ethernet from a customer LAN bridging network to service
provider Metropolitan Area Network (MAN) or the provider bridging network. From this need
Carrier Ethernet was born.

Carrier Ethernet is an extension to Ethernet that makes it possible for service providers to extend
their network, in this case the backbone network, to add scalability, reliability and security, to
support the growing number of customers.

For this, an encapsulation method using an extra VLAN ID field, called a Service Tag (S-Tag),
was added to the Ethernet frame in IEEE 802.1ad standard. Switching, in the network of the
service provider, is based on the S-Tag and destination MAC address. The C-Tag defined in IEEE
802.1Q is used to create VLANs in the customer’s network. The technology based on the IEEE
802.1ad standard is also known as Q-in-Q or Q-tunneling.

Q-in-Q does not offer true separation of the customer and provider’s network, but is merely a way
to overcome the limitations of the VLAN identifier space of the IEEE 802.1Q standard. There’s
still the problem of having too little control of the MAC addresses, since Q-in-Q forwarding is still
based on the customer’s destination addresses. [5]

From the urgency of providing a better mechanism than Q-in-Q for service providers, PBB was
born.
Instead of using a single S-Tag field, PBB encapsulates the customer’s frame in a new MAC-
header. This has the benefit that it completely separates the customer’s network from the service
provider’s.
Another benefit of PBB is the Backbone Service Instance Identifier (I-SID) field. This field relieves
the service provider of the scaling problem of VLANs by giving the service provider the possibility
to create up to 16 million services.
By using the I-SIDs for service identification, VLANs in the backbone network can be used to
segregate the service providers network into regions to simplify traffic engineering. [6]

3.1 Operation

A service provider’s backbone network, configured with PBB, is called a Provider Backbone
Bridged Network (PBBN). PBBN has basically two network components: Backbone Edge Bridges
(BEBs) and Backbone Core Bridges (BCBs).
The BEB is the ingress and egress point of customer MAC-frames in the PBBN. BEB is divided
in theory in two components: the I-Component and the B-Component [7].
The I-Component is for I-SIDs and customer separation. The B-Component is for the forward-
ing of the customer frames in the backbone. [8] These two components can also be in separate
BEBs. An example of this setup is when a customer controls a BEB. That BEB then sends I-
tagged frames, frames processed by the I-Component, to the BEB under provider control and the
provider BEB then processes the I-tagged frame through the B-Component.

The interface of the BEB that is connected to the customer is called the User to Network Interface
(UNI). UNI is basically the Customer Network Port (CNP) of the I-Component.

The I-Component identifies the service instance for that specific frame and is responsible for
the customer separation. This component classifies and associates the customer frame with an

7

3.1 Operation 3 PBB

I-SID. [8] Then a Backbone Service Instance Tag (I-Tag) containing the I-SID is inserted into
the frame. Also a Backbone Source MAC Address (B-MAC SA) and a Backbone Destination
MAC Address (B-MAC DA) is prepended to that frame. A new Frame Check Sequence (FCS) is
calculated for the frame replacing the old FCS.
The different fields of the PBB MAC-frame will be discussed in section 3.2 on the next page.
The I-tagged frame leaves the I-Component via the Provider Instance Port (PIP).

After the I-tagged frame leaves the PIP, it enters the B-Component through the Customer Back-
bone Port (CBP).
The B-Component is responsible for forwarding of the customer frames through the PBBN.
This component adds the B-Tag to the frame. The B-Tag contains the ID of the PBB network
VLAN that carries the traffic for this service instance. [8]
The frame leaves the B-Component via the Provider Network Port (PNP) and enters the backbone
network.

Another implementation of the I-Component and B-Component, is where the I-Component adds
the I-Tag and the B-Component adds the backbone MAC-addresses and B-Tag.

When the frame reaches the egress BEB it does all these steps in reverse.

In figure 2 the encapsulation of a MAC-frame in the different components is displayed.

Figure 2: Frame Encapsulation in BEB

The BCBs do not have to be “PBB-aware”, they see the frames as normal MAC-frames and
forward the frames according to their own forwarding tables.

8

3.2 Frame Format 3 PBB

3.2 Frame Format

When you look at the PBB frame format you can see why PBB has the name Mac-in-Mac. PBB
encapsulates the whole frame with the customer MAC-header included, in a MAC-header of its
own.
Figure 3 gives an overview of the PBB frame and how it compares to other frames. The other
frames in this figure, IEEE 802.3 (Ethernet) and 802.1Q (VLAN tagging) and 802.1ad (Provider
Bridging) MAC frames, are Ethernet frames that can be encapsulated in PBB.

Figure 3: Different frame formats used in PBB.

The S-Tag in the 802.1ad frame in the figure above, is removed from the PBB frame when it
arrives at the ingress BEB and added again at the egress BEB.
The PBB frame given in figure 3 is divided as follows:

Field Size Description
(bits)

B-DA 48 This is the MAC-address of the PNP of the egress BEB

B-SA 48 The MAC-address of the PNP of the source BEB

B-Tag 32 Backbone tag containing 802.1ah Backbone VLAN ID and it’s
Tag Protocol Identifier (TPID), (Value = 0x88a8)

I-Tag 48 Instance tag containing the I-SID and it’s TPID (Value = 0x88e7).
This tag also contains the encapsulated MAC DA and MAC SA,
given below, of the customer when the PBB encapsulates Ethernet

MAC DA 48 Encapsulated customer Destination Address

MAC SA 48 Encapsulated customer Source Address

C-Tag 32 Customer tag containing 802.1Q VLAN ID (C-VID) and it’s TPID
(Value = 0x8100), this field is optional

Ethertype 16 This is the data type of the customer data

Data 368-72000 Customer data, the size is including jumbo frames

FCS 32 Checksum to detect alterations in the data of the frame

Table 1: PBB frame fields explained.

9

3.2 Frame Format 3 PBB

A more detailed look of the I-TAG, is given in the figure below:

Figure 4: Detailed frame format of PBB.

Given the figure above it can be noted that the 48 bit I-Tag field can be further subdivided in:

• I-Tag Ethertype, 16 bits: Reserved for the ethertype, also known as the TPID, of the I-Tag
field. (Value = 0x88e7)

• Backbone Service Instance Priority Code Point (I-PCP), 3 bits: This field encodes the
priority parameters of the service request primitive associated with this frame. PCP manages
the transmission delay experienced by a frame in a bridge, this is a Quality of Service
parameter [9].
The PBBN operates on the priority associated with the B-Tag.

• Backbone Service Instance Drop Eligible Indicator (I-DEI), 1 bit : This field carries the
drop eligible parameter of the service request primitive associated with this frame. This
means, a frame with DEI = True (1) has a higher probability to be dropped than a frame
with DEI = False (0).
The PBBN operates on the drop eligibility associated with the B-Tag.

• Use Customer Addresses (UCA), 1 bit : UCA is a single-bit flag that, when containing a
value of one, gives a signal to use the addresses contained in the MAC DA and MAC SA
fields.

• Reserved 1 (Res1), 1 bit : Is a field used for any future format variations. The Res1 field
contains a value of zero when the tag is encoded, and is ignored when the tag is decoded.

• Reserved 2 (Res2), 2 bits: Is a 2 bit field used for any future format variations. The Res2
field contains a value of zero when the tag is encoded. The frame will be discarded if this
field contains a non-zero value when the tag is decoded.

• I-SID, 24 bits: This field carries the Identifier of the Backbone Service Instance. [7]

10

4 PBB CONNECTION MODELS

4 PBB Connection Models

PBB has different connection models that can be applied to a specific network configuration. The
different connection models are:

Transparent Uses one I-SID regardless of the tagged or untagged traffic from the customer;

Switched Separates customer traffic to different I-SIDs, according to the Customer’s VLAN IDs
(C-VIDs);

Retagging Changes the customer’s VLAN ID in the frame to forward the frame to a different
VLAN;

Q-in-Q Puts frames in I-SIDs depending on the Service VLAN ID (S-VID) in the frame or
depending on the S-VID and C-VID.

The different connection models will be discussed theoretically in this chapter and the configura-
tions used for testing are given in Appendix A on page 20.

4.1 Configuration

I used the following setup, figure 5, to test the different connection models.

Figure 5: Setup used to test PBB connection models.

The iperf1.amsterdam1.netherlight.net and the iperf2.amsterdam1.netherlight.net are Dell Pow-
erEdge 1950 [10] servers. I used these servers to simulate customer networks with tagged and
untagged traffic. In Appendix B on page 26 I will give the commands used on the servers to

11

4.2 Transparent 4 PBB CONNECTION MODELS

generate tagged and untagged traffic and test the different setups.
The main purpose of these servers is throughput testing, thus the name Iperf. I will use these
servers to generate tagged and untagged traffic, consisting of ping requests and ping responses.

The Asd001A E8K1T is a Nortel Metro Ethernet Routing Switch (MERS) 8600 [11] with PBB
capabilities. The firmware version installed at the time of testing was 5.0.0.1.
I will use this switch to simulate all the connection models given.

The connection models that I explain in the following sections are largely based on my experience
with the Nortel MERS 8600 switch and the different service types that can be configured on the
switch.

4.2 Transparent

A transparent connection model is a model where forwarding of frames is not based on the C-VID
or S-VID.

A benefit of this model is, less computational power needed because no mapping lookup of I-SID
to VLAN ID (VID) is needed.

The transparent connection model is port based.
This means that you map the port to an I-SID, the port is also called an I-SID endpoint. By
configuring the port as a transparent endpoint it does not do a mapping lookup of the VID to
that I-SID, when a frame arrives. When the transparent connection model is configured on an
endpoint, all traffic received on that endpoint is automatically associated with that I-SID.

An example of this model can be seen in figure 6.

Figure 6: Transparent Connection Model concept.

4.3 Switched

A switched connection model is a model where I-SID association is based on C-VIDs.

The implementation of this model looks at the ID of the customer VLAN to decide which I-SID
will be attached to that frame. This model can be used to separate traffic of a customer in different
I-SIDs.
In the switched connection model, one VLAN can be configured to an I-SID or many VLANs to
an I-SID.

The switched connection model can divide the customer traffic in different I-SIDs to forward the
different C-VLANs to different UNIs or NNIs.

In figure 7 on the next page an example is given of a customer with different C-VLANs. The
traffic of this customer is divided according to the ID of each C-VLAN.

12

4.4 Retagging 4 PBB CONNECTION MODELS

Figure 7: Switched Connection Model concept.

4.4 Retagging

Retagging, also called Remapping, is a connection model that changes the VID of a customer to
another VID at egress.

This connection model makes it possible to interconnect two customers to each other through
VLANs without them having to change their VLAN configuration.
Figure 8 gives an idea of how this model works.
At the ingress the customer VLAN is associated with an I-SID. The I-Tag, backbone addresses
and B-Tag are added to the frame.
When the frame arrives at the egress the added fields are removed and the C-VID in the C-Tag
is changed to the C-VID assigned to that endpoint (UNI). This C-VID is pre-provisioned to that
I-SID endpoint.

Figure 8: Retagging Connection Model concept.

4.5 Q-in-Q

Q-in-Q connection model is a model that uses the S-VID to associate to a specific I-SID. The
C-VID can also be used in conjunction with the S-VID to associate to a I-SID.

The Q-in-Q connection model has two variants:

1. I-SID association based on the S-VID;

2. I-SID association based on the S-VID and the C-VID.

This connection model uses a one-to-one mapping between the S-VIDs and the I-SIDs. [7] The
model of Q-in-Q that only uses the S-VID to associate to an I-SID is displayed in figure 9 on the
next page.

13

4.5 Q-in-Q 4 PBB CONNECTION MODELS

Figure 9: Q-in-Q Connection Model concept 1.

This model can be seen as a switched connection model, but instead of using the C-VID to asso-
ciate to I-SIDs, the S-VID is used.
At ingress the BEB looks at the S-Tag to make an I-SID association. After the association has
been made the I-Component removes the S-Tag before sending the frame in the PBBN. At egress
the S-Tag is deduced from the I-Tag and (re-)inserted in the frame. [8]

The Q-in-Q connection model can be used in different scenarios. Below I will give a few scenarios
I came across:

• Interconnect Q-in-Q islands: the I-SID can be used to translate the S-VIDs between the
islands;

• Intercontinental service carriers that want to classify and consolidate customer traffic from
different service providers. [8]

The Q-in-Q connection model that uses the S-VID and the C-VID to associate to an I-SID is
displayed below:

Figure 10: Q-in-Q Connection Model concept 2.

In this model the S-Tag is also removed at the ingress and (re-)inserted at the egress.
In both Q-in-Q models the C-Tag is not removed from the frame.

14

5 MULTI-DOMAIN

5 Multi-Domain

Now that the connection models have been discussed, I will discuss the second research question
for this project:

Can 802.1ah be used in a multi-domain environment?

A multi-domain environment is an environment with multiple PBB networks, each operated by
different administrative domains. The different networks, PBBNs, are interconnected via a Metro
Ethernet Forum (MEF) External Network to Network Interface (E-NNI). [7]
It is necessary to look at multi-domain environment possibilities when you want to scale the PBBN
beyond organizations boundaries.

There are two possibilities when looking at interconnection between different PBBNs:

1. Hierarchical PBBNs

2. Peer PBBNs

5.1 Hierarchical PBBNs

Hierarchical PBBNs interconnect PBBNs in a so called “leveled hierarchy”. This means that each
PBBN resides at a different level in the hierarchical model of the network, e.g., PBBN A resides
at level n and PBBN B interconnected to PBBN A resides at level n + 1, and so on and so forth.

In the hierarchical model, the n + 1 level PBBN carries the nth-level PBBN B-VLANs as services in
the same manner as the first level PBBN carries the customer S-VLANs or C-VLANs as services. [7]
Each level of hierarchy adds its own encapsulation layer to the MAC-frame, this would mean that
there is a maximum nesting depth that can be reached with this model. The nesting depth is
limited by the maximum defined MAC-frame length.

Figure 11 2 displays an example of the hierarchical PBBN. PBN in this figure is the IEEE 802.1ad
(Q-in-Q) customer network connected to different levels of PBBNs. This figure also gives an
example of how the frames are encapsulated in the hierarchical model.

Figure 11: Hierarchical PBBN example.

NetherLight can take advantage of a hierarchical model.
At the moment each GOLE is an independent instance of a backbone network. By creating a
hierarchical model more collaboration will be required between the different GOLEs.

2Source: [12]

15

5.2 Peer PBBNs 5 MULTI-DOMAIN

A disadvantage of this model can be the creation of “super-GOLEs”, this can have a wrong effect
on GOLEs. Creating the idea that some GOLEs are more important than others, can become an
obstacle in the collaboration between GOLEs.

The nesting depth limitation can be another disadvantage, but the use of jumbo frames and
controlling the depth levels of GOLEs can nullify this disadvantage.

5.2 Peer PBBNs

The other multi-domain environment model is called Peer PBBNs. In this model the PBBNs are
interconnected as independent peers with no knowledge of the B-VLANs of the other PBBN.

Peer PBBN works as follows.
A service instance of PBBN x is connected to a service instance of PBBN y through the peer
E-NNI between the PBBNs. The peer E-NNI is formed by an I-tagged Service Interface between
the two CBPs, one in each of the PBBNs. The I-SID used over the E-NNI must be agreed mutually
by both providers. [7]
This model does not have the nesting depth limitations of the hierarchical PBBN model.

In figure 12 2 I give an example of the peer PBBN model.
In this example B-VLANN1 encapsulates the C-VLAN frames with a B-DAN1, B-SAN1 and B-
TagN1. When the frame arrives at the peer E-NNI it substitutes the B-DAN1, B-SAN1 and
B-TagN1 with B-DAIB , B-SAIB and B-TagIB of the CBPN2 at the other side of the E-NNI.
The CBPN2 at his turn does the same substitution as explained above, but it now turns the
B-DAIB , B-SAIB and B-TagIB into B-DAN2, B-SAN2 and B-TagN2.

Figure 12: Peer PBBN example.

The GOLEs don’t have a hierarchy making the Peer PBBN model the easiest multi-domain model
configurable.
Because the configuration of peer PBBN consists of configuring one E-NNI between GOLEs, min-
imal collaboration is needed. When you are connecting different domains to each other, broadcast
storms and loops can occur.
Broadcast storms can be avoided by configuring point-to-point links between the different domains.
If a broadcast message arrives at the BEB that has the link to the other domain, the B-DA of
the broadcast message can be changed or dropped altogether for that link. This, to separate the
broadcast domains and avoid broadcast storms extending to other domains.
Loops are avoided by configuring spanning trees for each domain, together with manual point-to-
point links between the domains to avoid loops between the domains.

2Source: [12]

16

7 CONCLUSION

6 Future Work

Regarding future work, testing of the configurations of the Q-in-Q Connection Model given in
Appendix A.4 on page 26 is a good idea. This, to make sure that the configuration of Q-in-Q
works. Because of time constraints I could not test them.

There was no clear instruction on how to configure the NNI ports between switches in the back-
bone network. A study must be done in the configuration of NNI.

The multi-domain environments described in the previous chapter can be configured in a test-
setup to document the necessary steps needed to implement them.

PBB also has the capability of encapsulating other transport technologies besides Ethernet. At
the moment it seems, PBB is more focused on Ethernet. Maybe in the near future a study can
be done in the possibilities of encapsulating other transport technologies in PBB. This might be
useful in integrating PBB in the NetherLight network.

A testing environment should be setup for prolonged testing of PBB, with actual customer traffic.
This setup can give more insight in the real-life performance of PBB.
By using actual customer traffic a phased integration in the NetherLight backbone can be achieved.
The VIDs currently used in NetherLight’s backbone should be mapped to I-SIDs to separate
customer traffic from backbone traffic.

7 Conclusion

First I will answer the research questions that I gave in the Introduction. After that I will give
some overall PBB in NetherLight conclusions based on my findings.

How can PBB be used to support several connection models in NetherLight?
Setup of PBB is based on endpoint configuration. This makes PBB flexible in choosing
the connection model, best suiting the situation.

After configuring the different connection models I can say that PBB can be configured and main-
tained with the least amount of effort. Configuration must only be done on the ingress and egress
of the backbone network making the service interruption minimal.

The connection model for a customer can be chosen according to the customers needs.

Can PBB be used in a multi-domain environment?
Yes, it can!

At the moment the Peer PBBN multi-domain environment model is the easiest to configure and
maintain between GOLEs.

Concluding I would say that PBB is a young technology but mature enough to be used in prolonged
testing environments. If positive results are achieved, implementation in NetherLight’s backbone
network can follow.

17

8 ACKNOWLEDGMENTS

8 Acknowledgments

Dear reader,

First and foremost I would like to give my praise to God for giving me life and this opportunity.

I would like to express my gratitude to my two supervisors Ronald van der Pol and Mark Meijerink
for their time and guidance.
I would also like to thank Gerard Jacobs for his input regarding PBB and the Nortel MERS 8600.

I thank dr. C. Koymans, J. van Ginkel and E. Schatborn for giving me the opportunity to do the
study System and Network Engineering (SNE).
Dr. Ir. C. de Laat for the choice of this Research Project and his advice.

Last but not least I would like to thank my parents for their time spent reviewing this paper.

With kind regards,

Sevickson Kwidama

18

REFERENCES REFERENCES

References

[1] SURFnet. NetherLight. http://www.surfnet.nl/nl/Thema/netherlight/Pages/
AboutNetherLight.aspx.

[2] IEEE. 802.1ah - Provider Backbone Bridges. http://www.ieee802.org/1/pages/802.1ah.
html.

[3] Global Lambda Integrated Facility. GLIF. http://www.glif.is/.

[4] Nortel. Optical Cross Connect HDXc. http://www2.nortel.com/go/product_content.
jsp?segId=0&catId=0&parId=0&prod_id=9138.

[5] Wikipedia. Wikipedia, the free encyclopedia. http://en.wikipedia.org/.

[6] Nortel. Provider Backbone Bridges bring massive service scalability to Ethernet. http:
//www.nortel.com/solutions/collateral/nn120620.pdf.

[7] Virtual Bridged Local Area Networks. Amendment 7: Provider Backbone Bridges. IEEE,
June 2008. ISBN 973-07381-5762-7 STD95803.

[8] Nortel. Nortel Metro Ethernet Routing Switch 8600 Fundamentals. Technical Report Release
5.1, July 2008.

[9] Virtual Bridged Local Area Networks. IEEE, December 2005. ISBN 0-7381-4877-6 SS95508.

[10] Dell. Dell Poweredge 1950. http://www1.ap.dell.com/content/products/
productdetails.aspx/pedge_1950.

[11] Nortel. Metro Ethernet Routing Switch 8600. http://www.nortel.com/mers8600.

[12] Paul Bottorff. IEEE 802.1ah Update, November 2005. http://www.ieee802.org/1/files/
public/docs2005/ah-bottorff-models-v1-1105.pdf.

[13] Nortel. Java Device Manager. http://support.nortel.com/go/main.jsp?cscat=
SOFTWARE&poid=12261.

19

A CONFIGURING THE PBB CONNECTION MODELS

Appendices

A Configuring the PBB Connection Models

The configuration options that I will give below are using the Nortel Java Device Manager GUI.

The generic steps needed to configure the different connection models are:

1. Configure the interface ports (UNIs)

2. Configure the Backbone VLAN

3. Create an I-SID

4. Associate the I-SID to I-SID endpoints (UNIs)

To configure the switch via GUI, the Nortel Java Device Manager (NJDM) [13] in my case version
6.1.3.0, must be used. If you want to configure the switch via the Command Line Interface (CLI),
ssh or telnet is sufficient.
After connecting to the switch via GUI, you get the following screen (screen might differ according
to the installed modules in the MERS).

Figure 13: Screenshot: NJDM Main window

20

A.1 Transparent Connection Model A CONFIGURING THE PBB CONNECTION MODELS

The configurations that will be given in the next sections are the minimal options needed to
configure the different connection models. Next to explaining the fields that I used, I give the
variables that were used, between (variable)

A.1 Transparent Connection Model

A.1.1 Device Manager

To configure a port you double-click on the desired port in the Device Manager. And a configu-
ration window opens, figure 14 gives a part of that window.

Figure 14: Screenshot: Port configuration window

In the window in figure 14 the following fields need to be changed in the Interface tab to configure
the ports, in my case port 4/14 and 4/15, for the transparent connection model:

Name: A name for the port (RP802.1ah 11/2008)

InterfaceType: The type of the interface (uni)

21

A.1 Transparent Connection Model A CONFIGURING THE PBB CONNECTION MODELS

AdminStatus: This option brings the interface up or down (up)

And in the VLAN tab next to the Interface tab:

PerformTagging: Must be enabled

After configuring the port a Backbone VLAN must be created. To do this you will need to go to
the following menu option via the main window of the NJDM: VLAN → VLANs...
A window will then appear and you will need to click on the Insert... button to add a new
B-VLAN, figure 15.

Figure 15: Screenshot: B-VLAN configuration window

The fields that I changed in this window were:

Id: Give the B-VLAN an ID (200)

Name: A name or description for the B-VLAN (B-VLAN RP802.1ah)

That’s all you need to do to configure a basic B-VLAN.

The next step is to configure the I-SID. This is done resembling manner above. The difference is
that the menu option is: VPN → ISID and then click the Insert... button at the bottom of the
opened window.
This choice will open the following window, figure 16 on the following page. In this window the
following fields need to be filled:

22

A.1 Transparent Connection Model A CONFIGURING THE PBB CONNECTION MODELS

Id: The unique ID that will be associated with this I-SID (11)

Name: Name or description of this I-SID (Transp RP802.1ah)

BackboneVlan: The earlier configured B-VLAN that will be used with this I-SID (200)

AdminState: Enable or disable this I-SID. Note that the endpoints must be enabled before
enabling the I-SID (enable)

MuxMode: This field is used to choose the multiplex mode, oneToone is the only muxmode
allowed in the transparent connection model (oneToone)

Figure 16: Screenshot: I-SID configuration window

The last step in this configuration process is associating the port (I-SID Endpoint or UNI) con-
figured earlier with the I-SID.
In the same window that opened after choosing: VPN → ISID, you click on the Endpoint tab
next to the General tab and then on Insert... at the bottom of the window. After doing this the
window in figure 17 on the next page appears.

23

A.1 Transparent Connection Model A CONFIGURING THE PBB CONNECTION MODELS

Figure 17: Screenshot: I-SID endpoint configuration window

In this window you need to fill in the following fields to configure the I-SID endpoint. You must
do this for all the ports that you want to configure as I-SID endpoints, in this case two ports:

IsidId: The ID of the created I-SID (11)

ServiceType: The servicetype that this endpoint will be associated with. When an endpoint is
configured with the transparent servicetype, no other servicetypes can be configured for that
UNI. (transparent)

Port: The physical port that will become an I-SID endpoint (4/14 | 4/15)

Name: Name or description of the I-SID endpoint (Iperf1 Endpoint | Iperf2 Endpoint)

AdminState: Enable or disable this I-SID endpoint (enable)

After creating I-SIDs and endpoints, the way to change options in this I-SID is using the table
displayed in figure 18 on the following page. This table is the window that is displayed before
creating an I-SID or endpoint.

24

A.2 Switched Connection Model A CONFIGURING THE PBB CONNECTION MODELS

Figure 18: Screenshot: I-SID table window

A.2 Switched Connection Model

A.2.1 Device Manager

In configuring the switched connection model some options are similar to the configuration of the
transparent connection model. That is why I will reference to sections above when necessary.

The port and B-VLAN configuration given in section A.1.1 on page 21 stays the same for this
configuration model.

The configuration options of I-SID aren’t much different from the transparent connection model.
VPN → ISID and then Insert... at the bottom of the opened window, opens the ISID, Insert
General window displayed in figure 16 on page 23.
In this window the following fields were filled:

Id: The unique ID that will be associated with this I-SID (12)

Name: Name or description of this I-SID (Switched RP802.1ah)

BackboneVlan: The earlier configured B-VLAN that will be used with this I-SID (200)

AdminState: Enable or disable this I-SID, note that the endpoint must be enabled before en-
abling the I-SID (enable)

MuxMode: This field is used to choose the multiplex mode. One C-VLAN or untagged traffic
to one I-SID or many C-VLANs and/or untagged traffic to one I-SID (manyToone)

The I-SID endpoint is where the configuration differs from the transparent connection model, in
particular the ServiceType field.
The fields that need to be changed are in: VPN → ISID, then the Endpoint tab next to the
General tab and then Insert... at the bottom of the window. Configuration must be done for all
endpoints.
The fields that need to be changed are:

IsidId: The ID of the created I-SID (12)

C-Vlans: In this field you must enter the customer VIDs that are associated with this endpoint.
To enter more customer VIDs, the manyToone option must be selected in the I-SID config-
uration above (20, 30).

ServiceType: The servicetype that this endpoint will be associated with, some of the servicetypes
can be mapped to the connection models in this document (switched)

Port: The physical port that will become an I-SID endpoint (4/14 | 4/15)

Name: Name or description of the I-SID endpoint (Iperf1 Endpoint | Iperf2 Endpoint)

AdminState: Enable or disable this I-SID endpoint (enable)

25

A.3 Retagging Connection Model B TESTING

A.3 Retagging Connection Model

A.3.1 Device Manager

The configuration for retagging is greatly similar to the configuration of the switched connection
model.
There are only two differences:

I-SID configuration The MuxMode in the I-SID configuration must be oneToone. The reason
for this is that you are changing the tags of one customer VLAN to tags of another customer
VLAN.

I-SID endpoint configuration The C-Vlans field in the endpoints must point to the C-VID of
that customer.
E.g., Customer-1 VID A on endpoint 1 wants to communicate with customer-2 VID B on
endpoint 2, the I-SID endpoint entry for customer-1 must have VID A in the C-Vlans field
and customer-2 must have VID B in the C-Vlans field of his own entry.

A.4 Q-in-Q Connection Model

A.4.1 Device Manager

Before I give the Q-in-Q configuration options I want to say that these configurations are untested.
The reason for this is that I didn’t have enough time to get the correct equipment to generate
Q-in-Q traffic.

The Q-in-Q model that associates based only on the S-VID can be configured in the same manner
as the switched connection model but with a few changes:

I-SID configuration The MuxMode must be oneToone.

I-SID endpoint configuration The ServiceType must be changed to qnq1. Also the S-VLAN
ID must be entered in the S-Vlan field.
The C-Vlans field can stay empty because the BEB associates only based on the S-VID.

Port configuration The Q-in-Q ethertype can be changed if necessary in the Interface tab. The
standard ethertype in the port configuration is 0x8020, while the official ethertype for Q-in-Q
is 0x88a8. I don’t know if this option influences the I-SID configuration because I could not
test it.

The model based on S-VID and C-VID association, needs two adjustments in the configuration
with the configuration above as basis:

I-SID configuration The ServiceType must be changed to qnq2 to support classification based
on S-VID and C-VID.
The C-VID must be entered in the C-Vlans field, if it wasn’t already entered.

B Testing

To ensure that the PBB switch was configured correctly I did a ping between the two servers.

The first test was untagged traffic in the Transparent Connection Model. This test needed no
extra configurations besides giving eth2 of both servers an IP-address.

26

B TESTING

The second test was tagged traffic in the Transparent- and Switched Connection Model. This test
needed extra configuration on the servers to make it possible for the servers to generate VLAN-
tagged traffic, VLANs can be configured with the vconfig program.
The commands used to configure VLANs on the servers were:

#Create a VLAN sub interface on the eth2 interface
sudo /sbin/vconfig add <eth-interface> <VLAN ID number>

#Bring VLAN 20 on eth2 up and gives it an IP-address
sudo /sbin/ifconfig <name sub interface> <ip-address> broadcast <broadcast-ip>
netmask <netmask>

#<name sub interface> = <eth-interface>.<VLAN ID number>

After this was done for both sides they could ping each other in Transparent Connection Model
without any extra switch configurations and in Switched Connection Model after the VLAN-ID
was given in the C-Vlans field explained A.2 on page 25.

When I was experimenting with different VLANs on the servers, a peculiar problem arose.
While I was sending ping requests from iperf1 to iperf2, I brought the VLAN interface of iperf2
down, but there was no change meaning pinging didn’t halt. After trying different setups with
VLANs the problem persisted, I then did a tcpdump to see if there was any difference between the
packets sent and received while pinging.
When I reviewed the captured packets I saw that the Ethernet Destination Address and Source
Address of the packets stayed the same. This would mean that the eth-interface does not look
at the IP-address, but only the MAC-address of the VLAN, before replying to the ping. Another
possibility is that the sub interface does not really go down when the following command is given:

sudo /sbin/ifconfig <name sub interface> down

I solved this problem by changing the hardware address of the sub interface:

sudo /sbin/ifconfig <name sub interface> hw ether <MAC-address>

After doing this, pinging between the servers behaved accordingly when I brought a VLAN-
interface down.

When I reached testing of the Retagging Connection Model I configured different VLANs on each
server and followed the configuration steps given in A.3 on the preceding page, pinging worked.

One more step that was needed to make it possible to ping between the servers in the Retagging
Connection Model was the IP configuration, this can be done in two ways:

1. Static IP Route between the servers.
sudo /sbin/route add <IP-address of the other endpoint (server)>/32 <name sub
interface>

2. Change the IP-address of the sub interface on the server, in addresses in the same broadcast
domain.
sudo /sbin/ifconfig <name sub interface> <ip-address> broadcast <broadcast-ip>
netmask <netmask>

Now I wanted to see the VLAN-tagged frames so that I could make sure that retagging was being
done. I thought that if I used tcpdump on eth2 and not the VLAN sub interface I would get the
VLAN-tagged frames. This was an incorrect conclusion of mine.
The solution to this problem was that I needed to completely remove all VLAN sub interfaces
before I could capture the tagged frames. You don’t receive ping replies anymore but you can see

27

B TESTING

the tagged frames.
I would think the reason for this is that the process that is used by vconfig to direct frames to the
correct VLAN, removes the VLAN-tag before it can be captured by tcpdump.
To completely remove a VLAN sub interface the following command must be given for all sub
interfaces:

sudo /sbin/vconfig rem <name sub interface>

Below I give hex of two frames, one from iperf1 VLAN 10 to iperf2 VLAN 40 and vice versa.
This is proof that retagging works but can also be used as proof that tagged traffic is forwarded
through the PBBN.

Hex dump of iperf1 VLAN 10:

0004 23d2 9b4e 0004 23d2 9b6c <8100> [000a]
0800 4500 0054 0000 4000 4001 e285 ac10
0002 ac10 0001 0800 0098 b455 00a7 e520
2d49 38fe 0c00 0809 0a0b 0c0d 0e0f 1011
1213 1415 1617 1819 1a1b 1c1d 1e1f 2021
2223 2425 2627 2829 2a2b 2c2d 2e2f 3031

The hex value between <> is the ethertype for IEEE 802.1Q (VLAN tagging).
The last twelve bits of the hex between [] give the ID of this VLAN. The twelve bits are
000000001010, meaning VID 10.

Hex dump of iperf2 VLAN 40:

0004 23d2 9b6c 0004 23d2 9b4e <8100> [0028]
0800 4500 0054 0000 4000 4001 e285 ac10
0001 ac10 0002 0800 e428 c97a 1841 77a1
2a49 a32d 0200 0809 0a0b 0c0d 0e0f 1011
1213 1415 1617 1819 1a1b 1c1d 1e1f 2021
2223 2425 2627 2829 2a2b 2c2d 2e2f 3031

The hex value between <> is the ethertype for IEEE 802.1Q (VLAN tagging).
The last twelve bits of the hex between [] give the ID of this VLAN. The twelve bits are
000000101000, meaning VID 40.

28

