Performance measuring

Who? Alexandru Giurgiu (alex.giurgiu@os3.nl) Jeroen Vanderauwera (jeroen.vanderauwera@os3.nl)
From? System and Network Engineering - UvA
When? June 22, 2010

Table of contents

1 Introduction

- 2 Test setup
- 3 Layered and hardware view
- 4 Identified parameters and tests
- 5 The measurement tool
- 6 Conclusions

Introduction

Why?

- Performance monitoring is more an art than a science.
 We like art!
- Pinpointing bottlenecks is hard and not very straightforward.
- Different tools for different purposes, all reporting in their own format.

Introduction

Research questions:

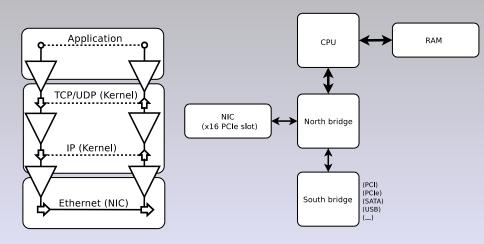
- Is it possible to determine and classify the parameters which affect network performance on the end hosts?
- Is it possible to develop a tool which monitors the parameters and can pinpoint the cause of the reduced network performance?

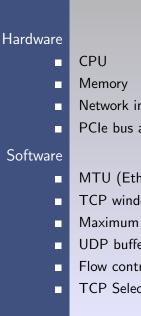
Introduction


How?

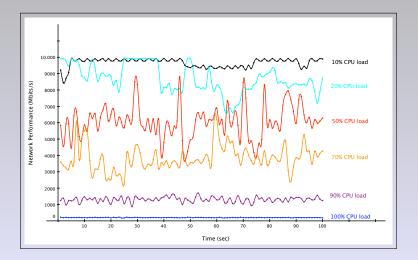
1

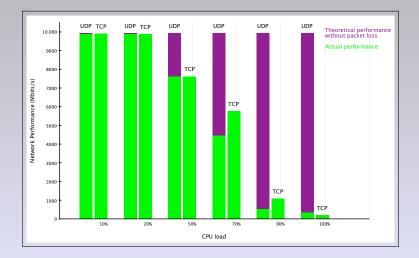
2


- Identify and analyze the different hardware and software parameters that influence network performance.
- Create an application:
 - integrate information from other tools.
 - display it in a clear report that helps pinpointing the problem.

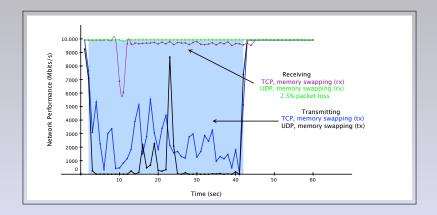

Test environment

Intel Xeon X5550 2.66 GHz, quad core 6 GB DDR3 1333 MHz Intel 10 GbE PCIe NIC 82598 Intel Core 2 Duo E6550 2.33 GHz 2 GB DDR2 667 MHz Intel 10 GbE PCIe 82598


Layered and hardware view

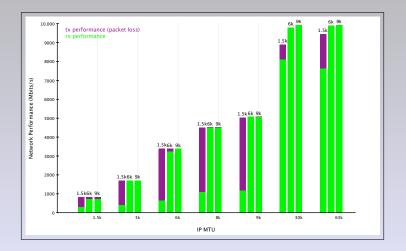


- Network interface PCIe bus and slots
- MTU (Ethernet and IP)
- TCP window size
- Maximum TCP buffer space
- UDP buffer size (per socket and overall)
- Flow control
- TCP Selective Acknowledgements Option

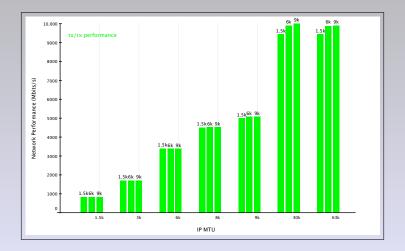

CPU: influence on TCP (sending side)

CPU: receiving side

Memory and swapping



Network interface and bus speed


- Obviously throughput cannot exceed the the maximum speed support by the NIC.
- The PCI slot can be a limiting factor (PCIe 2.0 x4 slot or PCIe 1.0 x8 slot required for 10 Gb/s)

	4 lanes	8 lanes	16 lanes
PCIe 1.0	8 Gb/s	16 Gb/s	32 Gb/s
PCIe 2.0	16 Gb/s	32 Gb/s	64 Gb/s
PCIe 3.0	31.5 Gb/s	63 Gb/s	126 Gb/s

MTU: UDP performance

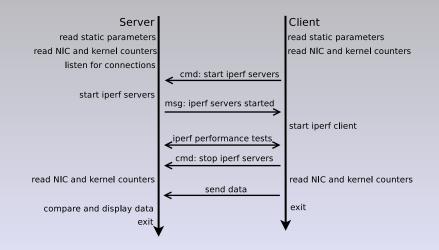
MTU: TCP performance

TCP window and UDP buffer size

TCP window size

Window size	Network performance	
32k	1.14 Gb/s	
128k	3.84 Gb/s	
512k	9.47 Gb/s	
1M	9.91 Gb/s	
8M	9.92 Gb/s	
128M	9.92 Gb/s	
195M (Kernel limit)	9.93 Gb/s	

UDP buffer size


UDP buffer size	Network performance	Packet loss
128 kbytes	4.13 Gb/s	44%
512 kbytes	9.93 Gb/s	0%
2 Mbytes	9.93 Gb/s	0%
8 Mbytes	9.93 Gb/s	0%
128 Mbytes	9.75 Gb/s	3.2%

Flow control and SACK Flow control prevents the overrunning of the receiver end. In our case it did not influence performance. SACK stands for Selective Acknowledgements Option and is a TCP mechanism for improved packet retransmission. No difference on our test setup. Helps on unreliable links.

The measurement tool

- Written in Ruby(1.9).
- Integrates data from several external tools: ethtool, ifconfig, netstat, dmesg, iperf, etc.
- Client/server model.
- Compares data from both end points side by side.

Tool work flow

Screenshot

General NIC information	*Server(flits)*	*Client(donder)*
Ip address: Link speed: Link up (Yes/N0]: Duplex [Full/Half]: Flow control [On/Off]: Ethernet MU: PCIe slot: 	10.0.3.1 10000Mb/s yes Full autoneg:on rx:on tx:on 9000 2.5GT/s x8	10.0.3.2 10000Mb/s yes Full autoneg:on rx:on tx:on 9000 2.501/s X4
TCP window size [Initial Default Maximum]: TCP buffer size [Initial Default Maximum]: TCP sending buffer [Initial Default Maximum]: TCP SACK [On/Off]: 	572352 763136 1144704	4096 524287 10240000 191904 255872 383808 4096 524287 102400000 017
UDP buffer size [Initial Default Maximum]: UDP min. receiving buffer: UDP min. sending buffer: UDP min. sending buffer:	572352 763136 1144704 4096 4096	191994 255872 383808 4096 4096
UDP : UDP loss: TCP: Packet/byte countersPacket/byte counters	3.87 Gbits/sec 1934/375256 3.83 Gbits/sec	1934/375256
NIC counterPackets:	rx:5725576 tx:491126	tx:5725558 гx:491108
Bytes:	rx:48411519886 tx:26587945	tx:48411512340 rx:29532462
Errors: Kernel counter	rx:0 tx:0	tx:0 rx:0
Packets:	rx:5725576 tx:491126	tx:5725558 rx:491108
Errors:	rx:0 tx:0	tx:0 rx:0

The parameters

Conclusions

- A large array of complex parameters that influence network performance.
- Some influence throughput while other influence packet loss.
- Application design is very important.
- In our case the receiving side was less influenced by CPU load and swapping.
- Default settings for the major OSs are inappropriate for high performance networking.

The tool

- Highly dynamic environment makes it hard to pinpoint the problem.
- Works good on the static parameters but hard to make it reliable on the dynamic ones. 20/2

Questions

Are there any?