
GPU-based password cracking

Marcus Bakker, Roel van der Jagt

February 5, 2010

University of Amsterdam
System and Network Engineering

Abstract

In this research the following question is answered: what should KPMG
advice their clients regarding to password length and complexity, now
GPU-based password cracking has become a reality. To be able to answer
this question, tests with different tools and hashes were performed on a
system with four high end GPUs. The test system showed an improve-
ment of a factor fourteen in brute force speed in comparison with modern
CPUs. KPMG’s advice to their clients regarding password length and
complexity should be one of the following (this applies to all the hashes
that were researched):

• Nine or more characters with lower and upper case letters, digits
and punctuation marks.

• Ten or more characters with lower and upper case letters and digits.

• Twelve or more characters with lower case letters and digits.

2

Contents

1 Introduction 5

2 Theory of GPU-based password cracking 7
2.1 Strong Passwords and expected cracking time 7
2.2 Secure storing of passwords . 9
2.3 Properties of a secure hash function 10
2.4 Performance of CPU-based password cracking 11
2.5 Performance of GPU-based password cracking 12
2.6 GPGPU versus CPU . 13
2.7 Conclusion . 18

3 Hashing algorithms and their security 19
3.1 NTLM . 19
3.2 Microsoft Domain Cached Credentials 19
3.3 MD5 . 20
3.4 MD5 crypt . 20
3.5 Oracle 11g (salted SHA-1) . 21
3.6 Protect against brute-forcing . 21
3.7 Conclusion . 22

4 GPU-based cracking tools 23
4.1 Cracking tools overview . 23
4.2 Support for distributed cracking 23
4.3 Conclusion . 25

5 Test approach 26
5.1 Test method . 26
5.2 Password set . 27
5.3 Conclusion . 27

6 Test results 28
6.1 Performance - Cracking time of a password 28
6.2 Performance - Processed passwords per second 33
6.3 Conclusion . 33

7 Conclusion 35
7.1 What are the theoretical differences between a CPU and GPU? . 35
7.2 What tools are available for GPU based cracking? 35
7.3 What is the actual performance gain of GPU versus CPU-based

cracking? . 36
7.4 What is the recommended password length for clients of KPMG? 38

8 Discussion 39

9 Acknowledgement 42

References 43

Glossary 46

3

List of Acronyms 47

A Specifications test system 50
A.1 Cracking server . 50
A.2 Graphics card . 50

B Raw test results 52

C Commands: cracking tools 58

D Random password generator 60

4

1 Introduction

KPMG is a world wide company which offers Audit, Tax and Advisory services.
As part of the Advisory services, Kleynveld Peat Marwick Goerdeler (KPMG)
gives recommendations to their clients about password length. With Graph-
ics Processing Unit (GPU)-based password cracking and the fast development
of GPUs on the horizon, this advice may have to change. GPU-based pass-
word cracking is several times faster than Central Processing Unit (CPU)-based
cracking. Due to this, passwords can be compromised much faster. With this
research we hope to make the relation clear between the increasing computation
power of GPUs and the need for stronger passwords. KPMG’s main question is:
”what should we advise our clients regarding password length and complexity,
now GPU-based password cracking has become a reality?”. This main question
is divided into the following sub questions:

• What are the theoretical differences between a CPU and GPU?

– What are the technical differences?

– What is CUDA and does how it work?

– How is this reflected in the various forms of cracking (brute force,
dictionary attack., rainbow tables, etc)?

• What tools are available for GPU based cracking?

– Which relevant hashes are supported?

– Are these tools actively developed / maintained?

– Are these tools actively supported?

– Is distributed GPU cracking supported?

• What is the actual performance gain of GPU versus CPU-based cracking?

– What is already known about this?

– What is the performance / price ratio?

– What is the performance / power consumption ratio?

– Are GPU based tools really faster compared with CPU tools?

– What are the performance differences between GPU tools?

• What is the recommended password length for clients of KPMG?

– Does this varies per hash?

– How does the future looks like (for example within two years)?

During this research we will try to answers to the questions above. To
guarantee a successful final result, we started with theoretical research in section
2 and 3. In these sections we will discuss password strength and expected
cracking time (section 2.1), secure storing of passwords (section 2.2), properties
of a secure hash function (section 2.3), performance of CPU- and GPU-based
craking (section 2.4 and 2.5), and the GPGPU versus CPU (section 2.6). In
the next chapter we will discuss the theory behind the hashing algorithms used
in this research and their security (section 3). After two sections with theory,

5

we proceed to an overview of the tools we used during this research and their
characteristics. Next in section 5 (Test approach) we will discuss the method
used for testing the tools. The results from these tests are provided in section
6 (Test results). We conclude this report with a conclusion and discussion.

The appendixes contain the raw test results, the specification of the test
system, the script used to generate the random passwords and the commands
used to run the password cracking tools.

6

2 Theory of GPU-based password cracking

In this chapter we will discuss the theory which forms the bases for secure
passwords and GPU-based computation. We will start with secure passwords
and password strength. We will cover the properties which make passwords
strong and how this strength can be measured. Next in section (2.2) we will
discuss why hashes should be stored in a secure manner. In section (2.3) we
will discuss the properties of secure hash functions. Next in the sections (2.4
and 2.5) we will discuss the performance of traditional CPU-based cracking and
the modern GPU-based cracking. In the last section (2.6) we will talk about
GPU-based computing. We will cover the basic principles and the differences
with traditional CPU-based computations.

2.1 Strong Passwords and expected cracking time

In this section we will discuss the properties which make a password strong, why
it is hard to apply strong passwords and we will define a measure of password
strength. We conclude this chapter with a overview of expected cracking times
for passwords with different properties.

Password strength can be measured in the amount of time needed to guess or
brute-force a password. The amount of time needed depends on the complexity
of the password. There are several factors that make a password less complex
and are therefore more easy to brute-force. These factors are[1, 2]:

• Passwords based on words are vulnerable for dictionary attacks.

• Well known passwords are easy to guess.

• Passwords based on sequences are easy to guess (like 123456789, asdf,
qwerty, etc).

• Short passwords are easy to brute-force, because there are less possibilities.

• A password based on only small letters, capital letters or numbers have a
small key-space. This makes it more easy to brute-force, just because it
limits the possibilities.

• Do not use repeating characters (like aa11 or a12ba). A password with
many repeating characters is easy to guess, or someone can easily see the
password by watching over the users shoulder [3].

Figure 1 illustrates this in a more graphical way. It shows the rules written
above.

Taking the constrains above into account, we can conclude the following: a
good password must be hard to guess, has an acceptable length and the char-
acters are chosen from a large key space. Making the password harder to guess
can be done by making use of a random sequence of characters. But random
passwords have two problems. It is hard to generate real random passwords [5],
and for humans its hard to remember random passwords with an acceptable
length (humans will remember 7 ± 2 characters [6]). Having the characters in
the password being chosen from a large key space can be relative easy achieved.
By having at least lower case and upper case letter, a number and a special

7

Figure 1: The image is part of the Gmail subscription process. It shows some examples
of weak and stronger passwords.[4]

character. This simple process contributes to the complexity of the password in
a fairly easy way.

The complexity of a password is measured in entropy. The entropy of a
password is computed by the length of the password and the used key space.
The entropy for a key space can be calculated using the following formula:
log2(n)[5]. With n representing the number of characters in the key space. It
provides the following entropies for the most used keys spaces [5]:

Character Pool Available
Characters (n)

Entropy Per
Character

digits 10 (0-9) 3.32 bits
lower case letters 26 (a-z) 4.7 bits
upper case letters and digits 62 (A-Z, a-z,0-9) 5.95 bits
all standard keyboard characters 94 6.55 bits

Table 1: The entropy for often used key spaces[5]. The values given in this table are
for one character.

Adding more characters will increase the entropy. Every extra character to
a password adds a certain amount of bits to the entropy. For example: an eight
character password with all standard keyboard characters. The strength of this
password can be computed by multiplying 6.55 bits (the entropy of the used key
space) with 8 characters. The result is 52.4 bits of entropy (6.55 * 8 = 52.4)[5].

To give an idea of computation times in comparison with the entropy of a
password, see figure 2. This graph is based on a computation speed of two billon
(2.000.000.000) passwords per second. This number is an assumption based on
data available in section 2.5.

8

Figure 2: The relation between entropy and computation time for an average cracking
system, with a computation speed of two billion password per second. This
value is based on data available in section 2.5.

2.2 Secure storing of passwords

In the previous section (section 2.1) we discussed strong passwords and cracking
times. Despite having strong passwords, the ability to crack those passwords
remains. Due to this, it is very important to store passwords in a secure manner.
In this section we will discuss why secure storing of password is important and
how this can be achieved.

It is important to note that login credentials are stored in some kind of
database. This could be a simple text file or a full fledged database like MySQL.
If somehow an adversary captures this database, he may be able to retrieve the
passwords. Performing malicious actions with the available credentials could
harm a company or an individual person. To prevent this, the passwords of these
credentials should not be stored as plaintext. Instead the passwords should first
be run through a hashing algorithm (preferable with a random salt) before it is
stored.

There is however still a security problem with storing the hash of a password.
The fact remains there is no easy way from the hashed password to the plain-
text. But, if a weak password is used, it is reasonable easy to recompute the
corresponding plaintext password. Finding the plaintext password is a simple
process of trying all possible password, until the hashed password is found. The
adversary is back in the game.

9

To prevent the adversary from finding the corresponding plaintext password,
we should take an extra security measure to be really secure. Only hashing a
password is not enough. Next to hashing the passwords, we should encrypt
the database storing the login credentials. Now the odds for the adversary
have dramatically decreases. First he has to be able to decrypt the encrypted
database with the proper key. If he succeeds in decrypting the database, he still
has to crack the hashed passwords.

2.3 Properties of a secure hash function

In the previous section (section 2.2) we disused why and how to store passwords
in a secure manner. One level of security is achieved by running the plaintext
password through a hash function before it is stored. However, the hash function
has to be secure as well. An insecure hash function is of no use if we would like to
achieve secure storing of passwords. In this section we will discuss the properties
of a hash function and which properties make it secure.

A hash function has at least the following two properties:

• Fixed length output: h maps an input x of arbitrary finite bitlength,
to an output h(x) of fixed bitlength n[7].

• Ease of computation: given function h and an input x, h(x) is easy to
compute[7].

Figure 3: A graphic representation of a hash collision[8]. The figure shows two values
pointing to the same hash value.

For a hash function to be secure, it has to meet the following three require-
ments. The value n is the fixed length of the hash value.

• collision resistance: finding a pair x 6= x′ ∈ {0, 1}∗ such that H(x) =
H(x′) should require 2n/2 hash computations[9, 7]. This means it is very
hard to find two values (which may both be chosen freely) which give the
same output, using the same hash function. A graphical example of a
collision can be found in figure 3.

10

• 2nd preimage resistance: for a given x ∈ {0, 1}∗, finding a x′ 6= x such
that H(x) = H(x′) expected to require 2n hash computations[9, 7]. This
is almost the same as collision resistance. The difference is that one value
is given. The other value may be chosen freely. Finding a collision this
way takes 2n computations.

• preimage resistance: for a given y ∈ {0, 1}n finding a x ∈ {0, 1}∗ such
that H(x) = y expected to require 2n hash computations[9, 7]. This is
also known as a one way function. If an output is received, it should be
impossible to reverse the process to find the original input.

2.4 Performance of CPU-based password cracking

Despite of having a secure hash function as discussed in chapter 2.3, the possi-
bility remains to crack those hashes using brute-force attacks. The time needed
to crack a hash is related to the performance of the used hardware. A hash can
be cracked using a CPU or a GPU. We will first discuss the performance of tra-
ditional CPU-based password cracking. Due the time constraint we consulted a
source on the internet. In section 2.5 we will discuss the performance of GPU-
based cracking. Later in this report we will also discuss our own GPU-based
password cracking performance data.

Figure 4: CPU benchmark based on the SSE4 processor feature. This benchmark
shows the Procoder Encoding computation time of a 60 seconds DivX video.
Because password cracking makes use of SSE2, the ratio between the pro-
cessors may differ for password cracking. [10]

The data from the consulted source is based on an Intel Core 2 Quad 8200
(figure 5 and table 2). This data is extrapolated using the Streaming SIMD
Extensions version 4 (SSE4) benchmark in figure 4. The result of this extrapo-
lation can be found in figure 5 and table 2. The Intel core i7 920 (used in our
test system) is 1.639 times faster compared to the Intel Core 2 Quad 8200 and
the the Intel core i7 975 EE 2.083 times.

A test performed with the Streaming SIMD Extensions version 2 (SSE2)
version of BarsWF bruteforce on our system (which has a Intel core i7 920)
gave us a result of 230 million passwords per second on average. According to
the data in figure 5 and table 2 it should be around 280 million password per
second. This deviation might be the cause of the exploration being based on
SSE4 instead of SSE2.

11

Figure 5: Passwords per second for 4 cores. HT is enabled if available. The data for
the Intel Core 2 Quad 8200 are extracted from a previous research done by
Nathanael Warren[11]. The other data is computed from these data.

2.5 Performance of GPU-based password cracking

In the previous section (section 2.4) the performance of CPUs was discussed.
In this section the topic is the performance of GPUs. The data about the
performance, is retrieved from benchmarks distributed by the manufactures of
the cracking tools. By making use of this data a first notion on the differences
between CPU-based password craking and GPU-based cracking can be made.
In figure 6 the data from several benchmarks is collected [12, 13, 14, 15].

Notice in figure 6 the differences in passwords / second between the hashes
on the same hardware and tool. Some hashes take more time to compute.
This will slow down the process of password cracking. Also another conclusion
can be made on the differences between the same hash on different hardware.
The hardware developed in the last years has made real big improvements on
performance. This performance improvement is also seen in the cracking speed.
The Nvidia 8800GS is the oldest card in this overview, and also the slowest one.
The Nvidia 9600GT is a next generation graphics card. All other cards are of
latest generation and therefore much faster.

12

Hash Tool Intel Core
2 Quad
8200 (p/s)

Intel core
i7 920
(p/s)

Intel core
i7 975 EE
(p/s)

Domain Cached Cre-
dentials (DCC)

Cacheebr0.1 53.880.000 88.327.869 112.250.000

Message-Digest algo-
rithm 4 (MD4)

MDCrack1.8.3 77.632.944 127.267.121 161.735.300

Message-Digest algo-
rithm 5 (MD5)

BarsWFx64 172.000.000 281.967.213 358.333.333

NT Lan manager
(NTLM)

EnTibr0.1 112.000.000 183.606.557 233.333.333

Table 2: Passwords per second for 4 cores. HT is enabled if available. The data for
the Intel Core 2 Quad 8200 are extracted from a previous research done by
Nathanael Warren[11]. The other data is extrapolate from this data.

2.6 GPGPU versus CPU

Looking at the two previous sections (section 2.4 and 2.5), it can be con-
cluded that GPUs are much faster in password cracking compared to CPUs.
In this chapter we will explain how General-Purpose Graphics Processing Unit
(GPGPU) makes this difference in performance possible. In addition we will
discuss the architectural differences of GPUs and CPUs, followed by the differ-
ences in the way they are programmed. Next in this section we will compare
performance / price and performance / power consumption ratios. We conclude
with an example application of the GPGPU.

Traditional programming is done on a CPU. This kind of programming is
called general purpose programming. However there is a ”new” class of pro-
gramming becoming popular. It makes use of the enormous parallel computa-
tion power of GPUs. A GPU consists of several of hundreds parallel processing
units, running almost one hundred threads each. These large amounts of pro-
cessing units available in a GPU, delivers huge amounts of computation power.
A common CPU has at most four processing cores, with sometimes two threads
per processing unit (Intel Hyper Threading). This difference is clearly shown in
figure 7 and 8. The purple block are the processing units.

A GPU is specialised in Single Instruction, Multiple Data (SIMD) compu-
tations. These kind of operations are essential for computer graphics rendering.
CPUs also have the capability to execute SIMD computations, but their spe-
cialisation remains Single Instruction, Single Data (SISD) computations.

The high availability of SIMD computations and the large amount of compu-
tation power made available through the thousands of threads, makes a GPUs
very interesting for password cracking.

The difference in computation power between CPUs and GPUs can be
clearly seen in figure 9 (measured in Giga Floating Point Operations Per Sec-
ond (GFLOPS)). The speed in which the computation power of GPUs grows
versus CPUs is also clearly visible. Instead of a doubling in computation power
every 18 months, as the Moore’s law describes, a GPU increases four times in
computation power every 18 months[18, 19]. There are several cause for this
enormous growth in computation power:

13

Figure 6: The performance of several tools, each ran on different hardware. Because
of the differences in hardware, comparing the tools is not possible. But
does gives a good illustration on the performance of GPU-based password
cracking[12, 13, 14, 15].

• The way GPUs make use of pipelines and the static operations, the kind
of operations in these pipelines requires less cache. This leaves room for
adding more computational units [19].

• CPUs have to preserve backward compatibility with older instruction sets.
When a new instruction set is introduced, for example Streaming SIMD
Extensions version 5 (SSE5), all the previous instructions sets have to
remain to work. Thus, they are stacking one generation of instructions
on top of the other with every new generation of CPUs. GPUs on the
other hand leaves old technology behind. This reduces the instruction set
and hence the complexity of the processing units. The result is a much
faster processing unit. But it also makes the underling architecture differ
between the generation of GPUs. The software developers will however
not notice this difference. The changes in the architecture are taking care
of by the underlying libraries. It will require the end user to compile
the software for every GPU with a different architecture. The user will
however not notice this process, he will only see a progress bar [16].

14

Figure 7: The Nvidia GeForce 8 graphics-processor architecture [16].

GPUs have a lot of computation power and a large amount of GFLOPS.
But programming an application for a GPU is totally different compared to
traditional programming. It is much harder.

Thanks to companies like Nvidia and Apple we can make use of Com-
pute Unified Device Architecture (CUDA) and Open Computing Language
(OpenCL) to program these GPUs much easier. In short CUDA is a parallel
computing architecture, that allows programmers to develop software for GPUs,
with a well known standard programming languages, like C and C++. With
the CUDA architecture comes a special developed C compiler and libraries.

OpenCL is a framework designed by Nvidia in cooperation with Apple to
give developers a standard way to program GPUs. Thus, it is possible to use the
same code to write software for Nvidia’s CUDA and ATI’s Stream architecture.
Which are both GPU architectures to provide GPGPU.

Not every algorithm can however benefit from the computation power of
GPUs. A very strict requirement is that the algorithm can be cut into many
separate chunks. Remember that GPUs are operating in a highly parallel fash-
ion. Another restriction is the limited amount of register and caches available
for the threads in GPUs. Making use of the off-chip memory decreases the per-
formance dramatically. To be able to make use of the computation power, the
program must compute on the data available in the registers and caches[16].

Some examples of application that are perfect for GPGPU are [19]:

• Linear Algebra;

• Simulation of physical processes;

• Real-time Moving Picture Experts Group (MPEG) video compression;

15

Figure 8: The CPU architecture in general.

• And of course password cracking.

The GPU provides great performance if used in the right way, but how does
it compare to the CPU in relation with power consumption and price. In table
3 the performance/price and the performance/power consumption ratios are
compared between GPUs and CPUs. Notice the serious benefits of the GPU
verus the CPU on all fronts.

Nvidia
GT295

Intel
Core i7
920

Intel
Core i7
975

GPU CPU
Power consumption1 (Watt) 289 130 130
Performance (GFLOPS) 1788.48 44,8 55,36
Price2 (e) 400,- 227,- 825,-
Performance/Price ratio (GLOPS
/ e)

4,47 0,197 0,0671

Performance/Power consumption
ratio (GLOPS / Watt)

6,19 0,345 0,426

Table 3: The performance/price and performance/power consumption ratios for the
different processing units. Higher is better. The power consumption is based
on the TDP value. The performance is measured in GFLOPS. The reference
date for the prices is 26 January 2010 [17, 20, 21, 22, 23].

We conclude this chapter with an example of parallel computation written
by T.R. Halfhill in ”Parallel Processing With Cuda” [16]

For example, consider an application that has great potential for
data parallelism: scanning network packets for malware. Worms,

16

Figure 9: The GFLOPS of a CPU versus a GPU (from Nvidia)[17]

viruses, trojans, root kits, and other malicious programs have tell-
tale binary signatures. An antivirus filter scans the packet for bi-
nary sequences matching the bit patterns of known viruses. With
a conventional single-threaded CPU, the filter must repeatedly com-
pare elements of one array (the virus signatures) with the elements
of another array (the packet). If the contents of either array are
too large for the CPUs caches, the program must frequently access
off-chip memory, severely impeding performance.

With CUDA, programmers can dedicate a lightweight thread to
each virus signature. A block of these threads can run on a cluster of
thread processors and operate on the same data (the packet) in shared
memory. If much or all the data fits in local memory, the program
need not access off-chip memory. If a thread does need to access
off-chip memory, the stalled thread enters the inactive queue and
yields to another thread. This process continues until all threads in
the block have scanned the packet. Meanwhile, other blocks of threads
are simultaneously doing the same thing while running on other clus-
ters of thread processors. An antivirus filter that has a database of
thousands of virus signatures can use thousands of threads. [16]

17

2.7 Conclusion

Summarising from the text above we can conclude the following. A strong
password is long, makes use of a large key space and is hard to guess. The
time it takes to brute-force a password greatly depends on the strength of the
password.

A strong password itself is not enough to be truly secure. The password
itself has to be stored in a secure manner as well. Secure storing of passwords
consist of two levels. Level one is achieved by running the plaintext password
through a hash algorithm before it is stored. To add an extra level of security,
the hashed passwords should be stored in an encrypted container.

Next to the secure storing of passwords. The hash function that is used to
store the password has to be secure as well. A secure hash function meets the
following three requirements:

• collision resistance: finding a pair x 6= x′ ∈ {0, 1}∗ such that H(x) =
H(x′) should require 2n/2 hash computations[9, 7].

• 2nd preimage resistance: for a given x ∈ {0, 1}∗, finding a x′ 6= x such
that H(x) = H(x′) expected to require 2n hash computations[9, 7].

• preimage resistance: for a given y ∈ {0, 1}n finding a x ∈ {0, 1}∗ such
that H(x) = y expected to require 2n hash computations[9, 7].

Taking all these security measures and requirements into account. The pos-
sibility remains to crack a hash. This can be achieved by brute-forcing, with
CPUs or GPUs. There is a great performance difference of hash cracking with
GPUs versus CPUs. GPUs are much faster, consume less power per GFLOPS
per Watt and the performance price ratio is much bigger.

The performance difference is the cause of the huge parallel computation
power of GPUs. Which gives the capability to run thousand of threads simul-
taneously. An other cause is the capability to leave old instruction sets behind.
Which prevent stacking one generation of instruction on top of the other. This
leaves room for more processing units, thus more computation power.

To be able to program a GPUs, GPGPU was introduced. Nvidia has de-
veloped the CUDA architecture to provide GPGPU and there is Stream from
ATI. However, not every algorithm can benefit from the computation power of
GPUs. A very strict requirement is that the algorithm can be cut into many
separate chunks. Which is perfectly feasible for hashing algorithms.

18

3 Hashing algorithms and their security

During this research we brute-forced several types of hashes. In this section
we will discuss specific properties of these hashes. NT Lan manager (NTLM)
and Domain Cached Credentials (DCC) are based on Message-Digest algorithm
4 (MD4). And the Oracle 11g hash is based on Secure Hashing Algorithm 1
(SHA-1). Most hashes suffer from weaknesses and design mistakes. Which will
be discussed for every hash. We will start with the Microsoft hashes (NTLM
and DCC). Next we will discuss Message-Digest algorithm 5 (MD5) and MD5
crypt. After this the Oracle 11g hash is discussed. Finally we will discuss two
measures to increase the time needed to brute-force the hashes.

3.1 NTLM

In Microsoft Windows, login credentials are saved in the Security Accounts
Manager (SAM)(only for local accounts) or in the Active Directory database (for
domain accounts). In the past, passwords were stored twice: the LAN Manager
compatible password and NTLM password. Both are stored in a different way.

The LAN Manager compatible password can contain up to 14 characters
and are case insensitive. Furthermore, the password is based on the Original
Equipment Manufacturer (OEM) character set. The password is split up into
two parts of seven characters, each part is stored in eight bytes. This gives a
total hash length of 16 bytes. It should be noted that it is not a real hash. The
seven character password is used as a key to encrypt a static string (KGS!@#$%
[24]) using the DES cipher.

The LAN Manager compatible password is relative easy to crack because
of the little entropy that is available. When cracked, it is relative easy to
compute which characters of the password are lower and upper case. In the
past a LAN Manager password was always stored besides the NTLM password
(as long as the password contained 14 characters or less). This functionality
can be disabled. In the modern versions of Windows (Windows 7 and Windows
2008) this function is disabled by default.

The NTLM password is based on the Unicode-16 character set, it is case
sensitive and can be up to 128 characters long. The password is computed by
using the MD4 algorithm. The MD4 algorithm computes a 16-byte digest from
a variable-length plaintext password[25].

Besides the weakness introduced by storing the NTLM and corresponding
Lan manager (LM) hash, NTLM has an other serious weakness. The MD4
hashing algorithm used by NTLM, is known to have some serious flaws. Den
Boer and Bosselaers already showed this in 1991 (one year after its introduction)[26].
In the same year MD5 was introduced by R. Rivest to replace MD4. Other re-
searcher have later revealed further weaknesses of MD4[27].

3.2 Microsoft Domain Cached Credentials

When a user logs in on a Microsoft domain using a Microsoft Windows computer,
its credentials are cached on its local machine. The Domain Cached Credentials
(DCC). This is done for the reason to accelerate the login procedure, and to be
capable to logon on to the computer even if the domain controller can not be
reached. For example when the computer is disconnected from the corporate

19

network, or when the domain controller has crashed[28]. Microsoft Windows
does not save the plaintext credentials, but it keeps a salted hash. The hash is
computed using the following function:

• hash = MD4 (MD4(password in Unicode) + lowercase(username in Uni-
code))[29, 30]

At the website Passcape3 we found that all Windows versions since Vista
make use of a new algorithm, but we could not verify this:

• hash = PBKDF2 SHA(MD4 (MD4(user password)+lowercase(user name)),
iterations)[29]

By default, the iterations value is equal to 10240. Please note that the number
of SHA passes will be several times greater than this value [29].

Compared to the NTLM hash, the DCC hash is more secure. As result of
the salted hash and the extra MD4 round. But just like NTLM, DCC suffers
from serious flaws of MD4.

3.3 MD5

A very popular hashing algorithm is MD5. It is also an internet standard [31].
It is not like NTLM or Microsoft DCC used for one particular application but
in a wide variety of applications.

The message digest computed with MD5 has a length of 128 bits. This
seems to be very secure, but researchers (Sotirov, Stevens, Appelbaum, Lenstra,
Molnar, Osvik and de Weger) have shown serious flaws in MD5 [32]. It allowed
them to create a valid rouge CA certificate. Despite these known flaws, MD5
remains a very popular hashing algorithm. Its popularity makes it an interesting
hash to crack.

3.4 MD5 crypt

MD5 crypt is a hashing algorithm used in Unix to store user passwords in the
shadow password database. It was developed by Poul-Henning Kamp to store
passwords in FreeBSD. It should be noted that MD5 crypt is not really a hashing
algorithm, but it makes use of MD5.

MD5 crypt makes use of a salt and a number of MD5 iterations[33]:

The MD5-based crypt() scheme uses the whole passphrase, a salt
which can in principle be an arbitrary byte string, and the MD5
message digest algorithm. First the passphrase and salt are hashed
together, yielding an MD5 message digest. Then a new digest is con-
structed, hashing together the passphrase, the salt, and the first di-
gest, all in a rather complex form. Then this digest is passed through
a thousand iterations of a function which rehashes it together with
the passphrase and salt in a manner that varies between rounds. The
output of the last of these rounds is the resulting passphrase hash.
[33]

3www.passcape.com

20

http://www.passcape.com/

The final output starts with the version identifier ’1’, the salt, a ’$’ sepa-
rator, and the 128-bit hash output. All encoded as a base64 ASCII string. In
most Unix and Unix like operating systems this output (and the corresponding
user) is stored inside the file /etc/shadow.

MD5 crypt is more secure compared to plain MD5. It adds different kinds
of salting and a thousand MD5 iterations. The MD5 iterations slows down the
cracking speed by a factor thousand. For example, a cracking speed of three
billion per second for plain MD5 drops down to thirty million (which is slow).

3.5 Oracle 11g (salted SHA-1)

Oracle makes use of a new hashing algorithm to store passwords with their
database software Oracle Database 11g. Two researchers at The Security Lablog
[34] and P. Finnigan’s [35] discovered what kind of hashing is applied. It is a
salted SHA-1.

SHA-1 is the successor of MD5. It was published by the National Institute
of Standards and Technology (NIST) in 1995. The message digest has a length
of 160 bits.

The Oracle 11g hash is computed by taking the plaintext password concate-
nated with a random salt of length 10 in binary format and run it through
SHA-1. The result is the Oracle 11g hash.

The Oracle 11g credentials and thus also the hashes are stored inside the
sys.user table at the field spare4 as a HEX value preceded by ’S:’. The message
digest itself is a HEX value of length 40. Concatenated to that value is the salt.
Which is a HEX value of length 20.

A salted SHA-1 hash is stronger as a non salted SHA-1 hash. But besides the
salting of an Oracle 11g hash, SHA-1 suffers just like MD4 and MD5, as discussed
earlier, from weaknesses. Three researchers (Wang, Yin and Yu) showed the first
serious flaw of SHA-1 at CRYPTO 2005 [36]. In the security community is said
SHA-1 is broken. Luckily there is already the successor of SHA-1, SHA-2. And
even the successor of SHA-2 is coming in 2012. Despite the availability of SHA-2
at the time Oracle 11g was published, they did not made the wise decision to
use the more secure SHA-2 instead of the less secure SHA-1 hashing algorithm.

There is however another weakness in the way passwords are stored in Oracle
Database 11g. They made the same mistake as Microsoft did with their NTLM
hash, by storing the LM hash next to the NTLM hash. Besides the Relative
secure Oracle 11g hash, also the far less secure Data encryption standard (DES)
encrypted password is present in the sys.user table next to the new Oracle 11g
hash.

3.6 Protect against brute-forcing

All the hashes discussed above can be brute-forced. Often the amount of com-
putation needed to crack, can be shortened by making use of the weaknesses
in the hashes. In this chapter we will discuss how salted hashes or more com-
plex algorithm based on known hashing algorithms can be used to slow down
brute-forcing process.

How does a salt prevent a hash from being easily brute-forced? The salt was
originally introduced to prevent against rainbow table attacks. But this also
seems to prevents against brute-force attacks. During a brute-force attack often

21

a list of hashes is cracked. Passwords are generated, hashed and compared with
all the hashes in the list. It allows for parallel brute-forcing, every hash has
to be generated only ones and can be check against the whole list of hashes.
But what if you apply a salt? This will break the possibility to use parallel
brute-forcing. Because every hash in the list has a different salt. The salt will
result in different hashes for the same passwords.

Another possibility to prevent hashes against brute-force attacks, is applying
a complex algorithm based on an already existing hashing algorithm. MD5 crypt
is a nice example of this (as discussed in section 3.4). The MD5 hash can be
brute-forced in an acceptable amount of time. But by applying the MD5 hash a
thousand times, the times it takes to crack the hash also increases with a factor
thousand.

So even if the hash can be brute-forced, applying a salt or a more complex
algorithm based on a known hashing algorithm, the hashes are still usable for
secure storing passwords. Although, salting only prevents parallel brute-forcing.
I does not protect the ability to crack a single hash a time.

3.7 Conclusion

As discussed above, it is very clear that none of the hashing algorithms men-
tioned are bullet proof. They all suffer from some kind of weakness. A weakness
in the hashing algorithm, or by making the mistake to store an older less secure
version of the hashed password next to the new one.

These problems make the hashes vulnerable to attacks. The computation
time needed to crack a password stored in the hash is shortened. But by adding
a salt or by using a more complex algorithm around the hash, the time to
brute-force can be increased.

22

4 GPU-based cracking tools

In this section we discuss the tools used during our tests. An overview of these
tools can be found in the first section (4.1). In the final section (4.2) we will
discuss the support for distributed cracking.

4.1 Cracking tools overview

During this research several tools were selected a tested. The tools were selected
on the following characteristics:

• GPU support;

• Support, maintenance and active development;

• Supported hashes.

Based on those characteristics the tools in table 4 were selected. Some
interesting thing can be said about this table among other:

• Most tools do not support GPU-based password cracking, including Cain
and Abel4 and John the Ripper5.

• The tools GPU md5 Crack and Multihash CUDA Brute Forcer do not
support multiple GPUs. Having a test system with multiple GPUs made
them less interesting for our research.

• Some tools were very immature, like Distributed Hash Cracker. They did
not ran out of the box. We skipped the Linux tools, because of the time we
needed to fix these problems and the high availability of Windows tools.

4.2 Support for distributed cracking

Part of the research was distributed GPU-based hash cracking. It is supported
by two tools:

• Distributed Hash Cracker;

• Elcomsoft (only the commercial version has support for distributed crack-
ing).

The Distributed Hash Cracker has an excellent paper written by A. Zonen-
berg [37], explaining the inner workings of there distributed hash cracker.

The Distributed Hash Cracker has support for GPUs and CPUs to crack
hashes. The basic principle is fairly simple. There is one master server waiting
for jobs to arrive. A jobs consists of a specific hash value to crack. If a jobs has
arrived it starts handing out work units to compute nodes. A work unit consists
of a specific character range to crack (for example aaaaa-zzzzz) and the hash
value that has to be cracked. The compute node will return a success or failure
message, depending on the result of the crack attempt. On a failure message, a
new work unit is handed out to the compute node. On a success message the

4http://www.oxid.it/cain.html
5http://www.openwall.com/john/

23

N
am

e
U

R
L

H
as

h
es

R
e-

su
m

e
a

T
ab

le
b

O
S

L
ic

en
se

A
ct

iv
e

d
ev

el
op

ed
S

u
p

p
or

t

E
lc

om
so

ft
w

w
w

.e
lc

om
so

ft
.c

om
M

D
5,

N
T

L
M

,
D

C
C

X
-

W
IN

32
M

D
5

is
fr

ee
.

C
om

pl
et

e
pa

ck
ag

e
is

co
m

m
er

ci
al

.
A

ct
iv

e
Y

es

G
P

U
m

d5
C

ra
ck

bv
er

no
ux

.fr
ee

.fr
/m

d5
/i

nd
ex

.p
hp

M
D

5
-

-
L

IN
32

W
IN

32
L

G
P

L
v3

L
at

es
t

up
-

da
te

:
09

-
15

-0
9.

1*

U
nk

no
w

n
2*

M
ul

ti
ha

sh
C

U
D

A
B

ru
te

Fo
rc

er
cr

yp
to

ha
ze

.c
om

/b
ru

te
fo

rc
er

s.
ph

p
M

D
5,

N
T

L
M

-
-

L
IN

32
/6

4
W

IN
32

U
nk

no
w

n
(s

ou
rc

e
w

ill
be

co
m

e
av

ai
la

bl
e)

1*
Fo

ru
m

E
xt

re
m

e
G

P
U

B
ru

te
fo

rc
er

w
w

w
.in

si
de

pr
o.

co
m

/e
ng

/e
gb

.s
ht

m
l

M
D

5,
N

T
L

M
,

D
C

C
X

-
W

IN
32

Sh
ar

ew
ar

e
A

ct
iv

e
Y

es

D
is

tr
ib

ut
ed

H
as

h
C

ra
ck

er
rp

is
ec

.n
et

/p
ro

je
ct

s/
sh

ow
/h

as
h-

cr
ac

ke
r

M
D

5,
N

T
L

M
X

-
L

IN
32

/6
4

B
SD

L
at

es
t

up
-

da
te

:
10

-
23

-0
9,

1*

Fo
ru

m

IG
H

A
SH

G
P

U
go

lu
be

v.
co

m
/h

as
hg

pu
.h

tm
M

D
5,

N
T

L
M

,
D

C
C

,
O

R
A

-
C

L
E

11
g

-
-

W
IN

32
Fr

ee
fo

r
no

n
co

m
m

er
-

ci
al

us
e

L
at

es
t

up
-

da
te

:
01

-
09

-1
0,

1*

2*

B
ar

sW
F

br
ut

ef
or

ce
3.

14
.b

y/
en

/m
d5

M
D

5
X

-
W

IN
32

/6
4

U
nk

no
w

n
L

at
es

t
up

-
da

te
:

01
-

10
-0

9,
1*

Fo
ru

m

R
ai

nb
ow

C
ra

ck
pr

oj
ec

t-
ra

in
bo

w
cr

ac
k.

co
m

/i
nd

ex
.h

tm
M

D
5,

N
T

L
M

,
O

R
A

C
L

E
11

g
?

X
W

IN
32

So
ur

ce
av

ai
la

bl
e

U
nk

no
w

n
2*

1*
N

ew
fe

at
u

re
s

ar
e

p
la

n
n

ed
2*

T
h

er
e’

s
on

ly
an

em
ai

l
ad

d
re

ss
av

ai
la

b
le

on
th

e
w

eb
si

te

T
a
b
le

4
:

A
n

ov
er

v
ie

w
o
f

to
o
ls

re
v
ie

w
ed

a
n
d

te
st

ed
d
u
ri

n
g

th
is

re
se

a
rc

h
.

a
T

h
e

to
o
l
h
a
s

re
su

m
e

su
p
p
o
rt

a
t

th
e

p
o
in

t
w

h
er

e
th

e
cr

a
ck

se
ss

io
n

le
ft

o
f.

b
T

h
e

to
o
l
m

a
k
es

u
s

o
f
a

ra
in

b
o
w

ta
b
le

to
cr

a
ck

th
e

h
a
sh

.

24

http://www.elcomsoft.com/
http://bvernoux.free.fr/md5/index.php
http://cryptohaze.com/bruteforcers.php
http://www.insidepro.com/eng/egb.shtml
http://rpisec.net/projects/show/hash-cracker
http://rpisec.net/projects/show/hash-cracker
http://golubev.com/hashgpu.htm
http://3.14.by/en/md5
http://project-rainbowcrack.com/index.htm
http://project-rainbowcrack.com/index.htm

master server will stop handing out work units to the compute nodes. It returns
to the idle state, waiting for new jobs to arrive.

The big advantage of dividing the load by means of work units, is scalability
and simplicity. Another strategy could be a parallel algorithm, where each com-
pute node will compute a small part of the whole computation. This approach
has several problems:

• All compute nodes should be synchronised.

• It requires a good mechanism to recover from failures, when one or more
nodes suffers from an error.

• What if the distributed cracking system is heterogeneous? Some nodes
will be finished much faster compared to other nodes. The distributed
system scales down to the slowest node if there are no mechanism to take
care of this behaviour.

There are probable many more problems with a parallel algorithm. But most
important, the final system will be very complex and difficult to understand.
Making use of work unit has a big favour in reducing complexity and taking
care of scalability problems.

4.3 Conclusion

We used the following tools for our test: BarsWF bruteforce, IGHASHGPU,
Extreme GPU Bruteforcer and Elcomsoft. The other available tools did not
have GPU support or did not run on Microsoft Windows. Microsoft Windows
was our main choice of OS, because of the high availability of tools.

Two of the tools also support distributed cracking. For one of these, this
feature is available in the commercial version (Elcomsoft) and the other is free
available (Distributed Hash Cracker).

25

5 Test approach

In this chapter we will discuss how we have tested the cracking tools. We will
start with a explanation on the test method. In the next section (section 5.2)
follows an overview of the password set used in the test.

5.1 Test method

The test performed had to met the following requirements:

• The hashes we had to crack were: MD5, MD5 crypt, DCC, NTLM, Oracle
11g.

• The passwords had to be of length: 6, 8, 10 and optional 12.

• There had to be five different categories of passwords:

– 0-9;

– a-b;

– a-b, 0-9;

– a-b, A-B, 0-9;

– a-b, A-B, 0-9 and punctuation marks.

• There had to be five passwords for every different password length and
category.

• Different tools had to be used to crack the hashes.

With the above requirements in mind we defined the following test method:

• We generated a total of 100 random passwords in 20 different categories.
We chose to make use of random passwords in different categories to ex-
clude any influences on the test results. Some tools may for example start
with cracking from z and some tools may start from a.

• A password category consists of a specific character set (for example a-b,
0-9) and password length (6, 8, 10 and 12).

• The corresponding hashes (MD5, MD5 crypt, DCC, NTLM, Oracle 11g)
for every password were generated.

• Different tools were used to crack the hashes: BarsWF bruteforce,
IGHASHGPU, Extreme GPU Bruteforcer and Elcomsoft. The time it
took to crack a hash was measured.

• When the results where collected, we started analysing them, to answer
the main research question.

26

5.2 Password set

In this section the set of passwords used during the tests is given. We wrote a
Python script (appendix D) to generate the passwords and hashes to be shore
they were random.

Key space/length 6 8 10 12
0-9 789740

455278
651773
109642
511881

85650786
63099104
74567940
46000701
54223502

0119425077
6433423789
2762342329
2760161644
0124732837

371787564926
685225732402
763251588665
695128406731
590747117552

a-b bnlwoh
fxlomv
pncsol
kqmenf
wlwuuo

eihptwjw
zbppirmj
uyxdebyu
ruakcqjm
symrtqym

sbbebgjxry
kpqfsfzziz
mylpkghyuz
pqcfmfdknc
hlxrpydpzp

fxjoctruxlze
zpejprmignwf
gyocxxizzzzl
pzcexkphgyys
kffrvaqsxrgb

a-b, 0-9 ylfw21
mqy1ll
5czznz
82q31w
16tfdj

gprjepsw
7nasv4k4
9tihpdae
ws9n2vfg
bzd9kulm

nu08oowe90
Yqq6mycDOq
427MSE58Ba
MA12sKeHs6
hrVwaypVTr

r4t9vwpyuymt
qbg3s9tdei75
0yrfnc2ygqo7
5c3iiptl6ugc
i695fuzahh5z

a-b, A-B, 0-9 CqBAQh
wTTCiG
IyNSTP
D6NR5W
vPlS1x

nfwC50P2
Pz2aNRLT
jfEeUyG8
jYeffeHD
QT0Z0cr0

oVzjq2aCb8
Yqq6mycDOq
427MSE58Ba
MA12sKeHs6
hrVwaypVTr

aFqGGQothBdR
pKIprkGZDBMb
8OFX2bGC7d2f
AMANEesDJoPK
xgI5ZkaTvYDN

a-b, A-B, 0-9, punc-
tuation marks

〉,%w+7
F)EVZm
3〈DW’8
de∼‘1t
$∼2D!{

HD’I5fP$
’hxgFM,4
uE〈An (y
6Nˆl[1@w
%EZ5?E+∗

〉GM-6〈:zdr
Z0U}G%I6aC
}I6”1(〈r[t
cUfWy%〉97)
gIjtgQP‘∼{

+B)V,{.!yD4J
MfJ’.!RDUDpS
A:EBl@C?bUwX
]N}lto”)\—)r
9:z2{Gl‘rAr4

5.3 Conclusion

The test made use of 100 different passwords to crack. Consisting of differ-
ent lengths and character sets. For every password we generated five different
hashes: MD5, MD5 crypt, DCC, NTLM and Oracle 11g. This provides a total
of 500 different hashes, available for cracking. Furthermore, we made use of
four different tools to crack those hashes: BarsWF bruteforce, IGHASHGPU,
Extreme GPU Bruteforcer and Elcomsoft. The time it took to crack one of
these hashes was measured for every tool. When the results where collected, we
started analysing them, to answer the main research question.

27

6 Test results

Following the test approach of the previous chapter (chapter 5), the results of
the tests are presented in this section. In section 6.1 we will present the results
from appendix B (raw test results) by means of graphs. In the next section
(section 6.2) we conclude with an overview of processed passwords per second.

6.1 Performance - Cracking time of a password

The graphs below are based on the test data available in appendix B. Every bar
in the graph presents the average from the available data from the five tests to
limit the effects on the results. Every character set and tool is presented as a
different bar.

All the graphs (figure 10, 11, 12 and 13) show an increasing computation
time, when the password complexity and length is increased. The most complex
and longest password were not tested, because of the limited amount of time
available for the research. Some hashes may take up to a weak to crack.

28

Figure 10: The time it takes to crack MD5 hashes with different password lengths and
character sets. The coloured bars represent the different tools used to crack
the hash.

The first graph (figure 10) presents the time needed to crack a MD5 hash.
The time measurement by BarsWF bruteforce may have an error of zero till
two seconds (BarsWF bruteforce requires a key interrupt before it exits. On
the background we ran a Python script giving every two second a key interrupt.
The time was measured from the moment BarsWF bruteforce exits). When this
time is taken into account, there is no significant difference in time between the
tools. The small differences in time, are caused by the algorithm used to search
through the key space.

29

Figure 11: The time it takes to crack Domain Cached Credentials with different pass-
word lengths and character sets. The coloured bars represent the different
tools used to crack the hash.

The second and the third graph (figure 11 and figure 12) are very similar.
In general IGHASHGPU finds the password a little bit faster as Extreme GPU
Bruteforcer does, but the differences are very small. Extreme GPU Bruteforcer
is only faster in the following two cases:

• 8 characters - Lower alpha and digits;

• 12 characters - Digits.

The DCC hash takes more time to crack compared to the MD5 and NTLM
hashes. The difference in cracking time is caused by the complexity of the hash
function, as also mentioned in section 2.5.

30

Figure 12: The time it takes to crack NTLM hashes with different password lengths
and character sets. The coloured bars represent the different tools used to
crack the hash.

31

Figure 13: The time it takes to crack Oracle 11g hashes with different password lengths
and character sets. The coloured bars represent the different tools used to
crack the hash.

The last figure (figure 13) presents the time needed to crack an Oracle 11g
hash. The characteristic of the graph are comparable with the graphs before.
There is however one important difference. Cracking an Oracle 11g hash takes
more time in comparison with the other hashes.

32

6.2 Performance - Processed passwords per second

In the previous section (6.1) we discussed the cracking performance measured in
the time takes to crack a hash. Another measurement for the performance can
be measured in the amount of passwords processed per second. An overview on
the amount of passwords per second can be found in table 5 and figure 15.

Hash Tool Performance (Million
password / sec)

MD5 Elcomsoft 1750
Extreme GPU Bruteforcer 2260
IGHASHGPU 2770
BarsWF bruteforce 3200

NTLM Extreme GPU Bruteforcer 3050
IGHASHGPU 3050

DCC Extreme GPU Bruteforcer 1556
IGHASHGPU 1565

Oracle 11g IGHASHGPU 968

Table 5: Average processed password / second for every hash and tool. Based on
these values it is possible to compute the expected time it takes to process
all passwords of a certain key space. A graphical representation can be found
in figure 15.

The amount of passwords processed for a MD5 hash highly differs for every
tool. Probably not every tool is equally efficient in computing the MD5 hash.
The performance difference of the NTLM hash is much more stable, both tools
process exactly the same amount of passwords per second. The amount of
passwords per second for DCC is almost the same as for both these tools.

NTLM and MD5 perform almost equally. Compared to the DCC and Oracle
11g hash they both process less passwords per second. This is the cause of the
hashing algorithm complexity, as already mentioned in the previous sections
(section 6.1 and section 2.5).

6.3 Conclusion

The time it takes to crack a hash increases, when the password complexity and
length is increased. MD5 and NTLM perform almost equally if it comes to the
amount of password cracking attempts per second. Next follows DCC to be
followed by Oracle 11g as the slowest hash to crack. The differences in cracking
time between the cracking tools is to small to be of any significant meaning.

33

Figure 14: Processed password / second for two Nvidia GTX295. Based on these
values it is possible to compute the expected time to process all passwords
of a certain key space. The exact values can be found in table 5.

34

7 Conclusion

In this chapter we will answer the research question mentioned in the introduc-
tion (chapter 1) and draw some conclusions.

7.1 What are the theoretical differences between a CPU
and GPU?

There are some essential differences between the architecture of CPUs and
GPUs. CPUs are generic processing units. CPUs have a large instruction
set and instruction are executed in series. They are specialised in SISD. GPUs
are more specialised processing units, with a much smaller instruction set and
with a very limited usage of memory. GPUs are executing instruction in paral-
lel (they contain a few hundreds of parallel GPU cores) and are specialised in
SIMD.

Password brute-forcing is based on SIMD, and can be computed in parallel,
with a limited memory usage. This makes GPUs very useful for hash brute-
forcing. Because of the limited amount of time available for this research, GPU-
based dictionary attacks and rainbow tables were not studied.

To be able to use the GPU for general purpose, programmers made use
of the graphics libraries available for the graphics cards. But the possibilities
were limited and developing programs was very difficult. This changed with
the introduction of CUDA by Nvidia. CUDA is parallel computing architecture
for general purpose programming on graphics cards. CUDA includes special
libraries and a C compiler. The libraries are sitting on top of the graphics card
architecture to ease the programming for developers. The C compiler compiles
the code the a specific GPU architecture. Having the C compiler taking care
of the different GPU architectures adds the possibility to use the same code on
different GPU architectures.

7.2 What tools are available for GPU based cracking?

The market for GPU-based password cracking is still young. The following four
applications are able to brute-force passwords using multiple GPUs:

• BarsWF bruteforce;

• Extreme GPU Bruteforcer;

• IGHASHGPU;

• Elcomsoft.

Well known tools like John the Ripper and Cain and Able do not support GPU-
based cracking. For this reseach we needed support for the following hashes (as
defined in the project definition):

• NTLM;

• DCC;

• MD5;

35

• salted MD5;

• MD5 crypt;

• Oracle 11g (salted SHA-1).

All the tools above support at least one of these hashes, except MD5 crypt which
was not supported. They are all active developed, maintained and supported.
Two of the tools are commercial (Extreme GPU Bruteforcer (costs e50,-) and
Elcomsoft (e599,- for 20 clients)), the other tools are free, sometimes only for
non-commercial use. Not one of the tools published there source code. Elcom-
soft delivers the most complete software package, but is also the most expensive
one. Elcomsoft is the only tool which supports distributed GPU-based cracking.
A complete overview of the cracking tools can be found in table 4.

7.3 What is the actual performance gain of GPU versus
CPU-based cracking?

Because of the large amount of processing cores available in GPUs, the amount
of GFLOPS available in GPUs is much larger compared to CPUs (a complete
overview of GFLOPS can be found in table 3). This difference in performance
is also visible in the results of our research, as can be seen in figure 15.

Figure 15: CPU vs GPU based on processed password / second for several CPUs and
two Nvidia GTX295. This figure is a combination of the data available in
table 2 and 7.

In table 6 the performance / price ratio and performance / power usage
is presented. In this table performance is measured in passwords per second.
Notice, in table 3 the same data is presented, but instead the performance is
measured in GFLOPS. Our test system processed fourteen times more password

36

per second on its GPUs in comparison to its CPU. The GPUs used are even
forty times faster if measured in GFLOPS (based on table 3). It is clear GPUs
lose some performance on non floating point operations.

Nvidia
GT295

Nvidia
GT295

Nvidia
GT295

Nvidia
GT295

Intel
Core
i7 920

Oracle11g NTLM DCC MD5
Power consumption6 (Watt) 289 289 289 289 130
Performance (million passwords /
sec

484 1550 788 1500 230

Price7 (e) 400,- 400,- 400,- 400,- 227,-
Performance/Price ratio (pass-
words / sec / e)

1,21 3,88 1,97 3,75 1,01

Performance/Power consumption
ratio (passwords / sec / Watt)

1,67 5,36 2,73 5,19 1,77

Table 6: The data in this table is almost the same as in table 3 and shows the per-
formance/price and performance/power consumption ratio for the different
hashes. Higher is better. But the performance measured in password per
second instead of GFLOPS. The performance data is retrieved from our re-
search, these can be found in section 6 [17, 20, 21].

Next to performance differences between GPUs and CPUs there are also
performance differences between tools. Especially between the performance of
MD5 cracking tools. BarsWF bruteforce is the fastest tool available for MD5
based hashes, but only if measured in password per second. If measured in time
needed to crack a hash, there is no significant difference.

Hash Tool Performance (Million
password / sec)

MD5 Elcomsoft 1750
Extreme GPU Bruteforcer 2260
IGHASHGPU 2770
BarsWF bruteforce 3200

NTLM Extreme GPU Bruteforcer 3050
IGHASHGPU 3050

DCC Extreme GPU Bruteforcer 1556
IGHASHGPU 1565

Oracle 11g IGHASHGPU 968

Table 7: Average processed password / second for every hash and tool. Based on
these values it is possible to compute the expected time it takes to process
all passwords of a certain key space. A graphical representation can be found
in figure 15.

The differences in the amount of passwords per second are caused by the
implementation of the hashing algorithm. These implementations differ per tool
in efficiency. The performances of all cracking tools (in password per second)
are shown in figure 15 and table 7. The other tools perform equally, comparing

37

on basis of password per second.
When the performance of the different tools is compared on basis of the time

needed to find a password, more differences in performance are visible. But the
differences are really small and therefore not significant. Most of the differences
are caused by the algorithm used to walk through the key space. A complete
overview of the performance result can be found in graphs (figure 10, 12, 11 and
13.

7.4 What is the recommended password length for clients
of KPMG?

KPMG gives advise to there customers to have passwords expired in a fifth of
the time it takes to crack a password (computing all the passwords in the key
space). This means if you have a password which can be cracked in ten months,
the password expiration time must be two months. With the default expiration
time of 90 days for Active Directory, the computation time for the whole key
space must be at least 15 months [38]. One of following passwords are secure
if you apply those rules on the passwords in figure 16 and by taking the near
future into account:

• Nine or more characters with a key space containing all characters.

• Ten or more characters with a key space containing lowercase characters,
uppercase characters and numbers.

• Twelve or more characters with a key space containing lowercase charac-
ters and numbers.

Figure 16 is based on a average of two billion passwords per second. Comparing
these values with table 7, which shows the actual passwords per second as
measured doing the research, the following can be concluded.

• MD5 and NTLM are 1.5 times faster;

• DCC is 1.25 times slower;

• Oracle 11g is two times slower.

In spite of the differences in speed, we advice for all the reviewed hashes the
same password length. This is because of the available margins (this margin is
caused by the rounding up of the password length). This means that MD5 does
have less margin left in comparison with Oracle 11g.

38

Figure 16: The relation between entropy and computation time for an average cracking
system with a computation speed of two billion password per second. This
value is based on data available in section 2.5.

8 Discussion

In the previous section the research questions are answered and some conclusions
are drawn. In this section we will discuss some notes on the performance test
executed. Also some tips about future research is given. We conclude this
chapter with a look into the future of GPU-based password cracking.

During this research we executed a test to measure the password cracking
performance on two Nvidia GT295 graphics cards. There are however a few side
notes we have to mention, which may have influenced our results:

• The salt used during the Oracle 11g SHA-1 test was to short conform the
Oracle 11g implementation. We do not expect this to have influenced the
results, because of the small performance impact we have seen by adding
a salt to a hash in the crack process.

• We generated a whole list of hashes we hoped to be able to crack, but due
the limited amount of time, we could not crack all those hashes. Cracking
all those hashes would have provided a better view on the performance of
the test system.

During this research we did not test rainbow cracking and dictionary based
cracking using GPUs. Because of the limited amount of available time. But,

39

because of the huge amount of available processing power, it may also be in-
teresting to use GPUs for these kind cracking tools. However we do not expect
to see significant improvements in the time it takes to crack a hash. The many
I/O operations to the table will form the bottleneck of the cracking process.
We only except to see an improvement in time, if the I/O bottleneck can be
avoided. This can be achieved by making the chains really long (in the order
of several billion). With the performance of GPUs in mind, the time it would
takes to recompute these chains will be short.

Finally we will give our future look about GPU-based password cracking.
We expect that in the near future GPU-based password cracking will get much
faster. During this research we made use of the GT200 series from Nvidia.
Nvidia expects its new GT300 series to be released in the first half of 2010 [39].
ATI already released its new 5000 series. The first benchmarks of these graphics
card are significant. Their fastest dual GPU card computes over more than 6
billion password per second with MD5[40]. Which is 4 times faster compared
to the GPU used for this research. The new series from Nvidia are expected to
provide the same performance gain.

Figure 17 shows the expected computation times for a system with two dual
core graphics cards from the Nvidia GT300 or ATI 5000 series. The amount
of password per second rises to a level of thirteen billion (13.000.000.000) per
second. In spite of the performance increasement. The advice on password
length and complexity remains the same.

40

Figure 17: The future of the computation time for a system based on two modern
graphics cards from the year 2010. This system would have a computation
power of around thirteen billion MD5 or SHA1 passwords per second.

41

9 Acknowledgement

We would like to thank KPMG for the ability to execute our research and
received encouragement, guidance and support from the initial to the final level.
This enabled us to develop an understanding of the subject. In special we would
like to thank our supervisors Marc Smeets, Stan Hegt and Pieter Ceelen.

Lastly, we offer our regards to our teachers and supervisors from the Uni-
versity of Amsterdam in any respect during the completion of the project.

Marcus Bakker & Roel van der Jagt

42

References

[1] Password advices, January 2009. URL https://www.google.com/
accounts/PasswordHelp.

[2] Password advices, January 2009. URL http://www.netadvies.nl/
advies/wachtwoord.html.

[3] Restrict repeating characters, January 2009. URL http://publib.
boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/rzakz/
rzakzqpwdlmtrep.htm.

[4] Google. Gmail, January 2009. URL http://www.gmail.com/.

[5] Random password strength, January 2009. URL http://www.redkestrel.
co.uk/Articles/RandomPasswordStrength.html.

[6] Human memory limitations and web site usability, January 2009. URL
http://webword.com/moving/memory.html.

[7] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, fifth edition, October 1996.

[8] Hash collision, January 2009. URL http://upload.wikimedia.org/
wikipedia/commons/5/58/Hash_table_4_1_1_0_0_1_0_LL.svg.

[9] Thomas Fuhr and Thomas Peyrin. Cryptanalysis of radiogatun. Technical
report, DCSSI Labs & Ingenico, 2008. http://eprint.iacr.org/.

[10] Hardware.Info. Cpu compare, January 2009. URL http://www.hardware.
info/nl-NL/productdb/viewbenchmarks/.

[11] N. Warren. Benchmark comparison - pc password recovery tools, January
2009. URL http://www.cerberusgate.com/benchmark_comparison.
htm.

[12] S.M. Aleksandrovich. World fastest md5 cracker barswf, January 2009.
URL http://3.14.by/en/md5.

[13] InsidePro. Extreme gpu bruteforcer, January 2009. URL http://www.
insidepro.com/eng/egb.shtml.

[14] I. Golubev. Ighashgpu v0.62, January 2009. URL http://www.golubev.
com/files/ighashgpu/readme.htm.

[15] Elcomsoft Co. Ltd. Lightning hash cracker, January 2009. URL http:
//www.elcomsoft.com/lhc.html.

[16] T.R. Halfhill. Parallel processing with cuda. Microprocessor Report, jan
2008.

[17] Nvidia, January 2009. URL http://www.nvidia.com/.

[18] Y. Liu E. Wu. Emerging technology about gpgpu. In Circuits and Systems
- Asia Pacific Conference, pages 618–622. IEEE, dec 2008.

43

https://www.google.com/accounts/PasswordHelp
https://www.google.com/accounts/PasswordHelp
http://www.netadvies.nl/advies/wachtwoord.html
http://www.netadvies.nl/advies/wachtwoord.html
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/rzakz/rzakzqpwdlmtrep.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/rzakz/rzakzqpwdlmtrep.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/rzakz/rzakzqpwdlmtrep.htm
http://www.gmail.com/
http://www.redkestrel.co.uk/Articles/RandomPasswordStrength.html
http://www.redkestrel.co.uk/Articles/RandomPasswordStrength.html
http://webword.com/moving/memory.html
http://upload.wikimedia.org/wikipedia/commons/5/58/Hash_table_4_1_1_0_0_1_0_LL.svg
http://upload.wikimedia.org/wikipedia/commons/5/58/Hash_table_4_1_1_0_0_1_0_LL.svg
http://eprint.iacr.org/
http://www.hardware.info/nl-NL/productdb/viewbenchmarks/
http://www.hardware.info/nl-NL/productdb/viewbenchmarks/
http://www.cerberusgate.com/benchmark_comparison.htm
http://www.cerberusgate.com/benchmark_comparison.htm
http://3.14.by/en/md5
http://www.insidepro.com/eng/egb.shtml
http://www.insidepro.com/eng/egb.shtml
http://www.golubev.com/files/ighashgpu/readme.htm
http://www.golubev.com/files/ighashgpu/readme.htm
http://www.elcomsoft.com/lhc.html
http://www.elcomsoft.com/lhc.html
http://www.nvidia.com/

[19] D. Geer. Taking the graphics processor beyond graphics. Computer, 38:
14–16, sep 2005.

[20] Intel. Ark — your source for information on intel R© products, January 2009.
URL http://ark.intel.com/.

[21] Tweakers.net. Tweakers.net pricewatch, January 2009. URL http://
tweakers.net/pricewatch/.

[22] GPUreview. Gpureview - nvidia geforce gtx 295, January 2009. URL
http://www.gpureview.com/GeForce-GTX-295-card-603.html.

[23] Intel. Processors, January 2009. URL http://www.intel.com/support/
processors/sb/cs-023143.htm.

[24] The ntlm authentication protocol and security support provider, Jan-
uary 2009. URL http://davenport.sourceforge.net/ntlm.html#
theLmResponse.

[25] Microsoft. Ntlm user authentication in windows, January 2009. URL http:
//support.microsoft.com/kb/102716.

[26] B. den Boer and A. Bosselaers. An attack on the last two rounds of md4.
Crypto, pages 194–203, 1991.

[27] San Jose State University. Md4. URL http://www.cs.sjsu.edu/~stamp/
crypto/PowerPoint_PDF/15_MD4.pdf.

[28] R. Chen. Microsft technet - windows confidential cached credentials,
January 2009. URL http://207.46.16.252/en-us/magazine/2009.07.
windowsconfidential.aspx.

[29] Passcape Software. Recovering domain cached passwords, January 2009.
URL http://www.passcape.com/domain_cached_passwords.

[30] D. Niggebrugge. Cacheebr, the ms cache password brute forcer,
January 2009. URL http://blog.distracted.nl/2009/05/
cacheebr-ms-cache-password-brute-forcer.html.

[31] R. Rivest. RFC: 1321. The MD5 Message-Digest Algorithm. MIT Labora-
tory for Computer Science and RSA Data Security, Inc, April 1992.

[32] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. Molnar, D.A. Osvik,
and B. de Weger. Md5 considered harmful today, December 2008. URL
http://www.win.tue.nl/hashclash/rogue-ca/.

[33] A. Main. passphrases using the md5-based unix crypt(), 2009. URL
http://search.cpan.org/~zefram/Authen-Passphrase-0.006/lib/
Authen/Passphrase/MD5Crypt.pm.

[34] The Recurity Lablog. Oracle 0xdeadf00d, September 2007. URL
http://www.phenoelit.net/lablog/archives/2007/09/22/oracle_
0xdeadf00d/index.html.

[35] P. Finnigan’s. Oracle 11g password algorithm revealed, September 2007.
URL http://www.petefinnigan.com/weblog/archives/00001097.htm.

44

http://ark.intel.com/
http://tweakers.net/pricewatch/
http://tweakers.net/pricewatch/
http://www.gpureview.com/GeForce-GTX-295-card-603.html
http://www.intel.com/support/processors/sb/cs-023143.htm
http://www.intel.com/support/processors/sb/cs-023143.htm
http://davenport.sourceforge.net/ntlm.html#theLmResponse
http://davenport.sourceforge.net/ntlm.html#theLmResponse
http://support.microsoft.com/kb/102716
http://support.microsoft.com/kb/102716
http://www.cs.sjsu.edu/~stamp/crypto/PowerPoint_PDF/15_MD4.pdf
http://www.cs.sjsu.edu/~stamp/crypto/PowerPoint_PDF/15_MD4.pdf
http://207.46.16.252/en-us/magazine/2009.07.windowsconfidential.aspx
http://207.46.16.252/en-us/magazine/2009.07.windowsconfidential.aspx
http://www.passcape.com/domain_cached_passwords
http://blog.distracted.nl/2009/05/cacheebr-ms-cache-password-brute-forcer.html
http://blog.distracted.nl/2009/05/cacheebr-ms-cache-password-brute-forcer.html
http://www.win.tue.nl/hashclash/rogue-ca/
http://search.cpan.org/~zefram/Authen-Passphrase-0.006/lib/Authen/Passphrase/MD5Crypt.pm
http://search.cpan.org/~zefram/Authen-Passphrase-0.006/lib/Authen/Passphrase/MD5Crypt.pm
http://www.phenoelit.net/lablog/archives/2007/09/22/oracle_0xdeadf00d/index.html
http://www.phenoelit.net/lablog/archives/2007/09/22/oracle_0xdeadf00d/index.html
http://www.petefinnigan.com/weblog/archives/00001097.htm

[36] X. Wang, Y.L. Yin, and H. Yu. Finding collisions in the full sha-1. In
CRYPTO, pages 17–36, 2005.

[37] A. Zonenberg. Distributed hash cracker: A cross-platform gpu-accelerated
password recovery system, April 2000.

[38] A. Juels. Password expiration: Like margarine and water?, May 2008. URL
http://www.rsa.com/blog/blog_entry.aspx?id=1286.

[39] M. Rademaker. Hommeles in gpu-land, January 2009. URL http:
//tweakers.net/reviews/1499/2009-hommeles-in-gpu-land.html.

[40] I. Golubev. New results for md5 hashes for ati gpus, January 2009. URL
http://www.golubev.com/blog/?p=9.

[41] K. Kuah. Motion estimation with intel streaming simd
extensions 4 (intel sse4). Technical report, Intel, April
2007. http://software.intel.com/en-us/articles/
motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4/.

[42] AsusTeK. Asustek product image engtx295, January 2009. URL http:
//www.asus.com/product.aspx?P_ID=vuzvpginHnMTxCcr&templete=2.

[43] D.S. Carstens. Human and social aspects of password authentication. Tech-
nical report, Florida Institute of Technology, USA, 2009.

45

http://www.rsa.com/blog/blog_entry.aspx?id=1286
http://tweakers.net/reviews/1499/2009-hommeles-in-gpu-land.html
http://tweakers.net/reviews/1499/2009-hommeles-in-gpu-land.html
http://www.golubev.com/blog/?p=9
http://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4/
http://software.intel.com/en-us/articles/motion-estimation-with-intel-streaming-simd-extensions-4-intel-sse4/
http://www.asus.com/product.aspx?P_ID=vuzvpginHnMTxCcr&templete=2
http://www.asus.com/product.aspx?P_ID=vuzvpginHnMTxCcr&templete=2

Glossary

CA certificate

CA is an abbreviation for certificate authority. Who’s main business is
sighing certificates, to assure a certain degree of authenticity. The CA
certificate plays a roll in the process of signing certificates. 19

hash

A hash is a one way function which converts a variable input into a fixt
length (often between 128 bits and 512 bits) output. Its output is also
called a fingerprint of the input value. It is not possible to retrieve the
orginal input value by making use of the output value. 6, 8–11, 17–22, 32

Linux

Unix-like computer operating systems based in the Linux kernel. Their
development process is one of the most important examples of open source
development. 22

salt

A salt is a (sometimes secret) string that is used as one of the inputs
to hash function. A salt is used to prevent rainbow table attacks. A
rainwbow table is actually a large database storing a lots of password-
hash pairs. Creating a rainbow table takes a lot of time, but is speeds
up the process of cracking a hash. By adding salt (which will be different
for every hash) you have to create a different rainbow for every salt value.
This will defeat a rainbow-table attack. 8, 18–21

46

List of Acronyms

Central Processing Unit (CPU)

The central processing unit is the general processing unit in every com-
puter. 4, 6, 10–13, 15, 17, 22, 34–36

Compute Unified Device Architecture (CUDA)

CUDA is a parallel computing architecture developed by Nvidia, which
allow general purpose programming on GPUs from Nvidia. 14, 34

Domain Cached Credentials (DCC)

A salted NTLM hash stored on the local machine. 10, 18, 19, 25, 26, 29,
32, 34, 36, 37, 57

Data encryption standard (DES)

DES is a block cipher selected by the National Bureau of Standards and
introduced in 1976 to be used in the United States. DES is now considered
to be insecure for many applications. 20

Giga Floating Point Operations Per Second (GFLOPS)

GigaFLOPS is the same as 1.000.000.000 FLOPS. FLOPS are the number
of floating point operations processed per second. FLOPS is used as a
measure for the speed of processing units. 12, 13, 17, 35

General-Purpose Graphics Processing Unit (GPGPU)

A GPU used for more general purposes than only graphical computations.
11, 14, 17

Graphics Processing Unit (GPU)

The GPU is a processing unit optimised and ment for graphic operations.
4, 6, 10–15, 17, 22, 24, 34–36, 38, 39, 49

Kleynveld Peat Marwick Goerdeler (KPMG)

KPMG is an international company which offers Audit, Tax and Advisory
services. 4, 37, 41

Lan manager (LM)

A Network Operating System (NOS) from Microsoft developed in coop-
eration with 3Com in 1987 as an answer on Novell’s Netware. 18, 20

Message-Digest algorithm 5 (MD5)

MD5 is a hashing algorithm developed by Professor Ronald Rivest at MIT
in 1994. It is the successor of MD4, which had several weaknesses. The
message digest has a length of 128 bits. 10, 18–21, 25, 26, 28, 29, 32, 36,
37, 39, 57

47

Message-Digest algorithm 4 (MD4)

MD4 is a hashing algorithm developed by Professor Ronald Rivest at MIT
in 1990. The message digest has a length of 128 bits. 10, 18–20

Moving Picture Experts Group (MPEG)

The Moving Picture Experts Group was formed by the ISO to set stan-
dards for audio and video compression and transmission. 14

National Institute of Standards and Technology (NIST)

The NIST is a measurement standards laboratory which is a non-regulatory
agency of the United States Department of Commerce. 20, 47

NT Lan manager (NTLM)

Is a Microsoft authentication protocol. It is also used to generate a hash
of a user password. 10, 18–20, 25, 26, 29, 32, 36, 37, 57

Original Equipment Manufacturer (OEM)

OEM refers to the company that originally manufactured the product 18

Open Computing Language (OpenCL)

OpenCL is a cross-platform API to support general purpose programming
on GPUs. 14

Security Accounts Manager (SAM)

SAM is the accounts database used by Microsoft Windows NT, Windows
2000, and later Microsoft Operating systems to store user passwords in
hashed format. 18

Secure Hashing Algorithm 1 (SHA-1)

SHA1 is a hashing algorithm, which was published by the NIST. The
message digest has a length of 160 bits. 18, 20, 38

Single Instruction, Multiple Data (SIMD)

SIMD is a technique used to achieve data level parallelism. 12, 34, 47

Single Instruction, Single Data (SISD)

SISD is the technique used in CPUs to process data. Data is processed in
a serial way. 12, 34

Streaming SIMD Extensions version 5 (SSE5)

SSE5 is version 5 of the Streaming SIMD Extensions, which extends the
x86 instruction set. SIMD is implemented in the SSE instruction set.[41]
13

Streaming SIMD Extensions version 4 (SSE4)

SSE4 is version 4 of the Streaming SIMD Extensions, which extends the
x86 instruction set. SIMD is implemented in the SSE instruction set.[41]
10

48

Streaming SIMD Extensions version 2 (SSE2)

SSE2 is version 2 of the Streaming SIMD Extensions, which extends the
x86 instruction set. SIMD is implemented in the SSE instruction set.[41]
10

49

A Specifications test system

A.1 Cracking server

The cracking server has the following specifications. More details about the
graphic card can be found in the next section (section A.2):

System specifications:
CPU Intel Core i7 920 (s1366,2.66GHz)
Memory 6GB DDR3 1066MHz in triple channel mode
Motherboard ASUS P6T7 WS SuperComp (place for four

GPUs)
Harddisk 3x 500GB S-ATAII (one disk for the OS, the

other two disks in RAID0 for data storage)
GPU ASUS ENGTX295 2x
Power supply 1500 watt
Operating System Microsoft Windows server 2008 x64

A.2 Graphics card

The Nvidia GTX295 card we used for this research has the following specifi-
cations8. Notice that some manufacturer changes these specifications for their
own implementation. We checked this on the site of Asus9 (Asus is the manu-
facturer of the card). At their site we found the same specifications as found at
Nvidia’s site.

GPU Engine Specs:
Processor Cores 480 (240 x 2)
Graphics Clock (MHz) 576
Processor Clock (MHz) 1242
Texture Fill Rate (billion/sec) 92.2

Memory Specs:
Memory Clock (MHz) 999
Standard Memory Config 1792MB (896MB x 2) GDDR3
Memory Interface Width 896-bit (448-bit x 2)
Memory Bandwidth (GB/sec) 223.8

Feature Support:
NVIDIA SLI R©-ready 4 (Quad)
NVIDIA PureVideo R© Technology PVHD
NVIDIA PhysX

TM
-ready Yes

NVIDIA CUDA
TM

Technology Yes
Microsoft DirectX 10
OpenGL 2.1
Bus Support PCI-E 2.0 x16
Certified for Windows Vista Yes

Display Support:
8www.nvidia.co.uk/object/product geforce gtx 295 uk.htm
9www.asus.nl/product.aspx?P ID=gYXUhIbeFszdRPSY&templete=2

50

http://www.nvidia.co.uk/object/product_geforce_gtx_295_uk.html
http://www.asus.nl/product.aspx?P_ID=gYXUhIbeFszdRPSY\&templete=2

Figure 18: The ASUS GTX295 graphics card used during the research.[42]

Maximum Digital Resolution 2560x1600
Maximum VGA Resolution 2048x1536
Standard Display Connectors Two Dual Link DVI, HDTV
Multi Monitor Yes
HDCP Yes
HDMI Yes
Audio Input for HDMI SPDIF

Standard Graphics Card Dimensions:
Height 4.376 inches (111 mm)
Length 10.5 inches (267 mm)
Width Dual-Slot

Thermal and Power Specs:
Maximum GPU Tempurature (in C) 105 C
Maximum Graphics Card Power (W) 289 W
Minimum System Power Requirement (W) 680 W
Supplementary Power Connectors 6-pin and 8-pin

51

B Raw test results

Table 8: Raw test results of the password cracking tests.

E
lc

om
so

ft
(s

ec
)

E
x
tr

em
e

G
P

U
B

ru
te

fo
rc

er
(s

ec
)

IG
H

A
S

H
G

P
U

(s
ec

)

B
ar

sW
F

b
ru

te
fo

rc
e

(s
ec

)

Password MD5
789740 1 1 0 4
455278 1 1 0 2
651773 1 1 0 2
109642 1 1 0 3
511881 1 1 0 3
bnlwoh 1 1 0 3
fxlomv 1 2 0 3
pncsol 1 1 0 3
kqmenf 1 1 0 2
wlwuuo 1 2 0 3
ylfw21 2 3 1 3
mqy1ll 2 2 0 4
5czznz 2 3 0 5
82q31w 2 3 1 4
16tfdj 2 2 0 4
CqBAQh 5 6 6 9
wTTCiG 16 20 12 14
IyNSTP 20 24 7 11
D6NR5W 24 27 19 13
vPlS1x 12 12 18 19
〉,%w+7 219 117 35 21
F)EVZm 47 47 169 85
3〈DW’8 225 121 23 87
de∼‘1t 73 69 54 206
$∼2D!{ 282 280 8 44
85650786 1 1 0 5
63099104 1 1 0 4
74567940 1 1 0 4
46000701 1 1 0 4
54223502 1 1 0 4
eihptwjw 99 88 61 39
zbppirmj 46 40 28 51
uyxdebyu 93 82 15 79
ruakcqjm 57 51 11 10
symrtqym 60 53 60 44
gprjepsw 954 814 152 764

52

Table 8 – Continued

E
lc

om
so

ft
(s

ec
)

E
x
tr

em
e

G
P

U
B

ru
te

fo
rc

er
(s

ec
)

IG
H

A
S

H
G

P
U

(s
ec

)

B
ar

sW
F

b
ru

te
fo

rc
e

(s
ec

)

Password MD5
7nasv4k4 1265 1082 632 319
9tihpdae 206 175 446 523
ws9n2vfg 291 250 826 301
bzd9kulm 545 462 322 400
nfwC50P2 64598
Pz2aNRLT
jfEeUyG8
jYeffeHD
QT0Z0cr0
HD’I5fP$
’hxgFM,4
uE〈An (y
6Nˆl[1@w
%EZ5?E+∗
0119425077 6 6 2 9
6433423789 7 7 2 9
2762342329 7 7 2 10
2760161644 5 4 1 10
0124732837 6 6 3 10
sbbebgjxry 4181
kpqfsfzziz
mylpkghyuz
pqcfmfdknc
hlxrpydpzp
nu08oowe90
Yqq6mycDOq
427MSE58Ba
MA12sKeHs6
hrVwaypVTr
oVzjq2aCb8
Yqq6mycDOq
427MSE58Ba
MA12sKeHs6
hrVwaypVTr
〉GM-6〈:zdr
Z0U}G%I6aC
}I6”1(〈r[t
cUfWy%〉97)
gIjtgQP‘∼{

53

Table 8 – Continued

E
lc

om
so

ft
(s

ec
)

E
x
tr

em
e

G
P

U
B

ru
te

fo
rc

er
(s

ec
)

IG
H

A
S

H
G

P
U

(s
ec

)

B
ar

sW
F

b
ru

te
fo

rc
e

(s
ec

)

Password MD5

371787564926 420 326 356 210
685225732402 180 140 134 537
763251588665 384 298 226 246
695128406731 142 111 143 368
590747117552 211 162 210 151
fxjoctruxlze
zpejprmignwf
gyocxxizzzzl
pzcexkphgyys
kffrvaqsxrgb
r4t9vwpyuymt
qbg3s9tdei75
0yrfnc2ygqo7
5c3iiptl6ugc
i695fuzahh5z
aFqGGQothBdR
pKIprkGZDBMb
8OFX2bGC7d2f
AMANEesDJoPK
xgI5ZkaTvYDN
+B)V,{.!yD4J
MfJ’.!RDUDpS
A:EBl@C?bUwX
]N}lto”)\—)r
9:z2{Gl‘rAr4

54

Table 9: Raw test results of the password cracking tests.

E
x
tr

em
e

G
P

U
B

ru
te

fo
rc

er
(s

ec
)

IG
H

A
S

H
G

P
U

(s
ec

)

E
x
tr

em
e

G
P

U
B

ru
te

fo
rc

er
(s

ec
)

IG
H

A
S

H
G

P
U

(s
ec

)

R
ai

n
b

ow
C

ra
ck

(s
ec

)

IG
H

A
S

H
G

P
U

(s
ec

)

Password NTLM DCC Oracle 11g
789740 1 0 1 0 0
455278 1 0 1 0 1
651773 1 0 1 0 1
109642 1 0 1 0 0
511881 1 0 1 0 0
bnlwoh 1 0 1 0 0
fxlomv 1 0 2 0 0
pncsol 1 0 1 0 1
kqmenf 1 0 1 0 0
wlwuuo 1 0 2 0 0
ylfw21 2 1 5 1 2
mqy1ll 2 0 3 0 1
5czznz 2 0 4 1 1
82q31w 2 1 4 1 2
16tfdj 1 0 2 0 1
CqBAQh 4 5 8 10 17
wTTCiG 15 11 30 21 34
IyNSTP 18 6 36 12 20
D6NR5W 21 18 41 34 56
vPlS1x 9 17 18 32 52
〉,%w+7 89 32 177 63 102
F)EVZm 36 154 71 305 498
3〈DW’8 92 21 183 42 69
de∼‘1t 52 49 105 97 157
$∼2D!{ 211 8 422 15 25
85650786 1 0 1 0 1
63099104 1 0 1 0 1
74567940 1 0 1 0 1
46000701 1 0 1 0 0
54223502 1 0 1 0 0
eihptwjw 66 55 132 108 173
zbppirmj 30 26 61 50 81
uyxdebyu 62 13 124 26 43
ruakcqjm 38 10 77 19 30
symrtqym 40 55 80 106 172
gprjepsw 599 138 1238 271 438
7nasv4k4 796 578 1647 1137 1836
9tihpdae 129 406 267 799 1295
ws9n2vfg 184 749 380 1469 2378

55

Table 9 – Continued

E
x
tr

em
e

G
P

U
B

ru
te

fo
rc

er
(s

ec
)

IG
H

A
S

H
G

P
U

(s
ec

)

E
x
tr

em
e

G
P

U
B

ru
te

fo
rc

er
(s

ec
)

IG
H

A
S

H
G

P
U

(s
ec

)

R
ai

n
b

ow
C

ra
ck

(s
ec

)

IG
H

A
S

H
G

P
U

(s
ec

)

Password NTLM DCC Oracle 11g
bzd9kulm 340 293 703 576 933
nfwC50P2 36045 72168
Pz2aNRLT
jfEeUyG8
jYeffeHD
QT0Z0cr0
HD’I5fP$
’hxgFM,4
uE〈An (y
6Nˆl[1@w
%EZ5?E+∗
0119425077 4 2 9 3 6
6433423789 5 2 10 3 6
2762342329 5 2 10 3 5
2760161644 3 1 7 2 3
0124732837 4 3 9 5 9
sbbebgjxry 48067 96027
kpqfsfzziz
mylpkghyuz
pqcfmfdknc
hlxrpydpzp
nu08oowe90
Yqq6mycDOq
427MSE58Ba
MA12sKeHs6
hrVwaypVTr
oVzjq2aCb8
Yqq6mycDOq
427MSE58Ba
MA12sKeHs6
hrVwaypVTr
〉GM-6〈:zdr
Z0U}G%I6aC
}I6”1(〈r[t
cUfWy%〉97)
gIjtgQP‘∼{
371787564926 237 324 497 630 1017
685225732402 102 121 213 235 380
763251588665 217 206 454 401 647

56

Table 9 – Continued

E
x
tr

em
e

G
P

U
B

ru
te

fo
rc

er
(s

ec
)

IG
H

A
S

H
G

P
U

(s
ec

)

E
x
tr

em
e

G
P

U
B

ru
te

fo
rc

er
(s

ec
)

IG
H

A
S

H
G

P
U

(s
ec

)

R
ai

n
b

ow
C

ra
ck

(s
ec

)

IG
H

A
S

H
G

P
U

(s
ec

)

Password NTLM DCC Oracle 11g
695128406731 80 130 169 252 408
590747117552 118 191 248 371 601
fxjoctruxlze
zpejprmignwf
gyocxxizzzzl
pzcexkphgyys
kffrvaqsxrgb
r4t9vwpyuymt
qbg3s9tdei75
0yrfnc2ygqo7
5c3iiptl6ugc
i695fuzahh5z
aFqGGQothBdR
pKIprkGZDBMb
8OFX2bGC7d2f
AMANEesDJoPK
xgI5ZkaTvYDN
+B)V,{.!yD4J
MfJ’.!RDUDpS
A:EBl@C?bUwX
]N}lto”)\—)r
9:z2{Gl‘rAr4

57

C Commands: cracking tools

An overview of the commands used for the different tools.

Elcomsoft

Character sets:
• -c0 0-9
• -ca a-b
• -ca0 a-b, 0-9
• -caA0 a-b, A-B, 0-9
• -caA0! a-b, A-B, 0-9, punctuation marks

Example:

lhc.exe -l6 -L12 -i0123 -ca md5hash.txt

-l6 specifies a minimal password length of 6, -L12 specifies maximum pass-
word length of 12 and -i0123 defines the GPUs to use for cracking. The last
parameter is the text file containing the hash to crack.

Extreme GPU Bruteforcer

Every hash has a different executable:
• MD5.exe
• NTLM.exe
• MSCACHE.exe

Character sets:
• digits.ini 0-9
• lower.ini a-b
• lowerdigits.ini a-b, 0-9
• lowerupperdigits.ini a-b, A-B, 0-9
• all.ini a-b, A-B, 0-9, punctuation marks

Inside the .ini files the character set is specified as mentioned above, and the
following parameters:
• MaxLength=12 Maximal password length
• PasswordsInThread=3000,3000,3000,3000 Number of passwords to be processed by a

thread. 6000 is the default. 3000 gave us the
best results.

• StreamProcessors=240,240,240,240 Number of stream processors. Our GPUs had
a total 240 steam processors each.

• CurrentDevice=1,2,3,4 The GPU devices to use for the cracking ses-
sion.

Example:

MD5.exe lower.ini md5hash.txt

The last parameter is the text file with the hash to crack.

58

IGHASHGPU

Every hash has different parameters:
• -t:md5 MD5
• -t:md4 -unicode NTLM
• -t:dcc -usalt:uvasne DCC
• -t:sha1 -asalt:uvasne Oracle 11g

Character sets:
• -c:d 0-9
• -c:s a-b
• -c:sd a-b, 0-9
• -c:csd a-b, A-B, 0-9
• -c:a a-b, A-B, 0-9, punctuation marks

Example:

ighashgpu.exe -max:12 -c:s -t:md5 -h:acbd18db4cc2f85cedef654fccc4a4d8

-max:12 sets the maximum password length to 12 characters. The last parameter
is the hash to crack.

BarsWF bruteforce

Character sets:
• -c 0 0-9
• -c a a-b
• -c 0a a-b, 0-9
• -c aA0 a-b, A-B, 0-9
• -c aA0~ a-b, A-B, 0-9, punctuation marks

Example:

BarsWF_CUDA_x64.exe -c a -h acbd18db4cc2f85cedef654fccc4a4d8

The last parameter is the hash value to crack.

59

D Random password generator

To generate the random passwords and the corresponding hashes needed for the
research we wrote a python script.

1 #!/ usr / bin /python
2
3 import random , sys , getopt , re , hash l ib , b i n a s c i i , Crypto . Hash .MD4, md5 crypt
4
5 MD4 = Crypto . Hash .MD4
6 PASS LENGTH = 15
7 AMOUNT OF PASSWORDS = 1
8 cha ra c t e r s = []
9 hash output = ””

10 ha sh s a l t = ””
11 password = ””
12
13 # Print the he lp informat ion
14 def usage () :
15 print ”Generates random passwords and the cor re spond ing hashes . Ava i l ab l e hashes are : ”
16 print ”MD5, MD5 crypt , NTLM, MSCACHE and ORACLE 11g\n”
17 print ”−a , −−amount=AMOUNT amount o f passwords ”
18 print ”−d , −−d i g i t use d i g i t s f o r the password”
19 print ”−h , −−help d i sp l ay t h i s he lp in fo rmat ion ”
20 print ”−l , −−lower use lower case l e t t e r s in the password”
21 print ”−L , −−l ength=LENGTH sp e c i f y the l ength o f the password (d e f au l t 15) ”
22 print ”−o , −−output=HASH de f i n e the hash to output . Use \” a l l \” to output a l l ”
23 print ” av a i l a b l e hashes ”
24 print ”−p , −−punctuat ion use punctuat ion marks in the password”
25 print ”−P, −−password=PASSOWRD se t a prede f i n ed password . No random passwords are used”
26 print ”−s , −−s a l t=SALT de f i n e the s a l t f o r the hash”
27 print ”−u , −−upper use upper case l e t t e r s in the password”
28 qu i t ()
29
30 # Determine i f the argument i s a i n t e g e r
31 def i s I n t (i n t e g e r) :
32 i f re . s earch (”ˆ[0−9]+$” , i n t e g e r) :
33 return True
34 else :
35 return False
36
37 # Capture the op t ions and the corresponding arguments
38 i f l en (sys . argv) > 1 :
39 try :
40 opts , a rgs = getopt . getopt (sys . argv [1 :] , ”L : hdpula : o : s :P : ” , \
41 [” l ength=” , ” he lp ” , ” d i g i t ” , ” punctuat ion ” , ”upper” , ” lower ” , \
42 ”amount=” , ”output=” , ” s a l t=” , ”password=”])
43 for opt , arg in opts :
44 i f opt in (”−a” , ”−−amount”) :
45 i f (i s I n t (arg)) :
46 AMOUNT OF PASSWORDS = in t (arg)
47 else :
48 print arg , ” i s no i n t e g e r ”
49 qu i t ()
50 e l i f opt in (”−L” , ”−−l ength ”) :
51 i f (i s I n t (arg)) :
52 PASS LENGTH = in t (arg)
53 else :
54 print arg , ” i s no i n t e g e r ”
55 qu i t ()
56 e l i f opt in (”−h” , ”−−help ”) :

60

57 usage ()
58 e l i f opt in (”−d” , ”−−d i g i t ”) :
59 cha ra c t e r s += range (48 ,58)
60 e l i f opt in (”−p” , ”−−punctuat ion ”) :
61 cha ra c t e r s += range (32 ,48)
62 cha ra c t e r s += range (58 ,65)
63 cha ra c t e r s += range (91 ,97)
64 cha ra c t e r s += range (123 ,127)
65 e l i f opt in (”−u” , ”−−upper”) :
66 cha ra c t e r s += range (65 ,91)
67 e l i f opt in (”− l ” , ”−−lower ”) :
68 cha ra c t e r s += range (97 ,123)
69 e l i f opt in (”−o” , ”−−output”) :
70 hash output = arg
71 e l i f opt in (”−s ” , ”−−s a l t ”) :
72 ha sh s a l t = arg
73 e l i f opt in (”−P” , ”−−password”) :
74 password = arg
75 else :
76 usage ()
77 except getopt . GetoptError :
78 usage ()
79
80 # Set the d e f a u l t s e t t i n g s f o r the d i f f e r e n t kind o f charac ter s e t s
81 i f l en (cha ra c t e r s) == 0 :
82 cha ra c t e r s += range (32 ,127)
83
84 # Generate a hash and return the r e s u l t
85 def generateHash (password , hash , s a l t = ””) :
86 i f re . s earch (”ˆmd5$” , hash , re .IGNORECASE) :
87 m = hash l i b .md5()
88 m. update (password)
89 return m. hexd ige s t () . upper ()
90 e l i f re . s earch (” (ˆ md5crypt$ |ˆ md5c$) ” , hash , re .IGNORECASE) :
91 return md5 crypt . md5crypt (password , s a l t)
92 # + ”\n” + md5 crypt . md5crypt (password , s a l t , ”$6)
93 #m = ha sh l i b .md5()
94 #m. update (s a l t+password)
95 #return m. he xd i g e s t () . upper ()
96 e l i f re . s earch (” (ˆ o r a c l e |ˆ o rac l e11$ |ˆ orac l e11g$) ” , hash , re .IGNORECASE) :
97 m = hash l i b . sha1 ()
98 m. update (password)
99 s a l t = b i n a s c i i . h e x l i f y (s a l t)

100 m. update (b i n a s c i i . a2b hex (s a l t))
101 return s t r . upper (m. hexd ige s t ()) + ” − ” + s a l t
102 e l i f re . s earch (”ˆNTLM$” , hash , re .IGNORECASE) :
103 m = MD4. new ()
104 m. update (unicode (password) . encode (’ utf−16− l e ’))
105 return m. hexd ige s t () . upper ()
106 e l i f re . s earch (”ˆMSCACHE$” , hash , re .IGNORECASE) :
107 m1 = MD4. new ()
108 m2 = MD4. new ()
109 m1. update (unicode (password) . encode (’ ut f−16− l e ’))
110 ntlm = m1. d i g e s t ()
111 ntlm+=unicode (s a l t . lower ()) . encode (’ ut f−16− l e ’)
112 m2. update (ntlm)
113 return m2. hexd ige s t () . upper ()
114 else :
115 print ”Unknown hash or not supported ”
116 qu i t ()
117
118 # Generate the passwords , the corresponding hashes and pr in t out the r e s u l t

61

119 for i in range (AMOUNT OF PASSWORDS) :
120 i f password == ”” : # Check i f a prede f ined password i s used
121 while l en (password) <> PASS LENGTH:
122 password += chr (random . cho i c e (cha ra c t e r s))
123
124 # Generate the hashes
125 i f re . s earch (”ˆ a l l $ ” , hash output , re .IGNORECASE) :
126 print password
127 print ”MD5 : ” , generateHash (password , ”md5”)
128 print ”MD5 crypt : ” , generateHash (password , ”md5c” , h a sh s a l t)
129 print ”Oracle 11g : ” , generateHash (password , ” o rac l e11g ” , h a sh s a l t)
130 print ”NTLM : ” , generateHash (password , ”ntlm”)
131 print ”MSCACHE : ” , generateHash (password , ”mscache” , h a sh s a l t)
132 print ”−−”
133 e l i f hash output <> ”” :
134 hash text = ”\n” + hash output . upper () + ((11 − l en (hash output)) ∗ ” ”) + ” : ”
135 print password + hash text + generateHash (password , hash output , h a sh s a l t)
136 else :
137 print password
138 password = ””

62

	Introduction
	Theory of GPU-based password cracking
	Strong Passwords and expected cracking time
	Secure storing of passwords
	Properties of a secure hash function
	Performance of CPU-based password cracking
	Performance of GPU-based password cracking
	GPGPU versus CPU
	Conclusion

	Hashing algorithms and their security
	NTLM
	Microsoft Domain Cached Credentials
	MD5
	MD5 crypt
	Oracle 11g (salted SHA-1)
	Protect against brute-forcing
	Conclusion

	GPU-based cracking tools
	Cracking tools overview
	Support for distributed cracking
	Conclusion

	Test approach
	Test method
	Password set
	Conclusion

	Test results
	Performance - Cracking time of a password
	Performance - Processed passwords per second
	Conclusion

	Conclusion
	What are the theoretical differences between a CPU and GPU?
	What tools are available for GPU based cracking?
	What is the actual performance gain of GPU versus CPU-based cracking?
	What is the recommended password length for clients of KPMG?

	Discussion
	Acknowledgement
	References
	Glossary
	List of Acronyms
	Specifications test system
	Cracking server
	Graphics card

	Raw test results
	Commands: cracking tools
	Random password generator

