
Digital Forensics Research Workshop Challenge 2009

Wouter S. van Dongen (wouter.vandongen@os3.nl)
Alain van Hoof (alain.vanhoof@os3.nl)

July 2009

System & Network Engineering

1

University of Amsterdam
System & Network engineering

Student Research Project 2 report
http://www.os3.nl/rp

http://www.os3.nl/rp

Contents

1 Introduction 4
1.1 Challenge details . 4
1.2 Overview of the available challenge data . 5
1.3 Challenge participation . 6

2 Methodology 7
2.1 Tools and applications . 7
2.2 Time zones . 8
2.3 Linux time stamps . 9
2.4 SSH login traces in files . 10

2.4.1 auth.log . 12
2.4.2 ConsoleKit . 12
2.4.3 wtmp . 13
2.4.4 known hosts files . 13

2.5 Booting the linux-images on a Playstation 3 . 13

3 Investigation 15
3.1 Accounts . 15
3.2 Recovery of deleted files . 16

3.2.1 The recovery . 17
3.3 Time stamps and mount options . 19

3.3.1 Checking mount options . 20
3.3.2 Experimentally determining mount options 20

3.4 Mardi Gras pictures . 22
3.4.1 location and description . 22
3.4.2 Related traces . 24

3.5 Drug recipes . 24
3.5.1 Location and description . 24
3.5.2 Related traces . 25

3.6 Backdoor . 26
3.7 Location and description . 26

3.7.1 Related traces . 27
3.8 Thumb drive . 27
3.9 Network traffic . 30

3.9.1 Network time stamps . 30
3.9.2 MAC and IP addresses . 30
3.9.3 Playstation and PSP Traffic . 31
3.9.4 Playstation home . 31
3.9.5 Mardigrass related traffic . 32
3.9.6 SSH network traffic . 32
3.9.7 known hosts files . 34
3.9.8 backdoor traffic . 34

3.10 Application history . 35
3.10.1 Firefox . 35
3.10.2 Opera . 36

3.11 Putting the gathered information together . 37

2

4 Conclusion 38
4.1 Relevant user activity . 38
4.2 Drug recipes . 38
4.3 Mardi Gras pictures . 38
4.4 Backdoor . 39
4.5 Relation between suspect and JHUISI Playstation 39

5 Remarks 40

6 Further research 40

7 Acknowledgments 40

8 Bibliography 41

9 Appendix A - Overview 42

3

1 Introduction

The Digital Forensics Research Workshop (DFRWS) is a nonprofit, volunteer organization dedi-
cated to the sharing of knowledge and ideas about digital forensics research. DFRWS organizes
annual challenges to help drive the direction of research and development. The DFRWS chal-
lenge is well known among forensics institutes and has lead to many new techniques and tools
for digital forensic investigations.

This year’s challenge focuses on a system architecture (IBM 64bit PowerPC) that is not fre-
quently encountered in digital forensics. Furthermore, the involved operating system (Linux)
and the ext3 file system are is not as widely supported in forensic tools as for example Microsoft
Windows and NTFS. This year’s challenge is described as follows:

The DFRWS 2009 Challenge focuses on the development of tools and techniques
for analyzing Playstation 3’s (PS3s). The Playstation 3 is a powerful, Cell processor-
based system that can run both its native OS (which has significant DRM features that
also thwart forensic investigation) and modern versions of Linux. This challenge
focuses on the Linux and network aspects of PS3s, and does not touch the DRM
protected data. The challenge scenario requires analysis of a physical memory dump,
filesystem images, and network traces involving 2 PS3’s and a Playstation Portable
(PSP).

Information about the DFRWS challenge and the corresponding data can be found on the
website of the DFRWS1.

1.1 Challenge details

The challenge details are presented on the website of the DFRWS. The challenge is described as
follows:

In early 2009 it came to the attention of investigators that an individual with
the nickname ”nssal” was using a Sony Playstation3 (PS3) to make illicit images
(specifically, certain images depicting Mardi Gras activities) available to other PS3
users. Investigators determined that ”nssal” was connecting from an IP address in
New Orleans, and they began capturing network traffic with the goal of catching
”nssal” red-handed. Based on their initial surveillance, it appeared that ”nssal” had
advanced knowledge of Linux and digital forensics.

On March 11, 2009 investigators observed ”nssal” communicating with another
PS3 user and exchanging unknown data. With proper legal authorization, the in-
vestigators entered the suspects premises and found him in front of a PS3 that was
running Linux. They interviewed the suspect and determined that he was a digital
forensics researcher who was developing memory acquisition and analysis tools for
Linux on the PS3. He denied having exchanged any information with other PS3
users.

Investigators captured physical memory of the Linux system on the PS3 using
tools found on the system. This physical memory dump is present in the file nssal-
physicalmem.dd.bz2. Investigators also acquired a forensic duplicate of the Linux par-
tition on the PS3 (present in file nssal-linux-side-fs.dd.bz2) and the suspects thumb-
drive (present in file nssal-thumb-fs.dd.bz2). Several network traces are also available.
The first network trace is based on early surveillance of the suspect; this network
trace is named nssal-capture-1.pcap.bz2. A second trace, nssal-capture-2.pcap.bz2,

1http://dfrws.org/2009/challenge/

4

http://dfrws.org/2009/challenge/

contains communication between ”nssal” and another machine located at Johns Hop-
kins University. The network administrator in the lab at Johns Hopkins identified
the machine as another PS3. This administrator regularly monitors communication
and was able to provide a third network trace, jhuisi-capture-1.pcap.bz2, which con-
tains traffic transmitted between the ”nssal” PS3 and the PS3 in the Johns Hopkins
lab. The system administrator also obtained a filesystem image of the PS3 at Johns
Hopkins (present in jhuisi-linux-side-fs.dd.bz2) but was unable to obtain a physical
memory dump.

You have been asked to assist investigators with the following questions:

• What relevant user activity can be reconstructed from the available forensic data
and what does it show?

• Is there evidence of inappropriate or suspicious activity on the system?

• Is there evidence of collaboration with an outside party? If so, what can be
determined about the identity of the outside party? How was any collaboration
conducted?

• Is there evidence that illicit data (specifically, Mardi Gras images) was ex-
changed? If so, what can be determined about that data and the manner of
transfer?

• What data (if any) was provided by the Johns Hopkins PS3?

• The suspect claims that he was not responsible for any transfer of data. What
evidence do you have to show that remote, unauthorized access to the system
might have occurred, and does this evidence exonerate the suspect?

1.2 Overview of the available challenge data

As described in section 1.1, different types of data are available for investigation. Table 1
summarizes the available data and includes a calculated MD5 hash (after uncompressing). Figure
1 depicts the challenge scenario and adds technical information to the hardware described in the
challenge details.

nssal-physicalmem.dd MD5: 5ffa6839dbab169c9c44436c80f8ea9b
Physical memory dump of the PS3 of the suspect

nssal-linux-side-fs.dd MD5: a64f017400123b7eff2c5868f8e784e1
Forensic duplicate of the Linux partition on the PS3 of the suspect

nssal-thumb-fs.dd MD5: d4a8ff499355d82c9df76254dcb0cb1d
Forensic duplicate of the suspect’s thumb drive

jhuisi-linux-side-fs.dd MD5: 3ee30c25e5bca832b93ddf9eee88cb1b
Forensic duplicate of the Linux partition of the PS3 at
Johns Hopkins University

nssal-capture-1.pcap MD5: e6ba905d4a0630915600b00ab9712499
Network trace based on early surveillance of the suspect

nssal-capture-2.pcap MD5: fd28ae8fff1430b19ceec9785c2b027b
Network trace based on surveillance of the suspect

jhuisi-capture-1.pcap MD5: 9bb90b7e6c5b8d7401b7621969017b01
Network trace provided by the Johns Hopkins University

Table 1: The challenge data available and used for investigation.

5

Linux Ubuntu 8.10
EXT3 10 GB

FAT16
512 MB

· Connecting from an IP adress in New Orleans
· Advanced knowledge of Linux and digital forensics

· Baltimore

PCAP 1 PCAP 2

PS3Thumb drive Physical Mem

240 MB

PCAP 1

Early

surveillance

Captured: March 11, 2009

Make illicit Mardi Gras images
available to other ps3 users

NSSAL (Suspect)

Linux Ubuntu 8.10
EXT3 10 GB

PS3

JHUISI (John Hopkins University)

Figure 1: Scenario

1.3 Challenge participation

This report is created as part of a five week research project done as part of the System- and
Network-engineering Master education at the University of Amsterdam. The research done in
this report is not solely related to answering the questions set-up by the DFRWS challenge. This
report provides additional research for into Linux time stamps and is written in such a way that
it can be used as a reference in other Linux investigations.

6

2 Methodology

2.1 Tools and applications

Linux

Standard Linux commands and additional Linux utilities will be used to examine the Linux file
system images. The utilities and commands will be executed on either the raw images or on
read-only mounted images. The read-only mounts will be done as follows:
Mount option as described by the mount manual:

-r; mount image read-only

nodev; do not interpret character or block special devices on the file system.

noexec; do not allow direct execution of any binaries on the mounted file system.

nosuid; do not allow set-user-identifier or set-group-identifier bits to take effect.

mount -r <image> <target> -o loop,nodev,noexec,nosuid

X-Ways Forensics

X-Ways Forensics2 will be used to conduct keyword searches, to analyze files on a byte level and
to quickly browse through all images.

Wireshark

The available network captures will be analyzed using Wireshark 1.2 3. Wireshark is a net-
work protocol analyzer with advanced features to examine, filter, convert and follow network
traffic/streams.

Aftertime and Microsoft Excel

Correlating events between the two Playstation systems will be an important part of the in-
vestigation. Combining timed data from within the various sources can be a complex task. A
combination of Aftertime and Microsoft Excel will be used to accomplish this task. Aftertime is
an application developed by the Netherlands Forensic Institute (NFI) to assist in investigations
concerning time stamps located in different types of media. Aftertime has the ability to collect
time stamps, convert them to a common format and display them in such a way that they can
be useful in an investigation. This way it is possible to view all events stored with different
time stamp formats and in different time zones in the correct order taking daylight savings into
account. Aftertime is able to parse Microsoft Windows event logs and to some extent Mac OS X
log files. On our request and with our input Aftertime has been extended by the NFI to include
Linux log files. Figure 2 provides a screenshot of Aftertime.

All events will be exported to a CSV4 file with Aftertime. Microsoft Excel will be used to
quickly sort, filter and correlate events which is illustrated in Figure 3.

2X-Ways Forensics is available from: http://www.x-ways.net/
3Wireshark is available from: http://www.wireshark.org/
4CSV: Comma-Separated Values format. A text file with column values (not formulas) separated by a comma

and lines representing a row, useful for exchanging data among different applications.

7

http://www.x-ways.net/
http://www.wireshark.org/

Figure 2: Screenshot of Aftertime.

Figure 3: Screenshot of Microsoft Excel with exported Aftertime data.

2.2 Time zones

The evidence is acquired from systems in different time zones5. To present the evidence, correct
interpretation of the time is of great importance. On a Linux-system the file /etc/timezone
is used to store the local time of the system. Table 2 displays relevant time zone information.
Daylights saving time begins the second sunday in March (March 8th 2009) and ends first sunday
of November (November 1st 2009) for both time zones.

To obtain the view of the suspect and investigators asking the questions, time stamps in this
report will be examined and presented in Central Standard Time with Daylights saving enabled.
The dates in this report are formatted in YYYY-MM-DD to avoid confusion on the month and
the day.

5From http://wordnet.princeton.edu/: Regions of the globe (loosely divided by longitude) throughout which
the same standard time is used

8

http://wordnet.princeton.edu/

Disk Image Physical /etc/timezone Code UTC Offset UTC Offset
Location Daylight Saving

nssal-linux-fs New Orleans America/Chicago CDT -5 -6
jhuis-linux-fs Baltimore US/Eastern EST -4 -5

Table 2: Time zones and /etc/timezone of the acquired evidence filesystem images

2.3 Linux time stamps

In order to determine when files are accessed, modified or created, the Linux time stamps of files
will be of great importance. The Linux ext3 file system registers several time stamps of a file.
The access time is updated when reading a file or directory, the modify time is updated when
the contents of a file or directory changes and the change time is updated when the meta-data
of a file or directory changes. The ’stat’ command shows is able to show these time stamps of a
file:
~/Images$ stat 3316820191_4737c3edf4.jpg

File: ‘3316820191_4737c3edf4.jpg’

Size: 135809 Blocks: 280 IO Block: 4096 regular file

Device: fe01h/65025d Inode: 504801 Links: 1

Access: (0755/-rwxr-xr-x) Uid: (1000/ nssal) Gid: (1000/ nssal)

Access: 2009-03-06 15:21:32.000000000 -0600

Modify: 2009-03-02 08:34:50.000000000 -0600

Change: 2009-03-06 15:21:31.000000000 -0600

The above described behaviour is observed on various UNIX-type operating systems including
the Linux operating systems. In the book ”File System Forensic Analysis” [1], Carrier describes
the forensic information that can be extracted from the time stamps information of the ext3
file system. He states that the ’touch’ command can be used to modify the access time and/or
modify time by a user on the system. However, during this investigation another important issue
was found in the Linux operating system that is not addressed in well known literature such as
”File System Forensic Analysis” [1]. The mount options used to mount an ext3 file system can
be of great importance to the forensic use of the access, modify and change time stamps. Table
3 gives an overview when time stamps of the ext3 file system are updated.

Action Updated time stamp(s)
Creation Access Modify Change

Read Access*
Modify Content Modify Change

Copy (source) Access*
Copy (target does not exist) Access Modify Change

Copy (target does exist) ** Modify Change
Move (target does not exist) Change

Move (target does exist) Change
* This behaviour depends on the mount options of the Linux ext3 filesystem.

** The time stamp of the file which is over written is used.

Table 3: Default ext3 file system behaviour for file and directory time stamps.

Most of the actions result in the update of one or more time stamps. Depending on the mount
options the access time is always updated (’atime’), never updated (’noatime’) or updated when
the access time is less or equal modify or change time (’relatime’). When a file is moved to an
other filename that already exist the access time of the original file is preserved.

9

2.4 SSH login traces in files

SSH is the most commonly used method to access remote Linux systems. Besides this, SSH can
also be used to exchange files by using SFTP6 or SCP7.

Multiple log files will be examined on both Linux images to determine if remote access with
SSH took place. To be able to find traces of remote access to a system, it is important to know
where to look for traces, if traces are related and what their relationship is. An SSH session is
started with the ’ssh <username>@<hostname>’ command to login to a remote system or the
command ’scp <username>@<hostname>:<filename> <filename>’ to copy a file from a host or
vice versa. Besides this the command ’sftp <username>@<hostname>’ is used to start a SFTP
session. When the ’ssh’,’scp’ or ’sftp’ is used (from now on referenced to as an SSH session), log
files on both the local and the remote system are updated. It is not possible to distinguish a
’ssh’ session from a ’scp’ session by using the log files. ’sftp’ sessions can be distinguished from
’ssh’ and ’scp’ sessions by using the auth.log file which shows the message ’subsystem request
for sftp’ after the ’session opend’ message, see section 2.4.1.

Figure 4 shows which files are updated. Table 4 shows examples of SSH traces found in log
files corresponding to the colored numbers in Figure 4.

Host A Host B

/var/log/auth.log

SSH Client SSH Server

/var/log/ConsoleKit/history
~/.ssh/know_hosts

write on first connect

shell (/bin/bash)

/~/.bash_history

/~/.bash_history

/var/log/wtmp

Command to start client

TCP/IP
IP:Port 22IP:Port X

/etc/ssh/ssh_host_?_key

2 3

6

7

8

54

1

9

Figure 4: SSH Traces in files

6In computing, the SSH File Transfer Protocol (sometimes called Secure File Transfer Protocol or SFTP) is
a network protocol that provides file transfer and manipulation functionality over any reliable data stream. It is
typically used with version two of the SSH protocol (TCP port 22) to provide secure file transfer, but is intended
to be usable with other protocols as well [7].

7Secure Copy or SCP is a means of securely transferring computer files between a local and a remote host or
between two remote hosts, using the Secure Shell (SSH) protocol [6].

10

1 Local .bash history ssh jhuisi@137.30.123.40* or scp jhuisi@137.30.123.40*
jhuisi-linux-side-fs.dd

2 Network Trace 2009-03-11 11:49:37 128.220.249.83 137.30.123.40 TCP 51874 > ssh [SYN]

& nssal-capture-2.pcap 2009-03-11 11:49:37 137.30.123.40 128.220.249.83 TCP ssh > 51874 [SYN, ACK]

3 2009-03-11 11:49:37 128.220.249.83 137.30.123.40 TCP 51874 > ssh [ACK]

known hosts (7) stat /home/jhuisi/.ssh/known hosts

4 jhuisi-linux-side-fs.dd Access: 2009-03-11 11:51:57.000000000 -0500

Modify: 2009-03-11 11:49:40.000000000 -0500

Change: 2009-03-11 11:49:40.000000000 -0500

auth.log Mar 11 11:49:45 nssal-ps3 sshd[3208]:

6 nssal-linux-side-fs.dd Accepted password for jhuisi from 128.220.249.83 port 51874 ssh2

Mar 11 11:49:45 nssal-ps3 sshd[3208]:

pam unix(sshd:session): session opened for user jhuisi by (uid=0)

ConsoleKit/history 1236790186.127 type=SEAT SESSION ADDED : seat-id=’Seat2’

7 nssal-linux-side-fs.dd session-id=’Session2’ session-type=” session-x11-display=”

session-x11-display-device=” session-display-device=’/dev/ssh’

session-remote-host-name=’128.220.249.83’ session-is-local=FALSE

session-unix-user=1001 session-creation-time=’2009-03-11T16:49:45.880532Z’

8 wtmp jhuisi pts/2 128.220.249.83 Wed Mar 11 11:49 - 12:09 (00:20)

nssal-linux-side-fs.dd

9 Remote .bash history Standard Linux commands
nssal-linux-side-fs.dd

* Trace was not found due to in readable format of bash history, but the entry illustrates what
could have been found.

Table 4: An example SSH session to host 137.30.123.40 and the traces found in log files.

The .bash history on the system initiating the SSH session (referenced as number 1 in
Figure 4) will show the start of the session as previously described. Commands executed during
an ’ssh’ session (not ’scp’ and ’sftp’) on the remote system are recorded in the .bash history
of the <username> (number 9 in Figure 4) on the remote host.

An SSH session found in the network traffic capture nssal-network-capture-2.pcap and
the entries in the log files can be used to correlate events between both systems (Figure 4 dots
number 2 & 3). This is illustrated in Table 4. The Wireshark output of the example SSH session
in the network traffic is shown in the first row of Table 4. The time stamp, IP addresses and
the port numbers (51874 & ssh=22) are values in the data that can be used for correlation. The
port number 51874 used to initiate the SSH session in this example, can be found in auth.log
as described in the next sub-section. Besides auth.log, the other log file traces numbered in
Figure 4 will be explained in separate sub-sections of this section.

11

2.4.1 auth.log

The auth.log file (number 4 in Figure 4) typically contains logging of the ’sudo’ command8

activity, creation of user accounts and logging of the Pluggable Authentication Module9 (PAM).
PAM does not only log local logins but also remote logins sessions created with SSH for example.

The default Ubuntu 8.10 system log configuration has the following line in its configuration
file /etc/syslog.conf.
auth,authpriv.* /var/log/auth.log

This line generates the contents of /var/log/auth.log. To make sure auth.log is updated,
checking for presence of this line in /etc/syslog.conf needs to be done.

The log rotation facilities of a Linux Ubuntu system archives the auth.log file as auth.log.0
(uncompressed), auth.log.1.gz , auth.log.2.gz etc. (compressed), this is done big avoid big
log files.

As an example, the command ’zgrep jhuisi auth.log*’10 is executed in the /var/log directory
of the nssal-linux-side-fs.dd image. SSH session entries containing the text ’jhuisi’ were
found. An illustrative part of these entries:

auth.log:

Mar 11 11:49:45 nssal-ps3 sshd[3208]: Accepted password for jhuisi from 128.220.249.83 port 51874 ssh2

Mar 11 11:49:45 nssal-ps3 sshd[3208]: pam_unix(sshd:session): session opened for user jhuisi by (uid=0)

Mar 11 12:09:47 nssal-ps3 sshd[3208]: pam_unix(sshd:session): session closed for user jhuisi

The first part of the lines show a time stamp (without year), the host name (nssal-ps3) where
the log entry was generated and the process that generated the message (sshd) including its
process number (3208). The process and process number can be used to uniquely identify the SSH
session within the auth.log file. The second part of the lines shows additional information about
the session. The password of the user ’jhuisi’ was accepted for remote host IP 128.220.249.83 on
port 51874 and the start and end of the session are indicated.

As a second example, the command ’zgrep goatboy auth.log*’ in the /var/log directory of
the jhuisi-linux-side-fs.dd image was executed. Entries containing the text ’goatboy’ were
returned. A failed and a successful SSH login are shown in this example output:

auth.log:

Mar 11 12:32:25 ps3 sshd[4972]: Accepted password for goatboy from 128.220.251.228 port 9477 ssh2

Mar 11 12:32:25 ps3 sshd[4972]: pam_unix(sshd:session): session opened for user goatboy by (uid=0)

Mar 11 12:32:42 ps3 sshd[4972]: pam_unix(sshd:session): session closed for user goatboy

Mar 11 12:42:34 ps3 sshd[5232]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0

tty=ssh ruser= rhost=mobile24.cs.uno.edu user=goatboy

Mar 11 12:42:37 ps3 sshd[5232]: Failed password for goatboy from 137.30.123.40 port 35892 ssh2

Mar 11 12:42:50 ps3 sshd[5232]: Failed password for goatboy from 137.30.123.40 port 35892 ssh2

In this second example two sessions are shown, each uniquely identified by the process and
process id. Besides a successful session (sshd[4472]), an unsuccessful sessions can be identified
(sshd[5232]) including from what IP address or host name (see ’rhost=’) these sessions were
initialized.

And again, note the auth.log file like most other files in /var/log contains time stamps
where the year is absent.

2.4.2 ConsoleKit

On a Ubuntu 8.10 system the ConsoleKit service is used to assign users to a keyboard and a
mouse, this allows for switching the active user in a graphical environment for example. To
be able to have ”complete” control the ConsoleKit keeps track of all access to a system, in-
cluding remote SSH logins or SFTP sessions. The logging of the ConsoleKit is done in the file

8sudo allows a normal user to become root (the UNIX super user)
9PAM is an extensible part of a Linux/UNIX system and authenticates users logging in.

10zgrep finds a string in compressed and uncompressed files

12

/var/log/ConsoleKit/history in Figure 4 at number 5. Because all access is logged, traces of
SSH/SFTP sessions can be found and investigated. The following example shows the start of an
SSH session in ConsoleKit/history :
1231994310.230 type=SEAT_SESSION_ADDED : seat-id=’Seat2’ session-id=’Session11’ session-type=’’

session-x11-display=’’ session-x11-display-device=’’ session-display-device=’/dev/ssh’

session-remote-host-name=’mobile183.cs.uno.edu’ session-is-local=FALSE session-unix-user=1000

session-creation-time=’2009-01-15T04:38:30.194625Z’

Information about the SSH session can be found in this line. The first number is the creation
date of entry in ConsoleKit/history, formatted in the form of a UNIX epoch time stamp11.
All other parts of the entry are in the form parameter = value. ’session-id’ and ’session-creation-
time’ uniquely identify the session, ’session-display-device’ indicates a SSH session from host
’session-remote-host-name’ by user with UID12 ’session-unix-user’.

2.4.3 wtmp

On a Unix (Linux) system a login/logout of an account and a system reboot is stored in
/var/log/wtmp. The wtmp file is in binary format and can be read using the command ’last’.
The log rotation facilities of Ubuntu 8.10 archives the /var/log/wtmp file as /var/log/wtmp.1
on a monthly basis. The command ’last -f <filename>’ can be used to access the archived files.

When using an x86 based Linux system to view the contents of the wtmp file of the nssal-linux-side-fs.dd
image (PPC64) using ’last -f’ the entries were not displayed correctly:
reboot system boot 2.6.28 Fri Sep 11 00:38 - 05:34 (3931+04:56)

nssal pts/1 Wed Sep 19 05:28 - crash (-16115+-11:

nssal pts/0 Thu Dec 2 15:47 - crash (-10674+-15:

After booting the nssal-linux-side-fs.dd image on a PS3 the ’last’ command was exe-
cuted, showing the correct wtmp information. Looking at the binary data in the wtmp file at
offset 340 (total entry size 384 bytes) which contains a 4 bytes UNIX time stamp and comparing
these values with a wtmp file created on an x86 Linux system an big endian against little endian
issue was discovered. A simple python script was written to convert the PPC64 (big endian)
wtmp to x86 (little endian) and back again. Now the output looks normal on an x86 based Linux
system:
reboot system boot 2.6.28 Wed Mar 11 12:43 - 06:29 (96+17:46)

nssal pts/1 Wed Mar 11 12:36 - crash (00:07)

nssal pts/0 Wed Mar 11 12:14 - crash (00:28)

2.4.4 known hosts files

The public key of the remote host is placed in the file∼/.ssh/known hosts on the local host when
an SSH connection is made for the first time or when the remote host has a new public key. The
known hosts file is only updated/created when the SSH configuration file /etc/ssh/sshd config
does not contain ’IgnoreUserKnownHosts yes’. The public key of a host can be found in the
file /etc/ssh/ssh host rsa key.pub.

2.5 Booting the linux-images on a Playstation 3

To observe the behaviour and ”look and feel” of a Linux system on a Playstation 3 and in
particular the Linux file system images provided by the challenge, the Linux images will be
restored on a Playstation 3 system, booted and examined. Note, by booting from the image, the
data on disk is changed. The system log files for example will be updated and changed.

11From http://www.epochconverter.com/: The Unix epoch (or Unix time or POSIX time or Unix time stamp)
is the number of seconds that have elapsed since January 1, 1970 (midnight UTC/GMT), not counting leap
seconds.

12On a UNIX system users are identified by a unique number: the UID.

13

http://www.epochconverter.com/

The Playstation 3 is sold to consumers with its hard disk configured to be used by the
Playstation OS alone. The Playstation 3 allows a ”foreign” OS to use 10 GB of its hard disk
space. This hard disk space can be booted by installing a special boot loader. The Petitboot
bootloader13 can boot the 10 GB partition and has the ability to boot any other bootable
partition connected to the Playstation 3. These bootable partitions connected to the Playstation
include bootable CDROMs, used here to install Ubuntu 8.10 from CDROM and a USB connected
disk, used for booting the jhuisi-linux-side-fs.dd image.

The following actions were taken to boot the Linux images on the Playstation 3.

• Replace the original hard disk from the Playstation 3 with an empty hard disk.

• Boot the Playstation 3.

• Reformat the disk by using the instructions given by the Playstation 3 and create the
default 10 GB partition for the OtherOS14.

• Install Petitboot on a USB-drive and boot the Playstation 3 using the instructions on the
Petitboot website.

• Create an Ubuntu Install CD-ROM from the image15 found on the psubuntu website16.

• Put the Ubuntu Install CD-ROM in the Playstation 3 and boot the Playstation 3.

• Choose the CD-ROM, then kernel to boot in the Petitboot menu.

• Install Ubuntu 8.10 using to the instructions found on the psubuntu website.

• After partitioning, writing the partition Table and the creation of the ext3 file system, the
installation can be aborted.

• Boot the Playstation 3 and start a Petitboot-shell (press ALT-F1) from the Petitboot
menu.

• Copy the Linux-filesystem images on an USB storage device having an ext3/ext2 filesystem.

• Connect the USB storage device from the previous step to the Playstation 3.

• Wait for the mounting process to finish and note the /dev entry for the USB storage device
(/dev/hdd in this case).

• Unmount the /dev/ps3da117 partition.

• Restore the linux image to the hard disk:
dd if=/tmp/tmp/mnt/hdd1/nssal-linuxside-fs.dd of=/dev/ps3da1.

• Reboot the Playstation 3 and choose the hard disk and the kernel to boot in the Petitboot
menu.

The above method allows booting of a single image. By using an external USB Disk, it is
possible to boot the other forensic image jhuisi-linux-side-fs.dd, without removing the on
the Playstation 3 hard disk installed nssal-linux-side-fs.dd image. The other image must
be written to a separate partition on an external USB Disk which is at least 10 GB in size.
After connecting the USB disk and rebooting the Playstation 3, the Petitboot menu will show
an additional hard disk which can be booted.

13Petitboot is available from: http://ozlabs.org/~jk/projects/petitboot/
14The 10 GB hard disk space in Linux is referenced by /dev/ps3da.
15ubuntu-8.10-alternate-powerpc+ps3.iso
16http://psubuntu.com
17The forensic file system images are Linux partitions /dev/ps3da1 without the swap space /dev/ps3hd5.

14

http://ozlabs.org/~jk/projects/petitboot/
http://psubuntu.com

3 Investigation

3.1 Accounts

To determine who has access to the machines the accounts were examined on both systems.
The /etc/passwd and /etc/shadow files and the directory entries in /home show that the

nssal-linux-side-fs.dd image contains two interactive user accounts: nssal and jhuisi. The
third field in the shadow file stores the date when the password was last changed for an account.
The ’nssal’ account password was last changed on December 4th 2008 and the ’jhuisi’ account
on March 11th 2009. Besides this the root account password was last changed on January 14th

2009.
The nssal-linux-side-fs.dd image also holds two accounts: jhuisi and goatboy, both

passwords last changed on January 22nd 2009. The root account password on this image was
also last changed on January 22nd 2009.

On both images no (daemon) accounts beside the root account were set to UID 0 (root).
Although the account passwords are not immediately needed, they could be useful in the

course of the investigation. The possibility of finding encrypted files/volumes during this investi-
gation is relatively high as the suspect has advanced knowledge of digital forensics. As recovering
passwords can be a time consuming task it is sensible to start recovery at the start of the inves-
tigation. Three wordlists were created by using all strings in the nssal-physicalmem.dd image
and the Linux images as follows:
#!/bin/sh

usage: ./wordlist.sh <file>

strings -a: Scan whole (all) files

grep: Only list entries between 1 and 15 characters

-x: Select only those matches that exactly match the whole line

-E: Interpret PATTERN as an extended regular expression

strings -a $1 | grep -x -E ".{1,15}" > wordlist_$1_temp;

Find strings with 16-bit bigendian and append to temp file

strings -a --encoding=b $1 | grep -x -E ".{1,15}" >> wordlist_$1_temp;

Remove duplicates

sort wordlist_$1_temp | uniq > wordlist_$1_temp2;

rm wordlist_$1_temp

Use John the ripper to create variants for the passwords

john -stdout:25 -wordfile=wordlist_$1_temp2 -rules > wordlist_$1

rm wordlist_$1_temp2

The passwords are either stored in MD5 or SHA-512. In order to find the MD5 passwords John
the Ripper18 was used. First, all variations of the username were quickly tested as password in
single mode with John the Ripper (JTR). JTR recovered the password ’nssal’ of the nssal account
on the nssal-linux-side-fs.dd image. Next, the generated wordlists were used. JTR was set
to use the wordlists and generate and to try variations of a password (JTR rules option). Unfortu-
nately the other MD5 password could not be found. JTR does not support SHA-512, therefore we
wrote a simple Python script that is able to load a wordlist to recover the SHA-512 hashes. By us-
ing the Python script the password ’mac’ for the ’jhuisi’ account on the nssal-linux-side-fs.dd
image and the password ’G04tB0y!’ for the ’goatboy’ account on jhuisi-linux-side-fs.dd
image were recovered. Table 5 shows the account details of the nssal-linux-side-fs.dd image
and Table 6 the account details for the jhuisi-linux-side-fs.dd image.

18available from: http://www.openwall.com/john/

15

http://www.openwall.com/john/

Account UID Password Password location Home Directory Last Change
root 0 - - /root 2009-01-14

nssal 1000 nssal - /home/nssal 2008-12-04
jhuisi 1001 mac nssal-capture-2.pcap /home/jhuisi 2009-03-11

jhuisi-capture-1.pcap
nssal-physicalmem.dd

Table 5: Accounts on nssal-linux-side-fs.dd image.

Account UID Password Password location Home directory Last Change
root 0 - - /root 2009-1-22

jhuisi 1000 - - /home/jhuisi 2009-1-22
goatboy 1001 G04tB0y! jhuisi-linux-side-fs.dd - /home/goatboy 2009-01-22

Free space

Table 6: Accounts on jhuisi-linux-side-fs.dd image.

3.2 Recovery of deleted files

Under digital forensic investigators it is common knowledge that files can be recovered by carving.
However, removed files do not always have a distinctive file size, header or footer, for example the
.bash history file. Another method to recover files on Linux system by using the information
stored in the journal.

Recovering deleted files on ext3 is not as easy as with most popular file systems. In order
to ensure that ext3 can safely resume an unlink after a crash, it zeros out the block pointers in
the inode, whereas ext2 just marks these blocks as unused in the block bitmaps and marks the
inode as ’deleted’ and does not touch the block pointers [8]. The metadata for a file is stored in
an inode. File metadata includes the temporal data such as the last modified, last accessed, last
changed, and deleted times. Metadata also includes the file size, user ID, group ID, permissions,
and block addresses where the file content is stored [2]. Therefore it is no longer possible to
determine where the file content is located when the block pointers in the inode are overwritten,
see Figure 5.

The ext3 file system has a journal that records updates to the file system metadata before
the update occurs. In case of a system crash, the OS reads the journal and will either reprocess
or roll back the transactions in the journal so that recovery will be faster than examining each
metadata structure, which is the old and slow way. The journal contains the full block that is
being updated, not just the value being changed. Therefore a previous version of an inode may
exist in the journal because another files was updated before the deletion [2].

16

Figure 5: Relationship between the directory entry, an inode, and block of unallocated ext3 file.
The links between the inode and blocks has been cleared [2]

3.2.1 The recovery

This section describes how deleted files in the home directory of the ’nssal’ account on the
nssal-linux-side-fs.dd image were recovered by using the journal, inode and directory-entry
information. These methods were also used to recover other files from disk.

First, the deleted files and their inode address have to be determined. By using the utility
’debugfs’ it is possible to load the image and display allocated/deleted files and their inode
addressed with the command ’ls -d’. This information is loaded from the directory entry structure
which is not cleared during the deletion process. Deleted files have their inode address surrounded
by ’<’ and ’>’:

<503434> (12) 00 <503434> (12) 0 503151 (16) .themes

<SNIP>

<503148> (16) 00000 511058 (12) mod 511070 (20) .gegl-0.0

<SNIP>

503278 (36) channels <503148> (20) 000000000 32786 (20) crosstool

527340 (64) d <503434> (52) 00000000000000000 505209 (16) find.py

<SNIP>

426276 (56) ppu-binutils-2.18.50-21.ppc.rpm <373981> (16) ram.dd

<SNIP>

503412 (2688) memdump-powerpc.tar <505465> (2660) .ICEauthority-n

<505482> (20) andromachi <505483> (2604) bateman’s

<505484> (20) stanley’s <505485> (2564) stoughton’s

By using the utility ’ext3grep’ with the option ’–restore-inode <inode>’ ext3grep will try to
find previous copies of the inode in the journal and recover the file by using the block pointer in
the inode copy. If the data has not been overwritten the file can be recovered. This way inode
505482 through 505485 could be restored from the journal. The other deleted files with inode
503148, 503434 and 373981 could not be recovered this easily. ’ext3grep’ also has the ability to
recover files by name with ’–restore-file <file>’.

In order to recover files that are not listed in the directory structure anymore (in this case the
.bash history file), it is possible to try to search the journal for old directory entries to determine
what inode files used to have. By using ’ext3grep’ and its option ’–search’ the command will
return all blocks in the journal that match:

ext3grep nssal-linux-side-fs.dd --search bash_history

17

Running ext3grep version 0.10.1

Number of groups: 77

Minimum / maximum journal block: 1212925 / 1246235

Loading journal descriptors... sorting... done

The oldest inode block that is still in the journal, appears to be from

1236715837 = Tue Mar 10 15:10:37 2009

Number of descriptors in journal: 30544; min / max sequence numbers: 125609 / 128592

Blocks containing "bash_history": 67835 (allocated) 115671 118536....

Displaying all matching blocks can be quickly done by using a simple bash script that loops
through all blocks [8]:

#!/bin/sh

blocks="67835 115671 118536 ..."

for block in $blocks; do

ext3grep nssal-linux-side-fs.dd --ls --block $block | tee -a output.txt

done

The created output file shows the following information:

Block 338170 is a directory. The block is Allocated

.-- File type in dir_entry (r=regular file, d=directory, l=symlink)

| .-- D: Deleted ; R: Reallocated

Indx Next | Inode | Deletion time Mode File name

==========+==========+----------------data-from-inode------+-----------+=========

0 1 d 502947 drwxr-xr-x .

1 2 d 502945 drwxr-xr-x ..

2 3 r 502948 rrw-r--r-- .profile

3 4 l 502949 lrwxrwxrwx Examples -> /usr/share/example-content

4 5 r 502950 rrw-r--r-- .bash_logout

5 6 r 502951 rrw-r--r-- .bashrc

<SNIP>

34 35 d 503073 drwx------ .update-notifier

35 36 d 505446 drwxr-xr-x kmem

36 37 r 503023 rrw-r--r-- .sudo_as_admin_successful

37 38 r 503148 D 1236805424 Wed Mar 11 16:03:44 2009 rrw------- .bash_history

<SNIP>

46 47 r 503434 D 1236805688 Wed Mar 11 16:08:08 2009 rrw-r--r-- mem.find.pics

<SNIP>

The output shows that the files that were outputted by the previously used ’debugfs ls -d’
command marked as deleted and named ’0000’, were named .bash history and mem.find.pics.
The metadata shows when the bash history was deleted and the inode number where the file was
stored which is needed for the recovery attempt. The additional accessed, file modified and inode
modified time stamps can be viewed with ext3grep nssal-linux-side.dd --inode 503148:

Inode is Unallocated

Group: 62

Generation Id: 440104130

uid / gid: 1000 / 1000

mode: rrw-------

size: 0

num of links: 0

sectors: 0 (--> 0 indirect blocks).

Inode Times:

Accessed: 1236793471 = Wed Mar 11 12:44:31 2009

File Modified: 1236805424 = Wed Mar 11 16:03:44 2009

Inode Modified: 1236805424 = Wed Mar 11 16:03:44 2009

Deletion time: 1236805424 = Wed Mar 11 16:03:44 2009

debugfs nssal-linux-side-fs.dd

debugfs 1.40.8 (13-Mar-2008)

18

debugfs: imap <503148>

Inode 503148 is part of block group 62

located at block 2031630, offset 0x0b00

debugfs: stats

[...]

Blocks per group: 32768

[...]

With the group number and the block per group it is possible to export the section of the file
system where the .bash history file was stored. Block group 62 is needed for the recovery
attempt of the bash history, therefore the block range is from 2,031,616 (62 * 32,768) to
2,064,383 (63 * 32,768 - 1) [2]:

dls nssal-linux-side-fs.dd 2031616-2064383 > unalloc.dat

The above ’dls’ command outputs a file of 71,9 MB. By searching for common Linux com-
mands such as ’sudo<space>’ and ’ssh<space>’, two continuous bash history lists were recovered.
One bash history trace contains 190 commands and the other 499 commands, see Figure 6.
Searching for common Linux commands was also used to extract terminal output from the
nssal-physicalmem.dd image.

Figure 6: Part of the recovered bash history

Exporting a specific block group can also be useful while trying to recover a specific file with
carving to limit the number of files.

3.3 Time stamps and mount options

The Linux Ubuntu version 8.10, installed on both PlayStation 3 systems uses the mount option
’relatime’, this results in a different behaviour from the default: the access time when reading
a file is only updated when the original access time was less or equal to the modify or change
time. Apart from the ’touch’ command this setting has an impact on the forensic usage of the
access time. There is no way to determine when a file or directory was read other than the
first time after creation, copy, move or modification. When an USB device is auto-mounted
on insertion, the mount options do not contain ’relatime’ and therefore access-times are always
updated. Other options to consider when a file systems has been mounted on a Linux system are
’nodiratime’ and ’noatime’. ’nodiratime’ does not update the access time of directories, ’noatime’
does not update any access time on the mounted file system.

19

3.3.1 Checking mount options

For forensic use of the access, modify and change time stamps, the mount options used to mount
the file system are of great importance. When a copy of the original root file system is available,
the mount options in the file /etc/fstab can be examined to determine the mount options
used to mount the file system at boot time. Note that it is always possible for the root user to
change the mount options on any of the mounted file systems on any given moment by issuing
the command:

mount -o remount,<options> <mountpoint>

If /etc/fstab is not available or not trusted, other files can be examined to determine the
mount options. Files which do not change very often (or never) but are read regularly, can
indicate the ’noatime’ option when access time equals modify time equals change time. When
these files have an access time close (seconds or minutes) to the modify time or change time the
’relatime’ option is indicated. If the access time much later (days or weeks) ’atime’ is indicated.

An example of a file that does not change very often but is read regularly is /etc/bash.bashrc
on Ubuntu 8.10. The file /etc/bash.bashrc is read at every login but not changed very often, like
wise the file .bashrc in the home directory of the user can be used.

Below is an example of the ’stat’ of /etc/bash.bashrc on two Ubuntu 8.10 systems, one
with the ’relatime’ option and with the mount option ’atime’ enabled for two days and after that
’relatime’ enabled again.

relatime:
Access: 2009-06-04 03:06:52.000000000 -0500

Modify: 2009-03-02 09:22:30.000000000 -0500

Change: 2009-06-04 03:05:43.000000000 -0500

atime enabled for a 2 days:

Access: 2009-06-24 07:01:47.000000000 -0500

Modify: 2009-03-02 08:22:56.000000000 -0600

Change: 2009-06-04 04:40:13.000000000 -0500

Note the modify time, it is almost the same in both systems. This is the original creation date
of the file when packaged for Ubuntu distribution. Because one system was installed using the
Ubuntu server distribution and the other the Ubuntu desktop distribution the creation time do
differ a little. The change time is also close to each other, both systems were installed (files
copied upon the file system) about the same time. The big or little difference of the access time
compared to the change time can indicate the mount options.

3.3.2 Experimentally determining mount options

What if none of the methods described in the previous section are available to determine the
mount options used to mount a file system. Can the mount options be determined using ’stat’
information from a (big) set of files and directories from the filesystem. The focus of this method
has to be on the access time and how it differs from modify and change time. It was the indicator
in the methods described in the previous section. A Python script has been created to check the
access, modify and change time stamps of every file and directory in a filesystem. The output of
this self-written Python script will list the of number of files where access time differs or equals
from modify and change time. The script keeps track of the seconds the access time differs when
access time is larger (later in time) than modify or change time. An average is calculated and
shown in the output. When the script was run on the read-only mounted file system of the
challenge file system dumps, the following values were retrieved.

20

nssal-linux-side-fs.dd:
Files: 312835

Atime < Ctime for Files: 204168 65.3%

Atime < Mtime for Files: 7354 2.3%

Atime > Ctime for Files: 54455 17.4%

Atime > Mtime for Files: 256228 81.9%

Atime = Ctime for Files: 54212 17.3%

Atime = Mtime for Files: 49253 15.7%

Average Atime diff Mtime when A>M 55048095 sec.

Average Atime diff Ctime when A>C 31838 sec.

Directories: 23792

Atime < Ctime for Directories: 11349 47.7%

Atime < Mtime for Directories: 6914 29.1%

Atime > Ctime for Directories: 10211 42.9%

Atime > Mtime for Directories: 14646 61.6%

Atime = Ctime for Directories: 2232 9.4%

Atime = Mtime for Directories: 2232 9.4%

Average Atime diff Mtime when A>M 18192838 sec.

Average Atime diff Ctime when A>C 33942 sec.

jhuisi-linux-side-fs.dd:
Files : 113268

Atime < Ctime for Files: 71228 62.9%

Atime < Mtime for Files: 10577 9.3%

Atime > Ctime for Files: 22646 20.0%

Atime > Mtime for Files: 85706 75.7%

Atime = Ctime for Files: 19394 17.1%

Atime = Mtime for Files: 16985 15.0%

Average Atime diff Mtime when A>M 11173094 sec.

Average Atime diff Ctime when A>C 9004 sec.

Directories: 12543

Atime < Ctime for Directories: 10522 83.9%

Atime < Mtime for Directories: 10383 82.8%

Atime > Ctime for Directories: 1818 14.5%

Atime > Mtime for Directories: 1923 15.3%

Atime = Ctime for Directories: 203 1.6%

Atime = Mtime for Directories: 237 1.9%

Average Atime diff Mtime when A>M 1640701 sec.

Average Atime diff Ctime when A>C 5418 sec.

Using the same Python script, the following values were retrieved from a NetBSD file system
(defaults to atime) and an Ubuntu 9.04 server without the access time mount options: ’noatime’
or ’relatime’, which in effect is the same as the ’atime’ of the NetBSD system. Because the
NetBSD system was mounted read-write instead of read-only all directories have their access
time adjusted when de files are read using ’lstat’. ’lstat’ does not change any time stamps on
the files it reads.

FreeBSD /usr file system (atime)
Files: 683486

Atime < Ctime for Files: 362776 53.1%

Atime < Mtime for Files: 505 0.7%

Atime > Ctime for Files: 251656 36.8%

Atime > Mtime for Files: 253026 37.0%

Atime = Ctime for Files: 69054 10.1%

Atime = Mtime for Files: 429955 62.9%

Average Atime diff Mtime when A>M 20037774 sec.

Average Atime diff Ctime when A>C 799615 sec.

Directories: 74143

Atime < Ctime for Directories: 0 0%

Atime < Mtime for Directories: 0 0%

Atime > Ctime for Directories: 74143 100%

Atime > Mtime for Directories: 74143 100%

Atime = Ctime for Directories: 0 0%

Atime = Mtime for Directories: 0 0%

Average Atime diff Mtime when A>M 25445529 sec.

Average Atime diff Ctime when A>C 7457875 sec.

Ubuntu 9.04 Server file system (atime)
Files: 26728

Atime < Ctime for Files: 11411 42.7%

Atime < Mtime for Files: 1758 6.6%

Atime > Ctime for Files: 10036 37.5%

Atime > Mtime for Files: 22085 82.6%

Atime = Ctime for Files: 5281 19.8%

Atime = Mtime for Files: 2885 10.8%

Average Atime diff Mtime when A>M 14020023 sec.

Average Atime diff Ctime when A>C 13245 sec.

Directories: 2697

Atime < Ctime for Directories: 1830 67.9%

Atime < Mtime for Directories: 1724 63.9%

Atime > Ctime for Directories: 720 26.7%

Atime > Mtime for Directories: 788 29.2%

Atime = Ctime for Directories: 147 5.5%

Atime = Mtime for Directories: 185 6.9%

Average Atime diff Mtime when A>M 500856 sec.

Average Atime diff Ctime when A>C 11456 sec.

Using the above data of the different file systems the graphs presented in Figure 7 and 8 were
created. Because data of the directories in the NetBSD file system were influenced by the tool
to gather the information, no directory data is not examined.

A test on two systems using ’relatime’ en two using the ’atime’ mount option is limited,
but some remarks can be made. Further testing is needed to confirm these. In Figure 7 the
percentage of files where access time is later (as in time) then change time is indicating the
difference between ’relatime’ and ’atime’ mount options. An other indication present in this
data set is the percentage of the files where access time is equal to modification time and access
time equals change time. If these to values are close so access time=modify time ≈ access time
= change time, the ’relatime’ mount option was active.

Figure 8 show no direct relation between the ’noatime’ and ’atime’ mount options at first
sight, but the difference between the value of both the average access time compared to modify

21

nssal-
linux-

side-fs
(relati
me)

jhuisi-
linux-

side-fs
(relati
me)

FreeB
SD /
usr

(atime
)

Ubunt
u 9.04
(atime

)
Atime <
Ctime for
Files
Atime =
Ctime for
Files
Atime >
Ctime for
Files
Atime <
Mtime for
Files
Atime =
Mtime for
Files
Atime >
Mtime for

65.26% 62.88% 53.08% 42.69%

17.33% 17.12% 10.10% 19.76%

17.41% 19.99% 36.82% 37.55%

2.35% 9.34% 0.07% 6.58%

15.74% 15.00% 62.91% 10.79%

81.91% 75.67% 37.02% 82.63%

nssal-
linux-

side-fs

jhuisi-
linux-

side-fs

FreeBS
D /usr

Ubuntu
9.04

(atime)Files 3E+05 1E+05 7E+05 26728
Atime < Ctime for Files 2E+05 65.26% 71228 62.88% 4E+05 53.08% 11411 42.69%
Atime < Mtime for Files 7354 2.35% 10577 9.34% 505 0.07% 1758 6.58%
Atime > Ctime for Files 54455 17.41% 22646 19.99% 3E+05 36.82% 10036 37.55%
Atime > Mtime for Files 3E+05 81.91% 85706 75.67% 3E+05 37.02% 22085 82.63%
Atime = Ctime for Files 54212 17.33% 19394 17.12% 69054 10.10% 5281 19.76%
Atime = Mtime for Files 49253 15.74% 16985 15.00% 4E+05 62.91% 2885 10.79%
Average Atime diff Mtime when A>M6E+07 1E+07 2E+07 1E+07
Average Atime diff Ctime when A>C31838 9004 8E+05 13245
Directories 23792 12543 74143 2697
Atime < Ctime for Directories11349 47.70% 10522 83.89% 0 0.00% 1830 67.85%
Atime < Mtime for Directories6914 29.06% 10383 82.78% 0 0.00% 1724 63.92%
Atime > Ctime for Directories10211 42.92% 1818 14.49% 74143 100.00% 720 26.70%
Atime > Mtime for Directories14646 61.56% 1923 15.33% 74143 100.00% 788 29.22%
Atime = Ctime for Directories2232 9.38% 203 1.62% 0 0.00% 147 5.45%
Atime = Mtime for Directories2232 9.38% 237 1.89% 0 0.00% 185 6.86%
Average Atime diff Mtime when A>M2E+07 2E+06 3E+07 5E+05
Average Atime diff Ctime when A>C33942 5418 7E+06 11456

0%

25%

50%

75%

100%

%
 o

f F
ile

s

relatime relatime atime atime

Access < Change

Access = Change

Access > Change

Access < Modify

Access = Modify

Access > Modify

Figure 7: Access time compared with Modify and Change time if various file systems

nssal-linux-
side-fs

(relatime)

jhuisi-
linux-side-

fs
(relatime)

FreeBSD /
usr (atime)

Ubuntu 9.04
(atime)

Average Atime diff Mtime when A>M

Average Atime diff Ctime when A>C

55048095 11173094 20037774 500856

31838 9004 799615 11456

nssal-
linux-

side-fs

jhuisi-
linux-

side-fs

FreeBS
D /usr

Ubuntu
9.04

(atime)
Files 3E+05 1E+05 7E+05 26728
Atime < Ctime for Files 2E+05 65.26% 71228 62.88% 4E+05 53.08% 11411 42.69%
Atime < Mtime for Files 7354 2.35% 10577 9.34% 505 0.07% 1758 6.58%
Atime > Ctime for Files 54455 17.41% 22646 19.99% 3E+05 36.82% 10036 37.55%
Atime > Mtime for Files 3E+05 81.91% 85706 75.67% 3E+05 37.02% 22085 82.63%
Atime = Ctime for Files 54212 17.33% 19394 17.12% 69054 10.10% 5281 19.76%
Atime = Mtime for Files 49253 15.74% 16985 15.00% 4E+05 62.91% 2885 10.79%
Average Atime diff Mtime when A>M6E+07 1E+07 2E+07 1E+07
Average Atime diff Ctime when A>C31838 9004 8E+05 13245
Directories 23792 12543 74143 2697
Atime < Ctime for Directories11349 47.70% 10522 83.89% 0 0.00% 1830 67.85%
Atime < Mtime for Directories6914 29.06% 10383 82.78% 0 0.00% 1724 63.92%
Atime > Ctime for Directories10211 42.92% 1818 14.49% 74143 100.00% 720 26.70%
Atime > Mtime for Directories14646 61.56% 1923 15.33% 74143 100.00% 788 29.22%
Atime = Ctime for Directories2232 9.38% 203 1.62% 0 0.00% 147 5.45%
Atime = Mtime for Directories2232 9.38% 237 1.89% 0 0.00% 185 6.86%
Average Atime diff Mtime when A>M2E+07 2E+06 3E+07 5E+05
Average Atime diff Ctime when A>C33942 5418 7E+06 11456

1

10

100

1000

10000

100000

1000000

10000000

100000000

nssal-linux-side-fs (relatime) jhuisi-linux-side-fs (relatime) FreeBSD /usr (atime) Ubuntu 9.04 (atime)

S
ec

on
d

s
(lo

g)

Average access time difference from modify time when Access > Modify
Average access time difference from change time when Acces > Change

Figure 8: Average Access time difference in seconds of Modify and Change time if various file
systems

and change time could be an indication.

3.4 Mardi Gras pictures

3.4.1 location and description

Mardi Gras images were found on both the file system images. On the nssal-linux-side-fs.dd
image the pictures are located in /home/nssal/Images, on the jhuisi-linux-side-fs.dd image
in /home/jhuisi/Pictures. Bitwise comparison of the pictures on both images showed that the
pictures are equal. See Table 7 for the details of the pictures. By using the ’stat’ command the
access, modify and change time stamps are shown in Table 8 for the nssal-linux-side-fs.dd

22

image and Table 9 for the jhuisi-linux-side-fs.dd image. Both the ’nssal’ account on the
nssal-linux-side-fs.dd image and the ’jhuisi’ account on the jhuisi-linux-side-fs.dd
image contain an entry in .recently-used.xbel for each picture. The .recently-used.xbel
file contains a list of recently opened files in GTK19. The added, modified and visited time stamp
associated with each picture entry in .recently-used.xbel match the ’access’ time stamp shown
by the ’stat’ command.

All pictures contain the metadata fields ’creator = nssal’, ’date = 2009-03-02T14:34:47-06:00’
and ’comment = Don’t steal my pictures I kill you’. The date field shows a time stamp formatted
in UTC -6 which matches the time zone settings of the nssal-linux-side-fs.dd image. This
time stamp cannot match the time zone settings on the jhuisi-linux-side-fs.dd image as
this is either UTC -4 or UTC -5. Besides this the meta data indicates that Adobe Photoshop
3.0 was used. To determine if other images were present with the meta data set, we searched for
’<dc:creator> <rdf:Seq> <rdf:li>’. These fields were used to define the creator in the picture. No
other images were recovered.

Filename MD5 Size Dimensions

3316820191 4737c3edf4.jpg 2be903dfd1b0227473bb44e05e6b77d4 133 KB 500 x 332

3318492402 731ae5cdc3 b.jpg c670679c2b23ec2e9c31a978192b2441 238 KB 1024 x 680

3323673964 94e64ebddd b.jpg ea552f0c4de935f5c601bd08e91fd006 246 KB 1024 x 680

3318589824 35fe706451 b.jpg afc59f3660d8c3bef513acc543b9efc0 262 KB 1024 x 739

3322040743 08a3b99acd b.jpg abfc32a61dc5893122d8801bdd983914 270 KB 1024 x 680

3320345810 6acc8185b2 b.jpg 9c7a979c001410d3291517fc5ae3b154 354 KB 1024 x 680

3321856153 0a2c9577bd b.jpg 9ceb6ac49b474056861d78096d62859a 365 KB 1024 x 680

3317048368 639213e24b b.jpg 77ea18321ee376c9e573386385d31634 370 KB 1024 x 680

3317820492 cefb7ca452 b.jpg 2fc920fe33403e790e9cf351ba2cbdfc 436 KB 1024 x 680

3322064459 d61e14dea5 b.jpg 1c5fe00984e2c5611da3ade638c0e5b9 462 KB 1024 x 680

3323556994 59a3982d61 b.jpg 8b4f9a823bebd52a7c48f398573f3749 730 KB 1024 x 680

Table 7: Mardi Gras pictures details that were found on both Linux images

Filename Access Modify Change

3316820191 4737c3edf4.jpg 2009-3-6 15:21:32 2009-3-2 8:34:50 2009-3-6 15:21:31

3318492402 731ae5cdc3 b.jpg 2009-3-6 15:21:32 2009-3-2 8:34:50 2009-3-6 15:21:31

3323673964 94e64ebddd b.jpg 2009-3-6 15:21:31 2009-3-2 8:34:48 2009-3-6 15:21:30

3318589824 35fe706451 b.jpg 2009-3-8 17:59:14 2009-3-2 8:34:50 2009-3-6 15:21:31

3322040743 08a3b99acd b.jpg 2009-3-6 15:21:31 2009-3-2 8:34:50 2009-3-6 15:21:30

3320345810 6acc8185b2 b.jpg 2009-3-6 15:21:31 2009-3-2 8:34:50 2009-3-6 15:21:30

3321856153 0a2c9577bd b.jpg 2009-3-6 15:21:31 2009-3-2 8:34:50 2009-3-6 15:21:30

3317048368 639213e24b b.jpg 2009-3-6 15:21:32 2009-3-2 8:34:50 2009-3-6 15:21:31

3317820492 cefb7ca452 b.jpg 2009-3-6 15:21:32 2009-3-2 8:34:50 2009-3-6 15:21:31

3322064459 d61e14dea5 b.jpg 2009-3-6 15:21:32 2009-3-2 8:34:50 2009-3-6 15:21:30

3323556994 59a3982d61 b.jpg 2009-3-8 17:59:18 2009-3-2 8:34:50 2009-3-6 15:21:30

Table 8: nssal-linux-side-fs.dd image: Access, Modify and Change time stamps stored of
the Mardi Gras pictures.

19GTK is a library for graphical user interfaces. GTK is used by the graphical user environment GNOME
which is present on the nssal-linux-side-fs.dd image and the jhuisi-linux-side-fs.dd image.

23

Filename Access Modify Change

3316820191 4737c3edf4.jpg 2009-3-11 11:52:17 2009-3-11 11:52:00 2009-3-11 11:52:00

3318492402 731ae5cdc3 b.jpg 2009-3-11 11:52:18 2009-3-11 11:52:01 2009-3-11 11:52:01

3323673964 94e64ebddd b.jpg 2009-3-11 11:52:18 2009-3-11 11:52:04 2009-3-11 11:52:04

3318589824 35fe706451 b.jpg 2009-3-11 11:52:18 2009-3-11 11:52:01 2009-3-11 11:52:01

3322040743 08a3b99acd b.jpg 2009-3-11 11:52:18 2009-3-11 11:52:02 2009-3-11 11:52:02

3320345810 6acc8185b2 b.jpg 2009-3-11 11:52:18 2009-3-11 11:52:01 2009-3-11 11:52:01

3321856153 0a2c9577bd b.jpg 2009-3-11 11:52:18 2009-3-11 11:52:02 2009-3-11 11:52:02

3317048368 639213e24b b.jpg 2009-3-11 11:52:17 2009-3-11 11:52:00 2009-3-11 11:52:00

3317820492 cefb7ca452 b.jpg 2009-3-11 11:52:17 2009-3-11 11:52:00 2009-3-11 11:52:00

3322064459 d61e14dea5 b.jpg 2009-3-11 11:52:18 2009-3-11 11:52:03 2009-3-11 11:52:03

3323556994 59a3982d61 b.jpg 2009-3-11 11:52:18 2009-3-11 11:52:04 2009-3-11 11:52:04

Table 9: jhuisi-linux-side-fs.dd image: Access, Modify and Change time stamps of the
Mardi Gras pictures.

In order to determine if more Mardi Gras related images were stored on the images, WinHex
was used to recover all JPEG, PNG, GIF, TIFF, Bitmap and Adobe Photoshop images. Scrolling
through the images did not result in finding/recovering any other Mardi Gras related images.

3.4.2 Related traces

Although no indication of the use of steganography was found, stegdetect 0.6 was used to analyze
the Mardi Gras pictures for steganographic content to rule out that hidden information was
exchanged or stored in the pictures. It runs statistical tests to determine if steganographic
content is present, and also tries to find the system that has been used to embed the hidden
information. Stegdetect detected two false positives in picture 3316820191 4737c3edf4.jpg
and 3323556994 59a3982d61 b.jpg. Stegbreak was used with the created wordlists without
any results.

The filenames of the Mardi Gras pictures were found as deleted file entries on the thumb
drive. Besides this, the recovered bash history of the ’nssal’ account and matching backdoor20

commands found in nssal-capture-1.pcap and jhuisi-capture-1.pcap (see section 3.9.8)
shows a ’cd’ command into the Images directory of the ’nssal’ account, but no other commands.
Furthermore, nssal-capture-1.pcap shows network traffic to Mardi Gras related websites, see
section 3.9.

Keyword searches such as ’/Images’, ’/Pictures’ and ’mardi gras’ did not reveal any other
information. No related deleted files were recovered.

3.5 Drug recipes

3.5.1 Location and description

Drug recipes were found on both the nssal-linux-side-fs.dd and the jhuisi-linux-side-fs.dd
image. On the nssal-linux-side-fs.dd image the recipes are located in /home/nssal/Recipes,
on the jhuisi-linux-side-fs.dd image in /home/goatboy/Recipes. The jhuisi-linux-side-fs.dd
image contains one recipe more than the nssal-linux image named shéyòu. Bitwise comparison
of the other four drug recipes on both images showed that the recipes are equal. See Table 10
for the details of the drug recipes. Table 11 lists drug recipes accessed, modified and changed
time stamps for nssal-linux-side-fs.dd, Table 12 shows the jhuisi-linux-side-fs.dd time
stamps.

The ’Recipes’ directory on the jhuisi-linux-side-fs.dd image also contained a sub-directory
named ’customers’. The ’customer’ directory holds a file named ’Tír na nÓg’ which contains a

20Software used to gain unauthorized access to a system.

24

Filename MD5 Size
andromachi 3f262643d1f6d50a77e860c9a8434e28 1,7 KB

bateman’s bc517b62873a8abf9349e4c86f0bb11c 140 B
shéyòu 940734945d3c16b0b79660c7c0aaeeb1 215 B

stanley’s 36c058ced5f379a9e5042da2e6ca2bf9 235 B
stoughton’s b5d615dba78bbc7e0cdcf29ebe82962d 359 B

Table 10: Drug recipe details that were found on both Linux images.

Filename Accessed Modified Change
andromachi 2009-03-11 11:49:40 2009-03-11 11:49:40 2009-03-11 11:53:24

bateman’s 2009-03-11 11:49:49 2009-03-11 11:49:49 2009-03-11 11:53:29
stanley’s 2009-03-11 11:50:05 2009-03-11 11:50:05 2009-03-11 11:52:52

stoughton’s 2009-03-11 11:50:10 2009-03-11 11:50:10 2009-03-11 11:52:57

Table 11: Time stamps of drug recipes found in /home/nssal/Recipes on nssal-linux image.

Filename Accessed Modified Change
andromachi 2009-03-11 11:49:38 2009-03-05 15:05:41 2009-03-06 09:15:55

bateman’s 2009-03-11 11:45:42 2009-03-05 15:01:15 2009-03-06 09:15:55
shéyòu 2009-03-11 11:51:13 2009-03-06 09:16:10 2009-03-06 09:15:55

stanley’s 2009-03-11 11:50:02 2009-03-05 14:49:06 2009-03-06 09:15:55
stoughton’s 2009-03-11 11:50:08 2009-03-05 14:45:03 2009-03-06 09:15:55

Table 12: Time stamps of drug recipes found in /home/goatboy/Recipes on jhuisi-linux
image.

list of names and addresses. Besides the ’Tír na nÓg’ on the jhuisi-linux-side-fs.dd image,
the names and addresses were not found elsewhere.

3.5.2 Related traces

The /home/goatboy/Recipes directory on the jhuisi-linux-side-fs.dd contains a deleted
directory entry for the file ’recipes.tar’; this file could not be recovered. No traces of ’recipes.tar’
were found on the other images.

The /home/goatboy/.bash history on jhuisi-linux-side-fs.dd shows traces of unpack-
ing of ’recipes.tar’ and the creation ’customer’ directory. Besides this, it shows interaction
between the ’goatboy’ and ’jhuisi’ accounts which appears to be related to the drug recipes. The
.bash history file of the ’goatboy’ account is listed below:

1 ls

2 mkdir Recipes

3 ls

4 cd Recipes/

5 ls

6 tar xvf recipes.tar

7 ls customers/

8 mv Tir\ na\ nOg customers/

9 ls

10 rm recipes.tar

11 exit

12 ls

13 ls -l Recipes/

14 exit

15 ls

16 cd Examples

17 ls

18 cd ..

19 clear

20 ls

21 cd Recipes

22 ls

23 cat bateman\’s

24 talk

25 ytalk

26 ntalk

27 write jhuisi

28 ls

29 cat custmers

30 write jhuisi

31 cat customers

32 cd customers

33 ls

34 clear

35 ls -l

36 cat Tir\ na\ nOg

37 ls

38 write jhuisi

39 I feel younger already!

40 write jhuisi

41 write

42 write jhuisi

43 Nice doing business with you!

44 clear

45 ls

46 cd

47 clear

48 ls

25

The first six entries of the bash history given above shows that user ’goatboy’ created the
directory ’Recipes’, changed into this directory and subsequently unpacked ’recipes.tar’. Appar-
ently ’recipes.tar’ is created by another user as a directory is empty when it is created. However,
the bash history of the ’jhuisi’ is not in human readable format for a large part and does not
show such activity. The bash history of the ’root’ account also does not contain any drug recipe
related entries.

Several terminal traces were found in the nssal-physicial-mem.dd image. Terminal traces
were found by searching for ’@ps3:’,’@nssal-ps3:’ and ’<user>@’. These traces indicate that an
SSH session was set-up from the nssal-linux-side-fs.dd image to the jhuisi-linux-side-fs.dd
image with the user ’goatboy’. Terminal traces from the nssal-physicial-mem.dd image:
Terminal - goatboy@ps3: ~/Recipes/customers

goatboy@ps3:~$ ls

Examples Recipes

goatboy@ps3:~$ logout

Connection to ps3.isi.jhu.edu closed.

goatboy@ps3:~/Recipes/customers$ clear

goatboy@ps3:~/Recipes/customers$ ls

goatboy@ps3:~/Recipes/customers$

goatboy@ps3:~/Recipes/customers$ write jhuisi

write: jhuisi is logged in more than once; writing to pts/3

Slurp!

Slurp!

goatboy@ps3:~/Recipes/customers$

The write commands found in the bash history of the user ’goatboy’ and the terminal traces in
nssal-physicial-mem.dd suggest that some kind of exchange took place related to the drug
recipes.

3.6 Backdoor

3.7 Location and description

On the jhuisi-linux-side-fs.dd image the files backd00r.c, .backd00r.c.swp, .backd00r.c.swx
and a.out were found in the directory /home/jhuisi. The contents of backd00r.c shows that
the file is the source code of software to gain unauthorized access to a system. By compiling
the backd00r.c file with ’gcc’ and bit comparing the output to the a.out file, showed that the
files are equal. The files .backd00r.c.swp, .backd00r.c.swx and a.out show that backdoor
software was compiled and edited on the jhuisi-linux-side-fs.dd image.

A file named backd00r was recovered in the directory /home/jhuisi on the nssal-linux-side-fs.dd
image. No other backd00r files were found. Bit comparing this backd00r file with the a.out
file on the jhuisi-linux-side-fs.dd image shows that the files are equal.

Table 13 list all time stamp of the backd00r files.

Filename dd Accessed* Modified* Changed* Deletion*
backd00r N 12:08:59 12:36:15 12:36:15 12:36:15

backd00r.c J 11:55:16 11:55:06 11:55:06 not deleted
.backd00r.c.swp J 13:32:53 13:52:53 13:52:53 13:52:53
.backd00r.c.swx J 12:20:34 12:20:34 12:20:34 unavailable

a.out J 11:58:08 11:58:07 11:58:07 unavailable
* The date is 2009-03-11

Table 13: Details of backd00r files. the ’dd’ field shows on which image the files were found;
value ’N’ denotes nssal-linux-side-fs.dd image and ’J’ denotes jhuisi-linux-side-fs.dd.

26

3.7.1 Related traces

The below listed bash history of the ’jhuisi’ account on the nssal-linux-side-fs.dd image
shows that the backd00r was executed by the ’jhuisi’ user. The ’telnet’, ’ps’, ’netstat’ commands
were probably used to check if the backdoor was running properly.

1 ls

2 cd Examples

3 ls

4 cd

5 cd ..

6 ls

7 cd nssal/

8 ls

9 cd Images/

10 ls

11 cd

12 ls

13 ./backdoor

14 ls -l

15 ~/backdoor

16 ls -l

17 sudo nssal ./backd00r

18 su

19 netstat -an

20 netstat -an | more

21 telnet localhost 45541

22 ps auxww | grep klog

23

24 ps auxww | grep back

25 netstat -an | more

26 exit

The recovered bash history of the ’nssal’ account also shows that the backdoor was executed
by the user ’nssal’:
sudo ./backd00r &

exit

pwd

ls

sudo ./backd00r &

fg

exit

The log file /var/log/auth.log contains the sudo attempts that are shown in the above
bash history:
2009-03-11 12:01:35 jhuisi : user NOT in sudoers ; TTY=pts/2 ; PWD=/home/jhuisi ;

USER=root ; COMMAND=nssal ./backd00r

2009-03-11 12:08:59 nssal : TTY=pts/3 ; PWD=/home/jhuisi ; USER=root ; COMMAND=./backd00r

The first entry shows that the ’jhuisi’ user is not authorized to run the backdoor with admin-
istrator privileges. Seven minutes later the user ’nssal’ runs the backdoor successfully with
administrator privileges. Tests with the backdoor software in a virtual machine show that ad-
ministrator privileges are required to be able remotely login with root privileges. The user ’jhuisi’
does not have administrator privileges.

Backdoor traffic was found in nssal-capture-2.pcap and jhuisi-capture-1.pcap, see sec-
tion 3.9.8. Searching for ’[backdoor]$’ (as found in the network traffic) in all images did not reveal
any extra given backdoor commands.

3.8 Thumb drive

The command ’blkid’ shows the thumb drive’s ID: ’14D0-6139’. The /var/log/auth.log file
on the nssal image shows that the a SanDisk 512 MB thumb drive with ID ’14D0 6139’ was
mounted on 2009-03-06 15:19:55 for 32 minutes until 15:48:51. The thumb-drive does not have
a label. No other traces of thumb ID were found on the images.

The nssal-thumb drive contains traces of storage of the same 11 Mardi Gras pictures that
were found on the Linux images. The file entries and all relevant time stamps are listed in Table
14. The time stamps show that on March 2nd and March 6th events took place. The pictures - or
pieces of the pictures - could not be extracted from the data on the thumb drive. Looking at the
size of the files shows that pictures of March 6th are a few (between 6 and 10) kilobytes bigger
than the files of March 2nd. The files stored on the Linux images are sized exactly between the
size of the file on March 2nd and its size on the March 6th.

27

Filename Size Created Modified Accessed

3323673964 94e64ebddd b.jpg 242 KB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3322064459 d61e14dea5 b.jpg 464 KB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3323556994 59a3982d61 b.jpg 0,7 MB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3321856153 0a2c9577bd b.jpg 368 KB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3322040743 08a3b99acd b.jpg 272 KB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3318492402 731ae5cdc3 b.jpg 240 KB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3318589824 35fe706451 b.jpg 264 KB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3320345810 6acc8185b2 b.jpg 360 KB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3316820191 4737c3edf4.jpg 136 KB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3317048368 639213e24b b.jpg 376 KB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3317820492 cefb7ca452 b.jpg 440 KB 2009-03-06 21:37 2009-03-06 21:37 2009-03-06

3317820492 cefb7ca452 b.jpg 432 KB 2009-03-02 14:24 2009-03-02 14:24 2009-03-02

3317048368 639213e24b b.jpg 366 KB 2009-03-02 14:21 2009-03-02 14:21 2009-03-02

3316820191 4737c3edf4.jpg 129 KB 2009-03-02 14:21 2009-03-02 14:21 2009-03-02

3318492402 731ae5cdc3 b.jpg 234 KB 2009-03-02 14:20 2009-03-02 14:20 2009-03-02

3318589824 35fe706451 b.jpg 258 KB 2009-03-02 14:19 2009-03-02 14:19 2009-03-02

3320345810 6acc8185b2 b.jpg 350 KB 2009-03-02 14:19 2009-03-02 14:19 2009-03-02

3321856153 0a2c9577bd b.jpg 361 KB 2009-03-02 14:17 2009-03-02 14:17 2009-03-02

3322040743 08a3b99acd b.jpg 266 KB 2009-03-02 14:17 2009-03-02 14:17 2009-03-02

3322064459 d61e14dea5 b.jpg 458 KB 2009-03-02 14:16 2009-03-02 14:16 2009-03-02

3323556994 59a3982d61 b.jpg 0,7 MB 2009-03-02 14:16 2009-03-02 14:16 2009-03-02

3323673964 94e64ebddd b.jpg 242 KB 2009-03-02 14:15 2009-03-02 14:15 2009-03-02

Table 14: nssal-thumb images: FAT Created, Modified and Accessed timestamps of the Mardi
Gras pictures dived in two events.

Besides the picture entries, the thumb drive also holds a deleted file entry ’?hatever’ of 488
MB. Deleted files on the FAT file system are marked as deleted by changing the first byte of the
file entry to 0xE5, therefore this file was probably named ’whatever’. The ’whatever’ file has
’2009-03-02 14:03:15’ stored as the creation time stamp and ’2009-03-02 14:06:50’ as the modified
time stamp. Recovered bash history on the nssal image shows a memory dump named named
’whatever’ was created and shredded. No other traces of the file ’whatever’ have been found.

The time stamps of the files and the first sector were each file was stored shows that the
’whatever’ file was the first file that was created on the drive. Subsequently, the ’whatever’
file was presumably removed as a few minutes later the file ’3323673964 94e64ebddd b.jpg’ was
created in same sector (sector 528). On the sixth of March a new batch of pictures was stored
on the drive starting at sector 528 indicating that the old data was removed.

Looking at the data stored in the sectors shows that sector 528-8335 holds data with a high
entropy, see Figure 9. The size of the data in these sector is almost equal to the sum of all MG
pictures of the sixth of March (3,81 MB). Next, blocks of 610 bytes filled with zeros (0x30) are
stored until sector 999694. The blocks of 610 bytes are separated by two bytes 0x0d0a which
represent a Windows line break. Selecting all data of sector 528 until the last 0x30 byte in sector
999694, sums a total of exactly 488 MB (the size of the ’whatever’ file). Subsequently, sector
999695-999703 contain data with a high entropy. The last sector of the drive is empty. This is
illustrated in Figure 10.

28

Figure 9: WinHex showing the occurences of bytes in sector 528-8335, which shows that the data
is random.

Figure 10: Data on thumb drive

The random data could be an encrypted container or a compressed archive. However, no
related traces to cryptographic activities have been found. An other possibility is that the data
was overwritten with random data, which looks the most plausible. The high entropy data
of sectors 528-8335 is exactly written to a sector boundary, see Figure 11. Some tests with
the command ’shred -u’ show that random bytes are generated untill boundary offsets. The
command ’shred -u’ was found several times in the bash history of the ’nssal’ account. However,
no ’shredding’ history directly related to the thumb drive has been found.

Trying to identify the data on the drive with ’file –keep-going –raw’ and searching for bytes
from the drive on the Linux images was fruitless. No data could be recovered from the thumb
drive.

Figure 11: boundary between sector 8335 and 8336.

29

3.9 Network traffic

This section describes the investigations done on the available network traffic captures. First
the time stamps within the captures and the capture periods are examined in subsection 3.9.1.
Next, the MAC address and IP address combinations when Linux was booted are summarized
in 3.9.2. Then the various types of traffic found within the captures are specified in subsections.
Playstation 3 and Playstation Portable traffic are addressed in subsection 3.9.3 and the related
Playstation Home captured traffic in subsection 3.9.4. The suspect’s Playstation visited websites
related to Mardi Gras, section 3.9.5 describes this. The SSH sessions found in the network traffic
and the known hosts traces left by these SSH sessions are specified in subsection 3.9.6 and 3.9.7
respectively. Finally the traffic generated by the backdoor software (section 3.6) is specified in
section 3.9.8.

Due to time constrains an in depth analysis of all the network traffic was not possible.

3.9.1 Network time stamps

The network traces contain a UTC time stamp for each captured packet. These time stamps
are created by the device used for capturing the data. The devices used for the capture had
their own clock source and were not synchronized. Table 15 lists the capture periods that are
extracted from the network data.

Network Capture Start End Length
nssal-capture-1.pcap 2009-03-05 14:18:52 2009-03-05 14:42:53 00:24:01
nssal-capture-2.pcap 2009-03-11 11:01:16 2009-03-11 12:16:13 01:14:57
jhuisi-capture-1.pcap 2009-03-11 11:01:44 2009-03-11 12:16:40 01:14:56

Table 15: Time periods extracted from the network captures.

Table 15 shows that the nssal-capture-2.pcap and jhuisi-capture-1.pcap contain net-
work traffic of the same period. All traffic found between the suspect’s Playstation and JHUISI
Playstation appears to be either SSH or backdoor traffic. This is covered in section 3.9.6 and
section 3.9.8 respectively.

By examining nssal-capture-2.pcap and jhuisi-capture-1.pcap, SSH traffic was found
between the suspect’s Playstation and the JHUISI Playstation. The following parts of the cap-
tures can be used to determine the clock skew between the two systems used to capture the data:

nssal-capture-2.pcap:
35804 2009-03-11 11:51:57.409715 128.220.249.83 137.30.123.40 TCP 51942 > ssh [SYN]

35805 2009-03-11 11:51:57.409862 137.30.123.40 128.220.249.83 TCP ssh > 51942 [SYN, ACK]

jhuisi-capture-1.pcap:
166834 2009-03-11 11:52:24.069081 128.220.249.83 137.30.123.40 TCP 51942 > ssh [SYN]

166837 2009-03-11 11:52:24.118586 137.30.123.40 128.220.249.83 TCP ssh > 51942 [SYN, ACK]

Looking at the above TCP/IP conversations that are present in both captures, the time skew
between the captures was determined to be around 26 seconds. Both captures started and ended
with one second difference.

3.9.2 MAC and IP addresses

The IP and MAC addresses that the two Playstations used during when Linux was booted, were
determined by using the /var/log/syslog file. The file /var/log/daemon.log was used to

30

find the DHCP settings and the /etc/network/interfaces for the static configuration of the
network devices. The host names can be found in the file /etc/hostsname. Table 16 gives an
overview of the settings.

Image hostname MAC IP

nssal-linux-side-fs.dd nssal-ps3 00:1f:a7:b2:1a:de 137.30.123.176 (Mar 5)

137.30.123.40 (Mar 11)

jhuisi-linux-side-fs.dd ps3 00:1f:a7:5f:34:a0 128.220.249.83

Table 16: Host name, MAC- and IP-address of the Playstation 3 systems when Linux was booted.

3.9.3 Playstation and PSP Traffic

Network traffic generated by either Playstation 3 (PS3) or Playstation Portable (PSP) operating
system were found in all three network captures.

All network traffic in the capture nssal-capture-1.pcap of March 5th (Table 15) was gener-
ated by two IP addresses: 137.30.123.78 and 137.30.123.170. The IP address 137.30.123.78 is the
suspect’s Playstation 3 running the Playstation OS. Log files on nssal-linux-side-fs.dd show
that the combination of the MAC address 00:1f:a7:b2:1a:de and the IP address 137.30.123.78
was not used when Linux was booted, as seen in Table 16. This implicates the suspect’s
Playstation was running the Playstation OS with IP address 137.30.123.78. The presence of
User-Agent: Mozilla/5.0 (PLAYSTATION 3; 1.00) in the HTTP(S) traffic can confirm this.
The IP addresses that the suspect’s system connects to are all related to Playstation websites,
a Playstation 3 update site or websites related to Madri Gras. The Mardi Gras related traffic is
specified in section 3.9.5). Most of the Playstation websites visited are Playstation Home related,
detailed in section 3.9.4. The IP address 137.30.123.170 connects to either Playstation websites
or the Playstation Portable update site. Connection to the Playstation Portable update site is
unique for PSP generated traffic and therefore it is believed the device with IP 137.30.123.170 is
a PSP.

The network traffic on the 11th of March of both Playstation systems contain Playstation
Home traffic (see section 3.9.4), SSH traffic (see section 3.9.6) and backdoor traffic (see section
3.9.8). The Playstation Home traffic occurred the first 25 minutes when both the NSSAL and
JHUISI system where running the Playstaton OS. Around 11:30 both systems stopped generat-
ing Playstation Home traffic and booted into Linux from where SSH and backdoor traffic was
generated. Apart from SSH traffic between the NSSAL system and the JHUISI system, a third
system (IP: 128.220.251.228) connected to the JHUISI system using SSH, see section 3.9.6.

3.9.4 Playstation home

PlayStation Home is a 3D social gaming community that allows Playstation 3 users to meet,
chat, plan, and launch into games together. The Playstation home environment is accessible on
any playstation 3 under the Playstation network menu. Playstation Home is not available for
the Playstation Portable [5]. Logging in on Playstation home and capturing and examining the
network traffic, shows that the captured traffic that is found in all three network captures and
that both the suspect and the person on the JHUISI Playstation have used Playstation Home.

Capturing Playstation Home log-in session, shows that the account that is used to log-in
appears several times in the format ’AcctName=<account name>’. The used account names
were found by searching all packet bytes in all captures for the string ’AcctName=’. The
nssal-capture-1 and nssal-capture-2 contain login traces of the user ’nssal’, the jhuisi-capture-1
holds traces of the account ’jhuisi’.

Walking around in the virtual Playstation Home world, shows that it is possible to load
profiles of other users that are near by your character. The profile contains information such as

31

the avatar, spoken languages, ’about me’ information and trophies. The network traffic shows
that a XML file is downloaded from the Playstation server when a profile is viewed. It is also
possible to view your own profile in this case a XML file is downloaded in the same format.

Table 17 lists the account names to log-in and the profiles that were viewed in each capture.

Capture Viewed profiles Used account name
nssal-capture-1 jhuisi nssal

narutowy79
nssal-capture-2 narutowy79 nssal

jhuisi
nssal

jhuisi-capture-1 jhuisi jhuisi

Table 17: Playstation Home viewed profiles

No other interesting information besides the username was found in the profiles. Pro-
file information of user ’narutowy79’ was found several times in nssal-capture-1.pcap and
nssal-capture-2.pcap. Searching for ’narutowy79’ on all evidence images returned no results.

Playstation Home chat traffic could not be recovered as it is not send in human readable
format.

3.9.5 Mardigrass related traffic

Capture nssal-capture-1.pcap created on March 5th contains traffic related to the Mardi Gras
websites. Websites like ’www.holidays.net/mardigras’, ’mardigras.makeparties.com’, ’www.huffingtonpost.com’
and ’www.newsday.com’ where visited. These sites served content related to Mardi Gras and
pictures of the resent Mardi Gras festivities of 24 February 2009. All sites are publicly available.
No traces were found that interaction with between the suspect and other people took place
through these websites.

3.9.6 SSH network traffic

Wireshark was used to view SSH traffic between end points (called conversations in Wireshark)
and summarize the packets sent in each direction. No SSH network traces were found in the
nssal-capture-1.pcap capture. Table 18 shows SSH traffic in nssal-capture-2.pcap capture
and Table 19 the SSH traffic in jhuisi-capture-1.pcap. The first remark in the ’remarks’ field
holds the SSH user which has been used to initiate the session. The user was determined by
using the logs on the file system images. The remark ’possible SCP’ is present if an SSH session
was successful and lasted shortly.

32

nr. Remarks Start Time End Time Src IP:Port Dst IP:22 Bytes A− >B Bytes A< −B

1 Failed goatboy 2009-03-11 11:42:15 11:44:26 137.30.123.40:35892 128.220.249.83 3019 3323

2 SSH goatboy 2009-03-11 11:44:29 12:14:15 137.30.123.40:35893 128.220.249.83 178011 137353

3 SFTP goatboy 2009-03-11 11:49:02 11:50:09 137.30.123.40:34612 128.220.249.83 8831 11801

4 SSH jhuisi 2009-03-11 11:49:37 12:09:45 128.220.249.83:51874 137.30.123.40 72037 119641

5 - SSH juisi 2009-03-11 11:51:57 11:52:04 128.220.249.83:51942 137.30.123.40 109937 4167015

- Possible SCP
- Only session that
fits all MG pics.

6 SSH jhuisi 2009-03-11 11:56:06 11:56:09 128.220.249.83:51075 137.30.123.40 22685 4623

Possible SCP

7 SSH nssal 2009-03-11 12:02:23 12:11:00 128.220.249.83:51109 137.30.123.40 24495 23281

Table 18: SSH sessions within the nssal-capture-2.pcap (no skew correction).

nr. Remarks Start Time End Time Src IP:Port Dst IP:22 Bytes A− >B Bytes A< −B

1 Not between N and J 2009-03-11 11:31:43 11:32:04 128.220.251.228:9465 128.220.249.83 6935 4227

2 Not between N and J 2009-03-11 11:32:18 11:33:08 128.220.251.228:9477 128.220.249.83 8085 8599

3 Failed goatboy 2009-03-11 11:42:42 11:44:53 137.30.123.40:35892 128.220.249.83 2953 3257

4 SSH goatboy 2009-03-11 11:44:56 12:14:42 137.30.123.40:35893 128.220.249.83 178011 134669

5 Not between N and J 2009-03-11 11:45:09 11:45:42 128.220.251.228:10250 128.220.249.83 4965 5353

6 SFTP goatboy 2009-03-11 11:49:28 11:50:36 137.30.123.40:34612 128.220.249.83 8831 11801

7 SSH jhuisi 2009-03-11 11:50:04 12:10:11 128.220.249.83:51874 137.30.123.40 66189 119641

8 - SSH jhuisi 2009-03-11 11:52:24 11:52:30 128.220.249.83:51942 137.30.123.40 109481 4165581

- Possible SCP
- Only session that
fits all MG pics.

9 SSH jhuisi 2009-03-11 11:56:32 11:56:35 128.220.249.83:51075 137.30.123.40 22685 4632

Possible SCP

10 SSH nssal 2009-03-11 12:02:49 12:11:27 128.220.249.83:51109 137.30.123.40 23109 23281

Table 19: SSH sessions within the jhuisi-capture-1.pcap (no skew correction).

33

The rows with the yellow backgrounds in the above Tables are interesting. This session only
lasted a few seconds and many bytes were sent which characterizes a SCP session. A total of
approximately 3,97 MB (4167015 bytes) were sent from one direction to the other. The total size
of all Mardi Gras pictures that were encountered on the file systems is 3,8 MB, see section 3.4.
To test how many bytes are actually transmitted, Mardi Gras pictures were copied with SCP
from one computer to another. Three tests showed that approximately 3,95 MB are transmitted.
Therefore, this session could be a SCP session in which all the Mardi Gras pictures were copied.
Looking at the total transmitted bytes of the other sessions, the yellow session is the only one
that could have fitted all the Mardi Gras pictures.

To check if deciphering the SSH sessions was possible, the host keys used for the SSH ses-
sions were tested using the Linux utility ssh-vulnkey21 without result. Running the utilities
AESKeyFinder and RSAKeyFinder found on the website22 of the writers of the paper Lest we
remember: cold-boot attacks on encryption keys[3] on the nssal-physicalmem.dd did not recover
any AES or RSA keys.

3.9.7 known hosts files

In nssal-linux-side-fs.dd the /root/.ssh/known hosts and /home/nssal/.ssh/known hosts
are available. In the jhuisi-linux-side-fs.dd the file /home/jhuisi/.ssh/known hosts was
found, no other traces of files named known hosts were found. An overview of the time stamps
of the know hosts files and the hosts keys they contain is given in Table 20.

Image location Access* Modify* Change* Has Key of host

nssal-linux-side-fs.dd /root 11:44:32 11:42:21 11:42:21 JHUISI

nssal-linux-side-fs.dd /home/nssal 11:49:18 11:49:18 11:49:18 JHUISI

jhuisi-linux-side-fs.dd /home/jhuisi 11:51:57 11:49:40 11:49:40 NSSAL

* The date is 2009-03-11

Table 20: Time stamps of and host keys in .ssh/known hosts

3.9.8 backdoor traffic

As mentioned in section 3.6, a file backd00r.c was found on the jhuisi-linuxside-fs.dd
image. This file contains the code:

define PORT 45541

This is the TCP/IP Port used by the backd00r program to allow access from a remote
location. Both the nssal-capture-2.pcap shown in Table 21 and jhuisi-capture-1.pcap
in Table 22, show TCP/IP traffic to this port on the suspect’s Playstation initiated from the
JHUISI Playstation.

Start Time End Src IP:Port Dst IP:Port Pkts/Bytes

2009-03-11 12:09:59 12:16:13 128.220.249.83:56151 137.30.123.40:45541 102/9015

Table 21: backd00r sesions within the nssal-capture-2.cap (no skew correction).

21The ssh-vulkey utility tests the hosts keys against a blacklist of keys known to be compromised and includes
the host keys created by openssh with the predictable random number generator bug: http://lists.debian.

org/debian-security-announce/2008/msg00152.html.
22http://citp.princeton.edu/memory/code/

34

http://lists.debian.org/debian-security-announce/2008/msg00152.html
http://lists.debian.org/debian-security-announce/2008/msg00152.html
http://citp.princeton.edu/memory/code/

Start Time End Src IP:Port Dst IP:Port Pkts/Bytes

2009-03-11 12:10:26 12:16:40 128.220.249.83:56151 137.30.123.40:45541 101/8941

Table 22: backd00r sesions within the jhuisi-capture-1.cap (no skew correction).

The backd00r traffic is ”telnet”-like and can therefore be inspected using the ”follow TCP
stream” option in the Wireshark network inspection tool. The output below shows some com-
mands of the backdoor session. The complete output of the commands given in the ’[backd00r]’
prompt is omitted in this overview to avoid lengthy output.
jhuisi

Backdoor by darkXside

Enter the second password.
mac

Password accepted!
[backdoor]# ls
[backdoor]# ls
[backdoor]# rm backd00r
[backdoor]# ls
[backdoor]# cd ..
[backdoor]# cd nssal
[backdoor]# ls
[backdoor]# who
[backdoor]# ls
[backdoor]# cd Recipes
[backdoor]# ls
[backdoor]# ls Videos
[backdoor]# ls screenshots
[backdoor]# ls Images
[backdoor]# fdisk -l
[backdoor]# ls -l /media
[backdoor]# ls -l /mnt
[backdoor]# ls -l /mnt/usb
[backdoor]#

3.10 Application history

Application history is usually stored in the home directory of a user. Application history was
searched for by looking in the home directories of all accounts and starting applications on the
Playstation (with the Linux images restored on a hard disk). On the nssal-linux-side-fs.dd
image two browsers were used by the ’nssal’ account: Mozilla Firefox and Opera. The jhuisi-linux-side-fs.dd
image only show traces of Firefox by the ’jhuisi’ account. No traces were found for any other
applications.

3.10.1 Firefox

Firefox stores its settings in /home/-user-/.mozilla/firefox/. FoxAnalysis23 was used to
extract Firefox’s Website History, Bookmarks, Cookies, Downloads and Form History from
the SQLite files. The cache was examined with MozillaCacheView24. Firefox traces on the
nssal-linux-side-fs.dd image indicate that Opera was downloaded and that the suspect vis-
ited websites with regards to 64 bit compiling, the Cell processor, PowerPC architecture and
Linux on PS3. Besides this, the Form history shows three e-mail addresses: rcmartel@uno.edu,
rmartell@cs.uno.edu and fluidity@mail.com. Beside the Firefox history on the nssal-linux-side-fs.dd
image, none of these e-mail addresses were found on the images. The browser was used on Decem-
ber 4th 2008, February 27th 2009 and March 10th 2009. The jhuisi-linux-side-fs.dd image
contains very few Firefox traces of January 22nd 2009, it shows Adobe Flash was downloaded
and CNN was visited.

23FoxAnalysis is available from: http://forensic-software.co.uk/foxanalysis.aspx
24MozillaCacheView is available from: http://www.nirsoft.net/utils/mozilla_cache_viewer.html

35

http://forensic-software.co.uk/foxanalysis.aspx
http://www.nirsoft.net/utils/mozilla_cache_viewer.html

When the private data in Firefox is cleared, the SQLite files are not removed but the records
in the database are overwritten with zeros [4]. Therefore it is not possible to recover complete
Firefox SQLite history files from the unallocated space. However, it is possible to recover history
from the unallocated space as for each browsing session a temporary places.sqlite-journal
file is created which is removed when the browser is closed. This journal files contains visited
URL’s, website titles and bookmarks. However, the problem is that these files are hard to recover
as they do not have a header or footer. By using the file system’s journal it was possible to recover
a places.sqlite-journal file on the nssal-linux-side-fs.dd. No places.sqlite-journal
files could be recovered on the jhuisi-linux-side-fs.dd image. Furthermore, by comparing
several places.sqlite-journal files we noticed that most of the stored URL’s in the file are
preceded by 0x01 and can be recovered by searching for ’ http://’. Searching for this pattern will
trigger some false positives, for example in the /usr/bin/whois. However, hits can be easily dis-
tinguished from relevant hits. URL’s are grouped together, see Figure 12 for an example of some
hits in WinHex in the jhuisi-linux-side-fs.dd. Furthermore, as places.sqlite-journal
stores URL’s of bookmarks it could be more effective to search for an unique bookmark that has
been recovered with for example with FoxAnalysis. Unfortunately, no interesting URL’s were
extracted from the recovered places.sqlite-journal files.

Figure 12: Example of places.sqlite-journal entries

3.10.2 Opera

Opera makes use of the directory /home/<user>/.opera/ to store its settings, cache and history.
Opera itself is a good tool for examining its own traces. In order to examine the Opera history
on the nssal-linux-side-fs.dd image, the .opera directory was copied from the image to an
Ubuntu machine. Under the tools button in Opera it is possible to retrieve a wide variety of
information: mail and chat accounts, notes, transfers, history, links, passwords, cookies, cache.
Figure 13 illustrates the tools menu and the cached items viewer tool. The Opera history shows
activity on 4th of December 2008, 21st of January, 26th of February, 5th, 6th and 9th of March
2009. All Opera history on the nssal-linux-side-fs.dd image is related to memory and kernel
development.

Searching for a hexadecimal pattern ’0x0a2d310a’, which is found in the Opera history file
global.dat to separate history entries, does not reveal any deleted browser history.

36

Figure 13: Examaning the browser history with Opera.

3.11 Putting the gathered information together

The results of the investigation using the described methodology are presented in a time line
added to this document as Appendix A. This graphical overview shows communications between
the various systems. Each system has its own time line represented by a black vertical line.
Events and communications between systems are both placed in the system time lines. The
colors of the items, group the various items together, the meaning of the colors are indicated by
the legend. The change, modification and access time of the drug recipes, the illicit images and
the backdoor software are included. The conclusions of this investigation are made using the
overview.

37

4 Conclusion

4.1 Relevant user activity

The relevant user activity is shown in appendix A containing a detailed time line of the user
activity on both Linux images. This timeline shows data was exchanged between the two systems
using the encrypted protocol SSH and time stamps of important events and relevant files. The
bash history of the ’nssal’ account on the suspect’s Playstation was recovered. Besides this,
terminal commands and output was recovered from physical memory of the suspects Playstation.
The recovered bash history, the browser history and the log files show that the suspect was
actively working/testing kernel/memory settings. Traces on the nssal-thumb-fs.dd appear
to be shredded. Traces of backdoor software have been recovered from the Playstation of the
suspect and log files show the system was compromised by using this software. The source
code of the backdoor software and the compiled program was found on the JHUISI Playstation
and network captures show that the backdoor was used on the JHUISI Playstation to gain
access to the suspect’s Playstation. Mardi Gras pictures and drug recipes were found on both
the nssal-linux-side-fs.dd and jhuisi-linux-side-fs.dd image. The drug recipes and
Mardi Gras pictures are equal on both images. On the jhuisi-linux-side-fs.dd image the
directory with drug recipes also contains a sub directory ’customers’ with a file that holds names
and addresses. The network captures indicate that the suspect and the user of the JHUISI
Playstation have met in the virtual Playstation Home environment.

4.2 Drug recipes

The drugs recipes on the nssal-linux-side-fs.dd image have an accessed and a modify time
stamp between 11:49:40 and 11:50:05 on 2009-03-11, this is presumably the time when the files
were created. Log files on the jhuisi-linux-side-fs.dd image shows that a SFTP session (ses-
sion 3208) was created for the user ’goatboy’ on 11:49:25 initiated from the nssal-linux-side-fs.dd
and was closed on 11:50:09. The drug recipes were presumably copied from the JHUISI Playsta-
tion to the suspect’s Playstation during this SFTP session, see Appendix A.

4.3 Mardi Gras pictures

The Mardi Gras pictures on the jhuisi-linux-side-fs.dd image were created between 11:52:00
and 11:52:04 on 2009-03-11. Log files on the nssal-linux-side-fs.dd image show that a SSH
session (session 3266) was created for the user ’jhuisi’ on 11:52:00 from the JHUISI Playstation
and was closed on 11:52:06. Given the brief connection time of six seconds and the creation time
of the Mardi Gras pictures during the connection, the images were presumably copied with SCP
from the suspect’s Playstation, see Appendix A.

The log files on the jhuisi-linux-side-fs.dd image show that the user ’goatboy’ was
logged in from the suspect’s Playstation on the JHUISI Playstation through SSH (session 5237)
between 11:45:22 and 12:14:16 on 2009-03-11. During this time frame the presumable transfer of
the Mardi Gras pictures and drug recipes took place between the suspect’s Playstation and the
JHUISI Playstation, see Appendix A. During an SSH session it is possible to connect back to your
own machine. Given the fact that it is possible to connect back to your own computer while one
is remotely logged-in with SSH, both the suspect and the person on the JHUISI Playstation could
have been responsible for transfer of the Mardi Gras pictures as these events took place while
the user ’goatboy’ was logged in from the suspect’s Playstation. However, no traces have been
found that the suspect connected back from the JHUISI Playstation to his/her own Playstation.
This kind of activity leaves traces in the bash history of the ’goatboy’ account on the JHUISI
Playstation. No traces or indications have been found that the bash history of the ’goatboy’
account was altered. Furthermore, the SSH activity leaves traces in the physical memory of the
suspect’s Playstation. Besides this, no known hosts file is stored for the ’goatboy’ account and

38

no deletion traces of this known hosts file were found which indicates that no SSH sessions have
been initiated from the ’goatboy’ account. Therefore, it is plausible that SSH connection with
user ’goatboy’ from the suspect’s Playstation to the JHUISI Playstation was not used to connect
back to his/her own Playstation, and that the suspect has therefore not initiated the transfer of
the Mardi Gras pictures. However, no traces have been found on the jhuisi-linux-side-fs.dd
image showing that a user from the JHUISI Playstation was responsible for the transfer of the
Mardi Gras Pictures.

4.4 Backdoor

The recovered backdoor software on the nssal-linux-side-fs.dd image shows that the software
appeared on the suspect’s machine on 11:56:11 2009-03-11. Log entries on nssal-linux-side-fs.dd
image show that an SSH session (session 3326) was created for the user ’jhuisi’ on 11:56:09 initi-
ated from the JHUISI Playstation and was closed on 11:56:11. Given the brief connection time
of two seconds, the small size of the backdoor software and the creation time of the recovered
backdoor and the source/compiled backdoor software on the JHUISI Playstation, the backdoor
software was presumably transferred with SCP from the JHUISI Playstation. Log entries on
nssal-linux-side-fs.dd shows that user ’jhuisi’ was logged in with SSH (session 3208) from
the JHUISI Playstation on 11:49:45 until 12:09:47 and presumably executed the backdoor with-
out administrator privileges on 12:01:35. Log entries show that after the attempt of the user
’jhuisi’ to execute the backdoor with administrator privileges, an SSH session for the user ’nssal’
is created (session 3369) on 12:02:30 initiated from the JHUISI playstation and closed on 12:11:03.
During this SSH session the user ’nssal’ successfully executed the backdoor with administrator
privileges, see Appendix A. It is possible that the suspect staged these events as he was logged
in with user ’goatboy’ on the JHUISI Playstation during the activity. However, as previously
described, no traces have been found that this SSH connection was used to connect back to the
suspect’s Playstation. Besides this, the password of the user ’nssal’ is ’nssal’, therefore the user
on the JHUISI account could have easily guessed the password, remotely logged in and executed
the backdoor with administrator privileges. Furthermore, all backdoor events took place after
the possible transfer of the drug recipes and the Mardi Gras pictures and are therefore likely not
relevant for those activities.

4.5 Relation between suspect and JHUISI Playstation

It is not clear what the relationship between the suspect and the JHUISI Playstation is. Perhaps
the ’goatboy’ account on the JHUISI Playstation is used to exchange drug recipes. A customer
directory with names and addresses was present and as described a SFTP session was presumably
used to transfer the recipes from the JHUISI Playstation to the suspect’s Playstation. It is not
clear why the account ’jhuisi’ was created on the suspect’s Playstation, why a SSH session
was created with user ’jhuisi’ on 11:49:45 (session 3208) from the JHUISI Playstation to the
Playstation of the suspect and if this session was authorized by the suspect. Log files on the
jhuisi-linux-side-fs.dd show more short SSH activity that was initiated from the IP address
’128.220.251.228’ and ’70.22.16.52’ of which the purpose is unclear, see Appendix A.

39

5 Remarks

Throughout this report time is an essential part of the forensic investigation. In every forensic
investigation time plays an important role. Therefore it would have been helpful if the inves-
tigators were more time accurate and for example registered how many seconds the clocks on
the Playstations were out of sync with a trusted time source and at what time the file system
images, the thumb drive image and memory dump were created.

Due to the limited amount of memory of a Playstation (256 MB) the installed Linux OS
makes extensive use of the swap space. To aid the investigation it is recommended to include
the swap space when creating a forensic duplicate: use /dev/ps3da instead of /dev/ps3da1.
/dev/ps3da includes all partitions whereas /dev/ps3da1 is only a single partition.

The administrator at the John Hopkins University was not able to create a memory dump.
By providing a memory dump tool to the administrator and/or instructing him/her, valuable
information could have been acquired.

Investigators should try to acquire as much information as possible, also non-technical infor-
mation. Subsequently, all of this information should be provided to the digital forensic inves-
tigators as it can be very useful. For example, perhaps the administrator at the John Hopkins
University was able to provide information such as who had physical access to the Playstation.

6 Further research

As described in section 3.3.2 determining mount options used to mount a file system can aid
digital forensic research. Further investigation and the acquisition of more data is needed to be
able to get founded and final conclusions. Especially the difference between a ”cleanly” installed
reference system and systems running for longer times of an OS version needs attention. Another
method could be to find the part of the file system where access is frequent and check there for
time stamp trends. The conclusions could result in a set of values typical for the different mount
option and allow forensic tools to be able to determine where to watch out for when a ext3 file
system or any other UNIX file system is examined.

7 Acknowledgments

We would like to thank the employees of the Open Systems group in the department of Digital
Technology and Biometrics of the Netherlands Forensic Institute for their support. A special
thanks to Ruud van Baar and Feico Dillema for their constructive comments and suggestions.

40

8 Bibliography

References

[1] Brian Carrier. File System Forensic Analysis. Addison-Wesley Professional, 2005.

[2] Brian Carrier. Why recovering a deleted ext3 file is difficult..., 2005. http://linux.sys-con.
com/node/117909?page=0,1.

[3] Alex J. Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest we
remember: cold-boot attacks on encryption keys. Commun. ACM, 52(5):91–98, 2009.

[4] M.T. Pereira. Forensic analysis of the Firefox 3 Internet history and recovery of deleted
SQLite records. Digital Investigation, 5(3-4):93–103, 2009.

[5] Playstation.com. Playstation network - home, July 2009. http://www.us.playstation.
com/PSN/Home#fbid:JEJaSHcxgXT.

[6] Wikipedia.org. Secure copy, July 2009. http://en.wikipedia.org/wiki/Secure_copy.

[7] Wikipedia.org. Ssh file transfer protocol, July 2009. http://en.wikipedia.org/wiki/SSH_
File_Transfer_Protocol.

[8] Carlo Wood. Howto recover deleted files on an ext3 file system, 2008. http://www.xs4all.
nl/~carlo17/howto/undelete_ext3.html.

41

http://linux.sys-con.com/node/117909?page=0,1
http://linux.sys-con.com/node/117909?page=0,1
http://www.us.playstation.com/PSN/Home#fbid:JEJaSHcxgXT
http://www.us.playstation.com/PSN/Home#fbid:JEJaSHcxgXT
http://en.wikipedia.org/wiki/Secure_copy
http://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
http://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
http://www.xs4all.nl/~carlo17/howto/undelete_ext3.html
http://www.xs4all.nl/~carlo17/howto/undelete_ext3.html

9 Appendix A - Overview

Click on the image to magnify.

NSSAL
(137.30.123.40 – mobile24.cs.uno.edu)

JHUISI
(128.220.249.83)

11:52:00 - 04 MG
pictures M + C

128.220.251.228

 goatboy-SSH

X 11:45:15 - 20 [5241]

11:52:02 - 06 [3266] X

 jhuisi-SSH

X11:56:09 - 11 [3326]

 nssal-SSH
12:02:30 [3369]

X12:11:03 [3369] X 12:14:16 [5237]

X12:09:47 [3208]

 jhuisi-SSH
11:49:45 [3208]

(pos recipes) goatboy-SFTP 11:49:25 [5382]

 goatboy-SSH

11:45:22 [5237]

Events
March 2009

70.22.16.52
(pool-70-22-16-52.balt.east.

verizon.net)

 jhuisi-SSH (pos MG)

X 11:50:09 C Kit

 jhuisi-SSH (pos backd00r)

14:49:50 [6185]

 jhuisi-SSH
14:55:05 [6235] X

 jhuisi-SSH X14:56:55 [6276]
 jhuisi-SSH

14:57:42 – 14:58:19 [6319] X
 jhuisi-SSH

X15:00:36 – 15:01:19 [6373]

 jhuisi-SSH
15:20:52 [8020]

X16:05:16 [6185]

+2 H

 jhuisi-SSH 16:10:15 [8088]

22 min

9 min

16 min

end

11:49:40 jhuisi
K host mod NSSAL

nssal K host mod JHUiSI- 11:49:18

root K host mod JHUISI - 11:42:21 goatboy-SSH

 goatboy-SSH
11:44:43 [5237]

11:42:34 [5232]

 goatboy -SSH
11:45:00 [5237]

 jhuisi-SSH

11:31:36 [4932] X goatboy-SSH
X11:32:25 [4972]

jhuisi : user NOT in sudoers ;
PWD=/home/jhuisi ;

COMMAND=nssal ./backd00r 12:01:35

11:58:57
jhuisi : PWD=/home/jhuisi ;
COMMAND=/home/jhuisi/
a.out

12:08:35
nssal : TTY=pts/3 ; PWD=/
home/jhuisi ; USER=root ;

COMMAND=./backd00r

 goatboy-SSH
09:13:04 [5165]

 goatboy-SSH

X

09:13:14 [5165]

09:15:00 [5165]

 goatboy-SSH

09:16:59 [5324] X

15:19:55
SanDIsk 512 MB

uuid_14D0_6139 mount 15:21:31 MG images A + C

15:48:51 umount X

MG images M - 08:34:50

March 11th

March 6th

March 2nd

09:46:50 memdumps..?!?

Recipes C - 09:15:55

March 5th

goatboy Recipes M - 14:46:40 - 15:05:15

09:16:10
goatboy Recipes/customers C

+1 file M

Recipes/customers M - 08:15:27

1 recipe A

11:49:40 – 50:05
Recipes A + M

11:52:52 – 53:29
Recipices C

+7 H

11:50:05 Recipe A

11:51:13 Recipe A

11:45:42 Recipe A

Kernel development No log records found.

M time match .bash_hist jhuisi

11:56:11 backd00r M

Backd00r A

nssal .bash_hist delete 16:03:44

jhuisi created 11:34:43

No log records found.

March 8th

MG images A - 17:59:14 SSH bruteforce
attempts on NSSAL

USB MG images M + A – (14:24)

USB MG images C + M – (21:37)

Kernel development

March 10th

March 9th

March 7th

+5.5 H

M + C time match .bash_hist goatboy

memdump 19:52:26

memdump 19:19:59

PCAP 1 - 14:18:52

14:42:53

PCAP 2 – 11:01:16

11:12:16:13 11:12:16:40

PCAP 1 – 11:01:44

Network traffic captured

SSH failed

Short SSH session

MG pictures

Drug recipes

11:52:18 MG pictures A

Backd00r deleted 12:36:15

29 min

42

	Introduction
	Challenge details
	Overview of the available challenge data
	Challenge participation

	Methodology
	Tools and applications
	Time zones
	Linux time stamps
	SSH login traces in files
	auth.log
	ConsoleKit
	wtmp
	known_hosts files

	Booting the linux-images on a Playstation 3

	Investigation
	Accounts
	Recovery of deleted files
	The recovery

	Time stamps and mount options
	Checking mount options
	Experimentally determining mount options

	Mardi Gras pictures
	location and description
	Related traces

	Drug recipes
	Location and description
	Related traces

	Backdoor
	Location and description
	Related traces

	Thumb drive
	Network traffic
	Network time stamps
	MAC and IP addresses
	Playstation and PSP Traffic
	Playstation home
	Mardigrass related traffic
	SSH network traffic
	known_hosts files
	backdoor traffic

	Application history
	Firefox
	Opera

	Putting the gathered information together

	Conclusion
	Relevant user activity
	Drug recipes
	Mardi Gras pictures
	Backdoor
	Relation between suspect and JHUISI Playstation

	Remarks
	Further research
	Acknowledgments
	Bibliography
	Appendix A - Overview

