
Report: Self–Adaptive Routing
Research Project 2

University of Amsterdam
Master of Science in System and Network Engineering

Class of 2009-2010

Arthur van Kleef (arthur.vankleef at os3.nl)
Marvin Rambhadjan (marvin.rambhadjan at os3.nl)

Supervisor: Rudolf Strijkers (strijkers at uva.nl)

August 13, 2010

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Abstract

The complexity of network administration can be simplified by imple-
menting control programs that automatically configure network services.
To implement this self-adaptive behaviour we implemented a feedback
control loop in the control plane of a network. An architecture that im-
plements a centralized control program is preferred over a distributed
control program, as is the case in most current state of the art network
protocols. The OpenFlow Switching Consortium defines an architecture
that uses a centralized control program and also allows network operators
to configure the control plane to their wishes. The programmability of
the control plane makes OpenFlow well suited for the implementation of
self-adaptive behaviour. We implemented a test bed based on OpenFlow
to develop control programs and show how self-adaptive control programs
can be written in this environment.

Page 2 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Contents

1 Introduction 4
1.1 Research Question . 4

2 State of the Art in Network Control Protocols 5
2.1 Conclusion . 7

3 Self-Adaptive Networks 9
3.1 Control plane centralization . 9
3.2 OpenFlow . 10
3.3 Writing a Network Control Program 13

4 Test Environment 16
4.1 User Mode Linux . 16
4.2 UML Analysis . 17

5 Discussion 19

6 Conclusion & Future Work 21

7 Acknowledgements 22

A Network Slicing 25

B OpenFlow Flow Entry Counters 31

C OpenFlow Traffic Analysis 32

Page 3 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

1 Introduction

Changes in networks such as link failures, congestion, quality of service, but also
company policies require network operators to fine tune the protocols running
on their networks to maintain a desired level of service. Different protocols exist
and each offers different parameters to control the operation of network devices.
For example, configuring link weigts can influence route calculation in routing
protocols, some protocols also allow the configuration static paths throughout
the network. Most state of the art protocols can be configured via the control
plane that resides inside network devices and is limited to the protocols imple-
mented by the vendor.

ForCES [1] proposes a framework that separates forwarding- and control plane
in network elements and describes a standard protocol for communication be-
tween the two planes. OpenFlow [2] is a similar effort that is already available
for use. OpenFlow uses a centralized controller[3] for control plane funcionality.
The API offered by the controller allows operators to program the control plane
using C or Pyhton. The programmability of networks makes OpenFlow an ideal
candidate for implementing self-adaptation in networks.

1.1 Research Question

In this research project we want to investigate the possibility of creating self-
adapting networks. Self-adaptive networks monitor the health of the network
by implementing a feedback loop and when necessary apply configuration ad-
justments to network devices. Section 3 investigates the architecture required
and which protocols are available to support a feedback control loop. Therefore
our research questions are:

• What is the architecture of a network that supports a self-adapting soft-
ware control plane?

• If the control plane becomes a programmable piece of software, what is
the general pattern of the programs that implement routing and network
management?

After identifying the architecture and protocols a test environment will be pre-
sented, which makes it possible to easily create experimentation networks that
we will use to implement self-adapting behaviour. The software we used in this
project will be made available via the OS3 website at 1

1https://www.os3.nl/2009-2010/students/arthur_van_kleef/openflow

Page 4 of 38

https://www.os3.nl/2009-2010/students/arthur_van_kleef/openflow

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

2 State of the Art in Network Control Protocols

This section describes the current state of the art in networking protocols. A
disadvantage of these protocols is the use of a distributed algorithm to calcu-
late forwarding paths, every network element makes its own forwarding decision.

In order to reach self–adaptive behavior, the input parameters of the algorithm
need to be adapted such that the algorithm makes the desired forwarding deci-
sion. This comes down to calculate what input parameters need to be configured
to get the appropriate routing behaviour.

The most common datacenter, campusnetworks and Internet protocols are drawn
in figure 1 below and the protocols are mapped on the appropriate layer(s) of
this model. Every protocol will be discussed, compared and investigated on the
usage for self-adaptive behaviour.

Figure 1: TCP/IP Model

The lowest layer in figure: 1 is the Data Link Layer, frames are delivered
according to hardware addresses (MAC addresses). It is not possible to de-
termine if two different hosts are on the same Data Link Layer segment based
on their MAC addresses. A problem that needs to be addressed on Data Link
Layer segments are bridging loops. Bridging loops occur in topologies that have
multiple paths between two bridge devices. Since Data Link Layer frames have
no notion of time to live (ttl), frames continue to loop forever. Routing occurs
on the Network Layer (TCP/IP) and uses hierarchical addressing, which allows
routers to use a single address that represents a group of addresses when for-
warding packets. On this layer logical addresses are used to address the network
elements. The Transport Layer (TCP/IP) is responsible for delivering data to
the appropriate application on the node. Port numbers are used to distinguish
the incoming traffic for the different processes on the node.

Page 5 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Spanning Tree Protocol

The solution to the flooding problem is to create a Spanning Tree. A Spanning
Tree is a subgraph of a graph which is a tree, connecting all vertices together. In
layer two networks the Spanning Tree Protocol [4] (IEEE 802.1D-2004) is used
to create loop free topologies.

The Spanning Tree Protocol (STP) calculates a spanning tree from a fixed
root bridge. The goal of this protocol is to create a loop free topology. This is
done by blocking paths that create loops. The 802.1d STP and 802.1w RSTP
protocol create a single spanning tree for the complete topology. As a result of
constructing a spanning tree, links on blocked ports are only used as backup, in
case a link that is in the spanning tree fails. If no problems occur, these links
are never used.

Improvements over STP resulted in the Per-VLAN Spanning Tree (PVST) and
Multiple Spanning Tree Protocol (MSTP) protocols that can divide the net-
work in different spanning trees per VLAN, or per group of VLAN’s. With
this method, backup paths can be used for load balancing and are not unused.
During spanning tree calculation, paths are fixed for that specific spanning tree.

STP operation can be influenced by configuring the following parameters:

Parameter Usage Description
Root Bridge Lowest Brigde Identifier Define the starting point

of the spanning tree
Path Cost Lowest Path Cost (to

Root Bridge)
Cost of the path

Port Priority Lowest Port Priority Preferred switch port

Table 1: STP parameters

Many STP variants are limited to a single broadcast domain. The STP
instance can only be used within a single IP subnet. Load balancing within a
broadcast domain is not possible.

Provider Backbone Brige - Traffic Engineering

Provider Backbone Bridge Traffic Engineering [5] (IEEE 802.1Qay-2009) is a
technology that is based on MAC in MAC encapsulation and layered VLANs.
In PBB the flooding mechanism, dynamic creation of forwarding tables and
spanning tree protocols are eliminated.

Multi Protocol Label Switching (- Traffic Engineering)

The first function of MPLS is the Forwarding Equivalence Classes (FECs), which
is responsible partitioning the entire set of possible packets to the FECs. Pack-
ets can be mapped based on network layer header, but also on for example
incoming port number. The second function is for the mapping between the
FECs and the next hop.

Page 6 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Packets that are mapped to FECs are indistinguishable from each other in
such a way that all the packets in the FECs will use the same forwarding path.
The assignment of packets to FECs is done when a packet enters the network,
before it is forwarded. Based on the FECs, MPLS will label the packet. Further
analysis of the network layer header is unnecessary, although it is possible to
analyze the header to determine the “precedence” or “class of service”. In this
case, the label is a combination of the FEC and the quality of service options
of the packet.

The MPLS label is based on the network layer header and can also be associated
with the incoming port. The restriction of MPLS is that the forwarding decision
is based on the appropriate FEC, which means the network layer header.

The label assignment is based on the following criteria:

• Destination Unicast Routing

• Traffic Engineering

• Multicast

• Virtual Private Network

• Quality of Service

MPLS also contains methods for Traffic Engineering (MPLS TE) to do
constraint-based routing. Path calculation is done using the Constraint-based,
Shortest Path First (CSPF) algorithm. This algorithm is basically a shortest
path algorithm with the ability to enforce specific guaranties over the path. An
example is that the links must have at least 50 bandwidth units. All paths with
lower bandwidth units will not be taken into account in calculating shortest
paths.

Open Shortest Path First

OSPF[6] uses links cost as input for the shortest path algorithm. Routes can be
manipulated by modifying the weights of links. Lower costs make a path more
interesting to route traffic. The shortest path algorithm is uses the cost of a
path and does not consider any other configuration parameters to handle path
selection.

OSPF is a link state protocol, which means that every router has a complete
overview of the network. Limitations with this method is that when the greater
the network is, the harder it is to synchronize all the topology information
about the network. This problem is circumvented by introducing areas, where
the topology inside an area is known to every router. Routers running the area
border router role are then used to connect different area’s to each other.

2.1 Conclusion

As shown in the previous paragraphs there are many protocols available that can
be used to adapt network behaviour. Whenever new functionality is required in
network equipment, a new protocol (or an extension) needs to be implemented

Page 7 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

at the control plane of these devices. Instead of implementing new functionality
on top of existing protocols we want a fully programmable control plane, which
is not possible with the discussed protocols.

Our observation is that management of the control plane is becoming more
complex by the introduction of new protocols. To reduce this complexity a cen-
tralized programmable control plane enables better management and adaptation
to new network service requirements.

Page 8 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

3 Self-Adaptive Networks

Networks can be considered self-adapting when they automatically adjust to
changes inside the network in order to maintain a desired level of service. Feed-
back control can be used to achieve this [7]. Figure 2 shows an example of a
closed feedback control loop.

Figure 2: Feedback Control Loop

The controller decides when configuration adjustments need to be made in
the system. For this it uses reference input, describing the desired level of ser-
vice, and measured output from the sensors that describe how the network is
performing. The controller compares this data and determines if adjustments
are necessary. Adjustments are applied to the system and the result of adjust-
ments is again obtained via measured output.

3.1 Control plane centralization

How a feedback control loop can be integrated into a network is depending on
the network architecture. State of the art network equipment consists of two
major components, a control plane and a forwarding plane. The control plane
is responsible for maintaining a view of the network and takes forwarding de-
cisions. Because of the complexity involved in these tasks the control plane is
implemented in software. The forwarding plane is used for high speed forward-
ing. It uses a lookup table in memory that is filled by the control plane to find
out through which ports to forward packets. This task is not very complex and
is implemented in hardware, which makes high speed forwarding possible. Fig-
ure 3 gives an example of an architecture that uses control planes distributed
across each network element.

Figure 3: Distributed Control Plane

A distributed control plane througout the network makes it difficult to im-
plement a feedback control loop, especially in larger networks. To implement a
feedback control loop in a network that has a distributed control plane, means
that each part of the feedback control loop needs to be distributed as well. Each

Page 9 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

control plane is required to obtain the measurements from sensors on other sys-
tems in the network. Also this information needs to be synchronized at all
control planes. To overcome the aforementioned issues the control plane needs
to be centralized.

A centralized approach to implement the control plane of a network offers several
advantages:

• Easy to maintain a view of the network

• Measurements are collected at one point, this eliminates the need for a
mechanism that floods measurement data throughout the network.

• Out-of-band connections to the control plane allow faster dissemination
of control input.

3.2 OpenFlow

A new open standard that supports the centralization of control plane in a
network is OpenFlow[2]. OpenFlow is an initiative from Stanford University
to open up networking devices by moving the control plane to a centralized
controller. The controller takes care of high-level forwarding decisions. The
controller offers network operators an interface to program their control plane.

Programmability of the network is not a new idea, GSMP [8], ForCES [1] and
IEEE 1520 are all efforts to introduce some level of programmability in the net-
work. OpenFlow distinguishes by being more practical. It makes use of existing
hardware in switches and it is already implemented by large vendors like HP,
NEC, Juniper, Cisco, Toroki and Pronto in their networking devices.

An OpenFlow enabled device communicates with a centralized controller that
offers the control plane function. On the OpenFlow switch a flow table is used
to lookup how to forward packets. The flow table stores flow entries that are
used to match incoming packets. Table 2 shows the parts that construct a flow
entry.

Header Counter Actions

Table 2: OpenFlow flow entry

The header field is used to match incoming packates against. Table 3 lists
the available fields inside the flow entry’s header. An important observation
is the available bits in the IP Source/Destination fields are limited to 32. In
our experiments we tested IPv6 with OpenFlow. Flow entries that are created
for IPv6 traffic have their fields IP src and IP dst set to empty. However, the
correct Ether type value is set and can be used to identify IPv6 traffic. The
number of bits available to the Ingress port field is implementation dependent.

The counter field is used to gather statistics and are maintained per-table,
per-flow, per-port and per queue. Table 7 lists all available counters. The
actions field describes the actions a switch has to perform when it matches a
packet against a flow entry. Each flow entry has to contain zero or more actions

Page 10 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Ingress
Port

Ether
src

Ether
dst

Ether
type

VLAN
id

VLAN
prio

IP
src

IP
dst

IP
proto

IP
ToS

TCP
UDP
src

TCP
UDP
dst

X 48 48 16 12 3 32 32 8 6 16 16

Table 3: OpenFlow flow entry header fields

and are stored in the form of a list. If there are zero actions in a flow entry, the
packet will be dropped. The OpenFlow 1.0.0 specification distinguishes between
OpenFlow-only switches and OpenFlow-enabled switches, where the former only
support actions marked Required and the latter also supports actions marked
Optional. Table 4 describes the available actions.

Action Description Required/Optional
Forward Forward packets to specified physical interface Required
Enqueue Forward through a queue, providing QoS Optional
Drop Do not forward packets Required
Modify-Field Rewrite addresses inside packets Optional

Table 4: Actions

Besides forwarding packets to local ports, OpenFlow also supports forward-
ing packets to virtual ports. Table 5 lists the virtual ports used by OpenFlow:

Virtual Port Description Required/Optional
ALL Send out all ports, except incoming port Required
CONTROLLER Encapsulate packet and send to controller Required
LOCAL Send packet to local networking stack Required
TABLE Perform actions in flow table Required
IN PORT Send packet out the input port Required
NORMAL Use traditional forwarding path Optional
FLOOD Flood packet out all ports Optional

Table 5: virtualports

OpenFlow communicates with a controller when it cannot find a matching
flow entry for a packet. NOX[3] is an OpenFlow controller that provides a plat-
form for writing network control programs using C++ and Python. Control
programs for NOX use events, which occur whenever NOX receives a message
from an OpenFlow switch. When there is an event on the network (i.e. a link
goes up or down) this will generate an event at the NOX controller. Control pro-
grams that have registered to events handlers are then triggered and executed.
Table 6 lists common event types that can be used. In C we performed an anal-
ysis of the OpenFlow messages that are sent between an OpenFlow switch and
NOX controller. Figure 4 shows the operation of an OpenFlow network using
an OpenFlow controller.

Page 11 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Hosts

1: Send packet

NOX Controller

2: Match packet against Flow Table entry

2a: If no flow entry exists,
send packet to controller.

2b: Process packet:
(1) Extract dst address
(2) Examine packet type
(3) Determine constraints
(4) Calculate path to dst
(5) Set Action
(6) Setup flow entry

2c: Return flow entry

Other OpenFlow
Switches

Hosts

2a
2c

3: Forward packet

3: Forward packet

OpenFlow
Switch

Figure 4: Operation of an OpenFlow network.

Switch Join
Switch Leave
Packet Received
Port Up
Port Down
Switch Statistics Received

Table 6: NOX Event Types

Page 12 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

3.3 Writing a Network Control Program

After identifying the required protocols and software 3.2 this section focusses
on the development of a control program that performs forwarding and net-
work management and implements self-adaptivity. The following assumption
simplifies the writing of a control program:

• The control program has a complete view of the network.

– The topology of the OpenFlow network is statically configured in the
control program. It is stored in a Python dictionary that represents
a graph.

– End-hosts location is stored in a host-to-switch association.

Controller

Hosts HostsOpenFlow
Switch

OpenFlow
Switch

Out-of-band

Normal Connection

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

Figure 5: Network managed by control program

Figure 5 depicts the network that is managed by the control program. It
consists of two hosts that can reach each other via four different paths where
each link in the network has equal cost. RFC1812 [9] specifies requirements to
routers, due to limited time we only focus on the following:

• Advanced Routing and Forwarding Algorithms

• Congestion Control

• High Availability

Page 13 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

• Address Resolution Protocol - ARP

As stated before, the control program has a complete view of the network.
In this case it is configured statically into the control program in a dictionary
that represents a graph. Finding a path is done as follows:

1. The control program extracts the destination IP address and uses it to
learn to which OpenFlow switch the destination host is connected.

2. Using a function that finds the shortest path between the source OpenFlow
switch and the destination OpenFlow switch, the next-hop is learned.
The path finding function returns a list of all OpenFlow switches in the
shortest path. The second element in this list is always the next-hop. If
the function returns a list that contains only one element it means that
the end host is local to the OpenFlow switch.

3. The control program looks up the output port of the OpenFlow switch
that leads to the next-hop.

4. Then a flow entry is created using the headers of the original packets and
it adds an action that tells the OpenFlow switch to send packets matching
this flow entry out of the specified port.

To find paths between vertices in our graph we used the functions described
described by Van Rossum [10]. The author also presents a function that finds
all possible paths between two vertices.

In some cases it is desired to let traffic be forwarded via different paths. As
an example we implement a control program that monitors the type of traffic,
based on TCP and UDP port numbers, that is active on the network. If traffic
is detected that requests a higher level of service from the network, for example
a researcher’s application. It protects links used by such applications by finding
paths that do not make use of the protected links. When protected links are
not required anymore, their flow entries time out, the control program allows
all traffic back on the previously protected links.

1. Control program checks the packet’s TCP or UDP port number to deter-
mine the type of traffic.

2. If the packet is part of the researchers application, it marks links in the
network as reserved.

3. If the packet is not part of the researchers application, the control program
first checks if there are reserved links. If so, it routes traffic across the
shortest path that does not contain reserved links. Otherwise traffic gets
routed via the default shortest path.

Simulating link failures is a bit tricky in the test environment in use. All
UML instances have their interfaces connected to a VDE switch that represents
a direct link between the UML instances. If an interface at one side of the link
goes down, this will go unnoticed to the interface on the otherside of the link.
Whenever a link fails, or comes back up, on an OpenFlow switch, a message
will be sent to the control program. The control program then performs the
following steps.

Page 14 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

1. It determines which link in the network has become (un)available.

2. Removes or adds the link to the graph.

3. Invalidates flow entries that used the now unavailable link.

The control program we wrote that implements the aforementioned func-
tionalities can be found at the student’s website 2.

2https://www.os3.nl/_media/2009-2010/students/arthur_van_kleef/pyswitch.zip

Page 15 of 38

https://www.os3.nl/_media/2009-2010/students/arthur_van_kleef/pyswitch.zip

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

4 Test Environment

To experiment with OpenFlow, switches are needed that support the OpenFlow
standard. During the period of this research project, the only options available
were to make use of hardware switches that support OpenFlow, install multiple
machines that are fysically connected to each other, or to make use of virtual
machines like Xen [11], VMWare [12], or VirtualBox [13]. Because there is no
hardware available and there will not be any budget available to invest in hard-
ware for this project, we have to investigate the solutions that involve virtual
machines. The OpenFlow websites offers several guides [14] guides to setup vir-
tual environments to create OpenFlow networks in. Drawbacks of this approach
that we encountered are: VM’s like VMWare, Xen and VirtualBox require a lot
of resources (CPU, RAM, storage), and because of this scaling becomes an issue
in terms of available server machines and added complexity in VM configuration.

For this research project we have two dedicated server machines available that
are equipped with an Intel(R) Pentium(R) D processor running at 3.0 GHz and
2GB internal memory. Storage is provided by a 80GB 7.200 SATA harddisk.

4.1 User Mode Linux

User-Mode-Linux (UML)[15] is a virtualization technology that enables Linux
based systems to run multiple virtual machines to run as an application to the
host.

By making use of programs like bridge-utils or Quagga, it is very easy to make
a virtual machine act like a router or a switch. For OpenFlow the same is pos-
sible by making use of Open vSwitch [16], that offers a kernel module to be
loaded into the Linux kernel. To use UML most Linux distribution provide pre-
compiled packages that can be installed quite easily. Unfortunately, the UML
binaries provided by for example Ubuntu are very outdated (based on Linux
kernel version 2.6.22-rc5) and for which the kernel build files are not available.
In this case the latest stable Linux kernel, version 2.6.34, was used to create an
UML enabled Linux kernel. To support the Open vSwitch kernel module, the
UML Linux kernel must have IPv6 and 802.1D bridging available as modules.

To run an UML based virtual machine a file system is required that provides
the basic files required to start Linux. The most minimal virtual system is one
that provides a console and a shell.

With only these components the virtual machine is useless, so more functional-
lity needs to be added. We added Busybox [17]. Busybox is a small executable
that combines tiny versions of many common UNIX utilities in one binary.
Because it is optimized for size and limited resources, we use it in the small
experimentation environment for OpenFlow.

To support OpenFlow inside UML Open vSwitch is used. Open vSwitch is
a virtual multilayer switch that supports the OpenFlow standard. To build
Open vSwitch for use inside UML the kernel build modules of the UML enabled
Linux kernel has to be available. The resulting kernel module and binaries have

Page 16 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

to be installed to the file system that is used for UML.

UML based virtual machines can be connected by making use of virtual net-
working provided by Virtual Distributed Ethernet [18] (VDE3). UML enabled
Linux kernels can be configured to create network interfaces that connect to
a Unix socket created by VDE. In this setup VDE connections between UML
instances will essentially represent the cables between the OpenFlow switches.
To do this VDE switches are started in a so-called hub mode, which makes them
act as a OSI model layer 1 device, and thus transparent to the UML instances.

4.2 UML Analysis

The amount of resources required by an UML based OpenFlow switch as de-
scribed above is evaluated here. In this example an UML virtual machine with
eight network interfaces was started and configured to run OpenFlow by mak-
ing use of Open vSwitch. Each UML instance is by default started with 30M
of RAM. The memory usage is determined via the top utility. The interesting
column in the output from the host is the RES value, which stands for Resident
size and reports the non-swapped physical memory a task has used. The value
reported here is significantly lower than reported by the VIRT column (equiva-
lent of vSize). So an UML virtual machine running Open vSwitch in this setup
uses 36448Kb memory, of which 12MB is physical memory.

To test networking performance a topology was created consisting of an UML
hosts with one network interface that connects it to an OpenFlow switch. This
switch is again connected to a next OpenFlow switch and connects to a second
host. The iperf utility can be used to perform network throughput measure-
ments. One host runs iperf in server mode, the other acts as a client. Figure 6
shows the topology of the network, the results are shown in figure 7.

Controller

Iperf Server Iperf ClientOpenFlow
Switch

OpenFlow
Switch

Out-of-band

Normal Connection

Figure 6: Iperf Topology with two OpenFlow switches.

To further test throughput performance more OpenFlow switches are added
to the path between the two hosts. Using four OpenFlow switches decreased
network throughput to 66 Mbit/sec, a drop of about60 percent compared to a
setup that uses two OpenFlow switches.

3http://vde.sourceforge.net/

Page 17 of 38

http://vde.sourceforge.net/

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 0 5 10 15 20 25 30

B
an

dw
id

th
 (

M
bi

t/s
)

Time (seconds)

1 OF Switch
2 OF Switch
4 OF Switch
8 OF Switch

16 OF Switch

Figure 7: Measured througput on OpenFlow UML network.

The amount of space in use on the file system is obtained using du, a util-
ity that shows disk usage statistics. The binaries that were installed together
with Open vSwitch take 11.4M inside the /usr directory. Not all of the binaries
are required to run Open vSwitch, some of them can be deleted to further min-
imize disk usage. For debugging these were left them on the filesystem. Total
disk usage on the file system is 19.8M.

When running multiple UML instances that require the same filesystem, two
approaches can be taken in UML. First the filesystem can be mounted in read
only mode, preventing the UML instances to write to the file system. But since
Open vSwitch requires some directories to be writeable, these need to be made
available. Since the process of making writeable directories available for each
running UML virtual machine adds a lot of complexity, we decide to make use
of the second option: copy-on-write (COW) files. With COW files, only one file
system is required that serves as the base for all UML virtual machines. When-
ever an UML instance makes a change to the file system, these will be stored
inside the COW file rather than in the original disk image. For the purpose of
running OpenFlow switches the UML instances do not write much to the file
system. The average size for the COW file for one UML instance running Open
vSwitch was about 280K.

Page 18 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

5 Discussion

In section 4.2 the use of UML for running OpenFlow switches was analyzed.
Unfortunately we did not manage to gather any significant statistics on CPU
usage inside our UML instances. Using top CPU usage stayed at 0 percent at
all times. Since the focus of this research project does not depend on maximum
performance of the infrastructure, the limited bandwidth resources are not a big
issue to perform experiments in. The result of using UML to create OpenFlow
switches is that we can start many instances on moderate hardware, creation
and destruction time of OpenFlow networks can be done in seconds by making
use of start scripts, also because of making use of scripting we are not bound to
a fixed topology to perform our experiments in.

In the experiments we performed we programmed the view of the network into
the control program. In real-world use a discovery protocol like Local Link Dis-
covery Protocol [19] (IEEE 802.1AB) should be used to construct a view of the
network in the control program. Unfortunately this feature has not been imple-
mented in the OpenFlow specification.

A point of concern when using a centralized control plane is the introduction of
a single point of failure. This problem can be solved by replicating the control
plane to a secondary OpenFlow controller. The OpenFlow switch implemen-
tation we used, Open vSwitch, chooses to cache flow entries for the case the
control plane becomes unavailable. When this happens it will use cached flow
entries to match packets.

Scalability may become an issue when the number of OpenFlow requests from
network devices rise. The authors of [3] claim that NOX should be able to
process over 100.000 requests per second. The cache timeout parameter in
OpenFlow flow entries can help reduce the number of OpenFlow requests sent
to the controller. Another option is to add an extra OpenFlow controller and
load-balance requests as done by [20] and [21]. FlowVisor [22] can act as a
virtualizion layer between OpenFlow switches and NOX. This way it is possible
to balance the load of the request over the different controllers. It introduces
the concept of regions to scale networks when they grow. Other applications of
FlowVisor, like network slicing, are discussed in A.

While configuring UML to support OpenFlow using Open vSwitch we encoun-
tered several difficulties:

• To compile the Open vSwitch kernel module for use in UML we could not
make use of pre-compiled UML binaries, because the Linux Kernel Headers
for these versions are not available. To obtain these we had to compile
an UML kernel, which also caused troubles since in many Linux kernel’s
the compilation process for an UML-enabled kernel failed. Eventually we
managed to create an UML binary using the Linux kernel version 2.6.34.

• Documentation for Open vSwitch was very unclear. In our experiments we
wanted to make use of static OpenFlow switch identifiers, documentation
on how to configure this was wrong. One day after reporting this issue to
the developers of Open vSwitch this bug was fixed.

Page 19 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Writing a control program for NOX proved to be a challenging task, very
little documentation was available for us. We first had to thoroughly investigate
the source code of the few examples that ship with the NOX software source
code. Because of our limited programming experience it took some time to fully
understand the programming environment offered by NOX.

Page 20 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

6 Conclusion & Future Work

In this section we present our conclusions that we draw from the work we did
on the topic of self-adaptive routing. We do this by reviewing our research
questions from 1.

What is the architecture of a network that supports a self-adapting software
control plane?

We have shown in section 3 that an architecture that offers a centralized control
plane is best suited for the introduction of self-adaptive behaviour in networks.
Supporting self-adaptiveness in networks that have distributed control planes
requires all control planes to be consistent in terms of their view on the health of
the network. An architecture that uses a centralized control plane does not have
this issue. By making use of the OpenFlow protocol this requirement is met.
The control plane resides on a centralized controller and allows network oper-
ators to program their network. Network configuration is done with a control
program written in C or Python that runs at the NOX OpenFlow controller.
The programmability of the OpenFlow controller makes an OpenFlow based
architecture well suited for implemening self-adaptivity.

If the control plane becomes a programmable piece of software, what is the gen-
eral pattern of the programs that implement routing and network management?

Self-adaptive behaviour is achieved by monitoring the health of the network
and using this information in network configuration to get the desired level of
service from the network. To implement this a feedback control loop has to be
implemented in the control plane. By explicitly programming the control loop
in the control plane, automatic network management is an integrated part of
the control plane. OpenFlow enabled devices offer different measurement data
7 that can be used inside the control program. This data allows network op-
erators to program constraints into their control plane to achieve self-adaptive
behaviour. Even more advanced data can be obtained by making use of a pro-
tocol like NetFlow[23] or sFlow[24], which both are supported by the OpenFlow
implementation Open vSwitch we used in our experimentation environment.

Furthermore, we have developed an environment that allows fast and easy cre-
ation of OpenFlow networks for the purpose of OpenFlow experiments. The
combination of User-Mode-Linux, Open vSwitch and Virtual Distributed Eth-
ernet allowed us to create virtual OpenFlow networks consisting of up to 100
OpenFlow switches running on only one server machine.

Future Research

A next step in self-adaptive networks is to create an interface to the control
plane by which applications can specify their required service level. This makes
the reference input of the feedback control loop variable. It would be interesting
to see what implications this has for the control loop if too many applications
request a different service from the network.

Page 21 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

7 Acknowledgements

This report was created during the Research Project 2 course as part of the
System and Network Engineering master at the University of Amsterdam. We
would like to thank Rudolf J. Strijkers for providing for steering us in the right
direction and giving us valuable feedback to our work.

Page 22 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

References

[1] L. Yang, R. Dantu, T. Anderson, and R. Gopal. Forwarding and Con-
trol Element Separation (ForCES) Framework. RFC 3746 (Informational),
April 2004.

[2] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-
flow: enabling innovation in campus networks. SIGCOMM Comput. Com-
mun. Rev., 38(2):69–74, 2008.

[3] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casado,
Nick McKeown, and Scott Shenker. Nox: towards an operating system for
networks. SIGCOMM Comput. Commun. Rev., 38(3):105–110, 2008.

[4] Wikipedia. Spanning tree protocol — wikipedia, the free encyclopedia,
2010. [Online; accessed 8-July-2010].

[5] Wikipedia. Provider backbone bridge traffic engineering — wikipedia, the
free encyclopedia, 2010. [Online; accessed 8-July-2010].

[6] J. Moy. OSPF Version 2. RFC 2328 (Standard), April 1998. Updated by
RFC 5709.

[7] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury.
Feedback Control of Computing Systems. John Wiley & Sons, 2004.

[8] A. Doria, F. Hellstrand, K. Sundell, and T. Worster. General Switch Man-
agement Protocol (GSMP) V3. RFC 3292 (Proposed Standard), June 2002.

[9] F. Baker. Requirements for IP Version 4 Routers. RFC 1812 (Proposed
Standard), June 1995. Updated by RFC 2644.

[10] Guido van Rossum. Python patterns - implementing graphs. http://www.
python.org/doc/essays/graphs.html, 1998. [Online; accessed 1-July-
2010].

[11] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 164–177, New York, NY, USA, 2003.
ACM.

[12] Inc. VMWare. Vmware virtual machine technology.

[13] Jon Watson. Virtualbox: bits and bytes masquerading as machines. Linux
J., 2008(166):1, 2008.

[14] OpenFlow Switching Consortium. Create an openflow network within a sin-
gle pc. http://www.openflowswitch.org/foswiki/bin/view/OpenFlow/
Deployment/HOWTO/Virtual. [Online; accessed 13-August-2010].

[15] Jeff Dike. A user-mode port of the linux kernel. In ALS’00: Proceedings
of the 4th annual Linux Showcase & Conference, pages 7–7, Berkeley, CA,
USA, 2000. USENIX Association.

Page 23 of 38

http://www.python.org/doc/essays/graphs.html
http://www.python.org/doc/essays/graphs.html
http://www.openflowswitch.org/foswiki/bin/view/OpenFlow/Deployment/HOWTO/Virtual
http://www.openflowswitch.org/foswiki/bin/view/OpenFlow/Deployment/HOWTO/Virtual

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

[16] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker.
Extending networking into the virtualization layer. In Proc. of workshop
on Hot Topics in Networks (HotNets-VIII), 2009.

[17] Nicholas Wells. Busybox: A swiss army knife for linux. Linux J., page 10.

[18] Renzo Davoli. Vde: Virtual distributed ethernet. In TRIDENTCOM ’05:
Proceedings of the First International Conference on Testbeds and Research
Infrastructures for the DEvelopment of NeTworks and COMmunities, pages
213–220, Washington, DC, USA, 2005. IEEE Computer Society.

[19] Wikipedia. Link layer discovery protocol — wikipedia, the free encyclope-
dia, 2010. [Online; accessed 8-July-2010].

[20] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control
plane for openflow networks, April 2010.

[21] Minlan Yu, Jennifer Rexford, Michael J Freedman, and Jia Wang. Scalable
flow-based networking with difane, 2010.

[22] R. Sherwood, G. Gibby, K. Yapy, G. Appenzeller, M. Casado, N. McKe-
owny, and G. Parulkar. Flowvisor: A network virtualization layer, 2009.

[23] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954
(Informational), October 2004.

[24] P. Phaal, S. Panchen, and N. McKee. InMon Corporation’s sFlow: A
Method for Monitoring Traffic in Switched and Routed Networks. RFC
3176 (Informational), September 2001.

Page 24 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

A Network Slicing

There are various reasons to devide a network into multiple separated and iso-
lated subnets. The most common reason to isolate parts of the network from
eachother is enhance security and efficiency of the network. In classical net-
working the method of slicing by using Virtual Local Area Nnetworks (VLANs),
which slices the network into isolated broadcast domains. With FlowVisor, the
network can be sliced based on a wide range of criteria, which are described in
section FlowVisor.

Virtual Local Area Network

In classical internetworking, networks are “sliced” using VLANs. VLANs can be
used to share a physical infrastructure by multiple logical networks, whichout
leaking information between the logical networks. THe 802.1q protocol adds
a 4-bytes tag after the source MAC address in the Ethernet II frame when a
packet from a node enters the switched environment. Between the switches, the
packet is switchs including the header. Then the packet arives at the destination
node, the last switch will strip the VLAN tag of the Ethernet II frame.

VLANs are used to separate the broadcast domains and isolate them from
eachother. The 802.1q protocol is a layer two protocol, which separate the net-
work in virtual local area networks. The VLANs are statically defined, although
the assignment of VLANs to switch ports can be done dynamically based on
layer 1 (physical switch port), layer 2 (MAC address), layer 3 (IP addresses) and
layer 4 (protocol). Problems with assigning VLANs based on are experienced
on various of these layers.

layer 2 The mapping between the VLAN and the MAC address give a big
administrative overhead, because this needs to be done manually.

layer 3 Based on a table with VLAN/IP prefixes, the switch van map the
source IP address to the VLAN id. With this method, the nodes already
need to have an IP address and cannot request one using DHCP.

layer 4 End nodes can have connection to various network applications simul-
taniously, which creates the problem that a single end node can have
multiple ports open on the network.

FlowVisor Slicing

http://www.openflowswitch.org/wk/index.php/FlowVisor

FlowVisor is a special controller that can act like a proxy between the Open-
Flow switches and the NOX controllers. The FlowVisor controller can devide
the resources in slices, which is a set of controlable resources. The slices can be
defined as physical resources like switches and links, but also as packet header
spaces like classes of packets (flow space). The slices can be defined based on
the following criteria:

Page 25 of 38

http://www.openflowswitch.org/wk/index.php/FlowVisor

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

layer 1 switch ports
layer 2 source destination ethernet address

ether type
vlan
vlan pcp

layer 3 source destination IP address
ip proto
ip tos

layer 4 source destination TCP address
source destination UDP address
ICMP code type

QoS

There are three actions which can be performed on a flowspace. With this
actions, the allowed and restricted actions on the slice can be defined.

readonly Delegate only reading of the slice to a controller. This is useful for
monitoring slices

allow Delegate the read and write control of a slice to a controller

deny Block the messages from this flowspace

The control of a specific slice is delegated to controller running a program
like NOX or to another FlowVisor instance, which can delegate the control fur-
ther. So it is possible to create a “default” slice for regular network traffic and
a slice for the self–adaptive behavior for specific traffic on the network. The
control of experiments can be delegated to another FlowFisor controller, for
which the management can be delegated to the researchers. On this way, the
production network and experimental network can be isolated from eachother.

Network slicing using flowspaces is much more flexibler that using classic
VLANs. Slices can be used as a useful feature to create a framework to build
self adaptive networks.

Slicing Applications

The FlowVisor controller can be used to slice the network. In the next chapter,
a few applications of network slicing with FlowVisor are discussed.

Control Delegation

The control of the different slices can be delegated to a specific controller. This
controller can be a NOX (or another) OpenFlow controller or to another FlowVi-
sor controller to further slice the network.

Isolation

The different slices are separated from eachother in such a way that a problem
on one slice will not affect the other slices. Error in a slice will not affect the
other slices. This makes it possible to run more experiments on a network with
more controllers, all controlling their own experiments.

Page 26 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Policies

In the network slice configuration files on the FlowVisor controller, the allowed
or denied types of traffic can be defined. In the table the slicing criteria are
defined. It is possible to define policies for specific users, nodes based on the
slicing criteria the be handled in a specific manner. For example the web traffic
of user A can be handled be another controller than the same web traffic for
user B in the same subnet.

When certain types of traffic are not allowed on the network, they can be
excluded from the flowspace. On this way, the packets of that traffic are not
forwarded by the switches, because there is no controller who will calculate a
flow entry for that type of traffic. Wherever the trafic enters the network. On
this way the controllers are not overloaded with certain traffic that is not allowed
on the network.

Page 27 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Implementation

To do experiments with the slices we setup an extensible architecture. The
User Mode Linux environment is used to setup the OpenFlow switches, which
are connected out of band with the FlowVisor controller. Below the FlowVisor
controller, all type of networks can be created within UML.

Figure 8: FlowVisor topology

The setup exist of two management subnets. The first subnet (subnet a)
is the subnet between the NOX controllers and the FlowVisor controller. The
following IP address schema is used to address the nodes of the network.

Network Address 192.168.0.0
FlowVisor 192.168.0.1
NOX 192.168.0.102
SNAC 192.168.0.103

The second network is the subnet between the FlowVisor controller and the
OpenFlow switches in User Mode Linux. The connection between the controller
and switches is out of band, because of lack of performance of in-band connec-
tion. The following IP address schema is used to address the switches and
(proxy) controller of the network:

Network Address 192.168.1.0
FlowVisor 192.168.1.1
OpenFlow-01 192.168.1.101
OpenFlow-N 192.168.1.1N

Page 28 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Configuration

The FlowVisor controller has the directory flowvisor-conf.d, which contains the
configuration files. There are two types of files, namely .switch and .guest files.

cat default.switch

This configuration file is used for default switches

Default: 1

The numbering of the switches will start at 1000

Id: 1000

This configuration file handles the switches that are not configured within
this FlowVisor controller. It will start numbering the switches with 1000. This
file can also contain specific switch configurations.

cat nox.guest

Name: nox

ID: 1

Host: tcp:192.168.0.102:54321

FlowSpace: allow:

cat snac.guest

Name: snac

ID: 1

Host: tcp:192.168.0.103:6633

FlowSpace: readonly:

The first configuration file will point to the NOX controller located on
192.168.0.102 listening on port 54321. The FlowSpace: allow: statement is
left empty, so that all the flows will match for this controller. The second con-
figuration points to the SNAC controller and defines the same slice (match all
traffic) with readonly permissions, so this can be used for monitoring.

The FlowVisor controller is started used the following command to let the
controller listen to OpenFlow switches on the default port (6633)

./home/openflow/openflow/flowvisor/flowvisor ptcp:

The guest controllers are started using the normal command to connect
to the FlowVisor controller. To test the setup, we will use the spanning tree
module and the pyswitch module for the controller of the slice nox.guest.

./home/openflow/nox/build/src/nox_core -i ptcp:54321 spanning_tree pyswitch

The slice snac.guest controller SNAC will automatically run the nox config-
uration to monitor the network. Finally, the switches need to connect to the
FlowVisor IP address.

Network

To test the infrastructure, we set up various networks. The NOX controller will
run the spanning tree and the pyswitch module to create a loop free topology
and to be able to switch the packets over the network.

Page 29 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

All the eth0 interfaces of the switches are reserved for the out of band con-
nection to the FlowVisor controller. These interfaces are not drawn in the
pictures, because these are used everywhere in the same way. The interfaces of
OpenFLow-N uses the IP address 192.168.1.10N . All the interfaces that are not
eth0 are added to bridge br0, so OpenFlow can use those interfaces as switch
interfaces.

Figure 9: Core and Edge layer

This network in Figure 9 has a core and edge layer to connect the nodes
to the core of the network. There is one spanning tree instance over the whole
topology, although this can be implemented to use for instance two spanning
tree instance for a single broadcast domain.

Figure 10: Ring

This ring network in Figure 10 has nodes connected to every switch in the
ring. The spanning tree algoritm will cut one connection in the ring to create a
loop free topology

The network in Figure 11 is more an experimental topology to see how the
spanning tree module reacts on multiple loops in a topology.

Page 30 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Figure 11: Partitial Mesh

B OpenFlow Flow Entry Counters

Counter Bits
Per Table
Active Entries 32
Packet Lookups 64
Packet Matches 64
Per Flow
Received Packets 64
Received Bytes 64
Duration (seconds) 32
Duration (nanoseconds) 32
Per Port
Received Packets 64
Transmitted Packets 64
Received Bytes 64
Transmitted Bytes 64
Receive Drops 64
Transmit Drops 64
Receive Errors 64
Transmit Errors 64
Receive Frame Alignment Errors 64
Receive Overrun Errors 64
Receive CRC Errors 64
Collisions 64
Per Queue
Transmit Packets 64
Transmit Bytes 64
Transmit Overrun Errors 64

Table 7: OpenFlow Statistics Counters

Page 31 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

C OpenFlow Traffic Analysis

To analyze the OpenFlow protocol, we attached a sniffer (tcpdump) on the
network segment that connects all OpenFlow switches to the NOX controller.
The NOX controller was started without any applications, the NOX controller
will not do anything but accept and setup connections from OpenFlow switches.

TCP Connection Setup

Connections between OpenFlow switches and NOX controller are setup via TCP
and are initiated by OpenFlow switches. NOX listens for incoming connections
(default TCP port 6633.

The first packets on the wire are Address Resolution Protocol (ARP) packets
sent by OpenFlow switches, trying to identify which hardware address (MAC)
uses the IP of the controller. After this an TCP connection between OpenFlow
switch and NOX controller is established:

1 0.000000 be:b9:47:1b:b9:51 Broadcast ARP Who has 192.168.1.1? Tell 192.168.1.101

2 0.000028 12:34:76:99:01:01 be:b9:47:1b:b9:51 ARP 192.168.1.1 is at 12:34:76:99:01:01

3 0.004013 192.168.1.101 192.168.1.1 TCP 50631 > 6633 [SYN] Seq=0 Win=5840 Len=0 MSS=1460 TSV=4294938247 TSER=0 WS=1

4 0.004085 192.168.1.1 192.168.1.101 TCP 6633 > 50631 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 TSV=123298567 TSER=4294938247 WS=5

5 0.004800 192.168.1.101 192.168.1.1 TCP 50631 > 6633 [ACK] Seq=1 Ack=1 Win=5840 Len=0 TSV=4294938461 TSER=123298567

OF Hello

When the TCP connection is established, both the OpenFlow switch and the
NOX controller must start by sending an OFPT HELLO message. This message
identifies the highests supported version of the OpenFlow protocol:

No. Time Source Destination Protocol Info

6 0.005447 192.168.1.101 192.168.1.1 OFP Hello (SM) (8B)

Frame 6 (74 bytes on wire, 74 bytes captured)

Ethernet II, Src: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51), Dst: 12:34:76:99:01:01 (12:34:76:99:01:01)

Internet Protocol, Src: 192.168.1.101 (192.168.1.101), Dst: 192.168.1.1 (192.168.1.1)

Transmission Control Protocol, Src Port: 50631 (50631), Dst Port: 6633 (6633), Seq: 1, Ack: 1, Len: 8

OpenFlow Protocol

Header

Version: 0x01

Type: Hello (SM) (0)

Length: 8

Transaction ID: 894662002

In our case, both NOX and Open vSwitch support the OpenFlow 1.0 specifica-
tion (Version 0x01).

Features

Next NOX will ask which Features are supported by the switch.

No. Time Source Destination Protocol Info

9 0.005731 192.168.1.1 192.168.1.101 OFP Features Request (CSM) (8B)

Page 32 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Frame 9 (74 bytes on wire, 74 bytes captured)

Ethernet II, Src: 12:34:76:99:01:01 (12:34:76:99:01:01), Dst: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51)

Internet Protocol, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.101 (192.168.1.101)

Transmission Control Protocol, Src Port: 6633 (6633), Dst Port: 50631 (50631), Seq: 9, Ack: 9, Len: 8

OpenFlow Protocol

Header

Version: 0x01

Type: Features Request (CSM) (5)

Length: 8

Transaction ID: 0

To which the OpenFlow switch answers with an Features Reply message:

No. Time Source Destination Protocol Info

13 0.010720 192.168.1.101 192.168.1.1 OFP Features Reply (CSM) (176B)[Dissector bug, protocol OFP: proto.c:3022: failed assertion "(guint)hfindex < gpa_hfinfo.len"]

Frame 13 (242 bytes on wire, 242 bytes captured)

Ethernet II, Src: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51), Dst: 12:34:76:99:01:01 (12:34:76:99:01:01)

Internet Protocol, Src: 192.168.1.101 (192.168.1.101), Dst: 192.168.1.1 (192.168.1.1)

Transmission Control Protocol, Src Port: 50631 (50631), Dst Port: 6633 (6633), Seq: 9, Ack: 17, Len: 176

OpenFlow Protocol

Header

Version: 0x01

Type: Features Reply (CSM) (6)

Length: 176

Transaction ID: 0

Switch Features

Datapath ID: 0x0000002320d1ff7e

Max packets buffered: 256

Number of Tables: 2

Capabilities: 0x00000087

....1 = Flow statistics: Yes (1)

....1. = Table statistics: Yes (1)

....1.. = Port statistics: Yes (1)

.... 0... = 802.11d spanning tree: No (0)

....0 = Reserved: No (0)

....0. = Can reassemble IP fragments: No (0)

....0.. = Queue statistics: No (0)

.... 1... = Match IP addresses in ARP pkts: Yes (1)

Actions: 0x000007ff

....1 = Output to switch port: Yes (1)

....1. = Set the 802.1q VLAN id: Yes (1)

....1.. = Set the 802.1q priority: Yes (1)

.... 1... = Strip the 802.1q header: Yes (1)

....1 = Ethernet source address: Yes (1)

....1. = Ethernet destination address: Yes (1)

....1.. = IP source address: Yes (1)

.... 1... = IP destination address: Yes (1)

....1 = Set IP TOS bits: Yes (1)

....1. = TCP/UDP source: Yes (1)

Page 33 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

....1.. = TCP/UDP destination: Yes (1)

.... 0... = Enqueue port queue: No (0)

An interesting field in the Features Reply message sent by the OpenFlow switch
is the 802.11D spanning tree capability. According to the OpenFlow specifica-
tion, a spanning tree must be constructed by OpenFlow switches before contact-
ing a controller. Open vSwitch does not support 802.11D Spanning Tree. The
actions field specifies which actions can be used in flow entries. Also the Max
packets buffered switch feature might be of importance in terms of scalability.

Configuration

The NOX controller also sends a configuration message to the OpenFlow switch,
that instructs the switch to only send the first 128 bytes of a packet for which
it requests a flow.

No. Time Source Destination Protocol Info

11 0.009742 192.168.1.1 192.168.1.101 OFP Set Config (CSM) (12B)

Frame 11 (78 bytes on wire, 78 bytes captured)

Ethernet II, Src: 12:34:76:99:01:01 (12:34:76:99:01:01), Dst: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51)

Internet Protocol, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.101 (192.168.1.101)

Transmission Control Protocol, Src Port: 6633 (6633), Dst Port: 50631 (50631), Seq: 17, Ack: 9, Len: 12

OpenFlow Protocol

Header

Version: 0x01

Type: Set Config (CSM) (9)

Length: 12

Transaction ID: 0

Switch Configuration

Flags

....00 = Handling of IP fragments: No special fragment handling (0)

Max Bytes of New Flow to Send to Controller: 128

Vendors

OpenFlow also offers support to distinguish between Vendors, this can be done
by specifying the vendor’s IEEE OUI, or (if vendors do not wish to use IEEE
OUI’s) by obtaining an OUI from the OpenFlow consortium.

No. Time Source Destination Protocol Info

14 0.010965 192.168.1.1 192.168.1.101 OFP Vendor (SM) (24B)

Frame 14 (90 bytes on wire, 90 bytes captured)

Ethernet II, Src: 12:34:76:99:01:01 (12:34:76:99:01:01), Dst: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51)

Internet Protocol, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.101 (192.168.1.101)

Transmission Control Protocol, Src Port: 6633 (6633), Dst Port: 50631 (50631), Seq: 29, Ack: 185, Len: 24

OpenFlow Protocol

Header

Version: 0x01

Type: Vendor (SM) (4)

Page 34 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Length: 24

Transaction ID: 0

Vendor Message Body: 00002320000000080000000000000000

Open vSwitch’s OpenFlow implementation doesn’t understand the vendor ex-
tension, and as specified by the OpenFlow 1.0.0 specification responds with an
error message:

No. Time Source Destination Protocol Info

16 0.014930 192.168.1.101 192.168.1.1 OFP Error (SM) (36B)

Frame 16 (102 bytes on wire, 102 bytes captured)

Ethernet II, Src: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51), Dst: 12:34:76:99:01:01 (12:34:76:99:01:01)

Internet Protocol, Src: 192.168.1.101 (192.168.1.101), Dst: 192.168.1.1 (192.168.1.1)

Transmission Control Protocol, Src Port: 50631 (50631), Dst Port: 6633 (6633), Seq: 185, Ack: 53, Len: 36

OpenFlow Protocol

Header

Version: 0x01

Type: Error (SM) (1)

Length: 36

Transaction ID: 0

Error Message

Type: Request was not understood (1)

Code: Vendor subtype not supported (4)

Data: 010400180000000000002320000000080000000000000000

OpenFlow Protocol

Header

Version: 0x01

Type: Vendor (SM) (4)

Length: 24

Transaction ID: 0

Vendor Message Body: 00002320000000080000000000000000

Flow Modification

Finally, the controller instructs the OpenFlow switch to clear it’s Flow Table,
which might contain previously installed flow entries:

No. Time Source Destination Protocol Info

17 0.015285 192.168.1.1 192.168.1.101 OFP Flow Mod (CSM) (72B)

Frame 17 (138 bytes on wire, 138 bytes captured)

Ethernet II, Src: 12:34:76:99:01:01 (12:34:76:99:01:01), Dst: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51)

Internet Protocol, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.101 (192.168.1.101)

Transmission Control Protocol, Src Port: 6633 (6633), Dst Port: 50631 (50631), Seq: 53, Ack: 221, Len: 72

OpenFlow Protocol

Header

Version: 0x01

Type: Flow Mod (CSM) (14)

Length: 72

Transaction ID: 1342454536

Page 35 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Flow Modification

Match

Match Types

....1 = Input port: Wildcard (1)

....1. = VLAN ID: Wildcard (1)

....1.. = Ethernet Src Addr: Wildcard (1)

.... 1... = Ethernet Dst Addr: Wildcard (1)

....1 = Ethernet Type: Wildcard (1)

....1. = IP Protocol: Wildcard (1)

....1.. = TCP/UDP Src Port: Wildcard (1)

.... 1... = TCP/UDP Dst Port: Wildcard (1)

....11 1111 = IP Src Addr Mask: /0 (63)

.... 1111 11.. = IP Dst Addr Mask: /0 (63)

....1 = VLAN priority: Wildcard (1)

....1. = IPv4 DSCP: Wildcard (1)

Cookie: 0x0000000000000000

Command: Delete all matching flows (3)

Idle Time (sec) Before Discarding: 0

Max Time (sec) Before Discarding: 0

Priority: 0

Buffer ID: 0

Out Port (delete* only): None (not associated with a physical port)

Flags

....0 = Send flow removed: No (0)

....0. = Check for overlap before adding flow: No (0)

....0.. = Install flow into emergecy flow table: No (0)

Output Action(s)

Warning: No actions were specified

Echo

In order to monitor the health of a controller-switch connection echo request and
echo reply messages are exchanged periodically. These messages can be used to
indicate latency, bandwidth and liveness of the connection.

No. Time Source Destination Protocol Info

73 4.370907 192.168.1.101 192.168.1.1 OFP Echo Request (SM) (8B)

Frame 73 (74 bytes on wire, 74 bytes captured)

Ethernet II, Src: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51), Dst: 12:34:76:99:01:01 (12:34:76:99:01:01)

Internet Protocol, Src: 192.168.1.101 (192.168.1.101), Dst: 192.168.1.1 (192.168.1.1)

Transmission Control Protocol, Src Port: 50631 (50631), Dst Port: 6633 (6633), Seq: 221, Ack: 125, Len: 8

OpenFlow Protocol

Header

Version: 0x01

Type: Echo Request (SM) (2)

Length: 8

Transaction ID: 0

No. Time Source Destination Protocol Info

74 4.371340 192.168.1.1 192.168.1.101 OFP Echo Reply (SM) (8B)

Page 36 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Frame 74 (74 bytes on wire, 74 bytes captured)

Ethernet II, Src: 12:34:76:99:01:01 (12:34:76:99:01:01), Dst: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51)

Internet Protocol, Src: 192.168.1.1 (192.168.1.1), Dst: 192.168.1.101 (192.168.1.101)

Transmission Control Protocol, Src Port: 6633 (6633), Dst Port: 50631 (50631), Seq: 125, Ack: 229, Len: 8

OpenFlow Protocol

Header

Version: 0x01

Type: Echo Reply (SM) (3)

Length: 8

Transaction ID: 0

Packet In

In this example, with no active application running at the controller, a ping
message is sent out from Host1 to Host2 in the following topology:

H1<--->S1<--->S2<--->S3<--->S4<--->H2

Each OpenFlow switch, denoted by Sx, is out-of-band connected to the con-
troller. Host1 will start by sending out an Packet In, that is sent to the con-
troller:

No. Time Source Destination Protocol Info

145 33.980382 36:b8:26:15:5f:fc Broadcast OFP+ARP Packet In (AM) (BufID=256) (60B) => Who has 172.16.1.101? Tell 172.16.1.100

Frame 145 (126 bytes on wire, 126 bytes captured)

Ethernet II, Src: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51), Dst: 12:34:76:99:01:01 (12:34:76:99:01:01)

Destination: 12:34:76:99:01:01 (12:34:76:99:01:01)

Address: 12:34:76:99:01:01 (12:34:76:99:01:01)

.... ...0 = IG bit: Individual address (unicast)

.... ..1. = LG bit: Locally administered address (this is NOT the factory default)

Source: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51)

Address: be:b9:47:1b:b9:51 (be:b9:47:1b:b9:51)

.... ...0 = IG bit: Individual address (unicast)

.... ..1. = LG bit: Locally administered address (this is NOT the factory default)

Type: IP (0x0800)

Internet Protocol, Src: 192.168.1.101 (192.168.1.101), Dst: 192.168.1.1 (192.168.1.1)

Transmission Control Protocol, Src Port: 50631 (50631), Dst Port: 6633 (6633), Seq: 269, Ack: 173, Len: 60

OpenFlow Protocol

Header

Version: 0x01

Type: Packet In (AM) (10)

Length: 60

Transaction ID: 0

Packet In

Buffer ID: 256

Frame Total Length: 42

Frame Recv Port: 1

Reason Sent: No matching flow (0)

Frame Data: FFFFFFFFFFFF36B826155FFC0806000108000604000136B8...

Page 37 of 38

RP2 2009-2010 – Arthur van Kleef & Marvin Rambhadjan

Ethernet II, Src: 36:b8:26:15:5f:fc (36:b8:26:15:5f:fc), Dst: Broadcast (ff:ff:ff:ff:ff:ff)

Destination: Broadcast (ff:ff:ff:ff:ff:ff)

Address: Broadcast (ff:ff:ff:ff:ff:ff)

.... ...1 = IG bit: Group address (multicast/broadcast)

.... ..1. = LG bit: Locally administered address (this is NOT the factory default)

Source: 36:b8:26:15:5f:fc (36:b8:26:15:5f:fc)

Address: 36:b8:26:15:5f:fc (36:b8:26:15:5f:fc)

.... ...0 = IG bit: Individual address (unicast)

.... ..1. = LG bit: Locally administered address (this is NOT the factory default)

Type: ARP (0x0806)

Address Resolution Protocol (request)

Hardware type: Ethernet (0x0001)

Protocol type: IP (0x0800)

Hardware size: 6

Protocol size: 4

Opcode: request (0x0001)

Sender MAC address: 36:b8:26:15:5f:fc (36:b8:26:15:5f:fc)

Sender IP address: 172.16.1.100 (172.16.1.100)

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)

Target IP address: 172.16.1.101 (172.16.1.101)

At the NOX controller, this will be received as an event. Modules for NOX that
enable operators to program the controller, can register for events like packet in
and based on the received packet tell an OpenFlow switch what to do with the
packet.

Page 38 of 38

	Introduction
	Research Question

	State of the Art in Network Control Protocols
	Conclusion

	Self-Adaptive Networks
	Control plane centralization
	OpenFlow
	Writing a Network Control Program

	Test Environment
	User Mode Linux
	UML Analysis

	Discussion
	Conclusion & Future Work
	Acknowledgements
	Network Slicing
	OpenFlow Flow Entry Counters
	OpenFlow Traffic Analysis

