Introduction	Reverse-engineering	Other attack vectors	Attack scenario	Conclusion	Questions?

Student Research Project 1: HomePlug Security

Axel Puppe, Jeroen Vanderauwera

February 2, 2010

Introduction	Reverse-engineering	Other attack vectors	Attack scenario	Conclusion	Questions?
Outline					

Homeplug technology Homeplug security Research question **Reverse-engineering** Firmware updater Firmware image Other attack vectors Brute force attack Dictionary attack Denial-of-service Attack scenario Conclusion Questions?

Introduction

Reverse-engineering

Other attack vectors

Attack scenario

Conclusion Qu

Questions?

Homeplug technology

How do the homeplugs work?

- Network over the power lines
- Traffic is broadcasted (200m range)
- Plug & Play due to default password 'HomePlug'

Introduction ○●○	Reverse-engineering	Other attack vectors	Attack scenario	Conclusion	Questions?
Homeplug securit	у				
How are	they secure	d?			

- NEK defines logical network
 - MD5(MD5(password + salt)) * 998
 - Salt: 0x08 0x85 0x6D 0xAF 0x7C 0xF5 0x81 0x85
 - Size: 8 bytes
- 56-bit DES encryption
- Security through obscurity

Introduction ○○●	Reverse-engineering 000	Other attack vectors	Attack scenario	Conclusion	Questions?
Research questio	n				
Our rese	earch questic	ons			

- Can we reverse-engineer the homeplug firmware to enable promiscuous mode?
 - If successful:

Can we decrypt the encryption within a reasonable time frame with consumer hardware?

If unsuccessful:

Are there other attack vectors to join or disrupt a target homeplug network?

Introduction	Reverse-engineering ●○○	Other attack vectors	Attack scenario	Conclusion	Questions?
Firmware updater					
Before					

devolo Firmware Update		×
1	Firmware Update for dLAN HS Ethernet	
	The firmware of your dLAN HS Ethernet has been updated successfully.	
	The network password for your device had to be reset. Please use the dLAN Configuration Wizard in order to assign a new personal network password.	
B	To close this wizard, click Finish.	
	< Back Finish Cancel	

Student Research Project 1: HomePlug Security

ntroduction	Reverse-engineering ○●○	Other attack vectors	Attack scenario	Conclusion	Questions?
irmware update					
and af	fter				

devolo Firmware Update	
1	Firmware Update for dLAN HS Ethernet
	The firmware of your dLAN HS Ethernet has been updated successfully.
	Please update all your HomePlug devices in order to restore network access.
C	To close this wizard, click Finish.
	< Back Finish Cancel

Axel Puppe, Jeroen Vanderauwera

Student Research Project 1: HomePlug Security

Introduction	Reverse-engineering	Other attack vectors	Attack scenario	Conclusion	Questions?
	000				
Firmware image					
Attempt	ts				

Firmware image: int5500cs-mac-firmware-zip.img

Linux 'file'	No known magic numbers
Linux 'mount'	No known file system
Windows Daemon tools	Could not mount it
Windows Magic ISO	Could not mount it
Disassembling in IDA-Pro	Failed to load it
Looked for strings	No plain text
Testing randomness	True random
Scanning for magic numbers	Only false positives
Looked at other firmwares	Did not help us understand
	the firmware image

Atheros did not provide any information, unless we signed an NDA.

Introduction	Reverse-engineering	Other attack vectors ●○○○	Attack scenario	Conclusion	Questions?
Brute force attack	¢				
Scripting	5				

- Bash: 5.8 keys per second
- Python/Scapy: 40 keys per second
- Python/Scapy optimised: 65 keys per second

Introduction 0000

Other attack vectors

Attack scenario

Questions?

Brute force attack

Covering the entire 8 byte keyspace

- Size: $256^8 = 1.8 \cdot 10^{19}$ (18 billion billion!)
- Speed: 65 keys per second
- > Time: $8.9 \cdot 10^9 = 8.900.000.000$ years
- Obviously not feasible...

Introduction	Reverse-engineering	Other attack vectors ○○●○	Attack scenario	Conclusion	Questions?
Dictionary attac	k				
Alterna	tive to brute	force			

- English dictionary: 80.000 words
- Speed: 65 keys per second
- Time required: 20 minutes
- Drawbacks:
 - Success rate is not 100%
 - Only works if people picked a weak password

Intro	luction

Reverse-engineering

Other attack vectors

Attack scenario

clusion Que

Denial-of-service

If we can't hack it, can we break it?

Yes we can!

	Without DoS	DoS with	DoS without
		correct NEK	correct NEK
Minimum	2ms	2ms	61ms
Average	2ms	271ms	462ms
Maximum	5ms	1184ms	1300ms
Packetloss	0%	2%	30%
Download speed	731KBps	3KBps	10Bps

Axel Puppe, Jeroen Vanderauwera Student Research Project 1: HomePlug Security

Introduction	Reverse-engineering	Other attack vectors	Attack scenario	Conclusion	Questions?
Step-by	-step plan				

- 1. Reverse engineer the firmware updater
- 2. Set up the sniffing machine
- 3. Initiate denial-of-service attack
- 4. Hand over the malicious firmware to the victim
- 5. Terminate denial-of-service attack

Introduction	Reverse-engineering	Other attack vectors	Attack scenario	Conclusion	Questions?
And the	results are				

- Can we reverse-engineer the homeplug firmware to enable promiscuous mode? No.
 - If successful:

Can we decrypt the encryption within a reasonable time frame with consumer hardware? No.

If unsuccessful:

Are there other attack vectors to join or disrupt a target homeplug network? Yes.

Can we conclude that it's safe?

Introduction	Reverse-engineering	Other attack vectors	Attack scenario	Conclusion	Questions?
And the	results are				

- Can we reverse-engineer the homeplug firmware to enable promiscuous mode? No.
 - If successful:

Can we decrypt the encryption within a reasonable time frame with consumer hardware? No.

If unsuccessful:

Are there other attack vectors to join or disrupt a target homeplug network? Yes.

Can we conclude that it's safe? No!

Introduction	Reverse-engineering	Other attack vectors	Attack scenario	Conclusion	Questions?

Any questions?