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Abstract

Drive-by infections exploit common browser (plugin) vulnerabilities to infect client ma-

chines. Exploits are often loaded via compromised legitimate websites. This research

tries to construct a methodology of detecting these infections purely by looking at the

http network traffic that this generates. We identify a number of salient characteris-

tics and define a ruleset based scoring framework to determine whether an attack has

taken place. Validation shows that this is a feasible approach, although more time is

needed to create a balanced scoring ruleset.

1 Introduction

Compromised hosts are big business on the Internet. An individual zombie may
be worth just a few cents, but selling them in a package of thousands starts
to make serious money. This is reportedly a multi-million dollar industry.[1]
Targeting these hosts directly from the outside, as traditional malware infections
tend to do, has its limitations. Users nowadays are more likely to be protected
by a firewall or cannot be probed directly from the Internet due to network
address translation (nat). The answer of the malware industry is to attack the
host from the inside.

A trending vector to mount such an attack is through exploiting vulnerabilities
in the user’s web browser or one of the common plugins thereof, like Flash, Ac-
robat Reader or Quicktime. A malicious piece of scripting code is placed inside
an otherwise legitimate website. Once the user visits this website, the code tries
a number of known exploits. This kind of attack is called a drive-by infection
because the user is infected merely by visiting a web page. Such attacks are
often successful because browser plugins are not usually part of patch regimes.
When an attacker successfully modifies one of the big websites on the Internet
the number of infections within one hour can be overwhelming. An example
of a partially successful hack on a large website is the inclusion of a malicious
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iframe on the website of MSN Canada on 10 June 2009.[2] Fortunately visitors of
the website were redirected to another website before the malicious code could
be executed. Would this not have been the case, thousands of computers could
have been infected before the iframe was discovered, as MSN Canada reportedly
belongs to the 300 most visited websites on the Internet.[3]

Several methods of detecting infections have been researched, for example so-
called client-side honeypots.[4] Our approach is different in that we will attempt
to identify a drive-by infection purely from the network traffic generated by the
host.

Our approach is based on the ids service that Fox-IT offers.[5] This ids will
passively sniff all network traffic on a selected lan. Their desire is to be able to
detect anomalies in the user’s web browsing traffic, so a drive-by infection can
be identified. We want to avoid relying on a signature based approach, since
attacks change often and a more general approach can detect new vulnerabilities
as well.

Research scope

The central question of this research is hence:

Can drive-by infections be discerned from legitimate sessions purely
by measuring changes in http traffic patterns and meta data?

Meta data includes but is not limited to timing of requests and responses, geo-
graphical location of the requested resource, domain- and filenames, mime-types,
redirection and headers. We will focus on externally observable, http-protocol
traffic patterns only.

This implies that we will not study the actual content of the http protocol
packets, for example to do signature matching. The behaviour of the malware
after it has completed infection of a host, for example sending out spam email,
is explicitly out of the scope of this research, as are user-assisted infections like
a popup that advises to install a “free video player”.

This report

The remainder of this report is structured as follows. In chapter 2 we will fur-
ther define the term “drive-by infections” and describe common characteristics.
Chapters 3 and 4 describe how we gathered and analysed http traffic data of
drive-by infections. From that data we try to distill patterns to use in detection
in chapter 5, the quality of which we validate in chapter 6. We finish with a
conclusion and a view to future work.

The work for this research has been carried out in the context of the master
education System and Network Engineering, Universiteit van Amsterdam and
was supervised by Bart Roos and Sander Peters of Fox-IT, Delft.
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2 Characteristics of drive-by-infections

2.1 Defining the term

Web-based infections can be assisted in various forms by the user of the target
machine. Malware can piggyback on more-or-less legitimate software installa-
tion like a filesharing program, or pose as useful software that the user would
need, like a video player or codec. These attacks require that the user, although
mostly ignorant of the consequences, acknowledges the download or installation.
Often social engineering is used to convince the user to take the action.[6, 7]
In this research we focus on the most dangerous form: where infection occurs
without user interaction and hence probably completely unnoticed. We speak of
a drive-by infection if software is automatically downloaded or installed without
user knowledge or consent, as a consequence of visiting a web site.[8]

2.2 Malware distribution networks

Provos et al.[6, 8], Wang et al.[9] and Moshchuk et al.[10] all describe the in-
frastructure of malware distribution networks. Common characteristic in all
these infrastructures is the differentiation between landing nodes and distribu-
tion sites. Figure 1 depicts such a distribution network. A user on the computer
browses to the infected website, on which an iframe (a hidden part of a web page
that can reference another page) redirects the browser to a landing node. De-
pending on the preferences of the attacker, the browser can be redirected to an
ad serving company or to further redirection steps (‘JavaScript’ in the image).
In the end the browser is given a file that contains an exploit for the installed
browser or plugins. Common exploits are buffer overflows in Apple Quicktime or
Adobe Acrobat Reader. This buffer overflow allows for executing the attacker’s
code, which usually results in additional software to be downloaded from the
distribution site after which the downloaded software is executed. At this point
the machine is under control of the attacker and can be used for its designated
malicious purpose.

In order to make the infection successful, the potential target needs to visit the
infected website. To achieve maximum infection it’s therefore most interesting
for an attacker to use existing, legitimate websites for this. The attacker inserts
his small piece of malicious code into this website in such a way that it goes as
unnoticed as possible. The following vectors are used to insert this code[6, 11]:

• Web server or server scripts vulnerability;

• Advertisement networks, especially via a number of sub-syndication steps;

• Third party website plugins (widgets);

• User contributed content (comments, forum posts) not properly sanitised;

• Guessed ftp credentials, or stolen via other malware.
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Fig. 1: Distribution network

Drive-by infections use a pull based mechanism to spread malware. To be able
to do this there must be locations from which malware can be ‘pulled’. Often
these are compromised websites, or websites that rent out advertisement space.
On these, often trusted, websites an iframe is inserted. These iframes point to
other websites. In many cases these are so called redirection nodes. According
to both Provos and Wang a browser visits multiple redirection nodes before
arriving at a landing site; the malware is then downloaded from these landing
sites. These redirection steps are included to bypass detection methods.

2.3 Known drive-by infection patterns

In previous research some drive-by infection patterns were already discovered.
We can use these patterns in our analysis of the data. The following patterns
were discovered by Provos et al.:[6]

• Distribution of landing and distribution sites over the IPv4 address space.

• Number of downloads averages around 8 per malware infection.

According to Provos et al. most of the distribution sites are located in the 58.*
– 61.* and 209.* – 221.* IP address ranges. Another characteristic of malware
they found was the number of file downloads within the session.

McGrath et al.[12] describe some other interesting patterns. Although their
study focuses on phishing websites, we believe that some of the patterns found



2 Characteristics of drive-by-infections 5

in their research could apply to malware distribution sites as well. According
to them the following characteristics are significant:

• More than 75% of the found urls contain subdomains.

• Very few legitimate websites have urls longer than 75 characters while a
very large part of the phishing urls contain between 75 and 150 charac-
ters.

• Phishing domains tend to be shorter than regular domains.

• Relative letter frequency of phishing domains is ‘off’.

We will use these characteristics as starting points to see whether they also
apply to drive-by infections, or whether additional or different measures are
needed.

The existing research cited above employs detection on the client machine, for
example by monitoring file system or process list changes, or using anti-virus
scanners. Our approach, which studies the effects on network traffic observable
from outside the client, has seen no precedent as far as we know.

2.4 Quantity and volatility

Provos describes that the system they run to detect infected websites finds be-
tween ten and thirty thousand malicious urls each day.[6] Working for Google,
they estimate that the total number of currently infected websites runs in the
millions, and that over one percent of Google search queries returns an infected
web site; a similar number was found by Wang for Microsoft’s search engine.[9]

Despite being relatively high in numbers, the set of affected websites is very
volatile. Attackers mostly target legitimate websites, which will be taken down
or cleaned as soon as the compromise is detected. Because they are not online
for longer periods of time, analysing these attacks can be hard. To add to that,
the malware distribution networks treat subsequent requests from the same host
differently, for example by serving legitimate ads. Using a client like wget may
even get your IP blacklisted.

2.5 A Case Study: themoomusic.com

As an illustration of how an infection works in practice, we’ll present a real life
case of an infected website: themoomusic.com.1 This is the legitimate web pres-
ence of the band “the moo” from the Czech republic, and for the casual visitor
it indeed looks that way: your typical band website with history, discography
and guestbook.

Looking under the hood, near the top of the page’s html source code, we find
that the following snippet has been added after the <body> tag:

1 We fabricated this name because the page has been cleaned in the meantime.
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<iframe src="http://globalnameshop.cn:8080/index.php" width=153
height=102 style="visibility: hidden"></iframe>

This iframe is an inline frame inside the webpage that can reference another
url as a source. Its width and height are dummy values, since the css style
code sets the visibility to hidden, meaning that it will not be rendered in the
browser. The net effect is that a remote resource is fetched by the browser
without displaying the results – a genuine covert operation. In this case the
browser connects to globalnameshop.cn on port 8080 and requests index.php.

The rogue website globalnameshop.cn sends back some obfuscated JavaScript
that in turn instructs the browser to download a number of files on the same
server:

• /load.php?id=0 which contains binary executable code named load.exe;

• /cache/readme.pdf, a Portable Document Format file; and

• /cache/flash.swf, a Shockwave Flash applet.

This turns out to be the “Gumblar” trojan.[11] Each of these files is loaded
with exploit code for weaknesses in the browser (plugins) or operating system.
Only one has to succeed for the infection to work, which it has. The cpu load
increases, Acrobat Reader is started and unknown processes are spotted in the
process list.

Fig. 2: Rogue processes appear after an infection.

We now also see requests appearing to a new host, only known by its IP address,
where the following urls are fetched:

/new/controller.php?action=bot&entity_list=&uid=1&first=1&guid=
3759229163&rnd=981633

/new/controller.php?action=report&guid=0&rnd=123&uid=1&entity=
1241530597:unique_start;1243627542:unique_start
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This is probably the newly installed malware calling home, because the requests
are different than the ones done from the browser: they lack common header
fields like User-Agent and Referer, which are present in all regular requests.
Probably the malware has a built-in http client that doesn’t emit these headers.
The web server sends (near) empty responses on this.

The machine is now ready to perform its nefarious tasks, but we prevented
trouble by shutting it down: our research only concerns the infection process
itself.
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3 Lab setup and data collection

In order to determine a detection method we need data to work on. This
data will be collected by visiting known malware-distributing sites in a lab
environment, where we can store and subsequently process all network traffic.

3.1 Data source

We acquired urls contaminated with a drive-by download at the web sites
http://www.malwaredomainlist.com and http://www.malwareurl.com. As
their names suggest, they collect urls that are known to distribute malware,
intended for blocking or research purposes. The list contains direct links to the
malware, but also infected websites that refer to it. We also used the similar
http://hosts-file.net and picked up some infected websites through security
blogs.

In a first iteration, we visited a number of these websites in our controlled
environment, which is explained in more detail below, and stored the network
traffic of those cases where infection occurred. These sites are different in nature:
from truly legitimate websites that have been compromised, via more ‘grey’
websites to websites that have been set up with the express purpose to lure
unsuspecting visitors in and infect them.

To get more comparison material we also opted to collect “before and after”
data from commonly visited websites. We first visit the selected website as-is
and store the network traffic. Next we inject an iframe directing to malware
into a copy of the page, and run the test again. For this we used a number
of sites appearing in the top twenty websites in popularity in The Netherlands
over 2008:[13]

www.google.nl www.buienradar.nl
www.bing.com2 nl.wikipedia.org
www.hyves.nl www.detelefoongids.nl
www.marktplaats.nl www.startpagina.nl

Tab. 1: Websites on which an infection was simulated.

We first captured the traffic generated by visiting each site at its original loca-
tion, i.e. typing the web address into the location bar. Then we did the same
but now for a mirror of only the start page of the website on our own server,
directing all links in it back to their original location (using the <base href>
tag). All pages have been mirrored on 9 June 2009. We compare the output of
these two to ensure that the mirroring process itself didn’t introduce artifacts
into the traffic data. Then we modified the mirrored start page just to insert
a malicious iframe or script tag which we obtained through the sources men-
tioned above. The traffic of this session, where we actually infect the virtual
machine, is also stored and used in our analysis.

2 The original website listed in the Multiscope Top 20 is live.com, which currently redirects
to bing.com.

http://www.malwaredomainlist.com
http://www.malwareurl.com
http://hosts-file.net
www.google.nl
www.buienradar.nl
www.bing.com
nl.wikipedia.org
www.hyves.nl
www.detelefoongids.nl
www.marktplaats.nl
www.startpagina.nl
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3.2 Lab setup

To make the experiments reproducible, we start our OS for every link visited
in a known-clean state. Because of this we chose to use virtualisation for our
client machines. Besides the easy rollback, it also allows us more flexibility with
respect to capturing the network traffic and to prevent malware leakage from an
infected machine. We rolled back to the clean state after each url we visited,
regardless of whether it resulted in an actual infection.

As virtualisation platform we use the Xen hypervisor on an Ubuntu 8.04 server,
with hardware virtual machine (hvm) to avoid anti-virtual-machine behaviour
in the malware. As guest OS we use an unpatched version of Windows XP
SP2 with Internet Explorer 6. An incompletely patched version of Windows
and IE6 were chosen because of the greater likelihood of successful infections
while still resembling an installation that’s frequently found in the wild. We
also installed the plugin versions listed in the table below; these seem to be
commonly installed in the real world.[14]

Plugin Version
Microsoft .NET Framework 2.0
Adobe Acrobat Reader 7.0.5
Apple Quicktime 7.0.3
Adobe Flash Player 7.0.19
Microsoft Java Virtual Machine 5.0.3802

Fig. 3: Browser plugin versions used

Because we run a not completely patched version of Windows XP we are at risk
of other infections than the one we’re interested in, for example more classic
exploits that attack the system from the outside. To mitigate this risk, we
have set the virtual machine up behind a nat environment to prevent direct
access to our virtual machines from the world, and thus only allowing pull
based mechanisms like drive-by infections. The used network configuration is
depicted in image 4.

We are not interested in the actions of the machine after infection, only in the
infection process itself. To prevent mayhem instigated by the infected machine
carrying out its payload, we shut it down shortly after the compromise has taken
place. Further we’ve blocked outgoing port 25 (smtp) as we believe that this
will not interfere with our capture of related traffic (we focus on http traffic)
but may prevent accidental spam getting sent out.

With this setup we process known malware sites one by one following the cap-
ture protocol detailed below. This results in one capture file that contains the
network traffic generated by visiting exactly one url.

3.3 Capture protocol

We need to capture data in an uniform and reproducible way. Therefore we
have specified a protocol, which specifies every single step that is performed for
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Fig. 4: The configuration of our test network

one capture. The protocol is as follows:

1. Start virtual machine.
xm create windowsxp.hvm

2. Start capture.
tcpdump -i brxennat -s0 -S -U -l -w <filename>
filename format: yyyymmddhhmmdomainname

• -i interface

• -s0 full capture

• -S absolute ordering

• -U packet buffering

• -l stdout linebuffered

• -w write to file

3. Open browser and surf to the specific website.

4. Wait for 2.00 minutes.

5. Close browser and wait 2.00 minutes again.

6. Shutdown virtual machine.

7. Stop capture.

8. Commit capture.
svn add <filename>
svn commit

9. Restore virtual machine to clean state.
Change external IP address.
restore-clean-state
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The virtual machine is created from a known-clean disk image. We then start
the capture and instruct it to keep all traffic; in the analysis phase we can
decide on further filtering. We’re now ready to browse to the specific url under
investigation, so it is typed into the location bar of the browser. We keep it
open for exactly two minutes: literature shows that some known attacks have
timers but these never exceed two minutes so this is enough at least for currently
known attacks to be launched.[9, 10] We also close the browser afterwards (and
wait for the same time) as some JavaScript reportedly only starts after the user
navigates away from the infected page.[10]

After the infection we stop the virtual machine to prevent any installed mal-
ware from causing unintended abuse. The captured data file is immediately
committed into a dedicated Subversion repository; this ensures us that it’s kept
safely and is not inadvertently changed afterwards. Then we rewind the virtual
machine to the clean state to be ready for the next capture, and we rotate the
IP address. This is done because reportedly some attacks are non-functional on
any second and further requests from the same host.[15] As the behaviour of
the host after infection is not within the scope of this research, we do not keep
snapshots of each infected host.

3.4 Composition of the data set

Testing a total of 64 urls with the protocol above resulted in 64 different capture
files. Inspection of the system during capture and the resulting capture files told
us that out of these, 39 were clean. The other 25 experienced an infection (see
table 2). Most notable is the so-called Gumblar trojan, which is very present
in the dataset. This coincides with the reported surge in Gumblar infections
reported in early June 2009.[16] The other infections are attributable to the very
recent Nine-Ball attack[15] and an assortment of other attack strategies.

Trojan Gumblar 11
Trojan Nine-Ball 3
Trojan Other 11
Infected 25

Clean 39

Total 64

Tab. 2: Distribution of different malware types and clean sessions over the col-
lected dataset.

3.5 Composition of the validation set

To verify our analysis and our detection methods we created a second dataset:
completely separate from the original set above and collected at a somewhat
later date. Of this dataset 20 captures were clean and 15 were infected. In table 3
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the composition of this set is displayed. The number of Gumblar infections has
declined a little and the other trojans are somewhat more prevalent.

This dataset has been kept completely separate from the main set and will be
used exclusively for validation, not for designing the detection method.

Trojan Gumblar 5
Trojan Nine-Ball 2
Trojan Other 8
Infected 15

Clean 20

Total 35

Tab. 3: Distribution of different malware types and clean sessions over the val-
idation dataset.
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4 Analysis of patterns

In this section we discuss the various patterns we have found in our dataset. We
first analysed the dataset manually to select strategies with a high potential,
which we’ve further analysed and will describe in this chapter.

In the drive-by infections industry trends are just as common as in other in-
dustries. The current trend, the Gumblar infection, is a prominent part of our
dataset and thus unavoidably influences our patterns. Nonetheless we think
we’ve extracted parameters general enough, with help of the rest of our dataset,
to be of use beyond identification of Gumblar alone.

The patterns we describe here are converted into a more concrete approach to
detection in chapter 5. In chapter 6 we will test this approach with a separate
dataset.

4.1 TCP Port numbers

We have looked at the commonly used ports for http traffic. These are port 80
for normal http traffic and port 443 for https traffic. Port 8080 is defined as
the alternative http port. For each website we kept a statistic specifying the
number of requests to each port. Of the websites we found clean of malware
none used port 8080, and only a few used port 443. However on 40% of the
contaminated websites references to port 8080 were found. In table 4 the exact
numbers can be found. Of the 39 clean websites we tested all had at least one
connection on port 80. Of the 25 infected websites we analysed 10 websites had
at least one connection to port 8080.

Clean Infected
# of sess. % of sess. # of sess. % of sess.

port 80 39 100% 25 100%
port 8080 0 0% 10 40%
port 443 3 8% 2 8%

Tab. 4: Number and share of captured sessions having at least one request to
the given port number.

A reason for the high prevalence of non-standard port numbers with malware
is that it’s often distributed from compromised webservers. If the attacker
would occupy port 80, this has a high chance of being noticed by the server
administrator; listening on port 8080 does not have that risk, while at the same
time port 8080 is still common enough to be allowed by firewalls. Hence, port
numbers can be used as an indicator whether traffic might be malicious. Even
though not all infected websites use alternative ports we have seen that none of
the clean websites use these ports. Seeing another port than 80 or 443 might
be suspicious.

We also calculated the average number of requests per port. These are displayed
in table 5.
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Clean session Infected session
port 80 44 73 / 473

port 8080 0 2
port 443 1 27

Tab. 5: Average number of requests on a port per captured session.

The average number of requests on port 80 does not differ enough to be able to
recognise malicious traffic. The number of requests on port 443 does differ a lot.
One of the possible causes for this was that we did not capture specific https
pages. In normal browsing behaviour https might be more common as people
use services like online banking. We believe that the usage of port 443 in the
case of the infected websites is due to the downloaded and installed malware on
the client’s computer. These malware programs might use https to be able to
inconspicuously download other programs and instructions.

4.2 Geographical locations

As we found many references to websites with Chinese domain names we thought
it might be interesting to use GeoIP – a mapping of IP addresses to countries
– to locate the IP addresses of the various hosts we encountered. To do this we
used the GeoIP database available in Ubuntu Linux4. We found that the clean
websites have an average of 2.36 different countries per session and infected
websites have an average of 3.64 countries per session. Of the 39 tested clean
sites 21 had only one country to which requests were made. Of the other 18
sessions, 7 had two different countries and 11 more than that. Of these 18
sessions 6 had less than 10% (or one request) to a foreign country. We assume
these to be advertisements or counters. However, we discovered that every
clean website that was not hosted in China, Russia or Ukraine did not have any
references to those countries while all infected websites have. So if the beginning
of a session does not start within any of these countries the chance is small that
any of the requests will go to these countries. We can define this as follows:

(x 6∈ β) ∩ (Y ⊂ β)⇒ suspicious
where:
β is the set of ‘bad’ countries,
x is the first request in a session,
Y is the set of consecutive requests in a session.

This requires the construction of a set of bad countries. Furthermore it requires
to be able to recognise sessions as such, to be able to find the first request of
such a session.

3 One of the infected websites generated 627 requests on port 80. When we remove this
outlier from the average the number of requests becomes 47

4 libgeoip1, version 1.4.4.dfsg-3
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4.3 Hostnames

An interesting subject are the dns hostnames used to download content from.
We define this as the value of the Hostname field in a http request. We examined
several aspects of this field; the first is the number of labels in this hostname. For
example, the hostname www.example.com has three labels while example.com
has only two. This header may also contain an IP address, in case the original
url was of the form http://10.11.12.13/. These are considered separately.

While varying numbers of labels are prevalent in our data, there’s a notably
higher number of two-label domains in infected websites, as can be seen in
table 6. This lists the number of websites that caused at least one request to a
two-label or a multi-label (three or more labels) domain name. Also the presence
of requests to a host identified by a bare IP address is significantly higher for
infected sites.

Both the two-label hostname as the IP address sporadically appear in the traffic
to clean websites as well, albeit significantly less often than for malicious sites.
This means we can use both as a measure that indicates a higher likelihood for
a website to be infected but not as conclusive evidence.

Another aspect that we researched is that malware often employs domain names
from the Chinese .cn top level domain (like in the example in section 2.5). This
doesn’t mean that they are also referring to websites in China: a lookup of
such a hostname may turn up a number of different IP addresses spread around
the world with a short time-to-live field. In other words, the IPs belong to
machines currently under control of the miscreant but can be swapped quickly
when needed. As can be seen in table 6, there’s a clear difference between clean
and infected websites in this regard.

Clean Infected
# of sess. % of sess. # of sess. % of sess.

two-label domain 7 18% 25 100%
multi-label domain 39 100% 25 100%
IP address 3 8% 17 68%
.cn domain 1 3% 17 68%

Tab. 6: Number of sessions containing at least one Hostname field of the given
type.

In three cases we also spotted up to ten different domains of the following forms
being used by malware.

mbp27hv405c.com xnc73ti051o.com nes40ky627f.com
rhv73nc051i.com fuj51bp728v.com

They look auto-generated. This could be considered a pattern but as it’s only
present in a small number of infected sites, the sensitivity of this pattern is low.

http://10.11.12.13/
.cn
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4.4 User Agents

We found that when a computer was infected with malware it started to down-
load other programs and instructions. Most of these downloads were executed
over normal http connections. However, the malware programs used other
header information than the default browser. In some cases we even saw a com-
pletely empty http header except for the mandatory Host header. However the
easiest way to recognise infections was the User-Agent header, which provides
an identification string of the web browser of the user placing the requests. This
is displayed in table 7.

Clean sess. Infected sess.
Total number of different User-Agent headers
found

2 9

Average number of unique User-Agent headers
per session

1.0 2.5

Average number of requests with non-original
User-Agent per session

0.2 6.1

Tab. 7: Presence of User-Agent headers: the total number of different strings
found in our set, the average number of different strings per session
and the average number of requests in a session having a User-Agent
different from the user’s browser.

The presence of multiple User Agents when browsing to a legitimate website is
clearly less common than for an infected one. We did find a legitimate web-
site introducing a new User Agent: this was because of a Java plugin on the
website that downloaded some extra modules. Another User Agent we found
was Adobe’s updater. This User Agent is recognisable by its name. However,
all other User Agents we found were variants on normal User Agents that you
would normally not see in a regular browsing session. The complete absence
of a User Agent header was even the most common deviation. We also found
that the legitimate User Agent was always the first User Agent found within a
browsing session. It was also the most common User Agent in all sessions, this
might be used to identify the legitimate User Agent. The absence of a User
Agent header field is a very strong indicator of malicious activities. A deviation
of the User Agent is an indication of malicious activity, but not decisive proof.

4.5 Invalid POST Requests

Most of the requests are of type get, but sometimes a few posts are made,
both on clean and infected websites. Malware on infected sites sometimes uses
post to send identification data back to a control server. It turns out that some
of the post requests that malware sends have a Content-Length header that
specifies an invalid value: the actual number of bytes in the request body is
different. This violates the http specification.[17]

This implementation quirk is often found in our collection of infected sessions,
but never turns up on clean ones. Since our capture protocol doesn’t provide for



4 Analysis of patterns 17

interacting with websites, and post is more common on interaction, we also did
some separate capturing of post requests to a number of legitimate websites
with different browsers to generate enough comparison material.

Clean Infected
# of sess. % of sess. # of sess. % of sess.

Invalid post 0 0% 14 56%

Tab. 8: Sessions having at least one post request not conforming to RFC2616.

Interesting about this item is that we did not find any case of a legitimate http
client behaving in this way. That gives such requests a high predictive value of
a drive-by infection.

4.6 Request URIs

In http, the request uri is the ‘path name’ that is referenced in requests. Ta-
ble 9 shows a number of recurring uris that we encountered in sessions browsing
to infected websites. As can be seen, these uris are unique to the group of in-
fected sites and are never present in clean ones. They form a good indicator
that something is wrong. However, the other half of infected websites employed
a variety of other uris that only appeared once or twice each.

Note that the uri components referenced in this table are substrings, not an-
chored on the left or right.

Clean Infected
# of sess. % of sess. # of sess. % of sess.

/landig.php?id=4 0 0% 10 40%
/load.php?id=0 0 0% 11 44%
/in.cgi? 0 0% 7 28%
/cache/flash.swf 0 0% 10 40%
/cache/readme.pdf 0 0% 10 40%
/controller.php?action= 0 0% 12 48%
/receiver/online5 0 0% 12 48%

Tab. 9: Number of sessions that place at least one request to suspicious request
uris

4.7 Content Types

We expect that the common mime content types in http traffic should primarily
be text/html and images. Some JavaScript, css and Flash might also be found
depending on the website. The different content types that were found in our
dataset are shown in table 10. One of the content types that caught the eye was

5 This uri is only used in requests using the post method.
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application/octet-stream. This content type occurred only once in the sessions
browsing to a clean website, but 69 times when browsing to infected sites. The
application/octet-stream content type is used to define content which is binary
and doesn’t have a specific task within a session like flash or pdf. Downloads
fall in this category. It is not uncommon to see downloads within clean ses-
sions. However, according to Niels Provos the average number of downloads
within an infected session is 8. We discovered an average of 2.76 (only counting
application/octet-stream as an identifier of a download). We do believe this to
be more than in clean sessions, as we only discovered 1 application/octet-stream
content type within the clean sessions.

There’s also a noticeable difference for application/pdf. However, this statistic
may be skewed due to our capture method: we captured only front pages, and
this is indeed hardly ever a pdf. We are not using this statistic because we
expect that in real life more legitimate application/pdf content types will show
up.

Content-Type Clean sessions Infected sessions
# % # %

image/jpeg 442 31.2% 152 14.3%
image/gif 437 30.8% 220 20.6%
text/html 225 15.9% 296 27.8%
application/javascript 123 8.7% 150 14.1%
image/png 106 7.4% 63 5.9%
text/css 40 2.8% 38 3.6%
application/x-shockwave-flash 17 1.2% 16 1.5%
application/x-www-form-urlencoded 10 0.7% 21 2.0%
text/plain 10 0.7% 5 0.5%
application/octet-stream 1 0.1% 69 6.5%
application/pdf 0 0.0% 22 2.1%
multipart/form-data 0 0.0% 5 0.5%
other 6 0.4% 9 0.9%
total content types 1417 100% 1066 100%

Tab. 10: Total number of different content types encountered across the dataset.

4.8 Redirection

From literature we know that landing sites commonly use a number of redirec-
tion steps before we arrive at the real exploit (see section 2.2). In our investi-
gation it turned out that the pattern of ‘formal’ redirects by using the Location
header from the http specification[17] – status codes 301 Moved Permanently
and 302 Found – is not significantly different between our clean and infected
datasets.

The landing sites do use redirection, but employ JavaScript or the loading of a
new page within the initial page to do that instead. Given that we only consider
the http headers and not the request body, our way of detecting this is limited
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Fig. 5: Redirection structure of an infected website. WS is the original web page
and M the malware landing page. Illegitimate content is in bold face.

to following the chain of Referer headers: a request to a redirected-to page
will usually have the url of the redirecting page in that field. Following this
chain leads to a tree of objects that have been loaded via their parent, rooted
in the initial web page (under the assumption that there are no redirect loops).
Figure 5 shows what this tree looks like for one of our captures of an infected
website. The website will load its images directly, but also loads the landing
page. That in turn loads a set of pages, some of which load yet other pages, etc.

We measured the height of the redirection tree for each of our captures. When
a request doesn’t contain a Referer header we ignore it for this purpose, as
there is no good way we can relate it to other requests just basing ourselves on
http metadata. The results are found in table 11: in legitimate websites most
content is loaded directly, with sometimes a little indirection. For infected sites
the amount of indirection is significantly higher.

Tree height clean sessions infected sessions
Maximum 4 6
Minimum 0 1
Mode 1 3
Average 1.5 2.9

Tab. 11: Redirection tree heights, aggregated over the sessions.

4.9 Rejected characteristics

4.9.1 Timing of requests and responses

When looking at the timings of requests and responses it is possible to see
anomalies in the infected sessions. Of these infected sessions a few responses
take more than one second and in some cases up to ten seconds. However, we
found that on average only one response per session had an excessive response
time. We do not believe that just one request is too fragile to be a feasible
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characteristic for identifying malicious traffic. A clean website could also have
a problem at a given point in time in which responses are delayed for several
seconds. Because of this the timing characteristic has been rejected.

4.9.2 404 status messages

When looking at the gathered dataset it appeared that 404 status codes were
more common in infected sessions. After research we found out that these status
codes are distributed equally across our dataset, so this characteristic has been
rejected as an identifier.

4.9.3 TCP retransmissions

We assumed due to the lower quality of hosting for malicious content that the
number of tcp retransmissions would be significantly higher in infected sessions
than it would be in clean sessions. After research we discovered this not to be
true for this dataset.
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5 Description of detection methods

To be able to detect malicious traffic on the network the previously identi-
fied characteristics will be used. We have seen that none of the characteristics
uniquely defines malicious traffic, but a combination of various characteristics
will increase the likelihood. We propose a ruleset based scoring mechanism like
the one that is used in for example SpamAssassin.[18] In such a system, rules are
applied to the input under examination. A match of the rule results in a specific
score associated with that rule. If the sum of the scores passes a predetermined
threshold, the input under consideration is flagged.

This method allows to combine individually inconclusive information into a
high-confidence verdict. Furthermore it also aids flexibility and expandabil-
ity of the method, as new rules can be added or scores adjusted for changing
circumstances.

In order to create a scoring mechanism we must decide on the amount of points
required before traffic is considered malicious. At the moment it is not possible
for us to make a balanced scoring algorithm as this requires more research.
Malwareland has shown to be sensitive to trends, and the current trends we
captured for this research may prove to not be robust enough for the next
trend. The mentioned flexibility however allows for adjustments in the future
while keeping the general method.

5.1 Session reconstruction

Many of our rules depend on the ability to detect sessions and keep them apart
from other sessions. We define a session as all related http requests and re-
sponses when visiting a single website. As a study of how to detect sessions
within network traffic is out of scope we will only offer our ideas on possibilities
to do this. This is not trivial, because http is a sessionless protocol; session
reconstruction will be heuristical by nature and no method might be foolproof.

Some ideas for sessionising have been explored by Spiliopoulou et al.[19], al-
though they are using web server log files as input. In our case, linking Referer
and Location headers together, combining it with possible session cookies seems
plausible. (Semi-)permanent cookies exist, but this problem can be tackled by
defining an upper bound on the duration of any single session. It has to be noted
that some requests we’ve seen were not part of any session as the malware itself
sends out requests to various servers. These requests should be captured and
analysed regardless of session information as these requests have a high value
in detecting malware.

Further refinement of the demarcation between different sessions is a research
subject on its own and out of scope for this report. For the remainder of this
chapter we assume an existing division into individual sessions, which is the case
for our dataset.
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5.2 Detection & Scoring

In chapter 4 we presented various parameters useful to finding malicious traffic.
We’ll summarise these characteristics here and discuss the various detection
possibilities they offer.

• tcp port numbers

• Geographical locations

• Hostnames

• User Agents

• Invalid post requests

• Request uris

• Content Types

• Redirection chains

For our scoring mechanism we have chosen a threshold of 5.0 points before a
session is marked as malicious. To be able to reach this threshold at least a
combination of characteristics must be discovered within a session; there is not
one characteristic that will mark a session as malicious on its own. For that
reason we will assign scores to individual rules at a maximum of 2.0 points. The
score can be lower if our data gives a reason to be more conservative. Because
some rules are additive, in our algorithm we also cap the contribution of a single
rule to 4.0 points, ensuring again that no single rule can flag a session on its
own. It must be noted that the specific scoring values are preliminary; more
data is needed to properly assess the optimal scores.

The ruleset is described using pseudo code, one rule in each subsection. These
rules need to be matched against a captured session; for each match the total
score is incremented by the score that the rule returns. The algorithm takes a
single capture, as a list of requests, as input and boils down to the following.

Algorithm 1 Framework algorithm for evaluating the ruleset.
score ← 0

firstrequest ← front( capture )
for all rule ∈ ruleset do

score ← score + min ( rule(capture, firstrequest), 4.0 )
end for

return score ≥ 5.0
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5.2.1 TCP port numbers

We found that in our dataset none of the 39 tested clean websites used port
8080. This could be used as an indicator of malicious traffic. Especially since
we found that in all sessions containing malicious traffic the session started on
port 80 like clean sessions. However somewhere during the session port 8080 is
introduced. This is strange behaviour. There is a possibility that clean websites
use other ports than port 80, so we have to look at the first used port in a
session. If this is port 80 it would be suspicious to find other http ports during
the session. We have to exclude port 443 from this as it is common to switch to
secured websites within a session, for example on a webshop. For this we could
define that if a session begins on port 80 it would normally continue on port 80
or port 443, but not on other ports. We also assume that when a session begins
on an alternative port it would continue using this port or switch to port 80 or
port 443.

The score is set to 2.0, because our data set gave a high specificity for this
aspect: no clean websites were found that satisfy the rule. So we can define the
following rule:

Rule 1 Detecting ‘bad’ ports
function Rule (capture, firstreq) : s
for all request ∈ capture do

if request.port 6∈ {80,443} ∧ request.port 6= firstreq.port then
return 2.0

end if
end for
return 0
end function

5.2.2 Geographical locations

The geographical location is a difficult characteristic to use as an identifier of
suspicious behaviour. We can only detect ‘odd’ behaviour which is not neces-
sarily malicious. The location of a website is indicative for the other countries
which are listed. It is common for an Europe based website to have references
within European countries and the United States. However, it is odd for an
European based website to have references to China or Russia.

This is assigned the score of 2.0 if at least one request of the capture was in
one of these countries while the original request was not placed there. Because
we did not find clean captures that satisfied this the score is set high. We can
define rule 2.



5 Description of detection methods 24

Rule 2 Detecting ‘bad’ countries
function Rule (capture, firstreq) : s
for all request ∈ capture do

if request.country ∈ β ∧ request.country 6= firstreq.country then
return 2.0

end if
end for
return 0
end function

Where β is the set of ‘suspicious’ countries. Based on our measurements we
initially define this set as Russia, China and Ukraine.

5.2.3 Hostnames

During our analysis we found that in all sessions in which we browsed to a
infected site at least one two-label hostname was present. Furthermore in 68%
of the cases a hostname consisting of a bare ip address or a .cn domain was
present. This contrasts to the 18%, 8% and 3% respectively of the clean sessions.
This information can be used as an indicator for possible malicious activities,
however, because of the occasional occurrence in clean sessions it is important to
choose a relatively low score so not to generate false positives. .cn receives the
maximum score because we did not measure any legitimate non-.cn websites
referencing such a domain.

We define the following rules, where ' symbolises the well-known Perl Compat-
ible Regular Expression matching.

Rule 3 Detecting ‘bad’ hostnames: two-label domains
function Rule (capture, firstreq) : s
for all request ∈ capture do

if request.hostname ' <0 then
return 1.5

end if
end for
return 0
end function

Rule 4 Detecting ‘bad’ hostnames: IP address
function Rule (capture, firstreq) : s
for all request ∈ capture do

if request.hostname ' <1 then
return 1.0

end if
end for
return 0
end function

.cn
.cn
.cn
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Rule 5 Detecting ‘bad’ hostnames: .cn
function Rule (capture, firstreq) : s
for all request ∈ capture do

if request.hostname ' <2 then
return 2.0

end if
end for
return 0
end function

Where we define <n in terms of pcre:
<0 is /^[-a-zA-Z0-9]+\.[-a-zA-Z0-9]+$/
<1 is /^([0-9]+\.){3}[0-9]+$/
<2 is /\.cn$/

5.2.4 User Agents

We found a very good indicator of malicious activity in the user agent as it
should seldom change within a session. Within all clean sessions we found
two different user agent strings of which one was Acrobat’s updater. Within
malicious sessions we saw an average of 2.4 different user agent strings within
each session. This is a clear indication of malicious activities. We also found
that the first user agent within a session is always the correct user agent. Here
we choose to assign a relatively low score but increment the resulting score any
time a user agent is encountered that wasn’t in the first request. We chose the
0.4 based on the averages encountered in our dataset: to reach a target of 2.0
points, with a measured average of 6.1 user agents we need 0.4 points per user
agent.

Rule 6 Detecting ‘bad’ user agents
function Rule (capture, firstreq) : s
s← 0
for all request ∈ capture do

if request.useragent 6∈ α ∧
request.useragent 6= firstreq.useragent then
s← s+ 0.4

end if
end for
return s
end function

Where: α is the set of whitelisted user agent strings, e.g. Adobe updater.
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5.2.5 Invalid POST requests

Normal browsers generate correct post requests. We found that some of the
malware programs had a small http client built in. This client was used to
download programs and instructions, but also to report to its control unit. One
of the used mechanisms for this are post messages. Some of these post mes-
sages violated the http specifications: the content-length header did not match
the real content length. This never happens in legitimate traffic. Therefore
we can use this as a highly predictive characteristic, yielding 2.0 points if the
session has at least one of these requests.

Rule 7 Detecting malformed post messages
function Rule (capture, firstreq) : s
for all request ∈ capture do

if request.method = post ∧ request.content length 6= request.content bytes
then

return 2.0
end if

end for
return 0

5.2.6 Request URIs

We found some telling uris in our dataset. While these uris might be specific
to one attack they can help identify malicious traffic. It would mean that a set
of known malicious uris has to be maintained. Each occurrence of a malicious
uri within a session can be counted as a malicious sign, so each occurrence
increments the score, but only once for each unique uri. Each such occurrence
gets 1.0 point. We can define this as follows:

Rule 8 Detecting listed uris
function Rule (capture, firstreq) : s
s← 0
for all uri ∈ β do
su ← 0
for all request ∈ capture do

if request.uri ' uri ∧su = 0 then
su ← 1.0

end if
end for
s← su

end for
return s
end function

Where: β is the set of known malicious uris, as listed in table 9 on page 17.
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5.2.7 Content Types

Some content types are more common when traffic is malicious. For example
application/octet-stream is more common in malicious traffic because it often
downloads programs. Each download adds to the score. However, because it is
possible for a legitimate session to have these content types scoring has to be
kept on a low level. To detect suspicious content types the following definition
can be used.

Rule 9 Detecting octet-stream content type.
function Rule (capture, firstreq) : s
s← 0
for all request ∈ capture do

if request.contenttype = application/octet-stream then
s← s+ 0.2

end if
end for
return s
end function

5.2.8 Redirection

Relatively long chains of indirection have been identified as an indicator for
malware. The rule builds a redirection tree by following Referer header chains,
as described in section 4.8. The height of this tree is used as a scoring metric.
Because our average captures have a modal height of 1, we subtract 2 from the
height: being above that certainly tends to infection. However we bound the
score on 2.0 so a legitimate site with a outlier very high redirection tree doesn’t
immediately raise all flags. This means that the resulting score will either be 0
when all trees are below height 3, 1.0 when a tree of height 3 is present, and 2.0
when even higher trees are found.

Rule 10 Analysing redirection trees
function Rule (capture, firstreq) : s
T ← BuildRedirectionTree ( capture )
return min ( max ( 0, height(T ) − 2), 2.0 )
end function

5.3 Considerations

As stated previously the composition of this ruleset is based on data collection in
one month time. How future-proof will this be? It’s even not unthinkable that
malware authors will try to improve their software to explicitly evade known
detection rules.

A key aspect of a ruleset based approach is the flexibility in adding new rules,
augmenting existing ones and finetuning their associated scores. There’s no
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doubt that such a ruleset will have to be kept up to date with emerging malware
trends. The SpamAssassin case however has shown that if you keep rulesets up
to date to changing environments, the concept keeps being a viable approach
to detection of new abuse. Its open source nature illustrates that even if the
miscreants have full access to the ruleset, this still works.

Of specific interest is the possibility of malware starting to make use of encrypted
https traffic instead of plain http. The encryption would obscure a number
of factors we currently base detection on, like http headers. However, this may
not be trivial to implement without creating unexpected popups for the user
in the browser, and to cope well with switching between compromised hosts
around the globe quickly. Additionally such requests may provide detection
leads by virtue of their specific https usage. In any case our method will
be more robust against such a (currently theoretical) move than the currently
prevailing content inspection (signature-based detection), since our method can
already incorporate information that will be detectable regardless of encryption,
like tcp information or dns information.
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6 Validation of the detection methods

To validate the detection method we defined in chapter 5 we collected a second
dataset, completely different from the dataset we used to construct our method.
This dataset is described in section 3.5. In this chapter we describe the results
of applying the previously defined method and its scores on this new dataset.
Tables 13 and 14 show the scores for each rule and the total score per session,
for the infected and clean datasets respectively.

The table for the infected dataset shows that 14 out of 15 sites indeed reach the
set threshold of 5.0 points and are therefore flagged as malicious. In other words,
just one session was not flagged which should have been. This is a sensitivity
or true-positive rate of 93%.

For the clean dataset, all scores are below 5.0 so none are flagged as malicious.
This means that the specificity is 100%, or a false-positive rate of 0%.

true false
positive 93% 0%
negative 100% 7%

Tab. 12: Summary of validation results.

rule 1 2 3 4 5 6 7 8 9 10
∑

session 1 2.0 2.0 1.0 0.4 2.0 2.0 0.4 9.8
session 2 2.0 2.0 1.5 1.0 2.0 0.8 2.0 3.0 0.4 14.7
session 3 1.5 1.0 4.0 1.0 1.2 8.7
session 4 1.5 2.0 0.4 1.6 2.0 7.5
session 5 1.5 2.0 0.8 1.8 2.0 8.1
session 6 1.5 2.0 0.8 0.4 2.0 6.7
session 7 2.0 2.0 1.0 1.0 0.4 6.4
session 8 1.5 2.0 0.4 2.2 2.0 8.1
session 9 2.0 2.0 1.0 2.0 2.0 0.4 9.4
session 10 2.0 2.0 1.0 2.0 3.0 0.4 10.4
session 11 1.5 2.0 0.8 1.0 2.0 7.3
session 12 1.5 2.0 0.8 2.0 2.0 8.3
session 13 2.0 1.5 1.0 2.0 1.2 1.0 0.2 8.9
session 14 1.5 0.2 1.7
session 15 2.0 1.5 2.0 1.6 1.0 1.0 9.1

Tab. 13: Scoring per rule of the sessions in infected dataset.
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rule 1 2 3 4 5 6 7 8 9 10
∑

session 1 1.5 1.5
session 2 0.0
session 3 1.5 1.5
session 4 0.0
session 5 0.0
session 6 0.0
session 7 0.0
session 8 1.5 1.5
session 9 0.0
session 10 0.0
session 11 0.0
session 12 0.0
session 13 0.0
session 14 2.0 2.0
session 15 0.0
session 16 0.0
session 17 0.0
session 18 1.0 1.0
session 19 0.0
session 20 1.5 1.5

Tab. 14: Scoring per rule of the sessions in the clean dataset.
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7 Conclusion

As drive-by infections become more and more mainstream we set out to answer
the following research question:

Can drive-by infections be discerned from legitimate sessions purely by measur-
ing changes in http traffic patterns and meta data?

Our view is positive: yes, this is possible. We’ve identified a number of distinct
properties that can be used to identify drive-by infections, many of which have a
high predictive value. The validation confirms that the number of false positives
and negatives is low: no false alarms were raised. Only a small number of
infections were not detected; however we believe that combining our method
with existing methods provides the opportunity to improve the chance of this
last part to be caught after all.

Still, the scoring proposed within this paper needs to be balanced and the tests
augmented in the future to cope with new developments.

7.1 Future work

During our research we encountered several issues that lead to interesting pos-
sibilities for future work.

Expanding the set of characteristics. We discovered that the malware world is
susceptible to trends. During our research the Gumblar attack was very popular.
Nearing the end of our research a new attack was discovered, called Nine-Ball.
Further research may discover even newer characteristics. Another interesting
aspect is to venture into a more widely defined set of malware by including
user-assisted infections such as trojans disguised as fake antivirus programs.

Session identification. As we mentioned, our approach assumes that individ-
ual browsing sessions can be identified. There is no clear-cut solution for this
available. We have identified some possibilities, but having a good method to
identify separate browsing sessions within a stream of http traffic would be
very useful.

Detecting fast-flux networks. We encountered domains that resolve to a number
of IP addresses with a short dns ttl. These are so-called fast-flux domains: a
common tool in malicious networks. Based purely on our http analysis we can
not identify those, but analysing dns traffic combined with active tests may be
an interesting addition to the method. The paper by Holz et al.[20] is a good
starting point for that.

Balancing the scoring. Due to our limited time and relatively small dataset the
chosen scores may not be balanced correctly. It might be possible that some
characteristics are too heavily scored while others are not scored heavily enough.
These scores can be better balanced when a larger dataset and ‘real life’ results
are available.
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7.2 Discussion

It must be noted that our data set has necessarily been gathered over a short
time span. This can influence the results, and refinement of the method in the
future is needed to cope with newly developed attacks. Also our data is gathered
in a lab setup – inherently a simplified model of reality. Applying the method
to a real-world traffic capture scenario may reveal areas that need improvement.

It remains to be seen how robust a rule-based attack is against malware devel-
opers coding specifically around it. We are under the impression that a number
of characteristics are currently detectable because it’s the easiest way to solve a
given problem for the malware author, but with a little effort could be made to
look more like legitimate traffic. This attitude may change and malware devel-
opers may even specifically work around known rulesets. Past experience with
SpamAssassin has shown that even over years their general ruleset approach,
albeit with constant improvement, is still feasible.
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