Some applications need assurance.
 ▶ Privacy sensitive data.
 ▶ Protection of resources.
 ▶ Protection of integrity.
Research question:

Is it possible to reason about how secure a system is?
Is it feasible to determine the robustness of a system to withstand attacks?
Research context

- Grid systems.
- Redhat- and Debian-based OS.
- Use vulnerability database(s).
 - OSVDB
 - NVD
Approach

- Determine the state of a system.
- Generate a host description.
 - List of OS, package and binary versions.
- Compare versions against a vulnerability database.
- List and analyse results.
 - Export and show information for others to evaluate this system’s security.
We chose NVD.

- Use of standards.
- Vulnerability scores included (CVSS).
- Aggregated databases.
- Machine-readable.
- XML data feed.
Proof of Concept (1)

- Generate a version list of local binaries and packages (host description).
- Get a list of known vulnerabilities from the NVD.
- Match both lists.
- Generate results.
- Limitations.
 - Libraries: only lib packages are checked.
Generate a host description file.

```bash
uname -r >> hostdescriptionlist.txt
for program in 'ls /usr/bin/'
do
$version = '$program --version'
echo $program $version >> hostdescriptionlist.txt
done
```

Issues

- Some binaries don’t output version info.
- Version format not consistent.
- Binary name != package name.
Proof of Concept (3)

- Get vulnerability information.
 - Get latest NVD XML snapshot.
 - Canonicalize snapshot to CSV format.
 - Only extract necessary information.
 - Vulnerable binaries with version number.
 - CVE ID.
 - Publishing date.
 - CVSS score.
 - Access vector.
 - Privilege escalation.
 - Vulnerability summary (human-readable).

- End up with vulnerability file.
Proof of Concept (4)
Generated output.

nano,2.2.2,CVE-2010-1160,2010-04-016T20:30:01.397-04:00,1.9,LOCAL,NONE,GNU nano before 2.2.4 does not verify whether a file has been changed before it is overwritten in a file-save operation, which allows local user-assisted attackers to overwrite arbitrary files via a symlink attack on an attacker-owned file that is being edited by the victim.
Analysis of the output.

Fully updated Debian 5.04 (Lenny) (2 years old)
- 31 vulnerabilities for packages.
- 9 privilege escalations.

Fully patched Debian 6.0 (Squeeze/Sid) (6 months old)
- 46 vulnerabilities for kernel 2.6.32.
- 5 vulnerabilities for packages.
- 0 privilege escalations.

Kernel issues have CVSS score from 1.9 to 10.0 (max).
System statistics (2)
Proof of concept shows that:

- Possible to quickly generate a host description file.
- Even bleeding edge OS can be vulnerable.
- Found vulnerabilities are mostly patched in next version.
- Drivers and file system vulnerabilities are most present.
Future work

- Is CVSS scoring useful?
 - Driver bias.
 - Local vs. Network bias.
 - Not usable for batch systems.
- Grid vulnerability scoring system.
Questions?

Source: discoveryeducation.com