
University of Amsterdam
System & Network Engineering

Research Project 1

Failover research for
Bright Cluster Manager

Authors:
Cosmin Dumitru
cdumitru@os3.nl

Niek Timmers
ntimmers@os3.nl

Coordinator:
Prof. dr. ir. Cees de Laat
University of Amsterdam

Supervisor:
Martijn de Vries

Bright Computing Inc.

February 5, 2010

Abstract

A common approach in scientific research is to make use of clusters to
help solve advanced computational problems. Clusters used to be difficult
to use and manage. Multiple companies have designed cluster managers
which led to a more easy to use and productive experience. A high per-
formance computing (HPC) cluster is based on the Beowulf model[1] and
consists of a head node and a number of compute nodes.

One important aspect of a cluster is high availability. To assure a
cluster is usable at any time, a failover mechanism is implemented. This
failover mechanism mitigates the problems that occur when a head node
fails. A common approach for a failover mechanism is to have redundant
head nodes.

During our research, we investigated the failover mechanism imple-
mented in Bright Cluster Manager . We have addressed some issues in
the current implementation and we introduced some proposals which could
make Bright Cluster Manager more efficient.

LIST OF FIGURES 2

List of Figures

1 A common cluster setup with two head nodes. 8
2 Cluster failover including n slave nodes. 22
3 Failover setup with both external and slave network failing. . . . 23
4 Slave nodes report to masternode 24
5 HA status after local disk failure 25
6 External network link fails. 26
7 Quorum mechanism initiated by the active master 27
8 Slave nodes partitioned in resource groups via a tree 36
9 Slave nodes report to the master node 37

Cosmin Dumitru
Niek Timmers

February 5, 2010

CONTENTS 3

Contents

1 Introduction 6
1.1 Research . 6
1.2 Experimentation Setup . 7

2 Cluster Computing 8
2.1 Basic Principle . 8
2.2 Types of Clusters . 8

2.2.1 HA clusters . 8
2.2.2 Load-balancing clusters 8
2.2.3 Compute clusters . 8
2.2.4 Grid computing . 9

3 Failover 10
3.1 Hardware Failures . 10
3.2 Software Failures . 10
3.3 Failover Requirements . 11
3.4 Failover Problems . 12

3.4.1 Split-Brain Syndrome . 12

4 Failover Configurations 13
4.1 Two head node configuration . 13

4.1.1 Active/Passive . 13
4.1.2 Active/Active . 13

4.2 Multiple Node Configuration . 14
4.3 Which is best? . 14

5 Failover Mechanisms 15
5.1 Fencing . 15
5.2 S.T.O.N.I.T.H. 15
5.3 Heartbeat . 15
5.4 Quorum . 16

6 Bright Cluster Manager 18
6.1 Goals . 18

6.1.1 Make clusters really easy 18
6.1.2 Scale clusters to thousands of nodes 18
6.1.3 Be complete . 19
6.1.4 Cluster Resources . 19
6.1.5 Management . 20

6.2 Failover Configuration . 20
6.2.1 Manual Failover . 21
6.2.2 Automatic Failover . 21

6.3 Logical Design Issues . 22
6.3.1 Additional Heartbeat Link 22

Cosmin Dumitru
Niek Timmers

February 5, 2010

CONTENTS 4

6.3.2 Local Disk Failure . 23
6.3.3 External Network . 26
6.3.4 Large Quorums . 27
6.3.5 Service Monitoring . 28
6.3.6 NTP Configuration . 29
6.3.7 Failover Toggle switch . 29

7 Other Cluster Software 31
7.1 Red Hat Cluster Suite . 31
7.2 Platform Cluster Manager . 31
7.3 Pacemaker . 31
7.4 PBS Pro . 32
7.5 Moab Cluster Manager . 33
7.6 Scyld ClusterWare . 33
7.7 Comparison Results . 34

8 Proposals 35
8.1 Overlay Network . 35
8.2 Large Quorums . 35

8.2.1 Resource Groups . 36
8.2.2 Optimized Quorum Sequence 38

8.3 Active/Active setup . 38
8.4 Automated Failover Test Scripts 39
8.5 Amazon EC2 . 39
8.6 Optimized communication . 40

9 Conclusions 41
9.1 Future Research . 42

10 Acknowledgements 43

A Test Cases 48
A.1 Hardware . 48

A.1.1 Power off Master1 X . 48
A.1.2 Power off Master2 X . 49
A.1.3 Disconnect network cable master1 (slave network) X . . . 50
A.1.4 Disconnect network cable master2 (slave network) X . . . 52
A.1.5 Disconnect network cable master1 (external network) X . 52
A.1.6 Disconnect network cable master2 (external network) X . 53

A.2 Software . 53
A.2.1 kill CMDaemon on Master1 × 53
A.2.2 kill CMDaemon on Master2 × 54
A.2.3 kill MySQL on Master1 × 54
A.2.4 kill MySQL on Master2 × 55
A.2.5 kill NFS on Master1 X . 55
A.2.6 kill NFS on Master2 X . 55

Cosmin Dumitru
Niek Timmers

February 5, 2010

CONTENTS 5

A.2.7 kill NTPD on Master1 X 55
A.2.8 kill NTPD on Master2 X 56
A.2.9 kill LDAP on Master1 × 56
A.2.10 kill LDAP on Master2 × 56
A.2.11 kill NAMED on Master1 X 56
A.2.12 kill NAMED on Master2 X 57
A.2.13 kill DHCPD on Master1 X 57
A.2.14 kill DHCPD on Master2 X 57
A.2.15 remove local hard disk Master 1 × 58
A.2.16 remove local hard disk Master 2 X 58
A.2.17 high load on Master1 × 58
A.2.18 high load on Master2 X 58

Cosmin Dumitru
Niek Timmers

February 5, 2010

1 INTRODUCTION 6

1 Introduction

High Performance Computing (HPC) is commonly used for scientific research
but also commercial organizations make use of it. To achieve HPC, either a
supercomputer or a cluster of computers is used. The problem with a cluster
of computers is developing an easy-to-use interface for its end users. There are
several software companies which achieve this in the form of a Cluster Manager
(CM) like Bright Cluster Manager which is developed by Bright Computing Inc.
The philosophy of their CM is:

• Easy to install clusters

• Easy to use clusters

• Easy to monitor clusters

• Easy to manage clusters

• Easy to scale clusters

A common approach [1] for the cluster is to have a single head node which
is essential for the operation of the cluster. Without this head node, the cluster
is completely unusable by its end users. To mitigate this problem, a protocol
has to be introduced which takes over when the head node fails. Bright Cluster
Manager has the option to use an active and a passive head node. When the
active head node fails, the passive head node takes over so the cluster can still
be usable.

1.1 Research

Designing and developing a cluster failover between two head nodes can be
a challenging task. Designing a perfect theoretical system is one thing but
actually implementing it can be a quite complex task. Usually developers keep
things as simple as possible. The research we have done at Bright Computing
Inc. involves testing the failover mechanism of Bright Cluster Manager . The
research will be rather focused on the logical implementation and not on the
technical implementation. The question we answer by doing this research is:

Is the failover mechanism implemented in Bright Cluster Manager work-
ing as intended and can it be improved?

The answer of this question will be based on answering the following sub-
questions:

• How does the failover mechanism work?

• Is the failover mechanism working as intended?

• Is the failover mechanism scalable?

Cosmin Dumitru
Niek Timmers

February 5, 2010

1 INTRODUCTION 7

• Is the failover mechanism efficient?

• Is the logical design of the failover mechanism correct?

Researching the failover mechanism of Bright Cluster Manager will give us
a better insight of how such a mechanism should work. We hope to give Bright
Computing Inc. also some advice to improve their product.

1.2 Experimentation Setup

For our research, we have setup a test configuration of Bright Cluster Manager .
We did this on our test machines in the OS3 lab. The test setup consisted of
three Dell servers which were running VMWare ESX 4.0.

server1(pidgey) : head node 1, slave node 1, slave node 3

server2(nidoran) : head node 2, slave node 2, slave node 4

server2(sandshrew) : Router, DNS, RedMine, Subversion

On the first week we focused on installing the infrastructure and on top of
that Bright Cluster Manager itself. Like the Bright Cluster Manager website
states, installing the software was fairly easy. We had some problems in getting
the failover mechanism to work, but this was due to a bug. Luckily the devel-
opers at Bright Computing Inc. were able to fix this bug within a day. When
the cluster was running we processed some test cases which can be found in the
appendix A.

In the following two weeks we mainly conducted research on the current
design and thought of proposals to improve the design. This involved a deep
research on the current state-of-the-art HPC cluster designs.

Cosmin Dumitru
Niek Timmers

February 5, 2010

2 CLUSTER COMPUTING 8

2 Cluster Computing

2.1 Basic Principle

A computer cluster is a group of tightly-coupled computers that share resources.
In many aspects the cluster appears to its users as a single computer. [2]

Figure 1: A common cluster setup with two head nodes.

2.2 Types of Clusters

2.2.1 HA clusters

High-Availability (HA) clusters are employed to increase the availability of ser-
vices. This is achieved by eliminating single-points-of-failure through the use
of redundant nodes and redundant hardware. Usually, these types of clusters
make use of a failover mechanism which is described in detail in chapter 3.[2]

2.2.2 Load-balancing clusters

Load-balancing clusters are used to distribute the load over multiple machines,
thus increasing the performance and scalability of a system. [2]

2.2.3 Compute clusters

Compute clusters or HPC clusters are used for computationally intensive (usu-
ally parallel) applications. Jobs are divided in smaller tasks which are then
submitted to the compute nodes. While the job is running, the nodes exchange
information using the high-bandwidth, low-latency network that interconnects
them. The result of the computing jobs are collected on a master node which

Cosmin Dumitru
Niek Timmers

February 5, 2010

2 CLUSTER COMPUTING 9

coordinates the compute nodes. The nodes in a compute cluster usually have
the same architecture and the same configuration. [2]

2.2.4 Grid computing

Grid computing is a form of large-scale cluster computing. A grid consists of
loose connected and geographically dispersed computers (or compute clusters).
Grids aim at aggregating distributed computation capabilities and offering them
as a service[15].

Cosmin Dumitru
Niek Timmers

February 5, 2010

3 FAILOVER 10

3 Failover

Failover is the action of switching automatically to a standby server in the event
of network, hardware or application failure. This increases the overall system
availability and therefore, it is commonly implemented in systems where high-
availability is required. Ideally the failover should meet the following criteria
[2]:

• Transparent - Failover should not be more intrusive to clients than a simple
system reboot. This does not imply that the outage should take as long as
a reboot, but that the actions that the users must take in order to access
the services should not differ from the ones performed after a system
reboot

• Quick - Failover time should ideally take between two and five minutes [2,
p. 366]. This can be achieved if the standby server is already booted and
running as many of the required processes as possible.

• Minimal manual intervention - Ideally the failover process should be fully
automated in order to provide the best failover times possible.

• Guaranteed data access - Once the failover is completed, the new server
should have access to the same data as the original server.

3.1 Hardware Failures

Server failures affect the system availability as recovery implies diagnosing the
failed component, replacing it and sometimes even reconfiguring the system to
its previous state. The time that takes for a failed component to be repaired is
called MTTR - Mean time to recovery.

One solution for server failures is equipping the server with fault-tolerant
(i.e. redundant) hardware. In such a configuration, most of the hardware is
redundant and the server can withstand at least one hardware failure. Achieving
redundancy depends greatly on the targeted hardware: for disk drives, a RAID
(Redundant Array of Independent Disks) setup is nowadays common, while for
backplane or motherboard failures are supported only by high-end specialized
systems. The most common hardware failures in HPC clusters[5]:

• Disk drives - mitigated when using a RAID configuration

• Network cards - mitigated by using redundant network connections, e.g
NIC teaming

• Memory modules - mitigated by using error correcting memory modules

3.2 Software Failures

Software failures can have several causes, some more difficult to mitigate than
others.

Cosmin Dumitru
Niek Timmers

February 5, 2010

3 FAILOVER 11

While I/O errors can be easily detected by checking the return values of write
or read calls, other failures like improper database reconnection need additional
logic or even human intervention. Network failures can have an impact on the
applications that are dependent on network connectivity. Improper handling of
such situations causes systems to go into states where human intervention is
necessary.

Last but not least, internal application failures are the most common cause
of application-level failures. Possible causes are memory access faults, memory
corruption, hanging processes because of deadlocks or infinite loops. Thorough
application design and testing can greatly reduce the occurrence of these events.

A special type of application crashes are service crashes. A service crash that
depends by an internal state of the service and on everything that happened
before will be fixed by a service restart as the internal state is cleared. Literature
[18] calls this type of error a Non-deterministic error. A deterministic error [18]
occurs when the service crashes regardless of the internal state. This is most
likely as a response to data input and automatic mitigation of this type of error
is impossible.

3.3 Failover Requirements

In [2], the authors present the following items as necessary when designing a
basic failover system:

• Two servers - an active server and a passive server. In the case when the
active server fails, the passive server takes over and the critical applications
are migrated. Ideally, the servers should be identical in terms of hardware,
operating system and configuration.

• Network connections - a network connection dedicated for heartbeats that
need to be exchanged between the two servers. To provide redundancy,
two heartbeat networks should be deployed. The heartbeat networks allow
the servers to communicate and monitor each other. Having a separate
network for heartbeats assures that there are no network delay and band-
width problems and in this way messages are guaranteed to arrive in a
timely manner.

• Shared storage - besides the unshared disks that host the operating system
and other files, additional shared storage is necessary to host the appli-
cation critical data. Access to the shared disk is changed back and forth
when a failover occurs. The shared disks should be configured in a re-
dundant setup (e.g. RAID). An alternative to shared disks is the shared
nothing approach where data is permanently synchronized between the
two servers. This method increases the overall complexity of the system.

• Application portability - the critical applications must be able to run si-
multaneously on both servers.

Cosmin Dumitru
Niek Timmers

February 5, 2010

3 FAILOVER 12

• No single point of failure - an ideal highly available system has no single-
point-of-failure. Careful hardware and software design is needed in achiev-
ing this goal. Additional thorough testing is necessary to make sure that
in the case when one component (software or hardware) fails, the system
can failover to a working state.

3.4 Failover Problems

3.4.1 Split-Brain Syndrome

The Split-Brain Syndrome [23] occurs in a cluster of paired servers when the
servers lose connectivity with each other, but in other aspects remain functional.
The servers are no longer in sync and each of them acts individually, without
taking into consideration the other server’s state. This triggers a takeover pro-
cedure by the passive node who tries to acquire access to the shared disks. At
this moment, both servers try to write data on the shared disks, leading to
instant corruption of the shared application data.

Mitigation methods of the split-brain syndrome include:

• using an additional network connection for heartbeats. Eliminating single-
points-of-failure dramatically reduces the chance of split-brain.

• asking a 3rd party to determine the next action that needs to be taken
(i.e. a quorum vote)

Cosmin Dumitru
Niek Timmers

February 5, 2010

4 FAILOVER CONFIGURATIONS 13

4 Failover Configurations

A failover solution can be configured in multiple ways. There is no rule that
states which is the best solution but there are some points to think of while de-
signing a high-availability cluster. This section will explain the types of available
failover solutions. Also, this section will cover the advantages and disadvantages
of each setup in a HPC context.

4.1 Two head node configuration

A common approach for failover is to have two homogeneous head nodes, where
the passive node can take over if the active node fails. There are basically two
options to configure the head nodes in a two-node failover configuration [20]:

• Active/Passive

• Active/Active

4.1.1 Active/Passive

In an active/passive failover configuration only the active node is doing all the
tasks needed to operate the cluster. The passive node is a dedicated standby,
which means that it is ready to take over when the primary node fails. A
failure of the active node will result in an unusable cluster. The standby node
is there to mitigate the problem of an unusable cluster. A disadvantage of an
active/passive setup is that the standby node is basically doing nothing. Only
in the case of an failover the standby node will render itself useful.[2][24]

In the case of a failover, the configuration of the active node needs to be
loaded on the standby node. Before loading this information, the standby node
must be sure that the active node is not online any more. In an active/passive
failover configuration , it is easy to get into problems if both the active and
passive node are online. For example, they could start writing to the same
shared disk which will lead to data corruption. These are the primary reasons a
failover in this configuration could be inefficient. A configuration which probably
could resolve this issue is an active/active failover configuration.

4.1.2 Active/Active

In an active/active failover configuration, both nodes provide services [2][24]. If
one of the nodes fails, the other node has to take over all the requests. Advan-
tages of an active/active configuration over active/passive are:

• load balancing - Tasks processed by the head node can now be distributed
between two machines.

• faster failover - Failover can be faster because there is no need to load the
configuration as in the standby node.

Cosmin Dumitru
Niek Timmers

February 5, 2010

4 FAILOVER CONFIGURATIONS 14

• partitioning - Partitioning can be more effective.

This type of configuration also presents some disadvantages:

• writing The head nodes cannot write to the same disk at the same time,
thereby it is necessary that both nodes have their own storage or maybe
a complex disk sharing mechanism has to be designed.

• communication The slave nodes need to communicate with two different
machines at the same time, thereby the software they are using needs to
be compatible. Out of the box software might not work any more and
additional configuration might be required.

• job manager The job manager which is used needs to be able to cope with
the distribution of job queues over multiple machines.

• complexity Using multiple nodes for the head node task can be complex.
The design must be well thought off, otherwise the complexity will destroy
the effectiveness.

In the end it all depends on the given situation and the desired degree of
availability.

4.2 Multiple Node Configuration

It is possible that one standby head node is not sufficient. The worst case
scenario in a two head nodes setup, would be that after the active fails, the
passive (which becomes active) fails while the old active is still being repaired.
To achieve optimal availability, it is advised to have multiple standby head
nodes. This would lead to a more complex setup and higher costs but it will
increase the availability of the cluster [2].

4.3 Which is best?

Every cluster design has different needs for a failover configuration. Implement-
ing a failover mechanism can be a complex and subtle task, thereby developers
tend to keep a failover mechanism as simple as possible. However, keeping the
design simple will not necessarily result in a better product. Later in this paper
there will be proposals which use different failover configurations.

Cosmin Dumitru
Niek Timmers

February 5, 2010

5 FAILOVER MECHANISMS 15

5 Failover Mechanisms

A failover mechanism can be designed in many different ways. While there are
no “silver bullet” designs in what regards failover systems, there are techniques
which are almost always used. In this section, some of these common techniques
will be discussed. We consider a high availability cluster with two nodes in an
active/passive configuration.

5.1 Fencing

It is not desirable to have multiple nodes writing to the same shared resource at
the same time because it will sooner or later result in data corruption. When
designing the system, there should be a feature that makes sure only one node
can access a shared resource at a given time. Fencing is a cluster feature which
cuts off the access to a shared resource during a failover, for example. The active
node gets cut off by the fencing mechanism from the shared resource, thus giving
the passive master node the opportunity to take over the resource, without the
active master node still using it. The most effective way of accomplishing this
is to make use of a STONITH 5.2 mechanism [6].

5.2 S.T.O.N.I.T.H.

STONITH stands for Shoot The Other Node In The Head and in the context of
a cluster this means that a node has the possibility to “kill” another node. This
can be achieved by cutting off the power of the targeted node. Another way,
which is more hardware-friendly but less effective is shutting down the targeted
node’s network interfaces. To check if the targeted node is really “dead”, the
other node can use a heartbeat 5.3 and a quorum 6.3.4. If the killer node
can reason that the targeted node is really “dead”, it can initiate the failover.
This conclusion is usually easier to make after powering off the targeted node
rather than turning off its network interfaces. For both cutting off the power
and shutting down the interfaces on the switch, special hardware is needed.
For cutting off the power, a power distribution switch with a network interface
is required so the master nodes in the cluster can communicate with it. For
shutting down the network interfaces a remotely configurable switch is needed
[25].

5.3 Heartbeat

The master head nodes need to monitor each other’s online status. Also, the
master nodes must know which slave nodes are offline and which are online.
Besides the physical machine being offline, it is also important to know that
all the essential services are running. There are several methods and programs
that can achieve this. Common types of heartbeats are:

• ping[7]

Cosmin Dumitru
Niek Timmers

February 5, 2010

5 FAILOVER MECHANISMS 16

• snmp[8]

• ipmi[9]

A heartbeat can use several communication channels for gathering its infor-
mation:

• IP multicast[10]

• IP broadcast[11]

• IP unicast[12]

• serial line[13]

Like in authentication systems, it is always better to use multiple heartbeats.
Especially between the master nodes, it is advisable to use, for example, an
ICMP ECHO REQUEST ping over two separate links to make sure that if
a link between the master nodes fails, a false positive is not triggered, thus
resulting in an undesired failover.

5.4 Quorum

If the passive master can no longer detect the active master, it can not sure if
the failover is desired. There can be situations where the slave nodes and the
active master can communicate. but the passive master cannot. This should
not trigger a failover. To mitigate this problem the passive master needs to
make sure that the active master is indeed in a failed state.

One method implies that the passive master asks the slave nodes what is
their opinion about the current situation. It asks the slave nodes if they want
the current active master node to be the active or the passive one. After the
vote is made, the passive master node knows if it needs to start a failover or
not.[26]

An action is started when the majority of the votes of the slave nodes were for
either the current active or passive master node. Before the quorum is started,
the passive master node should know at least how many slave nodes are online
in order to determine what the majority is. The majority of votes is defined by
(n

2) + 1 where n is the total amount of online slave nodes.
In the situation where the passive master node detects a failure of the active

master, it will initiate a failover sequence. To actually get to the point where it
performs a STONITH 5.2 on the active master, it first needs a quorum majority
from the slave nodes. A typical quorum process has the following steps:

• Passive master node needs a quorum decision.

• Passive master node sends out vote requests to the slave nodes.

• Slave nodes reply with their vote to the passive master node.

Cosmin Dumitru
Niek Timmers

February 5, 2010

5 FAILOVER MECHANISMS 17

• Passive master node accepts the votes from the slave nodes.

• Passive master node starts the failover when a majority of (n/2) + 1 is
achieved.

To summarize, a quorum is required in order to make a accurate decision in
a cluster and to avoid a “split-brain” 3.4.1 situation.

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 18

6 Bright Cluster Manager

6.1 Goals

The design of Bright Cluster Manager is guided by the following goals :[14]

1. Make clusters easy

2. Scale clusters to thousands of nodes

3. Be complete

6.1.1 Make clusters really easy

Bright Cluster Manager makes sure that the following tasks can be executed as
easy as possible by the end user [14].

Install Clusters Bright Cluster Manager is easy to install even with minimal
Linux knowledge.

Monitor Clusters Bright Cluster Manager can monitor all the nodes in the
cluster via a GUI.

Manage Clusters The cluster is centrally manageable through a GUI.

Use Clusters Bright Cluster Manager supports a large collection of compil-
ers, MPI libraries, software development tools and environment modules.

Scale Clusters It is easy to add slave nodes to the cluster by plugging them
in and let the software take care of the rest. Advanced features such as failover
and load-balanced node provisioning are accessible through the GUI.

6.1.2 Scale clusters to thousands of nodes

Bright Cluster Manager is designed to scale to thousands of nodes. The follow-
ing features help achieve this:[14]

• Management Daemon

• Load-Balancing Provisioning Nodes

• Synchronized Cluster Management Daemons

• Built-In Redundancy

• Diskless Nodes

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 19

6.1.3 Be complete

Bright Cluster Manager is designed to be complete. There is no use for third
party tools. This does not mean that the software is not making use of third
party tools. It heavily depends on open source tools but this is fully transparent
to the end user. The following features can be found in the software :[14]

• Multiple Linux
Distributions Supported

• Intel Cluster Ready
Complient

• Cluster Management GUI

• Cluster Management
Shell

• Node Provisioning System

• Node Identification

• Software Update
Management

• Cluster Monitoring

• User Management

• Parallel Shell

• Workload Management

• Cluster Health Care
Management

• Cluster Security

• Compilers

• Debuggers & profilers

• MPI Libraries

• Mathematical Libraries

• Environment Modules

6.1.4 Cluster Resources

An HPC cluster using Bright Cluster Manager essentially has two type of nodes:
master nodes and slave nodes. The slave nodes are responsible for running com-
pute jobs. They are not accessible directly by the cluster users. The master
nodes serve as management nodes for the slave nodes and as access gateways
(login role) for users. The users can submit jobs from the master nodes. Ad-
ditionally, master nodes monitor the status of the slave nodes by periodically
polling monitoring data from the slave nodes.

To implement a high availability system, a number of two master nodes are
used. Besides static IP addresses that are uniquely assigned to them, they also
have two shared IP addresses. One IP address is used by the users to connect
to the cluster and is configured on the external network, while the other is used
by the slave nodes to communicate with the master nodes and is configured on
the slave network.

In addition, a shared storage is used by the master nodes to store cluster
configuration information, job results and certificates used in authenticating and
authorizing cluster commands.

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 20

6.1.5 Management

Bright Cluster Manager offers two options to manage the cluster. One is a
shell interface called Cluster Manager Shell or in short cmsh and the other one
is a GUI, Cluster Manager GUI or cmgui. Most tasks can be accomplished
both from the GUI and the shell. The shell can be used to execute automated
sequences, while the GUI offers an easy interface to the cluster management
tools.

6.2 Failover Configuration

Bright Cluster Manager has an active/passive head node configuration for its
failover feature. One could argue that is a active/active head node configuration
because it is possible to assign certain tasks to the standby master node. It is
not possible to run the head node specific tasks on both nodes at the same time.
This is the primary reason that makes it an active/passive configuration.

The active node is said to be the “active master” and the standby node is
said to be the “passive master”. Both masters monitor each other via several
heartbeats:

• MySQL - A local mysql instance status check is being done. The status is
reported to both nodes.

• Ping - An ICMP ping is made via the slave network between both nodes.
The result of this ping is reported to both nodes.

• SOAP RPC - A SOAP RPC call via HTTP is made via the slave network
between both nodes. The CMDaemon can be accessed on port 8080. The
result of this SOAP RPC is reported to both nodes.

• BackupPing - In addtion to the default heartbeats, another ping heartbeat
can be configured. It is up to the administrator via which network this
ping is being made.

Together, these heartbeats form a status. Via the cluster management shell
it is easy to query this status. The result of a status query where an additional
heartbeat is configured looks like this:

[root@master1 ~]# cmha status
Node Status: running in active master mode

Failover status:
master1* -> master2
mysql [OK]
ping [OK]
status [OK]
backupping [OK]

master2 -> master1*

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 21

mysql [OK]
ping [OK]
status [OK]
backkuping [OK]

During normal operation, the shared resources 6.1.4 are available and config-
ured on the active master. The active master has exclusive access to the shared
disk and the shared IPs are configured as aliases on its network interfaces. Dur-
ing failover the cluster resources are migrated to the the passive master.

6.2.1 Manual Failover

The failover is intended to be triggered automatically, but manual failover is also
possible. This can be used when the active node needs for example maintenance.
Without the failover mechanism, this could result in a relatively long downtime.
A failover can be manually initiated by simply executing the following command
on the passive node:

cmha makeactive

6.2.2 Automatic Failover

During a manual failover, no quorum is needed to decide which of the head
nodes should be the master. The decision is made by human intervention. Only
an automatic failover needs a quorum to make the right decision. A failover is
initiated when all configured heartbeats are failing. This means that a failover
is only initiated in the following situations:

• No Power - When the “active master” loses power, the “passive masive”
detects this. It will initiate a quorum. The nodes will decide if they want
a failover or not.

• No Slave Network - Only when the additional heartbeat is not configured,
a failover will be initiated when the “active master node” loses connection
to the slave network. All three default heartbeats are sent via the slave
network. The “passive master” will detect this and initiate a failover.

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 22

6.3 Logical Design Issues

The current design of Bright Cluster Manager can be improved in various ways.
This section will focus on the areas that can be improved. The design of Bright
Cluster Manager is now roughly:

Figure 2: Cluster failover including n slave nodes.

All the information used in the following sections was gathered by commu-
nicating with the developers of Bright Cluster Manager . This has been done
either in person or via email.

6.3.1 Additional Heartbeat Link

Context In Bright Cluster Manager there is the option for an additional ping
heartbeat over an alternative network. By default, the ping and SOAP heartbeat
are going over the slave network, while the additional heartbeat ping can go over
the slave network, external network or an additional network.

Problem If the active master node loses connectivity to the slave network,
the cluster is rendered unusable, as users cannot submit new jobs to the slave
nodes and they can not send job results back to the master node. Clearly, this
is an event that should trigger a failover.

In the default setup if, the slave network interface fails, a failover is initiated
by the passive master as no heartbeat is detected from the active one.

When using an additional heartbeat network, a failover is initiated only if
all heartbeats fail. Therefore. if an administrator configures the additional link
over an additional network, no failover will be triggered if the slave network
NIC on the active master fails and the backup heartbeat interface is still up.

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 23

Figure 3: Failover setup with both external and slave network failing.

We reason that the behavior of the failover system is not consistent, as slave
network failure can or can not trigger a failover, all depending on the setup of
the master node pair. The slave network interface is treated only as a heartbeat
link and not as a critical component of the cluster setup.

Impact If the slave network connection fails and the additional heartbeat link
is still functional, the system does not perform a failover.

Recommended resolution We recommend that in the setups where an ad-
ditional heartbeat link is deployed, the NICs should be connected to the slave
network and not to a separate network. Ideally, the backup NICs should be
connected to different switches than the main NICs. When the network inter-
face on which the master IP of the cluster is configured fails, the IPs configured
on the failed NIC should be migrated to the backup NIC.

Our recommendation eliminates a single-point-of-failure: the slave network
NIC.

Considerations The solution does not add a lot of complexity to the existing
failover system. Extra care should be taken to restart the services that are
dependent on the migrated IP addresses.

6.3.2 Local Disk Failure

Context We consider a local disk failure an event which leads to a state where
the volume that stores the current operating system files can not be accessed
anymore.

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 24

Figure 4: Slave nodes report to masternode

Local disk failures are uncommon in High Availability systems as usually the
disks are configured in a redundant RAID. Yet the chances of local disk failure
still exist as studies show that disk failures are correlated [17].

In a RAID setup, the disks are connected to a RAID card that performs
the logical operations needed by the configured RAID level. This hardware
component is a single-point-of-failure as its failure will make all the connected
disks unusable.

In addition to hardware failures, research shows that a large percentage
of disk failures are caused by human operators [5]. Having this in mind, the
probability of local disk failure is no longer negligible.

Problem Bright Cluster Manager does not handle local disk failures. We have
tested the behavior of Bright Cluster Manager to local disk failure by several
methods. We have simulated a local disk failure by removing the OS disk from
the running active master node. This was done by sending a signal to the Linux
kernel to remove the SCSI device:[27]

echo 1 > /sys/bus/scsi/devices/0:0:0:0/delete

At this point, we have observed that the OS on the active master is still
functional. Testing the failover status on the passive master indicates some
trouble on the active master but a failover is not initiated.

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 25

Below is a status output for the failover system:

[root@master2 ~]# cmha status

Node Status: running in passive master mode (a.k.a. "failover mode")

Failover status:

(Wed Jan 27 14:28:07 2010) Soap error (cmjob->getJobQueues()):

Unexpected end of file, no input, or timeout while receiving

data or invalid socket

(connection error)(#-1) master1* -> master2

mysql [OK]

ping [OK]

status [OK]

master2 -> master1*

mysql [OK]

ping [OK]

status [OK]

Figure 5: HA status after local disk failure

The getJobQueues command fails as checking the job queue requires disk
access but other than that, the health indicators on which Bright Cluster Man-
ager relies are indicating that the system is in a valid working state. Because the
kernel and the running applications are stored into RAM memory, the network
stack is still functional and the processes are still running. The active master
continues to reply to ICMP ECHO REQUEST packets and some SOAP RPC
calls still succeed. SSH connections initiated to IP addresses configured on the
active master fail. The behavior of the other running services is unpredictable
but during our testing Bright Cluster Manager did not detect any service fail-
ures. This shows that Bright Cluster Manager is not checking the state of the
mounted disks and it does not detect local disk failures. We have tested the
effect of a human error by running the following command on the active master:

[root@master2 ~]# rm -fr /

The effect was similar to the one described in the previous paragraph.

Impact In the event of local disk failure, the cluster is rendered as unusable
without a failover being initiated.

Recommended resolution We recommend including a periodic checking of
the current mounted file systems. The check should rely only on system calls
as standard Unix checking utilities can not be used. Our proposal enhances the
automatic failover mechanism of Bright Cluster Manager by making it more
reliable in the event of catastrophic failures.

Considerations The overall system complexity is not increased.

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 26

6.3.3 External Network

Context The master nodes are equipped with at least two network cards. One
is used for the external network from which clients connect to submit computing
jobs and from which management operations are initiated, and the second one
is used for the slave network, a dedicated network for the computing nodes.

In addition, the external network interfaces can be used to check the other
master node by sending ICMP packets.

External network connectivity is needed also for keeping an accurate time.
Accurate time is provided by the ntpd service which connects to external time
servers.

Figure 6: External network link fails.

Problem If the external network interface fails, a failover action is not trig-
gered.

Impact The failure of the external network interface can affect both the users
of the clusters, as they are unable to connect to the active master and cluster
services rely on accurate time. In addition, depending on the noticed clock skew,
service log correlation on the active and passive master is made difficult if not
impossible.

Recommended resolution We recommend that Bright Cluster Manager should
monitor the external network interface and in the event of failure it should ini-
tialize a graceful failover. In order to detect if the external connectivity has
been lost, the active master should send ICMP probes to the external interface
of the passive master and to the default gateway. Only if both tests fail, the

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 27

failover should be started. In addition, to eliminate a single-point-of-failure, a
second standby external network NIC should be installed on the master nodes.

Considerations The proposed resolution does not add much complexity to
Bright Cluster Manager .

6.3.4 Large Quorums

Context The quorum is initiated when the passive master detects that the
active master node is failing. The quorum consists of unicast messages sent to
all the active slave nodes. The slave nodes will reply with information regarding
whether they want the passive master to takeover the active master. When a
majority of n/2 + 1 is reached, where n is the number of active slave nodes, the
failover is initiated by the passive master. The power is cut off from the active
node and the passive master takes over.

Figure 7: Quorum mechanism initiated by the active master

This quorum mechanism has good performance in relatively small clusters.
The quorum mechanism was intensively tested in the test setup 1.2. With four
slave nodes at low load the voting process takes less than 5 seconds.

Problem In a large cluster with high load, the quorum mechanism might not
perform efficiently. In the current setup, the cluster management daemon is
running on the slave nodes with normal priority (nice 0). Slave nodes with
high loads on both I/O and CPU can delay the quorum voting response as they
must process the voting request, check which of the master nodes are up and
provide a response to the node which initiated the voting. This issue is mainly
present because the passive master needs to send out all the VOTE REQ in a
unicast manner. Unicast is a sequential operation, therefore a delayed response
further delays the voting process. The current implementation uses a multi-
threaded voting process which partially circumvents the eventual delays, yet
the number of running threads is limited by the number of available CPUs on

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 28

the master node. Given the fact that the voting operation becomes essentially
sequential, the delay in voting could exceed the desired failover time threshold.

Impact Large, high load computing clusters could be affected, when a failover
is needed and the load on a large percentage of the slave nodes is exceptionally
high.

Recommended resolution There are a number of operations that can limit
the effects of this issue.

One of them is starting a larger number of threads, which is dependent on
the cluster size. The current 10 threads might not be sufficient for a 10.000
node cluster. The optimal number of threads is hard to determine at first sight.
Further research needs to be made in order to determine the optimal value.
Other possible solutions for this problem can be found in section 8.

In addition, to mitigate the delay in scheduling the cluster management
daemon on the slave nodes, the cmd process could be made to run with a higher
priority on the slave nodes. This would assure that the voting operation takes
less time. The Unix renice command is capable of altering the priority of a
process.

Considerations Increasing the cmd’s process priority on the slave nodes
might affect the raw computing performance. The nice value needs to be set to
a reasonable setting. The high process priority is useful only in failover scenarios
when the voting process is used.

6.3.5 Service Monitoring

Context Bright Cluster Manager monitors the essential services on which the
functionality of the cluster is dependent upon. If a service stops or crashes, it
is automatically restarted and the event is logged. The event database can be
viewed either from the GUI or from the Cluster Manager shell. This mechanism
is designed to deal with non-deterministic service errors (see section 3).

Problem Bright Cluster Manager does not perform any other additional ac-
tions when a service fails. If a service fails because of a permanent error, restart-
ing it will not bring the system to a working state.

Impact Failing critical services would bring the cluster in an unusable state.

Recommended resolution Bright Cluster Manager should implement a mech-
anism that controls the cluster’s behavior on unrecoverable service failure. If a
certain fail threshold is hit, then the Bright Cluster Manager should trigger a
graceful failover.

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 29

After analyzing the current services that Bright Cluster Manager monitors,
we suggest that the sge, nfs and cmdaemon services should trigger a failover,
as they are essential for master node operation.

The ntpd, mysql, ssh, named, dhcp and posftix services are not critical
and the current behavior of restarting them upon failiure is sufficient. The
system administrator should be notified if one of the services fails, but further
action is not mandatory. This feature would allow the system adminstrators to
cluster other services that would benefit from high availibility.

Considerations If a second service failure is encountered after the failover
and the fail count is hit, Bright Cluster Manager should not perform a second
failover . This would put the cluster in a failover loop. The number of failover
events might increase.

6.3.6 NTP Configuration

Context The master nodes run a NTP service which provides accurate global
time for the cluster. The slave nodes use the masters as reliable time sources.[28]

Problem The ntpd configuration files on both masters include only external
servers as time sources. If the cluster has no Internet connectivity, the master
nodes are subject to time differences as they are unable to synchronize their
time.

Impact Service log correlation on the active and passive master is made dif-
ficult if not impossible. Clustered services that require the same time on both
master nodes are affected.

Recommended resolution The ntpd configuration on each master node
should include as a last resort time source, the other master node. In this
way, even though the time is no longer accurate with the real time, the nodes
are not affected.

Considerations No complexity will be added to the design of Bright Cluster
Manager .

6.3.7 Failover Toggle switch

Context The Bright Cluster Manager failover mechanism is triggered when-
ever a critical failure is detected.

Problem There might be moments when even though a failure was induced,
a failover is not desired. Such situations can include maintenance operations
where services are reconfigured or network topology changes trigger temporary
outages.

Cosmin Dumitru
Niek Timmers

February 5, 2010

6 BRIGHT CLUSTER MANAGER 30

Impact The serviceability of the cluster system is impaired.

Recommended resolution Bright Cluster Manager should include an op-
tion to temporarily disable the failover mechanism. This can simply be a on/off
button in the GUI or a command in cmsh.

Considerations The temporary disabled state of the failover mechanism should
be clearly highlighted in the GUI and logs. Misconfiguring this option would
seriously affect the cluster in the event of failures.

Cosmin Dumitru
Niek Timmers

February 5, 2010

7 OTHER CLUSTER SOFTWARE 31

7 Other Cluster Software

Besides Bright Cluster Manager , there are several other cluster managers. Ba-
sically what all cluster managers have in common is that their goal is to keep
cluster management as simple as possible.

7.1 Red Hat Cluster Suite

Redhat HPC Redhat offers a bundle of RHEL and Platform Cluster Man-
ager. The bundle is oriented towards small cluster solutions. While Redhat
offers a HA clustering solution for regular Unix services, called Redhat Cluster
Manager, there is no guideline to integrate the Platform Cluster Manager with
the Redhat cluster suite.

7.2 Platform Cluster Manager

The Platform Cluster Manager combines various open source tools into a single
cluster manager interface. This is also how the Bright Cluster Manager is
designed [30].

Feature BCM Platform
failover available X ×
failover configuration active/passive -
max nr. of head nodes 2 -
quorum type majority quorum -
resource fencing STONITH - PDU -
heartbeat ping nagios (snmp)

SOAP
backupping

No failover The Platform Cluster Manager has no support for failover. Thereby
it is impossible to see this product as complete as it is advertised. An HPC
product without HA is simply not complete.

7.3 Pacemaker

Pacemaker is a resource manager which uses several open source libraries to
glue a cluster manager together [31]. It mainly relies on:

• Heartbeat[32]

• OpenAIS or corosync[33]

Cosmin Dumitru
Niek Timmers

February 5, 2010

7 OTHER CLUSTER SOFTWARE 32

Feature BCM Pacemaker
failover available X X
failover configuration active/passive active/passive

n + 1
n-to-n

max nr. of head nodes 2 2
n

quorum type majority quorum majority quorum
using cluster slave nodes using HA cluster members

resource fencing STONITH - PDU STONITH - PDU
STONITH - UPS
STONITH - Blade Control
STONITH - Lights-Out

heartbeat ping Heartbeat
SOAP
backupping

The main difference between Pacemaker and Bright Cluster Manager is
that the first one is more flexible. There are several options to perform a
STONITH5.2 on the active head node. Such options are not yet implemented
in Bright Cluster Manager . Thereby, one could argue that Pacemaker is more
flexible than Bright Cluster Manager . An interesting feature implemented in
Pacemaker is that it supports multiple failover configurations.

Pacemaker is not oriented towards HPC, but towards a more generic HA
cluster. Regular services can be made highly available using Pacemaker. At the
time this was written, there is no HPC project that includes Pacemaker.

7.4 PBS Pro

PBS Pro is a scalable cluster management solution. It is basically similar to
Bright Cluster Manager . They both have HA in their design goals.

Feature Bright Cluster Manager PBS Pro
failover available X X
failover configuration active/passive -
max nr. of head nodes 2 -
quorum type majority quorum -
resource fencing STONITH - PDU -
heartbeat ping -

SOAP
backupping -

PBS Pro did not provide any information about their failover mechanism.
Thereby the information provided for this cluster manager is incomplete.

Cosmin Dumitru
Niek Timmers

February 5, 2010

7 OTHER CLUSTER SOFTWARE 33

7.5 Moab Cluster Manager

Feature Bright Cluster Manager Moab
failover available X X
failover configuration active/passive backup job service
max nr. of head nodes 2 1 + backup job host
quorum type majority quorum -
resource fencing STONITH - PDU -
heartbeat ping -

SOAP
backupping -

The Moab Cluster Manager is a product of Adaptive Software. Its goal is
to provide an unified solution across diverse resources and environments in a
cluster. It supports most of the popular job management solutions like Sun
Grid Engine, PBS, Torque, etc.

The High Availability features are not very advanced. The only HA feature
is to provide a backup job management service host if the local job management
service fails [37].

7.6 Scyld ClusterWare

Feature Bright Cluster Manager Scyld ClusterWare
failover available X X
failover configuration active/passive active/active*
max nr. of head nodes 2 2 or more
quorum type majority quorum -
resource fencing STONITH - PDU -
heartbeat ping -

SOAP
backupping -

The Scyld Clusterware management software supports a limited form of
high availability using multiple master nodes. Slave nodes can be assigned to
specific master nodes, but at any given moment a slave can be assigned to
exactly one master node. Partitioning makes a part of the cluster still available
even if one master node has failed. The partitions can be defined statically
or dynamically, based on slave nodes load. An additional option enables a
slave node to change its master node when it detects a failure. After a reboot,
the slave can renegociate its membership in the cluster groups [38]. A serious
drawback of this system is that it makes the use of all computing nodes in one
job impossible.

Cosmin Dumitru
Niek Timmers

February 5, 2010

7 OTHER CLUSTER SOFTWARE 34

7.7 Comparison Results

What all cluster managers have in common is that they tend to present their
solution as perfect. A lot of all the remarks vendors make about their products
are rather marketing slogans than technical facts. All the products have in
common the fact that they are running on a Linux distribution and they make
heavy use of open standards. They are basically using a common library for the
following tasks:

• monitoring (snmp, ssh, nagios, custom)[36]

• message passing (MPI)[34]

• job management (SGE,PBS) [35]

Most of the software companies were not really open about their failover
mechanism. Even Bright Cluster Manager is quite closed about this. Luckily,
the developers provided us some more information. Unfortunately, this was not
the case with alternative cluster managers. We believe that a better description
of the failover features would be in the customer’s interest.

Cosmin Dumitru
Niek Timmers

February 5, 2010

8 PROPOSALS 35

8 Proposals

This chapter will describe possible future improvements for the failover mech-
anism. Some designs are a lot harder to implement but the advantages could
mitigate some of the limitations the current design has.

8.1 Overlay Network

An overlay network is an network on top of the underlying physical network
and is implemented at the application layer. One of the purpose of an overlay
network in a HPC cluster would be to establish group memberships between
the slave nodes. This would assure that only healthy nodes are included in
computing jobs and failed nodes are more easily detected and replaced. In large
clusters, this could help in decreasing the quorum size and therefore the duration
of the voting process would be also decreased.

A group membership relation assures that there is connectivity between all
the members of the group. For HPC this is essential as jobs could be affected
by poor connectivity between the nodes.

However, an overlay on top of the underlying network will also introduce
some disadvantages. The software that is deployed on all the slave nodes would
need additional logic to handle group memberships and a routing algorithm for
communicating inside the overlay network. This would increase the complexity
of the software and the computing performance of the HPC cluster might be
affected by the induced overhead.

8.2 Large Quorums

We believe that the current quorum system is not optimal for large clusters, as
the time needed by a master node to achieve a simple majority during a quorum
procedure might be too big. We propose two methods for improving the quorum
time in a large cluster setup.

In the current quorum procedure, the passive master (the master node that
wants to take over) sends unicast HTTP RPC calls that signal a voting request
to all the active slave nodes. The slave node checks if the current active master
is reachable and if not, it gives its vote to the passive master. The passive
master takes over when a majority of n/2 + 1 of votes is reached (where n is the
number of active slave nodes).

The HTTP RPC call makes the quorum procedure sequential, as the na-
ture of HTTP calls is sequential. The current version of Bright Cluster Man-
ager starts a variable number of threads that perform the RPC calls. The
parallelism of this approach is limited by the number of physical CPUs installed
on the master nodes. The complexity of this algorithm is O(n)

no.ofthreads = O(n)
,as all slave nodes must be queried.

Cosmin Dumitru
Niek Timmers

February 5, 2010

8 PROPOSALS 36

8.2.1 Resource Groups

We consider organizing the cluster as a tree with height 3. The number of leaves
of the tree is dependent on the size of the cluster. As in-field testing needs to
be done to determine the optimal values, we will present the general concept
without giving actual numeric values.

Figure 8: Slave nodes partitioned in resource groups via a tree

The tree structure is described below:

1. root level: members: the master nodes, the active master node is the
actual tree root

2. leader level: members: n/q leader nodes, where q is the desired number
of groups

3. slave level (members: n amount of slave nodes)

The head nodes have the same functionality as they have now in the current
Bright Cluster Manager failover setup.

The leader nodes are statically defined from either the pool of slave nodes
or from other nodes that are member of the cluster (provisioning nodes, login
nodes, etc). Besides the regular tasks that are already defined, the leader nodes
will perform a number of additional tasks. The leader nodes will monitor a
number of slave nodes assigned to them. We define a “resource group” as all
the slave nodes that are assigned to a particular leader node. The leader node
will periodically send the monitor data to the active master node and, if defined,
to a node that has the monitoring role. The master nodes will keep track of the
active slave nodes using the data sent in by the leader nodes.

Cosmin Dumitru
Niek Timmers

February 5, 2010

8 PROPOSALS 37

If a slave node can not communicate with its assigned leader, it will report
monitoring data directly to the master node until the assigned leader will be
brought back online.

Figure 9: Slave nodes report to the master node

The master nodes will use the list of active nodes to start a quorum in the
event of a failure.

The new quorum procedure will run as follows:

1. Passive Master sends leaders a command to start the quorum

2. Leaders start quorum inside group

3. Slaves send vote to master nodes

4. Master node waits a small amount of time to get a majority

5. Master node continues regular quorum procedure on slave nodes that
didn’t send votes in yet

Our proposal offloads the quorum start to the leader nodes. The current par-
allelism implemented in the quorum mechanism, based on threads, is extended
to multiple hosts who can also start threads to further speed up the process.
Step 5 in the algorithm is required to make sure that all the active nodes have
the opportunity to vote. Some leader nodes might be unreachable and therefore
unable to relay the voting message.

Although the complexity of the algorithm is still O(n), we believe that the
performance gain in a real-world setup is significant. As the cluster size in-
creases, additional leader nodes can be added to the tree in order to keep the
quorum time as small as possible.

Our proposal is in sync with the current trend of decentralizing cluster man-
agement tasks and offloading them to dedicated nodes.

Cosmin Dumitru
Niek Timmers

February 5, 2010

8 PROPOSALS 38

8.2.2 Optimized Quorum Sequence

The current quorum sequence gives no priority of low load nodes over high load
nodes. An overloaded node could delay the voting response and the thread that
issued the voting request will be blocked until a timeout is reached or a vote is
obtained.

Our proposal is to create a dynamic list of all the active nodes. We call this
list “quorum sequence list”. It should be sorted by slave node load for the past
5 minutes. This metric is collected periodically from the slave nodes by the
master node. There is no need to poll this information very often. We take into
consideration that any monitoring process affects the slave nodes computing
performance.

When a quorum is initiated, the master node will start querying the slave
nodes in the order specified by the quorum sequence list. Asking idle nodes first
helps in obtaining the majority of votes faster. Even if the actual load on some
node changes, the number of occurrences of blocking states will be far smaller
than in a non-optimized quorum. If the load on all the nodes dramatically
changes, then the quorum procedure falls back to the current implementation
which does not take into account priorities for nodes.

This proposal is a refinement of the current quorum algorithm and in busy
clusters may improve the system response time in the event of failure. We
believe that the added complexity is acceptable as its foundation is already
implemented in Bright Cluster Manager .

8.3 Active/Active setup

An active/active setup can help overloaded master nodes and it can increase
the efficiency of the cluster. We have presented the basics of this type of setup
in 4.1.2. The most simple solution of an active/active setup implies that the
cluster is partitioned and that each master node controls a number of the cluster
partitions. In the event of failure of one of the master nodes, the control of the
cluster partitions is migrated to the remaining operational master node.

Switching the cluster partitions to a new master requires both changes on the
network level (IP & MAC addresses) and on application level, as the job man-
agement system must also include the migrated cluster partitions. Supporting
more than one job management system would increase the overall complexity
of the system.

Another solution for an active/active setup implies that services run on both
master nodes and they can accept requests and serve content at the same time.
Essentially the nodes function as one system. To achieve this, the nodes need
to communicate and synchronize data in order to have the same state at any
given moment. The main advantage of this approach is that in the event of
failure the failover time is nearly 0 and transparent to the users. Also, more
than two master nodes can be used, thus achieving load balancing and better
redundancy.

The complexity of this type of setup is higher than the traditional approach

Cosmin Dumitru
Niek Timmers

February 5, 2010

8 PROPOSALS 39

of having an active/passive pair. To implement it, the job scheduler needs to be
modified. Additional delay and complexity is introduced by the group member-
ship communication protocols employed. In [20], a description of such a system
is given. It makes use of a wrapper around the clustered services that ensures
that all the nodes in the cluster receive the same information. Additionally, a
mutual exclusion manager controls which node performs which operation. The
mutual exclusion is needed as replicated events should not be processed by all
nodes. To the best of our knowledge, this type of implementation is not present
in any of the current state-of-the-art cluster management products on the mar-
ket.

8.4 Automated Failover Test Scripts

During our research, we have found a number of 3 bugs in Bright Cluster Man-
ager . The appendix of this document describes the test cases that led to
the discovery of the bugs. All of the bugs were triggered by simple actions
that would have been made in an usual failover situation. We believe that the
failover mechanism should be often tested against common failure scenarios. An
automated test suite in a virtual environment would improve the overall quality
of the product.

8.5 Amazon EC2

Due to the limited time frame, we didn’t investigate throughly the option of
creating a cluster managed by Bright Cluster Manager in the Amazon EC2
cloud environment. Yet, we have identified possible starting points regarding
the high availability of such a system.

Amazon offers the option of creating instances in so called “availability
zones”, which in fact are different physical data centers that might not be sub-
ject to simultaneous outages. Placing instances in different availability zones is
a good decision for creating a highly available system in the Amazon cloud.

Bright Cluster Manager uses a shared IP which is migrated from the active
master to the passive master during failover6.1.4. While the IP address of the
instances in the Amazon cloud can not be chosen by the user, Amazon offers
an option called “Elastic IP”, which allows the user to bind the “Elastic IP” to
any instance at any given moment. By using the Amazon API, the Elastic IP
can be migrated during failover from the active node to the passive. Amazon
states that the propagation time of the Elastic IP is within the range of a few
minutes.

The performance of a cloud hosted HPC cluster is yet unknown, as the la-
tency and bandwidth inside the cloud is not guaranteed by Amazon [39]. A
normal HPC cluster uses high performance networks (like Infiniband) to pro-
vide communication between slave nodes. Having this in mind, we believe that
offloading to the Amazon cloud is efficient only for batch jobs that require min-
imal communications with other slave nodes.

Cosmin Dumitru
Niek Timmers

February 5, 2010

8 PROPOSALS 40

8.6 Optimized communication

The current communication model in Bright Cluster Manager is based on point
to point communication (TCP). Scaling this model introduces challenges espe-
cially for identical messages that need to be sent to multiple nodes. A broadcast
communication model would increase the efficiency. Yet, if each sent message
also needs a reply, this might overload the receiver. A backoff algorithm (similar
to the one in the Ethernet collision detection) would mitigate this issue. One
other major disadvantage of a broadcast model is that the system is no longer
synchronous, this meaning that the master node is no longer in total control.
This decoupling of nodes might have serious administrative impact and in addi-
tion it adds complexity as states need to be maintained for each slave node. We
do not see this as a real immediate alternative for the current communication
model, yet it is a good future research direction.

Cosmin Dumitru
Niek Timmers

February 5, 2010

9 CONCLUSIONS 41

9 Conclusions

During our research we found some issues in Bright Cluster Manager . In our
opinion these issues need to be addressed in order to achieve a more efficient
cluster manager. Additional to possible solutions for mitigation the issues in
Bright Cluster Manager , we have provided some ideas in order to make the
current failover mechanism more efficient.

Logical Design In our opinion, the current logical design of the failover mech-
anism is not efficient in large clusters. Although Bright Computing Inc. has not
yet installed clusters with more than 1.000 nodes, there is no doubt that this
will happen in the near future. We think the proposals we have presented could
mitigate some issues which will occur when Bright Cluster Manager will be
installed on top of a cluster with more than 1.000 nodes. Thereby, these pro-
posals should be taken into consideration as one of the goals of Bright Cluster
Manager is to scale to 10.000+ computing nodes.

Monitoring An issue we have addressed multiple times in this paper is how
monitoring is currently implemented. We think monitoring can be improved a
lot between the head nodes. If both head nodes have more information about
their current health, a failover decision can be more accurate, thus improving
high availability.

Focus on Hardware Our research shows that the current failover implemen-
tation of Bright Cluster Manager is more oriented towards hardware failure
rather than software failure. The current mitigations against software failure
are not complete and should be improved to assure a high level of availability.
In terms of hardware failure, the current version performs very well in the most
common cases. We have identified additional possible single-points-of-failure
that were not taken into consideration.

Complexity Software developers tend to keep their software as simple as
possible. The main reason is that higher complexity induces more issues. The
proposals we have made introduce some complexity, but in our opinion the
advantages of some of them weight more than the added complexity.

Terminology The terminology used in the configuration of the Bright Cluster
Manager needs to be more clear. A better distinction between the heartbeat
network and slave network is necessary, as we believe that the current one could
confuse future customers of Bright Cluster Manager . The critical components
that trigger a failover should also be clearly outlined. Therefore, the used ter-
minology is not concise.

Cosmin Dumitru
Niek Timmers

February 5, 2010

9 CONCLUSIONS 42

Software Testing During our research of the failover mechanism, we have
found and reported a number of 3 software bugs in Bright Cluster Manager .
All the bugs were easy to reproduce. This shows that the software testing
process could be improved. We recommend that an automated suite containing
the common failure tests should be used in the development process of Bright
Cluster Manager .

9.1 Future Research

Our four week research raised new ideas and is leading to other future research
directions.

Distributed Cluster Manager In the current logical design, there is a dis-
tinction between the head nodes and computing nodes. A failure of a head node
is a bigger problem than the failure of a computing node. To mitigate the fail-
ure of a head node, which renders the cluster unusable, a standby head node is
configured to take over when the primary head node fails. It would be better if
any node could take over from the current head node. Thereby, a homogeneous
design is preferred, not only on hardware level, but also on software level. A
problem in this design, which needs to be researched, is that the computing
nodes will get more tasks, thus affecting the available computing performance.

Amazon Sometimes, an user of a cluster needs more computing power for
a short amount of time. The option to add more nodes from, for example, a
public cloud like Amazon, could result in some extra computing power at very
low costs. There would be no need to buy more physical equipment. Although
this method seems plausible, there are some limitations. Slow networks and high
latency might negatively affect the performance of a cluster. Future research
should determine the most efficient approach.

Geographic Scalability An interesting feature would be the option to dis-
tribute the cluster over multiple locations. In our opinion, this is not really
feasible in the current logical design. Problems that need to be addressed are
how to place the head nodes in different locations and what are the implications
if the slave nodes would be in different places which may be thousands of kilo-
meters away. The advantage of a geographically distributed computing cluster
is that it can mitigate disasters.

Cosmin Dumitru
Niek Timmers

February 5, 2010

10 ACKNOWLEDGEMENTS 43

10 Acknowledgements

Our research could not have been done without the help of Bright Computing
Inc.. Thereby, we want to thank our supervisor Martijn de Vries and lead devel-
oper Koen de Raedt. Because we did not do our research at Bright Computing
Inc. but in the OS3 Lab, we heavily relied on email communication on which
they replied always fast. There was always time for discussion about certain
issues and proposals which led to better results.

Cosmin Dumitru
Niek Timmers

February 5, 2010

REFERENCES 44

References

[1] Beowulf (computing) http://en.wikipedia.org/wiki/Beowulf_
%28computing%29 Retrieved on 25th of January 2010

[2] E. Marcus & H. Stern, Blueprints for High Availability,
Wiley Publishing, Inc., 2nd edition, 2003.

[3] Red Hat, Inc. Cluster Suite for Red Hat Enterprise Linux 4.5
http://www.centos.org/docs/4/4.5/SAC_Cluster_Suite_Overview/
index.html
Retrieved on 25th of January 2010

[4] Platform Cluster Manager
http://www.platform.com/
Retrieved on 25th of January 2010

[5] Bianca Schroeder & Garth A. Gibson, A large-scale study of failures in high-
performance computing systems, Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN2006),Philadelphia, PA,
USA, June 25-28, 2006.

[6] Red Hat Cluster
http://sources.redhat.com/cluster/wiki/FAQ/Fencing
Retrieved on 25th of January 2010

[7] ping send ICMP ECHO REQUEST packets to network hosts
http://fgouget.free.fr/bing/ping_src-man.shtml
Retrieved on 25th of January 2010

[8] Simple Network Management Protocol (SNMP)
http://en.wikipedia.org/wiki/Simple_Network_Management_
Protocol
Retrieved on 25th of January 2010

[9] Intelligent Platform Management Interface
http://en.wikipedia.org/wiki/Ipmi
Retrieved on 25th of January 2010

[10] IP multicast
http://en.wikipedia.org/wiki/IP_multicast
Retrieved on 25th of January 2010

[11] IP broadcast
http://en.wikipedia.org/wiki/Broadcast_ip_address
Retrieved on 25th of January 2010

[12] IP unicast
http://en.wikipedia.org/wiki/Unicast
Retrieved on 25th of January 2010

Cosmin Dumitru
Niek Timmers

February 5, 2010

http://en.wikipedia.org/wiki/Beowulf_%28computing%29
http://en.wikipedia.org/wiki/Beowulf_%28computing%29
http://www.centos.org/docs/4/4.5/SAC_Cluster_Suite_Overview/index.html
http://www.centos.org/docs/4/4.5/SAC_Cluster_Suite_Overview/index.html
http://www.platform.com/
http://sources.redhat.com/cluster/wiki/FAQ/Fencing
http://fgouget.free.fr/bing/ping_src-man.shtml
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Ipmi
http://en.wikipedia.org/wiki/IP_multicast
http://en.wikipedia.org/wiki/Broadcast_ip_address
http://en.wikipedia.org/wiki/Unicast

REFERENCES 45

[13] Serial line
http://en.wikipedia.org/wiki/Serial_line
Retrieved on 25th of January 2010

[14] The Goals of Bright Cluster Manager
http://www.brightcomputing.com/Bright-Cluster-Manager.php
Retrieved on 25th of January 2010

[15] Grid Computing Info Centre
http://www.gridcomputing.com/gridfaq.html
Retrieved on 26th of January 2010

[16] Linux HPC Cluster Installation
http://www.redbooks.ibm.com/abstracts/SG246041.html
IBM Corporation, 2009

[17] Bianca Schroeder & Garth A. Gibson, Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you? , FAST’07: 5th USENIX
Conference on File and Storage Technologies, San Jose, CA, Feb. 14-16,
2007.

[18] James E.J. Bottomley Implementing Clusters for High Availability, Pro-
ceedings of the FREENIX Track: 2004 USENIX Annual Technical Confer-
ence

[19] Bill Highleyman, Paul J. Holenstein, Bruce Holenstein Breaking the Avail-
ability Barrier II: Achieving Century Uptimes with Active/Active Systems
AuthorHouse, 2007

[20] Christian Engelmann, Stephen L. Scott, Chokchai (Box) Leangsuksun Sym-
metric Active/Active High Availability for High-Performance Computing
System Services, Journal Of Computers, VOL. 1, NO. 8, December 2006

[21] Bianca Schroeder & Garth A. Gibson, The Computer Failure Data Repos-
itory (CFDR) , Workshop on Reliability Analysis of System Failure Data
(RAF’07) MSR Cambridge, UK, March 2007

[22] Bianca Schroeder, Wolf-Dietrich Weber ,Eduardo Pinheiro DRAM Errors
in the Wild: A Large-Scale Field Study, Workshop on Reliability Analysis
of System Failure Data (RAF’07) MSR Cambridge, UK, March 2007

[23] Managing Computers with Automation
http://techthoughts.typepad.com/managing_computers/2007/10/
split-brain-quo.html
Retrieved on 21st of January 2010

[24] Differences between active-active and active-passive
http://infocenter.sybase.com/help/index.jsp?topic=/com.
sybase.help.ase_15.0.ha_avail/html/ha_avail/ha_avail3.htm
Retrieved on 21st of January 2010

Cosmin Dumitru
Niek Timmers

February 5, 2010

http://en.wikipedia.org/wiki/Serial_line
http://www.brightcomputing.com/Bright-Cluster-Manager.php
http://www.gridcomputing.com/gridfaq.html
http://www.redbooks.ibm.com/abstracts/SG246041.html
http://techthoughts.typepad.com/managing_computers/2007/10/split-brain-quo.html
http://techthoughts.typepad.com/managing_computers/2007/10/split-brain-quo.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.ase_15.0.ha_avail/html/ha_avail/ha_avail3.htm
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.ase_15.0.ha_avail/html/ha_avail/ha_avail3.htm

REFERENCES 46

[25] Shoot The Other Node In The Head (STONITH)
http://linux-ha.org/STONITH
Retrieved on 19th of January 2010

[26] Understanding How Cluster Quorums Work
http://www.windowsnetworking.com/articles_tutorials/
Cluster-Quorums.html
Retrieved on 19th of January 2010

[27] Non-RAID Hot Swapping Help Needed
http://blog.nixternal.com/2008.07.10/
non-raid-hot-swapping-help-needed/
Retrieved on 21st of January 2010

[28] Network Time Protocol
http://en.wikipedia.org/wiki/Ntpd
Retrieved 17th of January 2010

[29] Red Hat Cluster Suite
http://www.redhat.com/cluster_suite/
Retrieved 22nd of January 2010

[30] Platform Cluster Manager
http://www.platform.com/cluster-computing/cluster-management
Retrieved 22nd of January 2010

[31] Pacemaker http://www.clusterlabs.org/wiki/Main_Page
Retrieved 22nd of January 2010

[32] Linux-HA http://www.linux-ha.org/wiki/Main_Page
Retrieved 22nd of January 2010

[33] OpenAIS Standards Based Cluster Framework
http://openais.org/doku.php
Retrieved 22nd of January 2010

[34] Message Passing Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface
Retrieved 22nd of January

[35] Sun Grid Engine
http://www.sun.com/software/sge/
Retrieved 22nd of January

[36] 20 Linux System Monitoring Tools Every SysAdmin Should Know
http://www.cyberciti.biz/tips/top-linux-monitoring-tools.html
Retrieved 22nd of January

[37] Moab Cluster Manager, version 5.3, Users Guide
http://www.clusterresources.com/products/mcm/docs/
mcmuserguide.pdf

Cosmin Dumitru
Niek Timmers

February 5, 2010

http://linux-ha.org/STONITH
http://www.windowsnetworking.com/articles_tutorials/Cluster-Quorums.html
http://www.windowsnetworking.com/articles_tutorials/Cluster-Quorums.html
http://blog.nixternal.com/2008.07.10/non-raid-hot-swapping-help-needed/
http://blog.nixternal.com/2008.07.10/non-raid-hot-swapping-help-needed/
http://en.wikipedia.org/wiki/Ntpd
http://www.redhat.com/cluster_suite/
http://www.platform.com/cluster-computing/cluster-management
http://www.clusterlabs.org/wiki/Main_Page
http://www.linux-ha.org/wiki/Main_Page
http://openais.org/doku.php
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.sun.com/software/sge/
http://www.cyberciti.biz/tips/top-linux-monitoring-tools.html
http://www.clusterresources.com/products/mcm/docs/mcmuserguide.pdf
http://www.clusterresources.com/products/mcm/docs/mcmuserguide.pdf

REFERENCES 47

[38] Scyld ClusterWare HPC, Administrators Guide, Published July 18, 2008
ftp://ftp.penguincomputing.com/pub/staff/rconnoy/Scyld/docs/
4.2.1/administration-guide.pdf

[39] Alexandru-Dorin Giurgiu, Research Project 1 OS3 SNE Network Perfor-
mance in Virtual Infrastructures: A closer look at Amazon EC2, February
2010

Cosmin Dumitru
Niek Timmers

February 5, 2010

ftp://ftp.penguincomputing.com/pub/staff/rconnoy/Scyld/docs/4.2.1/administration-guide.pdf
ftp://ftp.penguincomputing.com/pub/staff/rconnoy/Scyld/docs/4.2.1/administration-guide.pdf

A TEST CASES 48

A Test Cases

A.1 Hardware

The following tests are done in a situation where master1 is the active master.
The status of the cmdaemon is in its default failover state:

Failover status:
master1* -> master2
mysql [OK]
ping [OK]
status [OK]

master2 -> master1*
mysql [OK]
ping [OK]
status [OK]

The following table shows clearly which test cases did not behave as ex-
pected:

action rslt
Power off Master1 X
Power off Master2 X
Disconnect network cable Master1 (slave network) X
Disconnect network cable Master2 (slave network) X
Disconnect network cable Master1 (external network) X
Disconnect network cable Master2 (external network) X

A.1.1 Power off Master1 X

Expected result: failover is initiated
Actual result: failover is initiated

Passive master log:

CMDaemon: Info: Failover: no failover was initiatednode slow

CMDaemon: Info: Start quorum

CMDaemon: Info: Started quorum on: https://10.141.0.3:8081

CMDaemon: Info: Started quorum on: https://10.141.0.4:8081

CMDaemon: Info: Started quorum on: https://10.141.0.2:8081

CMDaemon: Info: Node 38654705670 wants me to be master (1 of 3)

CMDaemon: Info: Node 38654705671 wants me to be master (2 of 3)

CMDaemon: Info: Quorum condition reached (2 of 3)

CMDaemon: Info: Quorum decided, taking over

CMDaemon: Info: Failover: power off master1 using custom

CMDaemon: Info: Starting shared storage

CMDaemon: Info: Started shared storage

CMDaemon: Info: Stopping IP

Cosmin Dumitru
Niek Timmers

February 5, 2010

A TEST CASES 49

CMDaemon: Info: Starting IP

CMDaemon: Info: Initialize monitoring database

CMDaemon: Info: Set cmdaemon state: ACTIVE

CMDaemon: Info: I am now master: 1263220570

The drbd filesystem gets mounted properly:

(Mon Jan 11 15:36:05 CET 2010) DRBD Mount: master2 becoming active

(Mon Jan 11 15:36:06 CET 2010) Setting /dev/drbd0 primary (1)

(Mon Jan 11 15:36:06 CET 2010) Mount /dev/drbd0 /cm/shared (1)

(Mon Jan 11 15:36:07 CET 2010) Setting /dev/drbd1 primary (1)

(Mon Jan 11 15:36:07 CET 2010) Mount /dev/drbd1 /cm/node-installer/certificates (1)

(Mon Jan 11 15:36:08 CET 2010) Setting /dev/drbd2 primary (1)

(Mon Jan 11 15:36:08 CET 2010) Mount /dev/drbd2 /home (1)

CMDaemon status:

[root@master2 ~]# cmha status

Node Status: running in active master mode

Failover status:

master2* -> master1

mysql [OK]

ping [FAILED] (40)

status [FAILED] (46)

master1 -> [ERROR] Soap error(105)

The state of the cluster:

[root@master2 ~]# cat /var/spool/cmd/state

ACTIVE

A.1.2 Power off Master2 X

Expected result: no failover is initiated
Actual result: no failover is initiated

Passive Master log:

CMDaemon: Info: Provisioning node master2 down, canceling running provisioners.

CMDaemon: Info: FID(4): 38654705667 1263221698

CMDaemon: Info: Failover node: master1 (primary) (active)

CMDaemon: Info: FID(4): 38654705672 1263220570

CMDaemon: Info: Failover node: master2 (passive)

CMDaemon: Info: FID(2): 38654705667 1263221698 1263221698

CMDaemon: Info: FID(2): 38654705672 1263220570 1263220570

CMDaemon: Info: Return code from failover update: 1

CMDaemon: Info: Self configuration updated

CMDaemon: Info: Failover: node slow

CMDaemon: Info: Initializing queue for provisioning node master1 with 10 slots,

Cosmin Dumitru
Niek Timmers

February 5, 2010

A TEST CASES 50

providing all images.

CMDaemon: Info: Initializing queue for provisioning node master2 with 10 slots,

providing all images.

CMDaemon: Info: Successfully reconfigured IPMI interface(s)

CMDaemon: Info: DHCP performing update

CMDaemon: Info: Named performing update

CMDaemon: Info: Postfix performing update

CMDaemon: Info: LDAP performing update

CMDaemon: Info: Updating SGE configuration

CMDaemon: Info: Updating image default-image on provisioning node master2.

CMDaemon: Fatal: Updating image default-image on provisioning node master2 failed:

Rsync exit code 255, signal 0.

The drbd daemon also as expected registeres the loss of the peer.

master1 kernel: block drbd2: PingAck did not arrive in time.

master1 kernel: block drbd2: peer(Secondary -> Unknown) conn(Connected ->

NetworkFailure) pdsk(UpToDate -> DUnknown)

master1 kernel: block drbd2: asender terminated

master1 kernel: block drbd2: Terminating asender thread

master1 kernel: block drbd2: short read expecting header on sock: r=-512

master1 kernel: block drbd2: Creating new current UUID

master1 kernel: block drbd2: Connection closed

master1 kernel: block drbd2: conn(NetworkFailure -> Unconnected)

master1 kernel: block drbd2: receiver terminated

master1 kernel: block drbd2: Restarting receiver thread

master1 kernel: block drbd2: receiver (re)started

master1 kernel: block drbd2: conn(Unconnected -> WFConnection)

Because

Node Status: running in active master mode

Failover status:

master1* -> master2

mysql [OK]

ping [FAILED] (47)

status [FAILED] (44)

master2 -> [ERROR] Soap error(105)

The state of the cluster:

[root@master1 ~]# cat /var/spool/cmd/state

ACTIVE

A.1.3 Disconnect network cable master1 (slave network) X

Expected result: failover is initiated
Actual result: failover is initiated

Active master log:

Cosmin Dumitru
Niek Timmers

February 5, 2010

A TEST CASES 51

CMDaemon: Info: Failover: node slow

CMDaemon: Info: Start quorum

CMDaemon: Info: Waiting 60 seconds for quorum to be decided

CMDaemon: Info: Started quorum on: https://10.141.0.1:8081

CMDaemon: Info: Started quorum on: https://10.141.0.3:8081

CMDaemon: Info: Started quorum on: https://10.141.0.4:8081

CMDaemon: Info: Started quorum on: https://10.141.0.2:8081

CMDaemon: Info: Quorum started

CMDaemon: Info: Quorum decided, index = 0

CMDaemon: Info: Node 38654705668 wants me to be master (1 of 4)

CMDaemon: Info: Quorum decided, index = 1

CMDaemon: Info: Node 38654705669 wants me to be master (2 of 4)

CMDaemon: Info: Quorum decided, index = 2

CMDaemon: Info: Node 38654705670 wants me to be master (3 of 4)

CMDaemon: Info: Quorum condition reached (3 of 4)

CMDaemon: Info: decideQuorumRunning: 2

CMDaemon: Info: Quorum decided, taking over

CMDaemon: Info: Failover: power off master1 using custom

CMDaemon: Info: Quorum decided, index = 3

CMDaemon: Info: Quorum already running

CMDaemon: Info: Failover: setting master

CMDaemon: Info: Quorum already running

last message repeated 3 times

CMDaemon: Info: Failover: Unable to inform https://10.141.255.254:8081

of becoming master, ierr = 105

CMDaemon: Info: Starting shared storage

CMDaemon: Info: Quorum already running

CMDaemon: Info: Started shared storage

CMDaemon: Info: Stopping IP

CMDaemon: Info: Starting IP

CMDaemon: Info: Initialize monitoring database

CMDaemon: Info: Set cmdaemon state: ACTIVE

CMDaemon: Info: I am now master: 1263224807

As the “cmha status” shows the two nodes cannot communicate with each
other. This means there is at this moment no failover is possible but it also
means that the cluster is still accessible by its end users.

[root@master2 ~]# cmha status

Node Status: running in active master mode

Failover status:

master2* -> master1

mysql [OK]

ping [FAILED] (63)

status [FAILED] (72)

master1 -> [ERROR] Soap error(105)

Master2 changed its state to active:

Cosmin Dumitru
Niek Timmers

February 5, 2010

A TEST CASES 52

[root@master2 ~]# cat /var/spool/cmd/state

ACTIVE

A.1.4 Disconnect network cable master2 (slave network) X

Expected result: no failover is initiated
Actual result: no failover is initiated

Passive master log:

CMDaemon: Info: Failover: node slow

CMDaemon: Info: Initializing queue for provisioning node master1 with 10 slots,

providing all images.

CMDaemon: Info: Initializing queue for provisioning node master2 with 10 slots,

providing all images.

CMDaemon: Info: Successful remove local hard disk Master 1 & \rno \\

remove local hard disk Master 2 & \gcheck \\

high load on Master1 & ? \\

high load on Master2 & ? \\ly reconfigured IPMI interface(s)

CMDaemon status:

Node Status: running in active master mode

Failover status:

master1* -> master2

mysql [OK]

ping [FAILED] (10)

status [FAILED] (12)

master2 -> [ERROR] Soap error(105)

CMDaemon state:

[root@master1 ~]# cat /var/spool/cmd/state

ACTIVE

A.1.5 Disconnect network cable master1 (external network) X

Expected result: no failover is initiated
Actual result: no failover is initiated

On a “ifconfig down” on the external network nothing actually fails which is
related to the failover mechanism. The problem is that the ntpd service cannot
reach its servers anymore which can result in a time difference between the
active and passive master node. There is by default no time synchronisation
between the active master and the passive master.

Active master log:

ntpd[3051]: sendto(213.206.85.20) (fd=22): Network is unreachable

ntpd[3051]: sendto(213.239.154.12) (fd=22): Network is unreachable

ntpd[3051]: sendto(145.24.129.6) (fd=22): Network is unreachable

ntpd[3051]: sendto(131.211.84.189) (fd=22): Network is unreachable

Cosmin Dumitru
Niek Timmers

February 5, 2010

A TEST CASES 53

A.1.6 Disconnect network cable master2 (external network) X

Expected result: no failover is initiated
Actual result: no failover is initiated

When the network cable is unplugged on master2 ntpd cannot reach its
timeserver thereby it is unable to update the local time. This could result into
a problem when the time difference gets to big between the active master, the
secondary master and the nodes.

We adivse that the ntpd configuration should include the other master server
as a time source. The priority should be lower than the one of the regular time
sources. In the event that the external network fails, and thus the external time
sources can not be reached, the global time of the cluster nodes would still be
consistent.

A.2 Software

The following tests are done in a situation where master1 is the active master.

action rslt
kill CMDaemon on Master1 ×
kill CMDaemon on Master2 ×
kill MySQL on Master1 ×
kill MySQL on Master2 ×
kill NFS on Master1 X
kill NFS on Master2 X
kill NTPD on Master1 X
kill NTPD on Master2 X
kill LDAP on Master1 ×
kill LDAP on Master2 ×
kill NAMED on Master1 X
kill NAMED on Master2 X
kill DHCPD on Master1 X
kill DHCPD on Master2 X
remove local hard disk Master 1 ×
remove local hard disk Master 2 X
high load on Master1 ×
high load on Master2 X

A.2.1 kill CMDaemon on Master1 ×

Expected result: cmdaemon should be started (assumption)
Actual result: cmdaemon does not start

Because the cmdaemon does not restart a failover should be initiated. When
the cmdaemon is not retarted or a failover is initiated the cluster will become

Cosmin Dumitru
Niek Timmers

February 5, 2010

A TEST CASES 54

unavailable for the endusers.

Active master log:

CMDaemon: Info: Received SIGTERM. Shutting down.

CMDaemon: Info: Provisioning node master1 down, canceling running provisioners.

CMDaemon: Info: Provisioning node master2 down, canceling running provisioners.

CMDaemon: Info: Disconnect from database: cmdaemon

CMDaemon: Info: Disconnect from database: cmdaemon_mon

CMDaemon: Info: Disconnect from database: cmdaemon

Passive master log:

CMDaemon: Debug: Failover status, soap error: 105 [https://10.141.255.254:8081]

count = 56

CMDaemon: Debug: Failover: check if node is completely dead

CMDaemon: Debug: Not completely dead: ping failcount = 0

CMDaemon: Info: Master not completely dead, no quorum started

A.2.2 kill CMDaemon on Master2 ×

Expected result: cmdaemon should be started (assumption)
Actual result: cmdaemon does not start

Active master log:

CMDaemon: Info: Failover: node slow

Passive master log:

CMDaemon: Info: Received SIGTERM. Shutting down.

CMDaemon: Info: Disconnect from database: cmdaemon

A.2.3 kill MySQL on Master1 ×

Expected result: MySQL should be started
Actual result: MySQL does not restart
no failover was initiated

Active master log:

CMDaemon: Info: Unable to connect to monitoring MySql database:

ConnectionFailed, will try again (2) ...

Passive master log:

CMDaemon: Info: Starting mysql replication

CMDaemon: Info: Starting mysql replication

Cosmin Dumitru
Niek Timmers

February 5, 2010

A TEST CASES 55

A.2.4 kill MySQL on Master2 ×

Expected result: MySQL should be started
Actual result: When MySQL is killed on Master2 the cmdaemon on Master2
crashes.

CMDaemon: Debug: Reconnect to database

CMDaemon: Debug: Stop CMDaemonFailoverController

CMDaemon: Debug: End CMDaemonFailoverMysqlController::run 0

CMDaemon: Debug: Stop CMDaemonFailoverController

CMDaemon: Debug: End CMDaemonFailoverPingController::run

CMDaemon: Debug: Stop CMDaemonFailoverController

CMDaemon: Debug: End CMDaemonFailoverStatusController::run

CMDaemon: Debug: SysStateCollector: done

A.2.5 kill NFS on Master1 X

Expected result: nfsd should be started
Actual result: nfsd starts

Active master log:

CMDaemon: Fatal: /etc/init.d/nfs status, exitcode = 3, signal = 0

CMDaemon: Info: Service nfs is not running, attempting to restart.

CMDaemon: Debug: Starting service nfs

CMDaemon: Debug: ProgramRunner: /etc/init.d/nfs start

CMDaemon: Fatal: /etc/init.d/nfs start, exitcode = 1, signal = 0

A.2.6 kill NFS on Master2 X

Expected result: nfsd should be started
Actual result: nfsd starts

Passive master log:

CMDaemon: Fatal: /etc/init.d/nfs status, exitcode = 3, signal = 0

CMDaemon: Info: Service nfs is not running, attempting to restart.

CMDaemon: Fatal: /etc/init.d/nfs status, exitcode = 3, signal = 0

CMDaemon: Fatal: /etc/init.d/nfs start, exitcode = 1, signal = 0

A.2.7 kill NTPD on Master1 X

Expected result: ntpd should be started
Actual result: ntpd starts

Active master log:

CMDaemon: Debug: ProgramRunner: /etc/init.d/ntpd status

CMDaemon: Fatal: /etc/init.d/ntpd status, exitcode = 3, signal = 0

Cosmin Dumitru
Niek Timmers

February 5, 2010

A TEST CASES 56

CMDaemon: Info: Service ntpd is not running, attempting to restart.

CMDaemon: Debug: Add event to database: 1246

CMDaemon: Debug: ProgramRunner: /etc/init.d/nfs status

CMDaemon: Debug: ProgramRunner: /etc/init.d/ntpd status

CMDaemon: Fatal: /etc/init.d/ntpd status, exitcode = 3, signal = 0

CMDaemon: Debug: Starting service ntpd

CMDaemon: Debug: ProgramRunner: /etc/init.d/ntpd start

A.2.8 kill NTPD on Master2 X

Expected result: ntpd should be started
Actual result: ntpd starts

Passive master log:

CMDaemon: Debug: ProgramRunner: /etc/init.d/ntpd status

CMDaemon: Fatal: /etc/init.d/ntpd status, exitcode = 3, signal = 0

CMDaemon: Info: Service ntpd is not running, attempting to restart.

CMDaemon: Debug: ProgramRunner: /etc/init.d/ntpd status

CMDaemon: Fatal: /etc/init.d/ntpd status, exitcode = 3, signal = 0

CMDaemon: Debug: Starting service ntpd

CMDaemon: Debug: ProgramRunner: /etc/init.d/ntpd start

A.2.9 kill LDAP on Master1 ×

Expected result: ldapd should restart
Actual result: ldapd does not restart but it actually checks the status and does
nothing with it.

CMDaemon: Debug: ProgramRunner: /etc/init.d/ldap status

A.2.10 kill LDAP on Master2 ×

Expected result: ldapd should restart
Actual result: ldapd does not restart but it actually checks the status and does
nothing with it.

CMDaemon: Debug: ProgramRunner: /etc/init.d/ldap status

A.2.11 kill NAMED on Master1 X

Expected result: named should be started
Actual result: named starts

Active master log:

Cosmin Dumitru
Niek Timmers

February 5, 2010

A TEST CASES 57

CMDaemon: Debug: ProgramRunner: /etc/init.d/named status

CMDaemon: Fatal: /etc/init.d/named status, exitcode = 3, signal = 0

CMDaemon: Info: Service named is not running, attempting to restart.

CMDaemon: Debug: ProgramRunner: /etc/init.d/named status

CMDaemon: Fatal: /etc/init.d/named status, exitcode = 3, signal = 0

CMDaemon: Debug: Starting service named

CMDaemon: Debug: ProgramRunner: /etc/init.d/named start

A.2.12 kill NAMED on Master2 X

Expected result: named should be started
Actual result: named starts

Passive master log:

CMDaemon: Debug: ProgramRunner: /etc/init.d/named status

CMDaemon: Fatal: /etc/init.d/named status, exitcode = 3, signal = 0

CMDaemon: Info: Service named is not running, attempting to restart.

CMDaemon: Debug: ProgramRunner: /etc/init.d/named status

CMDaemon: Fatal: /etc/init.d/named status, exitcode = 3, signal = 0

CMDaemon: Debug: Starting service named

CMDaemon: Debug: ProgramRunner: /etc/init.d/named start

A.2.13 kill DHCPD on Master1 X

Expected result: dhcpd should be started
Actual result: dhcpd starts

Active master log:

CMDaemon: Debug: ProgramRunner: /etc/init.d/dhcpd status

CMDaemon: Fatal: /etc/init.d/dhcpd status, exitcode = 1, signal = 0

CMDaemon: Info: Service dhcpd is not running, attempting to restart.

CMDaemon: Debug: ProgramRunner: /etc/init.d/dhcpd status

CMDaemon: Fatal: /etc/init.d/dhcpd status, exitcode = 3, signal = 0

CMDaemon: Debug: Starting service dhcpd

CMDaemon: Debug: ProgramRunner: /etc/init.d/dhcpd start

A.2.14 kill DHCPD on Master2 X

Expected result: dhcpd should be started
Actual result: dhcpd starts

Passive master log:

CMDaemon: Debug: ProgramRunner: /etc/init.d/dhcpd status

CMDaemon: Fatal: /etc/init.d/dhcpd status, exitcode = 3, signal = 0

CMDaemon: Info: Service dhcpd is not running, attempting to restart.

CMDaemon: Debug: ProgramRunner: /etc/init.d/dhcpd status

CMDaemon: Fatal: /etc/init.d/dhcpd status, exitcode = 3, signal = 0

Cosmin Dumitru
Niek Timmers

February 5, 2010

A TEST CASES 58

CMDaemon: Debug: Starting service dhcpd

CMDaemon: Debug: ProgramRunner: /etc/init.d/dhcpd start

A.2.15 remove local hard disk Master 1 ×

Expected result: failover should be initiated
Actual result: no failover is initiated

A.2.16 remove local hard disk Master 2 X

Expected result: no failover should be initiated
Actual result: no failover was initiated

A.2.17 high load on Master1 ×

Expected result: failover should be initiated
Actual result: no failover was initiated

A.2.18 high load on Master2 X

Expected result: no failover should be initiated
Actual result: no failover was initiated

Cosmin Dumitru
Niek Timmers

February 5, 2010

	Introduction
	Research
	Experimentation Setup

	Cluster Computing
	Basic Principle
	Types of Clusters
	HA clusters
	Load-balancing clusters
	Compute clusters
	Grid computing

	Failover
	Hardware Failures
	Software Failures
	Failover Requirements
	Failover Problems
	Split-Brain Syndrome

	Failover Configurations
	Two head node configuration
	Active/Passive
	Active/Active

	Multiple Node Configuration
	Which is best?

	Failover Mechanisms
	Fencing
	S.T.O.N.I.T.H.
	Heartbeat
	Quorum

	Bright Cluster Manager
	Goals
	Make clusters really easy
	Scale clusters to thousands of nodes
	Be complete
	Cluster Resources
	Management

	Failover Configuration
	Manual Failover
	Automatic Failover

	Logical Design Issues
	Additional Heartbeat Link
	Local Disk Failure
	External Network
	Large Quorums
	Service Monitoring
	NTP Configuration
	Failover Toggle switch

	Other Cluster Software
	Red Hat Cluster Suite
	Platform Cluster Manager
	Pacemaker
	PBS Pro
	Moab Cluster Manager
	Scyld ClusterWare
	Comparison Results

	Proposals
	Overlay Network
	Large Quorums
	Resource Groups
	Optimized Quorum Sequence

	Active/Active setup
	Automated Failover Test Scripts
	Amazon EC2
	Optimized communication

	Conclusions
	Future Research

	Acknowledgements
	Test Cases
	Hardware
	Power off Master1 "458
	Power off Master2 "458
	Disconnect network cable master1 (slave network) "458
	Disconnect network cable master2 (slave network) "458
	Disconnect network cable master1 (external network) "458
	Disconnect network cable master2 (external network) "458

	Software
	kill CMDaemon on Master1
	kill CMDaemon on Master2
	kill MySQL on Master1
	kill MySQL on Master2
	kill NFS on Master1 "458
	kill NFS on Master2 "458
	kill NTPD on Master1 "458
	kill NTPD on Master2 "458
	kill LDAP on Master1
	kill LDAP on Master2
	kill NAMED on Master1 "458
	kill NAMED on Master2 "458
	kill DHCPD on Master1 "458
	kill DHCPD on Master2 "458
	remove local hard disk Master 1
	remove local hard disk Master 2 "458
	high load on Master1
	high load on Master2 "458

