Trustworthiness of Cyber Infrastructure for e-Science Research Project

Berry Hoekstra & Niels Monen

{bhoekstra,nmonen}@os3.nl

June 30, 2010

Outline

- Introduction
- Problem domain
- Approach
- Research
- 6 Results
- Conclusion

Problem domain

- Some applications need assurance.
 - Privacy sensitive data.
 - Protection of resources.
 - Protection of integrity.

Research question

Research question:

Is it possible to reason about how secure a system is? Is it feasible to determine the robustness of a system to withstand attacks?

Research context

- Grid systems.
- Redhat- and Debian-based OS.
- Use vulnerability database(s).
 - OSVDB
 - NVD

Approach

- Determine the state of a system.
- Generate a host description.
 - List of OS, package and binary versions.
- Compare versions against a vulnerability database.
- List and analyse results.
 - Export and show information for others to evaluate this system's security.

National Vulnerability Database

- We chose NVD.
 - Use of standards.
 - Vulnerability scores included (CVSS).
 - Aggregated databases.
 - Machine-readable.
 - XML data feed.

Proof of Concept (1)

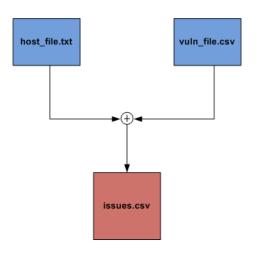
- Generate a version list of local binaries and packages (host description).
- Get a list of known vulnerabilities from the NVD.
- Match both lists.
- Generate results.
- Limitations.
 - Libraries: only lib packages are checked.

Proof of Concept (2)

• Generate a host description file.

```
uname -r >> hostdescriptionlist.txt
for program in 'ls /usr/bin/'
do

$version = '$program --version'
echo $program $version >> hostdescriptionlist.txt
done
```


- Issues
 - Some binaries don't output version info.
 - Version format not consistent.
 - Binary name != package name.

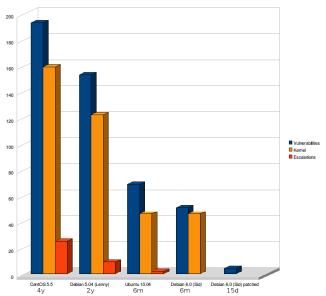
Proof of Concept (3)

- Get vulnerability information.
 - Get latest NVD XML snapshot.
 - Canonicalize snapshot to CSV format.
 - Only extract necessary information.
 - Vulnerable binaries with version number.
 - ★ CVE ID.
 - Publishing date.
 - CVSS score.
 - Access vector.
 - Privilege escalation.
 - Vulnerability summary (human-readable).
- End up with vulnerability file.

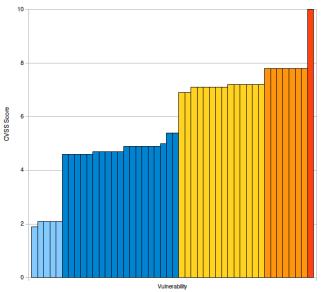
10 / 18

Proof of Concept (4)

Proof of Concept (5)


• Generated output.

nano,2.2.2,CVE-2010-1160,2010-04-016T20:30:01.397-04:00,1.9, LOCAL,NONE,GNU nano before 2.2.4 does not verify whether a file has been changed before it is overwritten in a file-save operation, which allows local user-assisted attackers to overwrite arbitrary files via a symlink attack on an attacker-owned file that is being edited by the victim.


Generated Results

- Analysis of the output.
- Fully updated Debian 5.04 (Lenny) (2 years old)
 - ▶ 122 vulnerabilities for kernel 2.6.26.
 - 31 vulnerabilities for packages.
 - 9 privilege escalations.
- Fully patched Debian 6.0 (Squeeze/Sid) (6 months old)
 - 46 vulnerabilities for kernel 2.6.32.
 - 5 vulnerabilities for packages.
 - 0 privilege escalations.
- Kernel issues have CVSS score from 1.9 to 10.0 (max).

System statistics (1)

System statistics (2)

Conclusion

- Proof of concept shows that:
 - Possible to quickly generate a host description file.
 - Even bleeding edge OS can be vulnerable.
 - ► Found vulnerabilities are mostly patched in next version.
 - Drivers and file system vulnerabilities are most present.

Future work

- Is CVSS scoring useful?
 - Driver bias.
 - Local vs. Network bias.
 - Not usable for batch systems.
- Grid vulnerability scoring system.

Questions?

