
Performance metrics and benchmarking

of an OpenSolaris
TM

NFS fileserver

SNE MSc Research Project

A. van Hoof (alain.vanhoof@os3.nl)

February 2010

Abstract

When benchmarking an OpenSolarisTM NFS fileserver with benchmark software running
on the NFS client(s) a number of layers of the Operating System on the client and server
are traversed. It is useful to follow the data in the various layers, for example to find
performance bottle-necks. The Dtrace tool of OpenSolarisTM allows for a nonintrusive way
to observe read and write to the different layers of the OpenSolarisTM operating system.
This document not only describes a method to benchmark a NFS fileserver using standard
benchmark tools it also describes a method to monitor the behavior of the NFS fileserver.

Preface

This report was created as part of a four week research project done as part of the System-
and Network-engineering master at the University of Amsterdam1. The research was done at
the UvA-IC T.S. (Universiteit van Amsterdam Informatiserings Centrum, Technical Support)
location at Science Park Amsterdam. I would like to thank the department T.S. for providing
resources and time for this research project. A special thanks to Jeroen Roodhardt and Auke
Folkerts whose guidance and explanations gave me the insights needed to do this project.

1 Introduction

To facilitate storage for students and employees of the UvA, a combination of NFS and CIFS
is used. The SUNTM storage server uses the OpenSolarisTM operating system, the clients are
Linux Desktops. In this setup, performance issues have been identified. To identify/observe
these performance bottlenecks various tools and methods are used. Identification of the issues
can be done by observing current behavior and compare it to normal behavior.

Normal behavior can be defined using load simulations in a test environment and creating
a base-line of ”normal system behavior”. Generating a correct base-line creates the need for a
representative workload for the load simulations.

Research Question

This led to the following research question used for the research in this report:

How can the performance bottlenecks be monitored and identified on an OpenSolarisTM

OS NFS fileserver. What are realistic load simulations and create a base-line.
1http://www.os3.nl

1

2 NFS Fileserver Performance

To be able to determine performance, benchmarking is done to find performance values[4].
These values can be compared to other related performance tests, to determine if there are any
performance issues. Repetition of the benchmark while changing settings on the benchmarked
system can be used to improve performance. But what settings should be changed and when
there is no performance change, why not? These questions most of the time can not be answered
by just looking at the benchmark values. Inspection of the benchmarked system itself is needed
to find bottle-necks or other constrains. It is therefore very interesting to examine/inspect the
various layers in the system when the benchmarks are performed. This without influencing the
outcome of the benchmark. The goal of the benchmarking tests performed in this research is
to create a baseline of performance indicators for normal behavior of the benchmarked system
and to get benchmark values.

But what is normal behavior/operation? When a fileserver is not serving any files or when
it is serving files at its maximum rate, both are normal operation if the server is responding and
performing as expected. This expected behavior is a baseline for the performance indicators.
Generating various fileserver loads using micro and macro benchmarks as defined in section 3
and observing and logging the performance indicators will create a baseline. The I/O events in
the NFS fileserver are linked and therefore the performance indicators will show a correlation
that is unique for the baseline.

2.1 The OpenSolarisTM NFS fileserver and ZFS

The OpenSolarisTM operating system uses the ZFS2,3 filesystem. ZFS includes, among a lot of
other features, a volume manager. The NFS fileserver hardware (Appendix A) includes 48 hard
disks which are managed by ZFS. ZFS includes a ZIL4 which is used during synchronous writes
operations and an ARC5 acting as a read cache. The ZIL can be placed on a fast separate
device, an SSD device for example, to improve performance. Because the NFS data writes are
synchronous as described in section 2.2 NFS data writes always passes the ZIL. The ARC places
its cache in memory of the server and can be extended (level2 ARC) with a fast separate device.
Every read on the ZFS filesystem passes the ARC.

2.2 OpenSolarisTM NFS fileserver and Linux NFS Clients

A Linux NFS client and an NFS fileserver using the ZFS filesystem have a number of layers
within the OpenSolarisTM Kernel and uses a user-space process to serve I/O on both the server
and the NFS client. These layers are visualized in figure 1. A NFS client process sends data
to be written to the NFS daemon running on the server via TCP/IP. The NFS daemon on the
server send the data to the virtual file system (VFS) layer. The VFS layer passes the data to
the ZFS layer where it is written to the physical devices.

In general the communication between the Linux clients and NFS fileserver is synchronous.
This is known to lead to performance issues, but currently this can not be changed in the UvA-
IC setup. The synchronous settings makes the client wait for every write operation to finish
on the server before continuing. The benchmark software is running on a Linux NFS clients
and a load on the NFS fileserver is generated by other the Linux NFS clients. This way the
performance is measured as experienced by ”real-live” users of the NFS fileserver. But when

2Zettabyte File System
3http://www.sun.com/software/solaris/zfs.jsp
4ZFS intent log
5Adaptive Read Cache

2

Server OpenSolaris

Client Linux

Physical Devices

ZFS FileSystem

NFS Server

TCP/IP

TCP/IP

NFS Client

ZIL L2ARC

VFS Layer

Figure 1: The stack of layers within the Server and Client used by NFS for file I/O

the performance at the clients is not as expected, the NFS fileserver needs further investigation.
This investigation can be done using tools available in the OS of the server. Figure 2 relates

Server OpenSolaris

Client Linux

Physical Devices

ZFS FileSystem

NFS Server

TCP/IP

TCP/IP

NFS Client

ZIL L2ARC

VFS Layer

nfsstat -c

netstat

tcpdump/wireshark

netstat

nfsstat -s

zilstat
arcstat

zpool iostat

iostat

Dtrace Probes

mib:ip:ip_

nfsv3:nfssrv:rfs3_

fbt:zfs:arc_
fbt:zfs:zil_lwb_write

io:genunix::start

fsstatfsinfo:genunix:fop_

Figure 2: On the right, The software tools to inspect the layers, left the Dtrace probes

these tools to the various layers of the server and the client These tools provide current states
and many parameters of the layers. Inspecting all these tools and parameters can be a tedious
task. The Dtrace toolkit can be of help to observe all layers and specific parameters on the
NFS fileserver.

3

2.3 The Dtrace toolkit

OpenSolarisTM and SolarisTM kernels and core processes can be probed non intrusively using
the Dtrace Toolkit [3] [2]. There are over 84000 probes available (84545 in OpenSolarisTM

SVN 129), finding the right one can be difficult. With the use of ”Solaris(TM) Performance
and Tools: DTrace and MDB Techniques for Solaris 10 and OpenSolaris” by R. McDougall, J.
Mauro and B. Gregg [1] and input of the Netherlands OpenSolaris User Group (NLOSUG6)
probes of interest where identified. For the monitoring of the NFS fileserver 12 probes where
chosen each either probing read and/or write actions within the layers. Figure 2 shows the
Dtrace probes of interest. The read and write actions within the NFS fileserver and the chosen
Dtrace probes for the layers are shown in figure 2.3.

Physical Disk

ZFS FileSystem

NFSv3 Server

TCP/IP

ZILARC

VFS Layer

nfsv3:nfssrv:rfs3_read:op-read-start nfsv3:nfssrv:rfs3_write:op-write-start

mib:ip:ip_input:ipIfStatsHCInReceivesmib:ip:ip_xmit:ipIfStatsHCOutTransmits

fsinfo:genunix:fop_write:writefsinfo:genunix:fop_read:read

fbt:zfs:zfs_write:entryfbt:zfs:zfs_read:entry

fbt:zfs:arc_write:entry

fbt:zfs:arc_read:entry
fbt:zfs:zil_lwb_write_start:entry

io:genunix::start

WriteRead

Figure 3: Dtrace probes used in the layers of the OpenSolarisTM NFS file server

6http://hub.opensolaris.org/bin/view/User+Group+nlosug/

4

3 NFS Fileserver Benchmarking and load generation

To measure the performance of the NFS fileserver, benchmark tools are used. Three types of
benchmarks tools are summarized by Traeger e.a. [5] in the paper ”A nine year study of file
system and storage benchmarking”:

• Macro-benchmarks: The performance is tested against a particular workload that is meant
to represent some real-world workload.

• Trace-based benchmarks: A program replays operations which were recorded in a real
scenario, with the hope that it is representative of real-world workloads.

• Micro-benchmarks: A few (typically one or two) operations are tested to isolate their
specific overheads within the system.

Because the original issues leading to the research question are in the macro level, the ”user
experience”, emphasis in this paper will be on the macro-benchmark tool. No recordings of real-
live scenarios are available so trace-based benchmarks can not be done. A micro-benchmark will
be used to benchmark the system specifically for random read and random write performance.
This benchmark is of interest for the comparison with other setups and previous benchmarks
done by T.S. of UvA-IC.

These benchmark tools run on a NFS client, in order to benchmark the ”user experience”.
Benchmark tools generate load on the system where the benchmark is running. If the benchmark
is running on a NFS share mounted on the client, it will also generate a load on the NFS
fileserver. Therefore the macro-benchmark tool is not only used to benchmark the NFS client,
it is also used to generate a predefined load on the NFS fileserver.

The NFS fileserver will have a cache in normal daily operation and will not reboot very
often. The NFS fileserver tested was never rebooted during the experiments. The automation
tool made it possible to mount and unmount the NFS filesystem(s) between every run of the
benchmarks. Each bench mark was run at least 5 times and at most 30 times,

3.1 Auto-pilot

Auto-pilot [6] is a tool for the automation of tests as advised by the First Annual Storage and
File Systems Benchmarking Workshop [4] and ”A nine year study of file system and storage
benchmarking” [5]. Auto-pilot prevents errors due to command line typo’s when doing tests.
It can automatically calculate a confidence interval of the executed tests and decide how many
tests to run to reach a trustworthy value.

3.2 Filebench

A macro benchmark and micro benchmark made popular by SUNTMand used in many cases,
which makes comparison possible. Howerver, one has to be careful when comparing benchmarks,
even when the benchmark tool is the same. Filebench provides various workloads to run as the
benchmark test.

3.3 IOzone

A micro benchmark and like filebench widely used. UvA-IC T.S. already did performance test
using IOzone and is familiar with this benchmark. IOzone can be configured to do only specific
tests with specified file and record sizes.

5

4 Performance testing setup and method

TestClientVMware 01

LoadClient
01

NFS Server

Server Metrics
Log

LoadClient
02

auto-pilot

IOzone

VMware 02

LoadClient
03

LoadClient
04

filebench

Test Results

autopilot
filebench

autopilot
filebench

autopilot
filebench

autopilot
filebench

Figure 4: Test Setup

For the benchmarking and generation of the performance indicators the setup of Figure
4 is used. A more detailed description of the hardware and operating systems of the clients
and servers is available in Appendix A. The configuration and parameters used of auto-pilot,
filebench, IOzone and DTrace are described below.

4.1 Auto-pilot Setup

On each client (Load and Test) the source file auto-pilot-2.4.tar.gz was used to compile and
install auto-pilot 2.4 on the local disk of the client, using:

./configure prefix=/usr; make; make install

Three auto-pilot scripts were used to control the running of filebench and IOzone. One for
the load generation on the LoadClients using filebench, one for the performance test on the
TestClient using filebench and one for the performance test on the TestClient using IOzone.
Auto-pilot has a facility for running of more than one thread of the a test, this is used for
running more than one filebench load on the LoadClients.

Auto-pilot assumes that the results are normally distributed, and uses this fact to calculate
the appropriate number of runs. The benchmarks first run 5 times. If there is a probability of
95% that the captured mean of the test is the true mean, the test is terminated. They continue
up to a maximum number of 30 runs. This number is chosen due to the time restrictions on
the tests.

During the running of the tests, auto-pilot assumes that the results are normally distributed,
and uses them to calculate the appropriate number of runs. The benchmarks first run 5 times.
If is a probability of 95% that the captured mean of the test is the true mean, the performance
test is terminated. The tests continue, up to a maximum number of 30 runs. These numbers
of runs are chosen due to the time restrictions on the tests.

The following output example shows the values auto-pilot calculates:

6

NAME COUNT MEAN MEDIAN LOW HIGH MIN MAX SDEV% HW%
opss 5 1224.160 1223 1171.252 1277.068 1156.700 1266 3.481 4.322
mbs 5 29.160 29.200 27.926 30.394 27.600 30.200 3.409 4.232

By extending the auto-pilot scripts to add variables for filebench and IOzone, auto-pilot can
calculate the statistics using these variables. By default auto-pilot reports the count, mean,
median, minimum, maximum, and Student-t confidence interval error bar values (shown as low
and high), and the standard deviation and half-width (HW%) of the confidence interval as a
percentage of the mean.

4.2 Filebench Setup

On each client (Load and Test) the source file filebench-1.4.8.tar.gz was used to compile and
install filebench 1.4.8 on the local disk of the client. A needed library libtecla-1.6.17 was installed
from source prior to compiling and installing filebench. Patching the source8 of filebench 1.4.8
was needed for successful install and compilation. After patching filebench was compiled and
installed using:

aclocal;autoconf;autoheader;automake --add-missing --copy
./configure --prefix=/usr --exec_prefix=/usr
make
sed -ie "s/\/opt\/filebench\/bin/\/usr\/bin/" ./bin/filebench
sed -ie "s/\/opt\/filebench/\/usr\/share\/filebench/" ./bin/filebench
make install

Filebench has various default tests that contain workload personalities. For performance tests
and load generation the ”fileserver” workload is used. This is a file system workload, similar to
SPECsfs9. This workload performs a sequence of creates, deletes, appends, reads, writes and
attribute operations on the file system. Of the adjustable parameters, only the statistics output
directory and the directory where the tests are executed are modified. The other values are
default values. The fileserver personality has a run time of 600 seconds for the performance
tests. For the auto-pilot statistics the values MB/s and OPS/s of the filebench output were
used. These values are for the entire fileserver personality test and include read and write
actions.

4.3 IOzone Setup

IOzone performs a broad filesystem analysis. The benchmark tests file I/O performance for the
many types of Read and Write operations. UvA-IC T.S. main interest is in the Random Write
operation. File IO is limited to files contained in NFS mounted directories. Commit time for
NFS V3 is included in the measurements by including file closure times (“-c”). File sizes run
from 64Kbytes to 4096Kbytes, using record sizes from 4Kbytes up to 4096Kbytes (“-ag4096”).
Only the Random Read and Random Writes are tested (”-i0 -i2”). Random read/write – The
records, at random offsets will be written and read. For the auto-pilot statistics the values of
random reads and writes per second of the file size of 1024KB of and a record size of 128KB of
the IOzone output were used. Note: unlike the filebench test, IOzone measures read and write
MB/s as separate values.

7http://www.astro.caltech.edu/∼mcs/tecla/
8http://mail.opensolaris.org/pipermail/perf-discuss/attachments/20090722/be13dac5/attachment.obj
9http://www.spec.org/benchmarks.html#nfs

7

4.4 Dtrace Setup

A Dtrace scripts was created to display the values of the probes (figure 5) on a 10 second basis
with the probe values being divided by 10 to create a per second output value. Appendix B
shows this script in two versions, one with headers and one without. The noheader version in
Appendix B.2 allows for easy logging and processing of the output.

Physical Disk

ZFS FileSystem

NFSv3 Server

TCP/IP

ZILARC

VFS Layer

nfsv3:nfssrv:rfs3_read:op-read-start nfsv3:nfssrv:rfs3_write:op-write-start

mib:ip:ip_input:ipIfStatsHCInReceivesmib:ip:ip_xmit:ipIfStatsHCOutTransmits

fsinfo:genunix:fop_write:writefsinfo:genunix:fop_read:read

fbt:zfs:zfs_write:entryfbt:zfs:zfs_read:entry

fbt:zfs:arc_write:entry

fbt:zfs:arc_read:entry
fbt:zfs:zil_lwb_write_start:entry

io:genunix::start

WriteRead

Ard Awr

Brd Bwr

Crd Cwr

Drd Dwr

EFrd
Fwr

G

Figure 5: Dtrace Probes and the names used in de Dtrace script output.

4.5 Testing method

1. Log Dtrace probes while nothing is happening on the server

2. Log Dtrace probes while running IOzone and filebench (using autopilot) from TestClient
while ”nothing” is no load on the NFS server.

3. Log Dtrace probes while filebench is running on 1 LoadClient using the server

4. Log Dtrace probes while running IOzone and filebench from TestClient

5. Repeat steps 3 and 4 for 2,3,4,8,16 hosts, where 8 is 2 concurrent runs on each LoadClient
and 16 is 4 concurrent runs.

8

5 Results

5.1 Preliminary test results

A preliminary test run of the benchmark setup was done to watch the behavior of the Dtrace
probes using the Dtrace script (section 4.4). This to get familiar with the Dtrace tool and its
output. The first 3 lines show output when a filebench benchmark is running and there is no
load. The second 3 lines shows output when a filebench benchmark is running with the load of 1
LoadClient running filebench as load generator. The third 3 lines with the load of 2 LoadClients
running filebench as load generator.

Time Ard Awr Brd Bwr Crd Cwr Drd Dwr E Frd Fwr G
1264371753 5515 13250 0 233 1 227 0 233 79 0 142 3090
1264371763 5441 13096 0 237 1 231 0 237 82 0 144 3156
1264371773 6004 11816 0 213 2 210 0 213 74 0 799 5387

Time Ard Awr Brd Bwr Crd Cwr Drd Dwr E Frd Fwr G
1264374103 6638 11779 0 210 1 205 0 210 74 0 819 5447
1264374113 7212 12849 0 223 2 218 0 223 78 0 145 3118
1264374123 7170 12698 0 233 1 228 0 233 80 0 144 3127

Time Ard Awr Brd Bwr Crd Cwr Drd Dwr E Frd Fwr G
1264375343 7278 11612 0 204 5 205 0 204 68 0 895 5968
1264375353 7836 12600 0 226 1 223 0 226 74 0 145 3057
1264375363 7548 12087 0 220 0 215 0 220 72 0 743 5491

Looking at this data, it seams like all the layers are already a their maximum trough-
put. It was soon determined, using the ”prstat” tool on the server, that the number of NFS
daemons running on the server was low compared to the current NFS fileserver in the production
environment. The bottle-neck was removed by changing the server settings to allow more NFS-
daemons and change the settings to that of the production server. The results where visible on
the server as the following output shows:

Time Ard Awr Brd Bwr Crd Cwr Drd Dwr E Frd Fwr G
1264417143 18038 28526 0 471 12 468 0 472 61 0 343 5505
1264417153 15924 24902 0 413 11 408 0 413 57 0 1308 9811
1264417163 15604 24441 0 402 11 397 0 402 58 0 1241 8452

The graph (Figure 6 of the complete Dtrace output with the old NFS setting and the the
new NFS setting clearly show the difference in of the settings and its influence on the other
performance indicators of the server.

 0

 200

 400

 600

 800

 1000

Pr
ob

es
 /

Se
co

nd

Time

Before

After

Awr/32
Bwr
Cwr
Dwr

E
G/10

Figure 6: Probes/Second during preliminary test before (right) and after (left) changing number
of NFS-daemon processes

9

The number of write probes per second for the TCP/IP (Awr) Layer and the number of
probes per second for the physical layer (G) are a number of magnitudes bigger then the other
inspected probes. By dividing the TCP/IP write (Awr) by 32 and the physical layer (G) by 10,
both probes were better visualized in the graph (figure 6) without suppressing the trend.

5.2 Filebench and IOzone test results

Using the test setup and method described in the previous section (section 4) the following
means (table 1) were calculated by auto-pilot when running filebench and IOzone benchmarks.

Load 0 1 2 3 4 8 16
Filebench OPs/s 1224 862 764 649 533 607 583
Filebench MB/s 29.6 20.5 17.7 15.4 13.8 14.4 13.8

IOzone Read MB/s 1001.8 1003.7 1005.5 997.6 1001.9 1006.3 1001.3
IOzone Write MB/s 30.168 20.7 20.4 22.2 20.8 16.4 19.2

Table 1: Filebench and IOzone means of the tests per load

Auto-pilot will run the tests at least 5 times and as long as it can not calculate a confidence
interval of 5% (HW%) for the mean it will continue up till 30 tests (section 4.1). The numbers
of test and the HW% is in table 2. The HW% values in table 2 for all filebench benchmark
tests done, are less than 5%. The IOzone test with a load of 0 is the only IOzone test where
HW% < 5% all other tests did run 30 times. The HW% of these benchmark tests is between
12% and 20%. The IOzone tests with load of the LoadClients are unreliable.

Load 0 1 2 3 4 8 16
Number of filebench Tests 5 10 7 6 5 5 5

HW% of MB/s 4.232 4.715 4.962 4.912 3.509 0.720 3.726
Number of IOzone Tests 7 30 30 30 30 30 30

HW% of Write MB/s 4.125 12.128 16.408 13.692 14.082 19.202 15.615

Table 2: Filebench and IOzone number of tests per load and the Half With as a percentage of
the mean (HW%)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 8 16

M
B/

s

Load

filebench

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 8 16

O
PS

/s

Load

filebench

Figure 7: Filebench performance tests, MB/s and OPS/s

10

The graphs in figure 7 show that both the MB/s and the OPS/s have the same trend. This
is as expected: every operation writes/reads an amount of data that translated in MB/s. The
MB/s (and OPS/s) decline from almost 30 MB/s (load of 0) to around 14 MB/s (load of 4)
and keep at this level with loads of 8 and 16. Knowing that the 8 and 16 load are generated by
four LoadClients, running 2 or 4 load generating processes, this trend is due to the limitations
of the LoadClients.

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 8 16

M
B/

s

Load

IOzone Random Read

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 8 16
M

B/
s

Load

IOzone Random Write

Figure 8: IOzone performance tests, random read MB/s and random write MB/s

The IOzone tests are divided in random read and random write (figure 8). The random
read on an NFS Client passes a lot of layers with caches. The 1GB/s random read is therefore
no indication of the performance of the NFS fileserver. The write characteristics have the same
trend as the filebench values but the trend already levels at a load of 1. As stated before, the
IOzone tests with the load of the LoadClients are very unreliable.

5.3 NFS fileserver performance indicators (Dtrace probes)

During the filebench load generation, the filebench tests and IOzone tests where running on
the Clients, the noheaders Dtrace (appendix B.2) script was running on the NFS fileserver. Its
output was saved to a file for further inspection. The focus of this inspection was on the write
probes. The IOzone benchmark showed that reading is limited on the NFS client not on the
NFS fileserver. The Dtrace output confirmed this, the VFS layer and NFS layer read probes
where close to zero. For the the physical layer (disks) there is no distinction made between read
and write actions. The trend and baseline of the write probes during filebench load generation
of 0 to 4 LoadClients and benchmarking by the TestClient are shown in figure 9. All write
probes except the ”write ZIL” (E) probe have the same trend. The ”write ZIL” levels at about
80 probes per second.

11

 0

 200

 400

 600

 800

 1000

 1200

 1400
Pr

ob
es

 /
Se

co
nd

Time

Awr/32
Bwr
Cwr
Dwr

E
G/10

Figure 9: Probes/Second during the filebench tests with 0 to 4 LoadClients active

5.4 Filebench and IOzone test results with ZIL on SSD

Like the preliminary test in section 5.1 the performance indicators in the previous section (5.3)
are indicating an other bottle-neck: the ZIL. It is known that the ZIL has a major influence on
the performance of synchronous writes10,11. By using fast storage for the ZIL, performance can
improve. To test this hypothesis the test setup and method described in section 4 was again
used. The ZFS configuration was changed and the ZIL was placed on 2 SSD disks in striped
mode. Original setup in appendix A.5 new setup in appendix A.6. The following means were
calculated by auto-pilot when running filebench (table 3) and IOzone (table 4) benchmarks.

Load 0 1 2 3 4 8 16
Filebench MB/s 50.0 29.2 21.7 17.5 15.3 14.8 15.4

Number of filebench Tests 5 5 5 5 5 5 6
HW% of MB/s 2.772 1.014 1.100 0.593 0.724 2.934 3.831

Table 3: Filebench test results - ZIL on SSD

Load 0 1 2 3 4 8 16
IOzone MB/s 45.1 36.9 23.4 23.4 17.5 19.1 18.7

Number of IOzone Tests 30 30 30 30 30 30 30
HW% of MB/s 8.118 14.318 21.181 13.495 20.001 15.008 15.762

Table 4: IOzone random write test results - ZIL on SSD

10http://blogs.sun.com/brendan/entry/slog screenshots
11http://blogs.sun.com/ahl/entry/fishworks launch

12

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 8 16

M
B/

s

Load

filebench ZIL on SSD

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 8 16

M
B/

s

Load

IOzone Random Write - ZIL on SSD

Figure 10: Filebench ad IOzone performance test with ZIL on SSD

The MB/s of both filebench and IOzone show an improvement when there is no load on the
server. The filebench test is much more influenced by the load of 3 and 4 LoadClients, while IO-
zone levels at 2. Again the IOzone test are unreliable especially with load from the LoadClients.
In figure 10 are the graphs of the measured values.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Pr
ob

es
 /

Se
co

nd

Time

Awr/32
Bwr
Cwr
Dwr

E
G/10

Figure 11: Probes/Second during the filebench tests with 0 to 4 LoadClients active ZIL on SSD

The Dtrace write probes for the ZIL (E) in figure 11 now show a maximum of write probes per
second of about 380. The ”write ZIL” now follows the trend of the other probes. The VFS
layer and NFS layer now seam to flatten when the load is getting higher.

13

6 Conclusion and Future work

6.1 Conclusion

Referring back to the research question:

How can the performance bottlenecks be monitored and identified on an OpenSolarisTM

OS NFS fileserver. What are realistic load simulations and create a base-line.

The following conclusions are made.
The Dtrace write probes defined, can be a performance indicator of the NFS fileserver. The

output of the Dtrace probes can be used to identify performance bottle-necks.
Filebench and the fileserver personality are a way to show the performance impact of the

load on a NFS fileserver (as experienced by the NFS Client, figure 12).

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 8 16

M
B/

s

Load

Normal ZIL

ZIL on SSD

Figure 12: filebench performance test with and without ZIL on SSD

IOzone test are unreliable in the given environment and give an impression of non declining
client performance when the load on the NFS increases.

The filebench tests on the TestClient can be used as a baseline for other test, for example
when benchmarking other NFS fileserver Hardware. The client can be the same and has no
influence on the test.

6.2 Further work

The tests performed in this research can be reproduced and a baseline was created. Using the
filebench measurements as a baseline, other types of NFS fileserver hardware could be compared
using the same tests. The influence of the ZIL on faster SSD devices, is an interesting subject.

Auto-pilot was used on the TestClient to get the statistics of the benchmark tests. The
Dtrace probes provide baseline data of the NFS server. A subject for futher research can be:
”How can auto-pilot be used on the NFS server to statistically compare current behavior with
the baseline?”

14

References

[1] Richard McDougall, Jim Mauro, and Brendan Gregg. Solaris(TM) Performance and Tools:
DTrace and MDB Techniques for Solaris 10 and OpenSolaris (Solaris Series). Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2006.

[2] SUN Microsystems. DTrace User Guide (819–5488–10). SUN Microsystems, 2006.

[3] SUN Microsystems. Solaris Dynamic Tracing Guide (817–6223–12). SUN Microsystems,
2008.

[4] A. Traeger, E. Zadok, E. L. Miller, and D. D. E. Long. Findings from the first annual storage
and file systems benchmarking workshop. ;login: The USENIX Magazine, 33(5):113–117,
October 2008.

[5] Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P. Wright. A nine year study of
file system and storage benchmarking. Technical report, 2007.

[6] Charles P. Wright, Nikolai Joukov, Devaki Kulkarni, Yevgeniy Miretskiy, and Erez Zadok.
Auto-pilot: A platform for system software benchmarking. In USENIX Annual Technical
Conference, FREENIX Track, pages 175–188, 2005.

15

A Test Systems Hardware/Software specifications

A.1 NFS fileserver

SUN x4540

CPU 2 x Quad-Core AMD Opteron 2356, 2300MHz
Memory 32GB

Disk 46x500GB SATA HITACHI HUA7250S-A90A
2x30GB SSD OCZ VERTEX-TURBO
Setup of ZFS in appendix A.5 and A.6

Network 4 x 1Gb (1 used)
OS OpenSolaris SVN 129

A.2 VMWare Servers 01 and 02

SUN x4440

CPU 4 x Quad-core AMD Opteron 8384 , 2700MHz
Memory 32GB

Disk Local 2x146GB SATA and NFS for VMware Images
Network 4 x 1Gb

OS VMware 4 EXi

A.3 LoadClients 01, 02, 03 and 04

VMware Virtual Machine

CPU Quad-Core AMD Opteron 8384, 2700MHz (1 core assigned)
Memory 4GB

Disk 20GB VMware-Disk
Network 2 x 1Gb (1 dedicated used)

OS CentOS 5.4 (yum update 25/01/2010 13:00)

A.4 TestClient

SUN x2200

CPU 2 x Dual-Core AMD Opteron 2210, 1000MHz
Memory 2GB

Disk 750GB Sata
Network 4 x 1Gb (1 dedicated used)

OS CentOS 5.4 (yum update 25/01/2010 13:00)

A.5 ZFS Setup

pool: bootpool
state: ONLINE

16

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
bootpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
c0t0d0s0 ONLINE 0 0 0
c1t0d0s0 ONLINE 0 0 0

errors: No known data errors

pool: mypool
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
mypool ONLINE 0 0 0

raidz2-0 ONLINE 0 0 0
c0t1d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0
c3t1d0 ONLINE 0 0 0
c4t1d0 ONLINE 0 0 0
c5t1d0 ONLINE 0 0 0
c0t2d0 ONLINE 0 0 0
c1t2d0 ONLINE 0 0 0
c2t2d0 ONLINE 0 0 0
c3t2d0 ONLINE 0 0 0
c4t2d0 ONLINE 0 0 0
c5t2d0 ONLINE 0 0 0
c0t3d0 ONLINE 0 0 0
c1t3d0 ONLINE 0 0 0

raidz2-1 ONLINE 0 0 0
c2t3d0 ONLINE 0 0 0
c3t3d0 ONLINE 0 0 0
c4t3d0 ONLINE 0 0 0
c5t3d0 ONLINE 0 0 0
c0t4d0 ONLINE 0 0 0
c1t4d0 ONLINE 0 0 0
c2t4d0 ONLINE 0 0 0
c3t4d0 ONLINE 0 0 0
c4t4d0 ONLINE 0 0 0
c5t4d0 ONLINE 0 0 0
c0t5d0 ONLINE 0 0 0
c1t5d0 ONLINE 0 0 0
c2t5d0 ONLINE 0 0 0
c3t5d0 ONLINE 0 0 0

raidz2-2 ONLINE 0 0 0
c4t5d0 ONLINE 0 0 0
c5t5d0 ONLINE 0 0 0
c0t6d0 ONLINE 0 0 0
c1t6d0 ONLINE 0 0 0
c2t6d0 ONLINE 0 0 0
c3t6d0 ONLINE 0 0 0
c4t6d0 ONLINE 0 0 0
c5t6d0 ONLINE 0 0 0
c0t7d0 ONLINE 0 0 0
c1t7d0 ONLINE 0 0 0
c2t7d0 ONLINE 0 0 0

17

c3t7d0 ONLINE 0 0 0
c4t7d0 ONLINE 0 0 0
c5t7d0 ONLINE 0 0 0

spares
c2t0d0 AVAIL
c3t0d0 AVAIL
c4t0d0 AVAIL
c5t0d0 AVAIL

errors: No known data errors

A.6 ZFS Setup ZIL on SSD

pool: bootpool
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
bootpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0
c0t0d0s0 ONLINE 0 0 0
c1t0d0s0 ONLINE 0 0 0

errors: No known data errors

pool: mypool
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
mypool ONLINE 0 0 0

raidz2-0 ONLINE 0 0 0
c0t1d0 ONLINE 0 0 0
c1t1d0 ONLINE 0 0 0
c2t1d0 ONLINE 0 0 0
c3t1d0 ONLINE 0 0 0
c4t1d0 ONLINE 0 0 0
c5t1d0 ONLINE 0 0 0
c0t2d0 ONLINE 0 0 0
c1t2d0 ONLINE 0 0 0
c2t2d0 ONLINE 0 0 0
c3t2d0 ONLINE 0 0 0
c4t2d0 ONLINE 0 0 0
c5t2d0 ONLINE 0 0 0
c0t3d0 ONLINE 0 0 0
c1t3d0 ONLINE 0 0 0

raidz2-1 ONLINE 0 0 0
c2t3d0 ONLINE 0 0 0
c3t3d0 ONLINE 0 0 0
c4t3d0 ONLINE 0 0 0
c5t3d0 ONLINE 0 0 0
c0t4d0 ONLINE 0 0 0
c1t4d0 ONLINE 0 0 0
c2t4d0 ONLINE 0 0 0
c3t4d0 ONLINE 0 0 0
c4t4d0 ONLINE 0 0 0
c5t4d0 ONLINE 0 0 0
c0t5d0 ONLINE 0 0 0

18

c1t5d0 ONLINE 0 0 0
c2t5d0 ONLINE 0 0 0
c3t5d0 ONLINE 0 0 0

raidz2-2 ONLINE 0 0 0
c4t5d0 ONLINE 0 0 0
c5t5d0 ONLINE 0 0 0
c0t6d0 ONLINE 0 0 0
c1t6d0 ONLINE 0 0 0
c2t6d0 ONLINE 0 0 0
c3t6d0 ONLINE 0 0 0
c4t6d0 ONLINE 0 0 0
c5t6d0 ONLINE 0 0 0
c0t7d0 ONLINE 0 0 0
c1t7d0 ONLINE 0 0 0
c2t7d0 ONLINE 0 0 0
c3t7d0 ONLINE 0 0 0
c4t7d0 ONLINE 0 0 0
c5t7d0 ONLINE 0 0 0

logs
c2t0d0 ONLINE 0 0 0
c3t0d0 ONLINE 0 0 0

spares
c4t0d0 AVAIL
c5t0d0 AVAIL

19

B Dtrace Scripts

B.1 read write probes.d

#!/usr/sbin/dtrace -s
#pragma D option quiet

dtrace:::BEGIN {
Ard = 0;Awr = 0;Brd = 0;Bwr = 0;
Crd = 0;Cwr = 0;Drd = 0;Dwr = 0;
E = 0;Frd = 0;Fwr = 0;G = 0;

printf("%10s %7s %7s %7s %7s %7s %7s %7s %7s %7s %7s %7s %7s\n" \
,"Time","Ard","Awr","Brd","Bwr","Crd","Cwr","Drd","Dwr","E","Frd","Fwr","G");
}

mib:ip:ip_xmit:ipIfStatsHCOutTransmits { Ard++; }
mib:ip:ip_input:ipIfStatsHCInReceives { Awr++; }
nfsv3:nfssrv:rfs3_read:op-read-start { Brd++; }
nfsv3:nfssrv:rfs3_write:op-write-start { Bwr++; }
fsinfo:genunix:fop_read:read { Crd++; }
fsinfo:genunix:fop_write:write { Cwr++; }
fbt:zfs:zfs_read:entry { Drd++; }
fbt:zfs:zfs_write:entry { Dwr++; }
fbt:zfs:zil_lwb_write_start:entry { E++; }
fbt:zfs:arc_read:entry { Frd++; }
fbt:zfs:arc_write:entry { Fwr++; }
io:genunix::start { G++; }

profile:::tick-10s {
Ard = Ard / 10; Awr = Awr / 10; Brd = Brd / 10; Bwr = Bwr / 10;
Cwr = Cwr / 10; Crd = Crd / 10; Dwr = Dwr / 10; Drd = Drd / 10;

E = E / 10; Fwr = Fwr / 10; Frd = Frd / 10; G = G / 10;
ts = walltimestamp / 1000000000;
printf("%d %7d %7d %7d %7d %7d %7d %7d %7d %7d %7d %7d %7d\n" \
,ts,Ard,Awr,Brd,Bwr,Crd,Cwr,Drd,Dwr,E,Frd,Fwr,G);

Ard = 0;Awr = 0;Brd = 0;Bwr = 0;
Crd = 0;Cwr = 0;Drd = 0;Dwr = 0;
E = 0;Frd = 0;Fwr = 0;G = 0;

}
profile:::tick-100s {
printf("%10s %7s %7s %7s %7s %7s %7s %7s %7s %7s %7s %7s %7s\n" \
,"Time","Ard","Awr","Brd","Bwr","Crd","Cwr","Drd","Dwr","E","Frd","Fwr","G");
}

B.2 read write probes noheaders.d

#!/usr/sbin/dtrace -s
#pragma D option quiet

dtrace:::BEGIN {
Ard = 0;Awr = 0;Brd = 0;Bwr = 0;
Crd = 0;Cwr = 0;Drd = 0;Dwr = 0;
E = 0;Frd = 0;Fwr = 0;G = 0;

}

mib:ip:ip_xmit:ipIfStatsHCOutTransmits { Ard++; }
mib:ip:ip_input:ipIfStatsHCInReceives { Awr++; }
nfsv3:nfssrv:rfs3_read:op-read-start { Brd++; }
nfsv3:nfssrv:rfs3_write:op-write-start { Bwr++; }

20

fsinfo:genunix:fop_read:read { Crd++; }
fsinfo:genunix:fop_write:write { Cwr++; }
fbt:zfs:zfs_read:entry { Drd++; }
fbt:zfs:zfs_write:entry { Dwr++; }
fbt:zfs:zil_lwb_write_start:entry { E++; }
fbt:zfs:arc_read:entry { Frd++; }
fbt:zfs:arc_write:entry { Fwr++; }
io:genunix::start { G++; }

profile:::tick-10s {
Ard = Ard / 10; Awr = Awr / 10; Brd = Brd / 10; Bwr = Bwr / 10;
Cwr = Cwr / 10; Crd = Crd / 10; Dwr = Dwr / 10; Drd = Drd / 10;

E = E / 10; Fwr = Fwr / 10; Frd = Frd / 10; G = G / 10;
ts = walltimestamp / 1000000000;
printf("%d %7d %7d %7d %7d %7d %7d %7d %7d %7d %7d %7d %7d\n" \
,ts,Ard,Awr,Brd,Bwr,Crd,Cwr,Drd,Dwr,E,Frd,Fwr,G);

Ard = 0;Awr = 0;Brd = 0;Bwr = 0;
Crd = 0;Cwr = 0;Drd = 0;Dwr = 0;
E = 0;Frd = 0;Fwr = 0;G = 0;

}

21

C Auto-pilot Scripts

C.1 filebench loadgen.ap

#!/usr/bin/perl /usr/bin/auto-pilot
filebench_loadgen.ap

QUIET true

VAR BENCH=filebench_loadgen
VAR TERMINATE=1
VAR NTHREADS=1

RESULTS=$HOME$/results/%BENCH%
LOGS=$HOME$/logs/%BENCH%

ENV TESTFS=nfs
ENV FBRUNTIME=36000
ENV TESTROOT=/test_NFS

INCLUDE common.inc

THREADS=%NTHREADS%

TEST filebench_loadgen-%THREADS% %TERMINATE%
SETUP mount_nfs.sh %THREADS%
EXEC filebench_loadgen.sh
CLEANUP umount_nfs.sh %THREADS%
DONE

C.2 mount nfs.sh

#!/bin/bash
mount_nfs.sh

for i in ‘seq $1‘
do mount 10.0.0.1:/mypool/test_FS/$HOSTNAME/$i /test_NFS/$i
done

C.3 filebench loadgen.sh

#!/bin/bash
filebench_loadgen.sh

if [-z "$TESTROOT"] ; then
echo "TESTROOT EnvVar Empty"
exit 1
fi

if [! -d "$TESTROOT"] ; then
echo "TESTROOT not a directory"
exit 1
fi

source commonsettings || exit $?

FILEBENCH="/usr/bin/filebench"
TESTNAME="fileserver"
OUTDIR="/root/stats/filebench_loadgen/${APEPOCH}-${APTHREAD}"

22

CONFIG="loadconf-$$"

BENCHDIR=${TESTROOT}/${APTHREAD}

cat <<END > "${CONFIG}.prof"
CONFIG $TESTNAME {
function = generic;
personality = $TESTNAME;
}

DEFAULTS {
description = "FileServer_loadgen";
runtime = ${FBRUNTIME};
stats = ${OUTDIR};
filesystem = ${TESTFS};
dir = ${BENCHDIR};
}
END
semdec $APIPCKEY
ap_measure $FILEBENCH $CONFIG
rm ${CONFIG}.prof
exit 0

C.4 umount nfs.sh

#!/bin/bash
umount_nfs.sh

for i in ‘seq $1‘
do umount /test_NFS/$i
done

C.5 filebench perftest.ap

#!/usr/bin/perl /usr/bin/auto-pilot
filebench_perftest.ap

QUIET true

VAR BENCH=filebench_perftest
VAR NTHREADS=1

RESULTS=$HOME$/results/%BENCH%
LOGS=$HOME$/logs/%BENCH%

ENV TESTFS=nfs
ENV TESTROOT=/test_NFS
ENV NFSSERVER=10.0.0.1
ENV SERVERROOT=/mypool/test_FS/$HOSTNAME$
ENV FBRUNTIME=600

VAR TERMINATE=5 1 /usr/bin/getstats --predicate \
’("$name" ne "opss" && "$name" ne "mbs") || \
("$delta" < 0.05 * $mean) || ($count >= 30)’ --

INCLUDE common.inc

TEST %BENCH% %TERMINATE%
SETUP fs-setup.sh %TESTFS%
EXEC filebench_perftest.sh

23

CLEANUP fs-cleanup.sh %TESTFS%
DONE

C.6 filebench perftest.sh

#!/bin/bash
filebench_perftest.sh

MEASURE_FILEBENCH="on"

source commonsettings || exit $?

FILEBENCH="/usr/bin/filebench"
TESTNAME="fileserver"
OUTDIR="/root/filebench-perftest/$APEPOCH"
SAFEDIR="/root/filebench-perftest.archive/‘date ’+%Y_%m_%d_%H%M%S’‘/"
CONFIG="perfconf-$$"

cat <<END > "${CONFIG}.prof"
CONFIG $TESTNAME {
function = generic;
personality = $TESTNAME;
}

DEFAULTS {
description = "FileServer";
runtime = ${FBRUNTIME};
stats = ${OUTDIR};
filesystem = ${TESTFS};
dir = ${TESTROOT};
}
END

semdec $APIPCKEY
ap_measure $FILEBENCH $CONFIG
rm ${CONFIG}.prof
mkdir -p $SAFEDIR
cp -r $OUTDIR/* $SAFEDIR
rm -r $OUTDIR/*

exit 0

C.7 commonsettings.dfilebench

#!/bin/bash
filebench (commonsettings.d)

ME=filebench
TYPE=measure

if [! -z "AP_MEASURE_HOOK"] ; then
eval ‘echo "AP_SAVED_"$TYPE"_HOOK_"$ME"=""$AP_MEASURE_HOOK"‘

fi
if [! -z "$MEASURE_FILEBENCH"] ; then

AP_MEASURE_HOOK=ap_measure_filebench
fi

function ap_measure_filebench {
local ME=filebench
local TYPE=measure

24

if ["$1" = "premeasure"] ; then
true

elif ["$1" = "start"] ; then
true

elif ["$1" = "end"] ; then
ap_logexec /usr/share/auto-pilot/fb2ap.sh \

${OUTDIR}/*/${TESTNAME}/stats.${TESTNAME}.out || return $?
elif ["$1" = "final"] ; then
true

else
echo "Filebench Measurement hook failed " 1>&2
exit 1

fi

local HOOK=‘eval "echo $""AP_SAVED_"$TYPE"_HOOK_"$ME‘
if [! -z "$HOOK"] ; then

"$HOOK" $*
return $?

fi

return 0
}

unset ME

C.8 fb2ap.sh

#!/bin/bash
fb2ap.sh Transform filebench output to auto-pilot

cat $1 | grep "IO" | sed -e ’s/mb\/s,//’ | awk ’{print "ops = "$3"\nopss = "$5"\nmbs = "$9 }’

C.9 iozone perftest.ap

#!/usr/bin/perl /usr/bin/auto-pilot
iozone_perftest.ap

QUIET true

VAR BENCH=iozone_perftest
VAR NTHREADS=1

RESULTS=$HOME$/results/%BENCH%
LOGS=$HOME$/logs/%BENCH%

ENV TESTFS=nfs
ENV TESTROOT=/test_NFS
ENV NFSSERVER=10.0.0.1
ENV SERVERROOT=/mypool/test_FS/$HOSTNAME$

VAR TERMINATE=5 1 /usr/bin/getstats --predicate \
’("$name" ne "rkbs" && "$name" ne "wkbs") || \
("$delta" < 0.05 * $mean) || ($count >= 30)’ --

INCLUDE common.inc

TEST %BENCH% %TERMINATE%
SETUP fs-setup.sh %TESTFS%
EXEC iozone_perftest.sh

25

CLEANUP fs-cleanup.sh %TESTFS%
DONE

C.10 iozone perftest.sh

#!/bin/bash
iozone_perftest.sh

MEASURE_IOZONE="on"

source commonsettings || exit $?

OUTDIR="/root/iozone-perftest/$APEPOCH"
SAFEDIR="/root/iozone-perftest.archive/‘date ’+%Y_%m_%d_%H%M%S’‘/"
mkdir -p $OUTDIR
IOZONE="/usr/bin/iozone"
IOZONEOPT="-acg4096 -f ${TESTROOT}/iozone.test -i 0 -i 2"

semdec $APIPCKEY
ap_measure ${IOZONE} ${IOZONEOPT} > ${OUTDIR}/iozone.out

mkdir -p $SAFEDIR
cp -r $OUTDIR/* $SAFEDIR
rm -r $OUTDIR/iozone.out

exit 0

C.11 commonsettings.diozone

#!/bin/bash
iozone (commonsettings.d)

ME=iozone
TYPE=measure

if [! -z "AP_MEASURE_HOOK"] ; then
eval ‘echo "AP_SAVED_"$TYPE"_HOOK_"$ME"=""$AP_MEASURE_HOOK"‘

fi
if [! -z "$MEASURE_IOZONE"] ; then

AP_MEASURE_HOOK=ap_measure_iozone
fi

function ap_measure_iozone {
local ME=iozone
local TYPE=measure

if ["$1" = "premeasure"] ; then
true

elif ["$1" = "start"] ; then
true

elif ["$1" = "end"] ; then
ap_logexec /usr/share/auto-pilot/io2ap.sh ${OUTDIR}/iozone.out \

|| return $?
elif ["$1" = "final"] ; then
true

else
echo "Iozone Measurement hook failed " 1>&2
exit 1

fi

26

local HOOK=‘eval "echo $""AP_SAVED_"$TYPE"_HOOK_"$ME‘
if [! -z "$HOOK"] ; then

"$HOOK" $*
return $?

fi

return 0
}

unset ME

C.12 io2ap.sh

#!/bin/bash
io2ap.sh Transform iozone output to auto-pilot

cat $1 | grep " 1024 128" | awk ’{print "rkbs = "$5"\nwkbs = "$6 }’

27

