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Abstract

Currently, e-Science applications run on dedicated computing platforms.
The scientific/e-Science computing community developed the Grid to
share resources and maximize compute capacity available for e-Science
applications.

Applications exist that incidentally have urgent high demand for
compute capacity, for example in case of emergencies. Also, some re-
searches need to do experiments with Grid computing itself. For such
cases, the Grid is not ideally equipped.

Recently Cloud computing emerged, providing on demand compute
resources on a pay-per-use basis. Clouds promise infinite virtual re-
sources. This report addresses the utilization of (additional) resources
offered by Clouds for Grid applications. To this end, a working imple-
mentation of a Grid enabled Cloud compute cluster is presented and
assessed.

The research question this report tries to answer is:

“Can Grid computing be offered as a Cloud service?”
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1 Introduction

Grid computing has traditionally been the dedicated computing platform for
compute intensive scientific (e-Science) applications. Grid is developed by the
Grid community to share resources of the existing dedicated compute clusters
and to enable large-scale e-Science experiments. Because of Grid those applica-
tions and experiments potentially can leverage the sum of the compute capacity
of all participants. Still, orchestrating fair sharing among the participants is
a complicated affair. Users of the Grid might sometimes need more than they
have immediately available.

Cloud computing is emerging and offers compute resources as a service.
The Cloud compute service is seemingly provided without limits, it promises an
almost infinite number of resources that can be added and removed dynamically.
Large scale e-Science applications with a sudden demand for compute power
(urgent computing) can benefit from Cloud’s immediate availability of resources
and the predictability of the type of resource leased.

Combining the properties of both Grid and Cloud for the purpose of support-
ing current or newly developed e-Science applications with a sudden demand for
compute power, this report investigated the following research question:

Can Grid computing be offered as a Cloud service?

One example that comes to mind is the IJkdijk1 project and the closely
related UrbanFlood2 project. These projects have a extra and high demand for
resources when calamities happen. For the daily operation of these projects it
is unfeasible to invest in the resources needed. But when a dyke breaks extra
resources are needed to calculate the effects of, and predict the flooding. The
ability to quickly, but temporarily, utilize massive amounts of compute power
to have the result as quickly as possible, would under such circumstances be
very desirable. An on demand Grid could provide this ability.

Besides the support for e-Science applications, developers of Grid related
software/application can create a test bed on demand with unlimited size (in
both the number of Grid resources and compute nodes).

This report investigates the possibility of running a Grid resource based
on the Globus Toolkit on the Amazon Elastic Compute Cloud. Section 2 ad-
dresses the definitions of “the Grid” and “the Cloud” to properly understand
their meaning and it introduces the term Urgent Computing in the e-Science
environment. Section 3 presents an implementation of a Grid resource on the
Amazon Elastic Compute Cloud as a mean to study what is involved in such an
implementation. The developed implementation is then assessed using a “real
life” biomedical application and a Workload Scheduling system developed by
the SNE research group of the UvA in section 4. Finally, our conclusions are
presented in section 5.

1 http://www.ijkdijk.nl
2 http://urbanflood.eu
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2 The Grid and The Cloud

Both the Grid and the Cloud where created with the same goals: Sharing re-
sources to minimizing idle resources. This sharing of resources increases com-
puting power and storage capacity by utilizing the aggregated resources. The
Grid shares the resources among equipollent stakeholders that administer the
resources that are their own. In contrast, with Clouds, the resources are under
the administrative control of the Cloud provider and are leased out to users for
a fee. These differences in the relation between the users and providers with
Grids and Clouds have led to different architectural properties (or features)[26].
The following sections define the Grid and the Cloud properties and services,
describe the resources of interest for e-Science applications and ends with a
summarizing overview. What we think can be created with a Grid in the Cloud
is in section 2.5. The last two sections shows where this Grid on Demand is
useful.

2.1 The Grid

Since the introduction of the term Grid different definitions have been in use.
To end the debate, a definition was defined by Ian Foster in “What is the Grid?
A Three Point Checklist” [8]. This definition has been widely accepted by the
Grid community and is as follows:

”Coordinates resources that are not subject to centralized control
using standard, open, general-purpose protocols and interfaces to
deliver nontrivial qualities of service.”[8]

Traditionally the Grid is used for compute and storage intensive applications.
Often high bandwidth within the Grid is a requirement for these applications.
A term created for this type of applications is e-Science.

To coordinate the sharing of resources between different users the concept
of Virtual Organization (VO) has been created (figure 1). This enables global
distributed collaborations involving large numbers of people. It makes data and
computing intensive scientific experiments feasible.

2.1.1 Grid services

In the informational document ”The Open Grid Services Architecture, Version
1.0.” by I. Foster et.al. [16] an extensive list and description of the services a
Grid provides are given. The following list is an excerpt.

Security Service The main service offered by Grid is the support for the dis-
tributed collaborations to address large-scale computation problems. The
certification infrastructure is not only a procedural implementation, a Grid
is running a authentication and authorization service.

Data Service This services places (move or copy) data to where it is needed, it
manages replicated copies, runs queries and updates, and can transform
data into new formats.

Execution Management Service The management of Jobs from start to finish.
This involves selecting the resources, preparing the resources for execution
and monitoring job execution.
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Grid

GridGrid

VO
User User

VO
User User

Figure 1: Users in a VO can use part of the shared resources

Resource Management Service The service that manages the resources them-
selves. On the node level but also on the Grid level and even higher levels.

Self-Management Services To reduce the complexity and cost of own resources
this service tries to perform self-configuring, self- healing and self-optimizing
of the resources.

Information Services Allows access and manipulation of information about ap-
plications, resources and services. Quality of Service is a main concern of
this service.

2.1.2 Properties of the Grid

The list in hereafter describes the properties of Grid that we think are important.
The same properties are described for cloud in section 2.2.3.

Heterogeneity The characteristics of the resources offered differ per resource
group (Grid), this allows applications to run in a environment especially
suited for that application.

Sharing of resources Storage, Memory, Compute and Network are shared using
a certificate infrastructure where users are in VOs that have access to a
group of resources (Grids).

Scalability By combining Grids, which are often already large systems, even
larger systems can be created. The certificate infrastructure takes care of
the combining of resources.

Elasticity The time to add access to an extra Grid is within day’s and under
control of the certification infrastructure.

Device and location independence Resources are on and off-site and accessed
via dedicated networks or Internet. Traditionally access is via a worksta-
tion or via the Grid itself.
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Reliability Grid can offer redundancy when multiple Grids with the same char-
acteristics can be accessed. Due to the heterogeneity of the grids this can
be a challenge

Maintenance Part of the resources are on-site and need maintenance from the
Hardware level and up.

Cost To share resources of a Grid (and therefore get access to other resources)
a Capital investment has to be made. Maintenance fees, administration
cost and utility (power/cooling/floorspace) cost exist.

2.2 The Cloud

In “The Business Perspective of Cloud Computing- Actors, Roles, and Value
Networks” [19] a number of papers and authors defining the term Cloud are
combined to the following definition:

”An IT deployment model, based on virtualization, where re-
sources, in terms of infrastructure, applications and data are de-
ployed via the internet as a distributed service by one or several
service providers. These services are scalable on demand and can be
priced on a pay-per-use basis”[19]

Unlike Grid where VOs are used, in Clouds access to resources is provided by
a Cloud provider often by means of a financial transaction (public Clouds sec-
tion 2.2.2). On a pay-per-use basis users can access a large number of resources
provided by the Cloud provider.

Cloud

User

User

User

Figure 2: Users can use (a part of) the shared resources in the Cloud

2.2.1 Cloud services

There are many different levels of services. The paper “Above the Clouds:
A berkeley view of Cloud computing” [1] define Software as a Service (SaaS)
and Infrastructure as a Service (IaaS). Besides elaborating on a comprehensive
definition of Cloud computing using a vast amount of other papers/authors
Leimeister, Riedl, Böhm and Krcmar [19] additionally define the terms Platform
as a Service (PaaS) and Hardware as a Service (HaaS). The services have a



2 The Grid and The Cloud 6

layered dependency, and can be displayed (figure 3) in a layered model where
HaaS is the lowest layer and SaaS the highest level.

HaaS

IaaS

PaaS

SaaS

Figure 3: Layered Cloud services

The layered services of Cloud in Figure 3 are described in more detail below.

SaaS Off-the-shelf Applications are provided to the client. Small adjustments
to the application are possible (logo or workflow for example).

PaaS A framework or software system (middleware) to build and deploy ap-
plication. PaaS service are often designed for a specific SaaS application.
Can provide middleware (databases), mostly of interest to developers.

IaaS Using the provided virtual hardware platform a client can create its own
server environment or in other terms virtual hosting on demand. The
client is in control of all layers above the virtualization layer.

HaaS The physical computer infrastructure. Traditionally offered as an out-
sourcing service.

2.2.2 Public, private and hybrid Clouds

Cloud services can be offered as an commercial product by an external company.
When an external company acts as a Cloud provider this is called a public
Cloud. A Cloud is called private when the Cloud services are offered with in
the company itself by for example the IT-department. A combination of both a
private Cloud and public Cloud, for example to a resources not available in the
company when the resources are needed, is called a hybrid Cloud.

2.2.3 Properties of the Cloud

In the commercial environment of Cloud computing a great number of terms are
used to describe the properties of Cloud. The following list describes a number
of properties that are also mentioned as the properties of Grid (section 2.1.2)
but the description differs as the implementation of the property differs.

Homogeneity The properties of the resources offered via IaaS are all very sim-
ilar. This is due to the virtualization of the Hardware platform. Often a
limited list of different type of virtual machines is offered.

Sharing of resources Storage, Memory, Compute and Network are shared by
means of a financial transaction using ”the more you pay the more you
get” principle.
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Scalability Expand and shrink resources as needed. The expansion is seemingly
without limit but in practice a cloud provider has limits.

Elasticity Easy and fast addition and removal of the resources. The time to add
or remove a resource is within minutes and under complete control of the
user, either via a webinterface or a Application Programming Interface
(API).

Device and location independence Resources are off-site and accessed via the
Internet, so users can connect from anywhere with any device. This prop-
erty implies security issues.

Reliability Cloud service providers offer redundancy often with multiple data-
centers located globally. When using IaaS the user has to provide the logic
for the redundancy.

Maintenance Resources are in the Cloud and often accessed via a web-bowser,
so minimum client application maintenance is needed. When using IaaS
for example no hardware maintenance is needed.

Cost No capital investments and “pay by use”. When using IaaS the cost for
system administration still exists but the cost for hardware maintenance
will disappear.

2.3 Resources

e-Science applications have need for basic resources both provided by the Grid
and the Cloud. The Cloud can offer different types of services but the resources
needed by Grid applications are almost always offered as IaaS. Table 1 shows
the shared resources.

Resource Capacity Shared as
Processor Flops Compute power
Hard-disk and Memory Bytes Storage space
Network Bytes/sec Communication Bandwidth

Table 1: Resources shared by the Grid and the Cloud

2.4 Overview

A side by side comparison of the most important properties of both Grid and
Cloud is done in table 2. A more detailed description of the properties is given
in the sections of Grid (section 2.1.2) and Cloud (section 2.2.3).

Grid and Cloud (IaaS) both provide the same resources (table 1). The
quality of service of these resources differ for Grid and Cloud. The sharing
of the network resources in combination with the virtualization layer added
by IaaS is a known issue in Cloud computing [10]. The e-Science applications
where a high quality of service of the network is needed due to inter node
communication are probably not suited to run on a Cloud IaaS. The other
resources (Compute/Storage/Memory) have a much better quality of service in
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Property Grid Cloud (IaaS)
Distribution By Collaboration By Cloud Provider
Resource Type Heterogeneous Homogeneous
Abstraction Middleware (open stan-

dards)
Virtualization

Scalability Combine existing re-
sources

Add/Remove resources
on request

Elasticity Add resources via proce-
dures (days)

Add/Remove resources
very fast (minutes)

Sharing Guarantee Security infrastructure Financial infrastructure
Cost Initial(investment) and

power/cooling/space
Pay-per-use (hour)

Maintenance Hardware maintenance No hardware maintenance

Table 2: Properties of the Grid and the Cloud compared

the Cloud but due to the use of dedicated hardware in the Grid these resource
will not (yet) reach the same level as with Grid.

2.5 A Grid in the Cloud

The properties of the Grid and the Cloud have similarities and differences (see
section 2.4). For the purpose of e-Science we introduce a concept called Grid
on Demand. Using the elasticity and scalability of Cloud computing (IaaS)
and providing the abstraction of a Grid interface on top of the virtualization
of Cloud, current and future e-Science applications can use a Grid on Demand
when there is a high demand for resources for a short period of time. The
access to the Grid, the Grid interface and the underlying dynamic cluster all are
running in a Cloud environment and we therefore argue that Grid on Demand
is ”a Grid in the Cloud”. Due to the ”pay-per-use” model and the lack of initial
investment cost of Cloud resources, a user can run a Grid on Demand with
minimal budget. The financial implication of running a Grid on Demand are
always known to the user. The pricing model of the Cloud provider is a known
fact and can be used to calculate exact cost.

2.5.1 Urgent computing

As stated before Grid on Demand is an elastically scalable solution for e-Science
applications. There are many different kind of e-Science applications and they
run well on a Grid environment. When there is a sudden and high demand
for resources by an e-Science applications, Grid has difficulties providing these
immediately. It is this need for ”urgent computing” that a Grid running in
the Cloud can provide. The example of UrbanFlood3 that wants to calculate
flooding predictions when actual flooding happens was already given in the
introduction. The biomedical application (WAVE section 4.2) used in the per-
formance test of Grid on Demand is an other example. A patient has to wait for
the simulations to finish before a surgeon can operate. Fast results will reduce

3 http://urbanflood.eu
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waiting time and allows the surgeon to operate soon (hours as opposed to days)
after the patient had the initial sonic-scan. A Grid on Demand provides the
temporary but high volume of compute resources needed in both examples.

2.5.2 Grid application development

A Grid on Demand is under complete control of a user. When that user is a
developer of Grid related software like a scheduler (section 3.3) or a workflow
manager like WS-VLAM (section 4.3) the user has a Grid testbed at its disposal.
The developer can create a testbed on demand with unlimited size in both the
number of Grids and compute nodes. There is no restriction to start more
than one Grid on Demand with a number of compute other than the maximum
allowed by the Cloud provider.
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3 Implementation

This section presents the implementation of a Cloud based compute resource to
study what is involved in incorporating such a resource in the Grid.

First we will sketch a complete picture of the implementation that we cre-
ated in 3.1, because we believe this contributes greatly in understanding the
issues that were involved in its implementation, which are subsequently ad-
dressed. Globus Toolkit as the implementation choice to enable the resources
Grid participation follows in 3.2, with a detailed description of the protocol and
mechanisms involved to participate in the Grid in 3.2.1. This study leads to
two implications:

1. A mechanism to deliver or store context is necessary for the implementa-
tion (3.2.2).

2. Such a Cloud based Grid resource has limitations on its usage (3.2.3).

Possibilities to address the limitation on the usage are also presented in 3.2.3.
We continue the section with presenting the Torque Resource Manager in 3.3.

From the study of the implications of its implementation, again the need to
deliver or store context emerge (3.3.1). How previous studies similar to ours
addressed this necessity is evaluated in 3.4. Then we introduce Amazon Elastic
Compute Cloud focusing on the recently added feature Amazon Elastic Block
Storage that enables persistent disk storage of the Virtual Machine instances
in 3.5. Finally, combining all the described ingredients, we present the architec-
ture of our implementation in 3.6.

In Appendix A, the usage is demonstrated describing the different admin-
istrative procedures involved with our implementation.

3.1 A sketch of Grid on Demand

Our implementation is realized by extending an existing Amazon Machine Im-
age (AMI), containing the Ubuntu Lucid Linux operating system, with Torque
Resource Manager (Torque) and Globus Toolkit (GT). An initial instance of
the AMI operates as the cluster’s head node. This head node is also configured
as an initial compute node. A new Certificate Authority (CA) is created with
which an initial host and Grid user certificate are generated.

The instance can be configured further into an elastic cluster by providing
Amazon Access Credentials. Dynamically added compute nodes will be based
on the same AMI as the head-node. Additional parameters can be set to spec-
ify when new compute-nodes should be launched and of what instance type
they should be. Taking into account Amazon’s hourly payment model, cost is
minimized by automatically terminating compute-nodes when they are idle and
their uptime reaches a whole hour.

Configuring and monitoring of the cluster, and Grid user administration, is
offered through an easy to use web-interface.

Amazon Elastic Block Storage (EBS) is used as the storage mechanism for
the AMI to accommodate the administration of different stages in which the
grid can be configured. Using EBS, a configured instance can be shutdown in
two different ways: for reuse, and for sharing.
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• When shutdown for reuse, the newly created CA, user certificates and
settings concerning the dynamic cluster (including the Amazon Access
Credentials) are preserved. The stopped image may later be restarted
already configured with a specific CA and cluster settings. On restart,
only a new host certificate will be generated for the new hostname the
instance will get.

• When shutdown for sharing, the CA, host and user-certificate and the
cluster settings will be removed, so that on startup all those settings will
be regenerated and ready for configuration.

Using EBS, a stopped instance can be used to create a new AMI based on the
content of the volume of the stopped instance. The two shutdown methods
allow to further extend the original AMI with desirable software and configu-
rations (perhaps to accommodate specific applications) for personal use, but,
by shutting down for sharing, may also be offered to the public without re-
vealing credentials (for using the personal Grid and for using the Amazon Web
Services).

3.2 The Grid: Globus Toolkit

The Globus Toolkit (GT) [13] is a open source toolkit developed by the Globus
Alliance for building Grids. GT is very popular software and widely deployed.
It makes use of open standards such as defined by the Open Grid Services
Architecture (OGSA) developed within the Open Grid Forum (OGF), which
are also used by other Grid software. OGSA and other open Grid standards
find their origins in the Globus Alliance.

GT is composed of different tools, services and components laid out on differ-
ent layers following the principles of the “hourglass model” [5]. In a “hourglass
model” a diverse multiplicity of higher and lower level services are able to inter
operate through a small set of protocols in the middle: the narrow neck of the
hourglass.

→Fabric
Resources (Compute,
Storage, Network, etc)

Connectivity → GSI

Resource →

G
ri

d
F

T
P

G
R

A
M

Collective
→ Virtual Organizations, MDS,

Replication, etc.

Application
→ Grid Applications

Figure 4: Layered Grid protocol architecture. The downward arrows indicate the
usage of an underlying lower layer by a layer above. In the hourglass
on the right, the type of services (and the services themselves) are
shown on the same level as the layer they belong to.
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In figure 4 the layered architecture that has been the model for GT is shown.
The narrow neck is established by the Connectivity and the Resource layer [11].

From the bottom-up, the following layers are defined:

Fabric On this layer are the actual resources being shared and used in Grid
collaborations. GT has been designed to use existing software as much as
possible. For example existing cluster resource managers that can allocate
compute-nodes to process batch jobs will, when available, be used as Com-
pute resource. Also, storage systems that utilize the network, such as the
Network File Systems can be used as underlying storage resource.

Though, if underlying software to handle basic resources is not available, GT
can provide the missing functionality4.

Connectivity On this (narrow neck) layer the authentication and authorization
framework, that is essential for the sort of collaborations which the Grid
provides, are realized. GT uses the open Grid Security Infrastructure (GSI)
standard. GSI has important implications for our use-case implementation
which will be explained later on.

Resource This (narrow neck) layer delivers access to the resources offered by
the Fabric layer in a uniform standards based way. The Gird collaborative
modus operandi is established by giving access through the Connectivity
(and thus security) layer.

In figure 4, two services are shown: Grid Resource Allocation Manager
(GRAM) and Grid File Transfer Protocol (GridFTP), which address man-
agement and usage of Compute and Storage resources respectively.

The layer is concerned with the information and managements of single
resources. Information and management of multiple resources is in the Col-
lective layer.

Collective Protocols and services in this layer are concerned with the discovery,
allocation and coordination of multiple resources. A canonical example is
the Monitoring and Discovery System (MDS). It can be used to discover
what resources are considered part of a VO and to monitor those resources.

The Collective layer hosts a diverse set of services and protocols, specifi-
cally targeted at multiple Grid resources, such as (besides Monitoring and
Discovery): Data replication, Community authorization and Collaborative
services. These type of services especially concern members of VOs, who
may access resources which they do not now beforehand.

Application This layer finally is where the Grid applications, using the Grid ser-
vices in the underlying layers, reside. GT offers APIs and Software Devel-
opment Kits (SDKs) on the Collective and Resource layer for programmers
of Grid applications.

This “hourglass” architecture implies that the Resource and Connectivity
layer provide the minimum Grid services that all Grid resources should have in
common. The Collective layer enables for more diverse, different, more directed
towards specific use-cases configurations of specific Grid deployments.

4 Although it has no native support for cluster configurations
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In our use-case implementation it would be desirable to only implement the
minimum Grid services (on the Resource and Connectivity layer), delivering
the most generic Grid resource, not configured towards specific usage. GT is
composed as a loosely coupled set of tools, services and components, allowing
to realize such a deployment. Of course, on the Fabric layer, still choices have
to be made, non the least the choice to use IaaS in the Cloud as underlying
Virtual Machines.

Because of GT’s prominence in the Grid world, its usage of open standards
which makes it highly inter-operable with existing Grid deployments and its
modular architecture, allowing us to select only a bare minimum of components
to create a generic Grid enabled resource, have led us to take GT as the software
of choice for our use-case implementation.

3.2.1 Configuring

Our implementation of GT will be installed on a Virtual Machine image. Differ-
ent users might instantiate the image to operate as a Grid resource in different
environments. Dynamic configuration of the Grid resource towards those envi-
ronments is needed.

Configuration of GT is mostly concerned with GSI. It is useful to have a
closer look at the workings of GSI to appreciate the affairs involved. To this
end we will regard a typical Grid usage example. In figure 5 such an example
is illustrated.

The Grid User wishes to do an computation on a certain set of data.
The type of the computation is completely parallel, and the more resources work
on the computation the quicker the result will come in. The Grid User
is authorized to use Grid resources in four different organizations. It has
the data, on which the computation should be done, stored at a Storage re-

source offered by Organization A . It instructs the Scheduler resource

at Organization C , to perform the computation on the data stored at

the Storage resource at Organization A . The Scheduler knows about

two Compute resources at two different organizations ( B and D ) which are

offered to the Grid User (perhaps because of his VO membership). It splits
the computational job in two, and delegates the parts to the two Compute re-
sources. The Compute resources access the data at the Storage resource and

perform the computation. When finished, the Scheduler then combines the

results and returns that to the Grid User .
With Grids, authorization to use certain resources is offered to the Grid

users (or VO members). The resources themselves are not authorized to use

other resources. The data on Storage is available to the Grid User and
not to the Compute resources. To realize this GSI has been developed which
introduced the concept of delegation.

When the Grid User instructs Scheduler to do its task, is delegates also
the permission to access the data from Storage and to perform computations on

behalf of the Grid User . With its delegation, Scheduler may then further

delegate permissions. In our case Scheduler further delegates the permission

to access the Grid User ’s data from Storage to the Compute resources.



3 Implementation 14

Organization A

Organization B

Organization D

Organization C

Grid User

Compute

Scheduler Storage

Compute

store data
use my data

to compute X

use 1st
1
2

of

data to com-

pute
1
2
X

use 2nd 1
2 of data

to compute 1
2X

access data

access data

Figure 5: Typical Grid usage example spanning multiple organizations
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To accomplish delegation the Globus Alliance has developed a mechanism
using Public Key Infrastructure (PKI), where Public Key End Entities (such as
users or services) can request the signing of a Proxy Certificate (PC) by another
Public Key End Entity or another PC to be able to authenticate as the signer
for specific by the signer determined purposes.

In figure 6 is illustrated how PCs accomplish the delegation needed in the
usage example in figure 5. We assume that the Grid User has its data
already stored at Storage . Furthermore, all Public Key End Entities (the

Grid User and the resources) already have a CA signed certificate.

1. To be able to authenticate to any Grid resource, the Grid User first
creates a PC for itself. In a way it delegates the ability to authenticate
as itself to itself. In this way, authentication in the Grid can be handled
in a uniform way: by PC path validation. It also has the advantage that
the password protected private key of the CA signed certificate of the

Grid User needs to be unencrypted (for which the password is asked)
only once: to sign the PC request.

The private key of the PC is not password protected, and secured by the
precautions of the Operating System only. The PC has only limited life-
time (typically one day) which alleviates the damage when compromised
considerably.

The subject of a PC consists of the subject of the issuer (the signer)
appended with a Common Name (CN) attribute with an unique value
for the purpose of the delegation. In this way, the subject always starts
with the subject of the End Entity for which the delegation is created,
appended with a series of CN attributes reflecting the number of times
the certificate is delegated. This will be further illustrated in the following
successive steps below.

The green rectangle in the certificate, reflects that the subject starts with
the same value as that of the Grid User ’s End Entity Certificate
(EEC). The issuer of the certificate is indicated with the “Seal of Ap-
proval” symbol ( ) in the color of the End Entity that actually signed

the certificate. But, be aware that the subject of the EEC of the End
Entity that is the signer of a PC, does not have to be in the issuer field of
the certificate as will be further illustrated in the following steps bellow.
Though, in this initial PC, the issuer field is the same as the value of the
subject field of the EEC because it is actually signed by the EEC and not
by another PC.

2. The Grid User contacts Scheduler to submit a task (to compute X

on its data at Storage). The Grid User and Scheduler are mutually

authenticated with Transport Layer Security (TLS). The Grid User

with its PC and Scheduler with its EEC.

The Scheduler ’s EEC should be signed by a by the Grid User rec-
ognized CA. The International Grid Trust Federation (IGTF) distributes
a package that contains the CA certificates of all well known accredited
CAs 5.

5 Root certificates of well known Grid CAs:
https://dist.eugridpma.info/distribution/igtf/current/

https://dist.eugridpma.info/distribution/igtf/current/
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3. Scheduler now creates a process to perform its assigned task. It knows a
Compute resource best suitable to perform the task, which is accessible

by the Grid User and currently available. To delegate the task to

that resource it needs to be able to act on behalf of the Grid User .

Therefor Scheduler creates a new PC request. Because the PC is intended

to inherit the identity of the PC of the Grid User , it has as the subject,

the subject of the Grid User ’s PC appended with a CN attribute
unique for the purpose of the delegation. Although, in figure 6 the PC
request is colored blue, no information in the PC request indicates that
it is Scheduler who created it. The color is just to indicate that it is
Scheduler who has the Private key associated with that PC request.

4. Scheduler sends its new PC request to the Grid User for signing over

the mutual authenticated TLS channel. The Grid User can therefor

be sure that it is Scheduler who requests the delegation.

5. The Grid User signs the PC request with its own PC. The “Seal

of Approval” symbol is green, to indicate that it is the Grid User ’s

PC that signed Scheduler ’s PC request. The issuer in the signed PC

(which the Seal represents) has thus the subject of the Grid User ’s

PC. Nothing in Scheduler ’s PC indicates that Scheduler holds the Pri-
vate key associated with it.

Note that the Seal on Scheduler ’s PC is different from the one on the

Grid User ’s PC (although both green), which is signed by the Grid User ’s
EEC. The colors of the Seals in figure 6 reflect who holds the Private key
that created the signature.

6. Scheduler contacts it chosen Compute resource and asks to perform the

task (compute X). Scheduler and Compute are mutually authenticated

with TLS. Scheduler with its PC and Compute with its EEC.

Nothing in the PC of Scheduler indicates that it is Scheduler who con-

tacts Compute . To Compute , it is as if the Grid User just created
a series of certificates, each signing the next.

7-10. These steps are similar to those of three till six. To perform the task,
Compute needs to access data at Storage . Thus, it creates a new PC

request, with as subject that of Scheduler ’s PC appended with a CN.
Scheduler signs it with its PC (setting the issuer field to the value of the
subject field of its own PC) and returns it.

10. Although the private keys of the stack of certificates are with different par-
ties (reflected in the different colors), the value of the subject field starts

for all the same: with the value of the Grid User ’s EEC’s subject (at
the bottom of the stack). All issuer fields also start with this value (al-
though the private keys that made the signature are with different parties,
reflected in the colors of the Seals), except the first (the EEC) that has
the value of the subject of the CA.
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We have repeated steps three till six in seven till ten to illustrate that
even the signing with a private key not hold by the Grid User makes
no difference in the perception of the PC by a resource. Compute ’s PC

has been signed by Scheduler , but this involvement is completely hidden
to Storage . To Storage the PC presented by Compute might just as well

have been a series of certificates all generated by the Grid User itself.

In the example the service offering resources and the user of the resource
(which might also be a service at another resource) are mutually authenticated
using TLS. The user is authenticated using proxy certificate path validation.
The fact that at the end of the path, an users EEC is signed by a CA established
the identity of the user.

But just path validation of the EEC of the resource does not suffice to
establish the identity of the resource by the user. An EEC might be signed by
a CA to be used for a specific resource, but what prevents the holder of that
EEC to use it for a completely different resource?

The TLS specification [6] does not specify how to establish a resource’s
(or server’s in TLS terminology) identity. This is left to the specification for
the applications using TLS. However, it is common practice that applications
establish a server’s identity based on their dns name. Currently a draft is
evaluated by the Internet Engineering Task Force (IETF) that generalize this
approach in a “Best Current Practice” standard [24]. GT also uses the dns
name of a resource to validate its identity.

3.2.2 Implications for the architecture of the implementation

The usage of an EEC intended for the resource’s host to authenticate a resource
has important consequences for our implementation. A newly instantiated Grid
resource (in a IaaS cloud) will normally have a IP-address and dns name assigned
to it dynamically. To create an EEC for the just created Grid resource using
normal procedures would take a lot of time (perhaps several days) and involve
procedures that require manual interposition of the user creating the dynamic
Grid resource. To have the instance running and waiting for the certificate
would be very unserviceable and not in line with the dynamic nature of Cloud.
Augmenting the Grid with the dynamism of the Cloud is one of the primary
goals we are pursuing with this project.

Amazon sells a service to launch instances with static, account associated,
IP-addresses: Amazon EC2 Elastic IP Addresses (EIP). When an image would
always be instantiated with the same IP-address (and dns name), it may be
equipped with a valid EEC signed by a widely accepted CA. Such a Grid resource
will be able to fully participate in bigger Grid collaborations and all the benefits
of using GT will stand out well.

However, this will not be a convenient solution when a Grid resource is
needed immediately and the procedure of buying a static IP address and re-
questing a host certificate has not been completed. Also, for an experimental
temporary Grid resource, this would be too cumbersome.

Alternatively, each owner of an account for IaaS with a Cloud provider, may
take the role as CA. Since this person is also launching the instances (directly or
via a service) it may provide the instance with the contact details of a “context
broker” which may be used by the newly created Grid resource to intermediate
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with the signing of its EEC request6. Or a persistent storage could be used
accessible for the instance in which the private key of the CA is stored, so that
the instance can sign its own EEC request7. In any case, such a “self signed”
resource will not just-like-that be able to collaborate in all the different possible
ways as a static resource with an EEC signed by a widely accepted CA as will
be explained next.

3.2.3 Implications for the usage of the implementation

Grid User
GoD

CA Cert

User Proxy

Resource

Process

Organization A

Resource

Process

Grid on Demand

1 create proxy

2
allocate

3

4 allocate?5

6

Grid User
GoD

CA Cert

User Proxy

Resource

Process

Organization A

Resource

Process

Grid on Demand

1 create proxy

2
allocate

3
4

al
lo

ca
te

5

6

Figure 7: Delegation using Proxy Certificates. On the left the type of usage
example illustrated in [14, 4]. On the right a RFC 3820 [25] type of
example.

The use case descriptions in the papers [14, 4] that have led to GSI describe
mechanisms in which a process is delegated to use a resource that is authenti-
cated by its EEC. This limits the way a Grid resource with an self signed EEC
can be used in bigger Grid collaborations. The left site of figure 7 illustrates the
problem. The Grid User has instantiated a Grid on Demand, and wishes
to use it through a Resource . Resource might for example be a scheduler that
may address many different computing resources in many different organizations
and also (if all else is occupied) the Grid on Demand. Because the scheduler

Resource does not know the CA that signed the Grid on Demand Resource ’s
EEC, it is unable to validate the identity. Even though the scheduler Resource

acts on behalf of the Grid User that created the Grid on Demand Resource
in the first place.

In the standard for Proxy Certificates, RFC 3820 [25], another approach to
delegation is given8, which is illustrated on the right side of figure 7. In stead

6 This approach is taken by “one-click” virtual clusters [17] which will be covered in 3.4.1
7 This is more or less the approach we have taken
8 The example is given in section 2.3 of RFC 3820 the third option under “Proxying can be
used to secure all of these interactions”.
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of letting the Resource instantiate a Process allocating the Grid on Demand

Resource , a Process is created that waits for the Grid on Demand service

for the Grid User (in the form of the by Resource created Process ) to
become available9. Both processes may then mutually authenticate using the
PCs that represent the Grid User . The PCs in use by the processes have

the Grid User ’s EEC at the end of the certificate chain signed by a well
known CA.
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Figure 8: Our suggestion

As an alternative, we can also imagine that resource identity validation might
be extended in such a way that resources are considered legitimate by a process,
when it uses a PC (in stead of an EEC) representing the same user as the PC of
the process. Dynamic resources could then be equipped with PCs signed by the
EEC of the user that instantiated the dynamic resource, and would be usable in
bigger Grid collaboration, but only for the user that instantiated the dynamic
resource (see figure 8). We argue thus, that GSI should be extended to not only
work for resource allocation, but also for resource instantiation.

In practice, it would for now be best to only use a dynamic resource directly,
or through tightly by the user controlled resources, or one could buy a static
IP address for the resource and go through the procedure of requesting a host
certificate with the local Grid CA.

9 This may happen in different ways. Process could contact Process to inform it about

its existence, or the Grid User could inform Process about Process .
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3.3 The Resource Manager: Torque

Computing resources in the Grid are often not mere simple single computers,
but clusters10 of cooperating computers orchestrated by a Job Scheduler. Such
a scheduler typically runs on a cluster’s “head node” and deploys “jobs” on
“compute nodes” (also called “worker nodes”). The scheduler maintains one
or more queues in which jobs may be submitted. Different properties such as
priority to run, or authorization requirements, may be set on different queues.

The jobs themselves are sometimes called batch jobs, because their nature
is often a bulk of certain tasks that should be performed without manual inter-
vention. However, modern Job Schedulers also allow for interactive jobs.

Interaction between jobs can be performed in different ways. Message Pass-
ing Interface (MPI) is the dominant communication model used within clusters
and supercomputers. For communication outside a cluster, Grid middleware
such as GT is more appropriate because of its organizations-transcending dis-
tributed model; GT has services and tools for registering and discovering jobs
and the actions and services they deliver to facilitate this.

Our implementation aims to behave as a compute cluster Grid resource.
Different from ordinary static clusters, we will exploit the elastic nature of the
Cloud, and launch more compute nodes when needed similar to the implemen-
tation described in [21].

GT natively supports three different Job Schedulers at the Fabric layer:
Condor, Load Sharing Facility (LSF) and Portable Batch System (PBS). PBS
is an interface specification that has multiple implementations, among which
the Open Source Torque Resource Manager (Torque). GT has also third party
support for the Oracle Grid Engine (OGE).

We had no preference for a specific Job Scheduler other then that its con-
figuration should be as simple as possible. Torque is the Job Scheduler used
by [17] (an implementation of a cluster in the Cloud similar to ours which we
will address in 3.4.1) and showed up as the Job Scheduler of choice in online
tutorials11 on setting up a Grid resource with GT .

Torque has a basic Job Scheduler that deploys a maximum fixed number of
jobs per compute node, possibly based on the number of cores of that node.
It also supports more advanced Job Schedulers, that monitor load on compute
nodes and schedule jobs minding the available compute capacity. We have not
looked at those advanced schedulers, but we believe it would be a worthwhile im-
provement because virtual machines in an IaaS Cloud are provided by hardware
that is likely to also be in used by other parties.

3.3.1 Implications

Compute nodes in a Torque cluster run a service that executes, monitors and
manages the execution of jobs on that node: the Machine Oriented Mini-server
(MOM). MOMs are registered and directed from a Server process on the head
node. The Job Scheduler interacts with this Server to make scheduling decisions
on the jobs waiting and running in the queues, which, with Torque, are also
handled by the Server process.

10 or even supercomputers
11 For example http://www.globusconsortium.org/tutorial/

http://www.globusconsortium.org/tutorial/
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For a dynamic cluster this means that dynamically instantiated compute
nodes need to know how to contact the head node. Also, they need to be
registered with the head node. The head and compute nodes need to be aware
of the “context”: being the cluster of which they are part.

Informing the compute nodes of the head’s location and vice versa, could
be handled by an external “context broker”12. Monitoring of the job queues
and spawning of new compute nodes when needed however, does not fit this
model. Since the queues are on the head node, this process should either be
on the computer that also instantiated the head-node where the credentials for
spawning instances reside. Or it should be on the head-node itself. It the latter
case, it is important to have a storage mechanism for the credentials needed
to launch new instances specific for the user, similar to the requirements for
the storage of the private key for the CA for the Grid on Demand as described
in 3.2.2. Alternatively, the head node could reside on a static node outside the
Cloud, so that no storage mechanism for personal settings (and credentials) is
needed13.

There is an oddity which we have to take into account with our imple-
mentation. Although Torque is perfectly capable of staging in and out jobs
and redirecting input and output using Secure Copy (scp), in conjunction with
Grid Resource Allocation Manager (GRAM), a shared filesystem has to be in
place. We do not know the reason for this, and it has been questioned by others
before14. Open Science Grid Consortium (OSGC) has developed an additions
to GRAM, NFS Lite15, that alleviates this problem, but only for Condor.

Thus, the head and compute nodes need a shared filesystem. The obvious
choice would be for the head node to share its filesystem with the compute
nodes. This again could be directed by a “context broker” or from the head
node.

3.4 Previous work

Within the Globus Alliance is a project called the Incubator Management
Project (IMP), which responsibility it is to help new projects to join the Globus
Alliance. Under IMP’s umbrella, from 2006 a project started to “study the dy-
namic creation of execution environments”: Virtual Workspaces. The Virtual
Workspaces project has developed (and still develops) Nimbus to this end.

Nimbus is Open Source set of tools that deployed on a cluster delivers Cloud
IaaS. To launch and manage Virtual Machine (VM) instances, Nimbus offers a
Cloud client program. This client program interacts with the Nimbus service
using methods also in use with GT: Using X.509 credentials and Web Services
Resource Framework (WSRF). But Nimbus also provides an implementation
of the Amazon Elastic Compute Cloud (EC2)’s Web Services Description Lan-
guage (WSDL) based API.

12 This approach is taken by one-click virtual clusters [17] which will be covered in 3.4.1
13 This approach is taken by “Elastic Site: Using Clouds to Elastically Extend Site Re-

source” [21] which we will address in 3.4.2
14 A message on the GT users mailing-list questioning the necessity for NFS when using

GRAM with PBS:
http://lists.globus.org/pipermail/gt-user/2006-November/002165.html

15 NFS Lite documentation:
http://osg-docdb.opensciencegrid.org/cgi-bin/ShowDocument?docid=382

http://lists.globus.org/pipermail/gt-user/2006-November/002165.html
http://osg-docdb.opensciencegrid.org/cgi-bin/ShowDocument?docid=382
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Given the close relationship with Globus Alliance, it is not surprising that
within the Nimbus development efforts, projects emerged closely related to our
implementation.

3.4.1 Contextualization: Providing One-Click Virtual Clusters

This interesting paper [17] describes the process of instantiating fixed sized
clusters on a IaaS Cloud (Nimbus or EC2 based). It separates the steps involved
in instantiating and configuring the VMs in four different roles.

The Appliance Provider supplies VM images, or appliances. Each appliance
has a disk image, with a “Context Agent” pre-installed that will be re-
sponsible for configuring the instance when the appliance is launched.
Each appliance has also a “Context Template” describing what has or
may be configured on instantiation.

The Appliance Deployer is the user launching appliances. It selects the appli-
ance (for example a clusters head node) from the Appliance Provider, fills
in the “Context Template” to specify how (in what context) the appliance
should be configured. The filled in template is then stored, as “Appliance
Context” in a ...

Context Broker. The Deployer then instantiates the appliance on a ...

Resource Provider ... with the contact details of the Context Broker. On
booting the running instance will contact the Context Broker for details
on how to be configured. It will also provide information to the Con-
text Broker about the environment of the running appliance within the
Resource Provider (such as its IP-address(es) and dns name), further fill-
ing in the Appliance Context. Other instantiated appliances (such as the
compute nodes) might be waiting for that information to complete their
Appliance Context and finalize their configuration.

This separation of roles adds orthogonality to the solution making it very
flexible. It has the advantage that credentials needed to instantiate appliances
never leave the Deployer’s system. Also, credentials to be used by the appli-
ances to mutually authenticate, may be generated by the Deployer, using the
Deployer’s private key to sign EECs of the appliances and informing them about
the others identity via the Context Broker.

The disadvantages are the need for an external Context Broker, and the
need for the Cloud client program on the Deployer’s system. Nimbus Cloud
client software contains the components to instantiate virtual clusters on Nimbus
Clouds or Amazon EC2. However, from the documentation16, we quote:

You must also have access to a broker service. You can run your own
copy of the broker if you like, but at this time it is recommended to
use the service already running on the University of Chicago Nimbus
Cloud.

16 Advice to use Chicago’s broker service:
http://www.nimbusproject.org/docs/2.4/clouds/appendix.html#ec2

http://www.nimbusproject.org/docs/2.4/clouds/appendix.html#ec2
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Also, the Appliance Provider needs to have the Context Template stored along-
side the disk image of an appliance. In existing commercial appliance stores,
such as that of Amazon EC2, there is no default way for doing this.

We believe that one of the powers of Cloud computing is the possibility
to try out solutions without having to go through the hassle of configuring
and setting up a lot of context. Although the solutions concept of a Context
Broker is developed with the alleviation of such configuring in mind (especially
in collaboration of multiple machines), setting up the environment to use the
solution (the client software and manual editing of Extensible Markup Language
(XML) Context Template files that manually have to be associated with the
appliances) is still a hassle within itself. Still, if this modus operandi would
become commonplace, and Amazon would run its own Context Broker for use
within its system, this would be the most flexible approach, allowing for the
most diverse application environments.

3.4.2 Elastic Site: Using Clouds to Elastically Extend Site Resources

Another interesting paper [21] with two of the same authors as the One-Click
Virtual Clusters paper, but it does not build upon the solution from the previous
paper. Whereas the cluster in One-Click Virtual Clusters was hosted entirely
within the Cloud, the solutions described here assumes an existing physical
cluster that elastically extends into possibly multiple Clouds. An Elastic Site
Manager is presented as a service that monitors the Cluster Queue and launches
or kills new VMs depending on the workload. The Context Broker paradigm
introduced in [17] (see 3.4.1) is used to inform the freshly launched compute
nodes of the location of the head node. Different scheduling algorithms are
evaluated on their effectiveness with different jobs submission patterns typical
for specific applications.

The solution extends a personal owned physical cluster resource. Deploying
compute nodes in possibly multiple different Clouds kills the homogeneity of the
original physical cluster. Users of the original physical cluster could count on
certain Quality of Services of the cluster, such as communicational properties
between the compute nodes, that can not be guaranteed anymore.

We believe that such scheduling decisions could be better handled by a
Grid (meta)scheduler. A Grid (meta)scheduler may take into account specific
Quality of Service requirements (or preferences) that must be met (our should
be considered) for certain jobs, and further submit the jobs accordingly on a
physical or virtual cluster.

Still, the Elastic Site Manager is exactly what we need for our Grid on
Demand.

3.5 The Cloud: Amazon Elastic Compute Cloud

Amazon is one of the first commercial IaaS providers. It started selling access
to its internally developed17 VM based resource sharing system in 2006 as the
Amazon Elastic Compute Cloud (EC2).

Handling of the VM images, instances, EIPs etc. involved in managing an
EC2 Cloud, is offered via a web interface, command-line tools and an API.
The remote function calls defined in the API, are offered by Simple Object

17 Developed to alleviate peaks in demand and more efficiently utilize their available capacity
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Access Protocol (SOAP) (for which a WSDL description is available) and HTTP
queries. Because of Amazon’s popularity, this API has become a De facto
standard for managing Clouds, nowadays also offered by Open Source Cloud
initiatives such as Nimbus and Eucalyptus.

With EC2 the VM images are addresses via an Amazon Machine Images
(AMIs). Amazon has no concept of a possibly external Appliance Provider, like
with Nimbus (see 3.4.1). AMIs have to be selected from the repository in the
region where the instance will be launched. Regions refer to the location of the
physical data centers. Currently, Amazon has four regions: US East (Virginia),
US West (Northern California), EU West (Ireland) and Asia Pacific (Singapore).

AMIs might be provided by Amazon, be privately owned or provided by
the community. Privately owned AMIs may, by a simple check box selection,
made public. Others may find a public AMI as a community provided AMI and
launch instances from them.

AMIs have two distinct ways in which the VM image may be stored: by
Amazon Simple Storage Service (S3) and by Amazon Elastic Block Storage
(EBS). S3 was the original method. When launching S3 backed AMIs, the
VM image would be copied from S3 to the disk of the VM instance. When
the instance would shutdown, it would just disappear permanently, without the
possibility to start the instance again from the same disk. All modifications to
the disk image would be permanently lost.

To create new AMIs, one had to download the disk image from S3, modify
it and upload it again to S3. The new uploaded disk image then had to be
registered to associate it with a new AMI.

Since August 200818 a new storage mechanism was introduced: EBS, intro-
ducing as new infrastructure for disk images. EBS made it possible to attach
persistent storage images (called volumes) to running instances, that would not
be destroyed on termination of the instance. Volumes may be copied to snap-
shots (even from an running instance), which in turn can be used to copy to
new volumes for new instances.

Since December 200919 it became possible to boot instances from volumes.
Furthermore, AMIs may since then be associated with snapshots. This feature
created the possibility to administer VMs in a very easy and convenient way.

Figure 9 shows an Remy Evard life cycle diagram [7] of an EBS backed AMI.
The cyan colored box in the upper left denote the AMI A and its associated
snapshot S. On launch, an instance IA is created based on the AMI. The
instance has a volume associated with it VS on which the content of snapshot S
is copied. The instance IA is then booted from VS . It will get a new hostname
H assigned.

The instance IA may now be permanently terminated, loosing its volume. It
might also be stopped, in which case the volume VS and all modification made
during the uptime of IA are preserved. A stopped instance may be started
again, booting it from this modified volume. The running instance will receive
a new hostname H possibly (probably) different from its previously assigned
hostname.

A stopped instance may also be used to create a new AMI A′. The contents

18 Press release announcing EBS:
http://phx.corporate-ir.net/phoenix.zhtml?c=176060&p=irol-newsArticle&ID=1189249

19 Announcement of booting instances from EBS volumes:
http://www.allthingsdistributed.com/2009/12/amazon_ec2_boot_from_ebs.html

http://phx.corporate-ir.net/phoenix.zhtml?c=176060&p=irol-newsArticle&ID=1189249
http://www.allthingsdistributed.com/2009/12/amazon_ec2_boot_from_ebs.html
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Figure 9: Life cycle of Virtual Machines using EBS

of the modified volume VS are then copied to a new snapshot S′ that will be
associated with the new AMI A′. A′ may now be made public. It can itself
be launched again to further work on the new volume created from the new
snapshot, which eventually might lead to a new published AMI again. Also, the
old AMI A might itself be reused to create a new development branch (or fork).
This modus operandi is similar and has much of the power and flexibility of
revision control systems, although merging of different branches is not possible
of course.

3.6 Architecture

In our studies of the ingredients needed to build a Cloud based Grid resource,
we have seen that providing the instances with the necessary context is the main
issue that needs to be resolved.

For Torque, the instances first need to know their role: head node or compute
node. The head nodes subsequently need to know the location of the compute
nodes, both for deploying jobs and to authorize the mounting of the shared
filesystem. The compute nodes need to know the location of the head node, to
report on their status and to mount the shared filesystem from. Furthermore,
elasticity of the cluster can only be accomplished if an “Elastic Site Manager”
has the necessary credentials and is authorized to launch and kill instances in
the Cloud (see 3.3.1).

GT needs host EEC signed by a CA that is preferably widely known, but
otherwise should at least be known to the users of the Grid resource (see 3.2.2).

In the works of Keahey, Freeman and Marshall [17, 21] a “Context Broker”
is presented and used as a supporting service in orchestrating the necessary
context to the dynamically instantiated VMs in the correct order and at the
right time (see 3.4.1 and 3.4.2). Although the flexibility gained in introducing
such an extra service, it also burdens the users of their systems with the need
for an environment to be able to use it.
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We believe that one of the powers of Cloud computing is the ability to
instantiate complete preconfigured systems ready for immediate use or at most
needing minimal adaptation to fit in existing environments. Therefor, we have
followed a different approach, and have created a Grid enabled Cloud cluster
that is run at EC2 alone, completely independent of existing environments.
There is no need for a Cloud client and no Context broker is involved.

When a cluster is instantiated in [17], all instances are started at the same
time. The Context Broker makes sure the head node learns the locations of
the compute nodes, and vice versa. In [21], the head node is not in the Cloud.
A Elastic Site Manager monitors the queue on the head node and launches
compute nodes in the Cloud. Again, the Context Broker is used to let them
know how to contact the head node and to let the head node know the location
of the freshly launched compute node. The Elastic Site Manager needs the
credentials and authorization to launch nodes in the Cloud.

When launching instances with EC2, several parameters have to be given.
The instance type (see 4.5), the name of an account associated public key to
be able to access the machine, an account associated security group in which
firewall settings for the instance are defined, and an user data parameter that
can be used to provide scripts to be run just after the instance completed its boot
procedure, or in which information can be given on how the instance should be
configured. A handle is returned to the launcher, with which information on the
just launched instance can be retrieved. Such as its status (pending, running,
stopping, etc.) and the IP address and hostname it eventually received through
Dynamic Host Configuration Protocol (DHCP).

In the scenario of [21] this means that in stead of using a Context Broker,
the location of the head node can be passed to the launched compute nodes
via the user data parameter. The compute node may subsequently contact the
head node directly (in stead of via a Context Broker) to notify it is ready. The
same interaction can be used to authorize and mount the for GRAM needed
shared filesystem (see 3.3.1).

The obvious location for our Elastic Site Manager is on the head node, but
it needs Amazon’s Access Credentials to be able to launch compute nodes. We
can not store the credentials in the public AMI. An account associated store is
needed to be able to store the credentials, so they do not have to be in the AMI.
EBS provides just that (see 3.5). It also enables a way to conveniently store an
account associated CA. The recent ability to boot from an EBS volume makes
it even more convenient as can be seen in figure 10.

3.6.1 Incorporating Amazon’s administrative features in Grid on Demand

The AMI in the upper left corner of figure 10 is our public Grid on Demand
AMI. It is based on an existing AMI of Canonical with Ubuntu Lucid Linux
installed, and extended it with GT, Torque, our own Elastic Site Manager and
all the necessities to create the Grid on Demand as outlined in 3.1.

The with this public AMI associated snapshot S has no sensitive information,
such as a private key for the CA and the Amazon Access Credentials, on it. On
an initial first time usage launch of the AMI, a new for the holder of the Amazon
account intended CA is created. Its private key is used to sign the EEC needed
for the resource’s hostname H to be able to participate in the Grid. As a bonus,
also an account on the AMI intended to be used as a Grid user is provided with
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Figure 10: Different configured stages in the life cycle of Grid on Demand

a EEC and a PC is initialized, so the Grid user account can be used immediately
to use the resource. All those configurational actions are stored on the instance’s
volume VA.

Secure SHell (ssh) is Amazon’s default method to connect to Linux in-
stances. The private key on the on launch specified keypair has to be used to
authenticate. Configuration of Grid on Demand is through a web interface. For
security, it only listens on the local interface. To use the interface, a local port
has to be forwarded to the instance’s local interface (port 80). Port forwarding
is a feature found in many ssh client (among which OpenSSH20 and PuTTY21).
This way, the standard Amazon way of protecting access to the instance is also
used to protect the usage of the web interface.

The web-interface can be used to authorize Grid users with an EEC signed
by a real Grid CA. Grid on Demand has the by the IGTF distributed list
of accredited Grid CAs on board and updates them regularly. To be able to
use the Grid on Demand as a Grid resource, one has to make sure that all
systems accessing the Grid on Demand acknowledge its CA. To this end the
CA’s certificate needs to be downloaded from the web interface, and added to
the list of certified CAs of those systems.

The web interface also provides two buttons to shutdown the instance: One
to shutdown for reuse, and one to shutdown for sharing. When shutdown for

20 OpenSSH is a FREE version of the SSH connectivity tools:
https://www.openssh.org/

21 PuTTY is a free implementation of SSH for Windows and Unix:
http://www.chiark.greenend.org.uk/~sgtatham/putty/

https://www.openssh.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
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reuse, the instance is simply shutdown. The CA, the EEC of the local Grid
user and the list of authorized externally signed Grid users are preserved on the
volume VS . When the stopped instance is now started again, all those settings
keep preserved. No new CA or EEC of a local Grid user is created. The list of
authorized Grid users is the same as on shutdown. Only a new host EEC will
be generated to facilitate the new hostname the instance will get.

The stopped instance IA can also be use to create a new private AMI. This
preconfigured AMI may then be used to launch multiple Grid’s for use with
the in the AMI A′’s volume S′ contained list of authorized users, or from the
systems that already know the CA that is stored in S′.

Alternatively, the instance IA might also have been shutdown for sharing.
In that case, the CA, Grid users EEC, list of authorized users and all other
“personal” Grid on Demand configurations are removed before the VM is halted.
The AMI A′′ created from the volume of that stopped instance may safely be
offered to the public again. This might be useful to branch of versions of Grid
on Demand targeted at specific applications, or on which certain services from
the collective layer are deployed (see 3.2)

With the web interface also the Amazon Access Credentials can be provided,
after which Grid on Demand may operate as an Elastic cluster. Similarly as
before, the Access Credentials are preserved when shut down for reuse, and
removed when shut down for sharing.

3.6.2 Components

We have implemented an Elastic Site Manager (ESM), similar as in [21]. The
ESM is implemented in python. It monitors the Torque job queue with the help
of the pbs python22 package.

We have defined a simple retention formula to prevent over provisioning
of compute nodes. To determine if new compute nodes should be started, it
maintains a history of the number of pending jobs Wt (the startup window),
over the last `w number of seconds at moment t. The startup window length `w
can be configured in the web interface. The number of compute nodes that will
be launched Lt at time t is determined by the number of cores of the instance
type that will be launched CT and the current number of cores of compute
nodes that have already been started but have not joined the cluster yet (Cores
Pending) CP

t , the current number of running nodes Rt and the minimum and
maximum cluster size that can be configured with the web interface Smin and
Smax, and is given equation 1.

Lt = min

{
max

{
max

{⌈
minWt − CP

t

CT

⌉
, 0

}
+R,Smin

}
, Smax

}
−R (1)

where min and max are functions that give the smallest and largest number
from the set that is the argument respectively.

Compute nodes are terminated when they are idle, and their uptime tup
comes close to a whole hour. If tup is in seconds, then tup mod 3600 > 57× 60.

Note that Lt is negative when there are more nodes running then maximally
allowed (R > Smax). This can happen if Smax is set to a lower number through

22 pbs python: https://subtrac.sara.nl/oss/pbs_python

https://subtrac.sara.nl/oss/pbs_python
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Figure 11: Components in Grid on Demand

the web interface. Grid on Demand currently does not anticipate this. In
future version it might remove −Lt from the list of compute nodes managed by
Torque giving a preference to idle compute nodes. Those compute nodes could
terminate normally when tup mod 3600 > 57 × 60, or might be added to the
cluster again when Lt > 0.

All managing (launching, killing and retrieving status information) of com-
pute nodes is done with boto23.

As is shown in figure 11, both the web interface and the ESM are provided
by the same python script: controller.py. The web interface component, in
the script, further provides graphical plots that display the progress of running
and queued jobs and running and pending compute nodes (expressed in number
of cores). The plots are generated by Round Robin Database Tool (RRDtool)24

through PyRRD25.

23 boto: A Python interface to Amazon Web Services:
http://boto.s3.amazonaws.com/index.html

24 RRDtool is the OpenSource industry standard, high performance data logging and graph-
ing system for time series data:

http://oss.oetiker.ch/rrdtool/index.en.html
25 PyRRD is a pure-Python OO wrapper for the RRDtool:

http://code.google.com/p/pyrrd/

http://boto.s3.amazonaws.com/index.html
http://oss.oetiker.ch/rrdtool/index.en.html
http://code.google.com/p/pyrrd/
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4 Performance

To test the performance of Grid on Demand a comparison needs to be made
with a real cluster having a Grid interface (section 4.1). An actual e-science
workload will generate a representative load on both the real cluster and Grid
on demand. When this test is performed using an existing Grid application
utilizing the Grid interface (Globus Toolkit) it also shows that Grid on Demand
can be used in existing environments without modification. For the e-science
workload the WAVE workload has been used described in section 4.2. The
WAVE workload uses WS-VLAM as a workflow manager, section 4.3 describes
the concept a workflow manager and WS-VLAM in particular.

4.1 DAS-3

The Distributed ASCI Supercomputer 3 (DAS-3)26 is a five-cluster wide-area
distributed system designed by Advanced School for Computing and Imaging
(ASCI). It is meant for doing experimental research on parallel and distributed
programming. For the tests the 32 node DAS-3 cluster of the University of Am-
sterdam (UvA) is used. The UvA part of the Distributed ASCI Supercomputer
3 (DAS-3-UvA) has GT 4.02 installed and is running Scientific Linux 4.6. On
DAS-3-UvA only one CPU per node is used when jobs are submitted due to the
setup of the scheduler .

4.2 The WAVE workload

The WAVE application is a biomedical application. It can help surgeons to
create a arteriovenous (AV) fistula in the blood vessels of the upper limb for
hemodialysis. Using an ultrasound scan of the patients arm it tries to calculates,
by means of simulations, the correct place to create the AV fistula. Intensive
calculations are done by a standalone application that fetches the data and gen-
erates the output. There is no need for communication between the calculations.
By variating the input data per calculation an extensive simulation can be done.
This type of application can be typed as an ”embarrassingly-parallel parameter
space study” [16]. The workflow of WAVE the application has been developed
in WS-VLAM (section 4.3)

4.3 WS-VLAM workflow manager

A workflow manager for grid computing [28] is a (graphical) tool to assist com-
plex e-science application creation. It abstracts the complexity of the middle-
ware and frameworks that provide the capabilities for distributed execution in
the Grid environment. The UvA developed WS-VLAM[18] workflow manage-
ment system targets to support efficient and scalable execution of large workflow
applications on the Grid. WS-VLAM creates a sequence of job submissions to
GT taking into account the dependencies between the jobs for example.

26 http://www.cs.vu.nl/das3/index.shtml
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4.3.1 Adjustment to WS-VLAM

A first test run showed that the workflow manager was not optimized for the
elasticity of Grid on Demand. WS-VLAM submitted jobs until the job queue
was full and it did not notice the automatic expansion of the queue size. This
was corrected by the developers of WS-VLAM.

4.4 Compiled and installed versions

Table 3 shows an overview of the versions installed in the Ubuntu 10.04 LTS
64bit AMI to create the performance test enviroment.

Software Compiled Version
WS-VLAM runtime From source wsruntime-31.03.2010
WAVE Statically linked binary Provided by System- and

Network-Engineering
(SNE) group

GT From source 4.2.1
Torque From source 2.4.8

Table 3: Installed versions of the performance test software components

4.5 Amazon instance types

Amazon offers different types of instances (virtual machines) to run a AMI.
These instances have different characteristics which can influence the perfor-
mance of the AMI. Table 4 gives an overview of the available 32bit and 64bit
instance types when the tests where performed. The term Compute Unit (CU) is
defined by Amazon as follows: ”One EC2 Compute Unit provides the equivalent
CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor”.

API name 32/64bit Memory(MB) Cores CU
m1.small 32bit 1.7 1 1
m1.large 64bit 7.5 2 4
m1.xlarge 64bit 15 4 8
m2.xlarge 64bit 17.1 2 6.5
m2.2xlarge 64bit 34.2 4 13
m2.4xlarge 64bit 68.4 8 26
c1.large 32bit 1.7 2 5

[c1.xlarge] 64bit 7 8 20

Table 4: Available Amazon instance types

4.6 Performance tests

To test the elasticity/scalability of Grid on Demand as opposed to the static
setup of the DAS-3-UvA cluster two workloads were tested. One with a number
of jobs less than the number of nodes in the cluster and one with more jobs, in
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this case 3 times more. than the number of nodes. These values were chosen to
test the advantages of the dynamic scalability of Grid on Demand. For DAS-3-
UvA the hypothesis is that when a workload has more Jobs than that there are
nodes available to execute them, the jobs will be placed in the queue (pending).
These pending jobs will be executed when running jobs are finished. For Grid
on Demand the number of CPU’s available is always equal (or more) than the
number of jobs due to the dynamic scaling. Therefore the total execution time
of the workload will equal the total execution (running + pending) time of the
slowest job.

Ca = Cores available

Wt = Workload execution time

Wj = Number of Jobs in Workload

Jt = Job total execution time

Jt−max = Maximum Job total execution time

Jp = Job pending time

Jr = Job running time

Jt = Jp + Jr

The predicted total workload execution time on DAS-3:

Wt ≡ Jt × (Wj mod Ca) (2)

For Grid on Demand :
Wt ≡ Jt−max (3)

4.7 Performance results

A schematic setup of the performed test is shown in figure 12.

Compute Nodes

Head Node 

OS: Ubuntu 10.04
Grid: Globus 4.2.1
PBS: Torque 2.6.8

WAVE 
Biomedical 
Compute 

Application

Figure 12: Setup of GoD, WS-VLAM and a real-life application

As described in section 4.2 each job run by the WAVE workload uses a differ-
ent dataset. To avoid the influence of the different data on the job running time
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Figure 13: Results of a 30 job workload
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Figure 14: Results of a 100 job workload

the same dataset is used for all the jobs in all the performed tests. The head-
node is running on the m1.large (see section 4.5) instance. The dynamically
started compute nodes are c1.xlarge instances (see section 4.5).

Total execution time The time it takes for the complete workload to finish as
seen by WS-VLAM

Job pending time The time a job is pending before it is run as seen by WS-
VLAM

Job running time The time a job is running until it finishes as seen by WS-
VLAM

The graphs in figure 13 and figure 14 confirm the predicted results. The first
2 jobs for Grid on Demand in both the 30 en 100 job run show a very different
job running time compared to the other job running times in the 30 and 100 job.
This is due to the participation of the head-node in the job queue. The head-
node on the m1.large instance has different characteristic than de dynamically
created compute nodes running on the c1.xlarge image this is clearly visible
in the running time results and are therefore removed from the following test
results in table 5 and table 6. In the 30 job performance test of DAS-3-UvA the
last 2 jobs show a very different job pending time compared to the other job
pending times. This is due to the (unexpected) availability of only 28 nodes in
theDAS-3-UvAcluster, the 2 jobs are waiting for 2 other jobs to finish. These
2 jobs are removed from test results in table 5 and table 6. To create an equal
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comparison between both the 100 job runs for DAS-3-UvA and Grid on Demand
the last 2 jobs on DAS-3-UvA where also removed.

Grid Number of Jobs Total execution time
DAS-3-UvA 28 00:42:58

Grid on Demand 28 00:46:22
DAS-3-UvA 98 02:46:36

Grid on Demand 98 00:52:26

Table 5: Total execution time of Grid on Demand compared to DAS-3-UvA

The content of table 5 is as predicted. The workload execution time on the
DAS-3-UvA cluster is almost equal to the job execution time when the number
of jobs in the workload is less than the number of CPU’s available. The workload
execution time in DAS-3-UvA is 4 times longer then the job execution time when
the number of jobs is more than 3 times the number of available CPU’s. Grid on
Demand scales with the number of jobs, and the total workload execution time
of a 98 job workload is close to the 28 jobs workload. The difference between the
100 and the 30 job workload is still significant and as can bee seen in figure 14
is due to the sudden increase of the pending time around job number 70. Why
this is, needs further investigation.

Grid Jobs Average Min Max σ
DAS-3-UvA 28 00:40:01 00:39:26 00:41:19 00:00:21

Grid on Demand 28 00:34:21 00:35:34 00:35:34 00:00:20
DAS-3-UvA 98 00:41:09 00:39:23 00:47:47 00:02:34

Grid on Demand 98 00:40:03 00:39:27 00:41:19 00:00:21

Table 6: Job running time of Grid on Demand compared to DAS-3-UvA

In both the used grid and cloud every resource has the same characteristic.
One of the issues when using shared resources can be that others uses of the
shared resource can influence the performance of the resource. The values in
table 6 show the average running time of of the jobs per workload and the
standard deviation σ of the jobs in that workload. Looking and the minimum
and maximum values, it shows that Grid on Demand performance (in this case)
has decreased when the 100 job workload is run. In the 100 jobs workload
run the values of DAS-3-UvA have a big standard deviation σ in DAS-3-UvA
but not in Grid on Demand, this would suggest (in this case) that the cloud
offered a more consistent resource. For Grid on Demand further investigation
is needed to test these variations. In a more general study of these variations in
the Amazon EC2 environment has been conducted by S. Ostermann et al. [22].
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4.8 Performance tests cost

Using a cloud provider for the resources of the performance test has the advan-
tage that the cost of this these performance tests can be calculated (section 2.5).
The price (July 2010) for the use of one hour for the head-node, running on the
m1.large in the EU-West-1 region is $0.38. The compute nodes running on
the c1.xlarge instances $0.76 per hour. For both the 30 job and 100 job
test the head node was running 2 hours. For the 30 job test 4 compute nodes
(8 CPU) ran for 1 hour, for the 100 job, 13 compute nodes (8 CPU) ran 1
hour. The total cost for the all instances used during the performance tests:
4 ∗ $0.38 + 17 ∗ $0.76 = $14.44(excl VAT)
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5 Conclusion

This research project is done as part of our Master course in System- and
Network-Engineering at the University of Amsterdam. Prior to the completion
of this report we gave a presentation of our work. When presenting figure 12
on a slide leading up to our description of the implementation, we received an
objection that it does not illustrate a Grid. And in fact, it is does not.

Grid computing is an impressive endeavor in collaboration with the aim of
increasing available compute and storage capacity to all participants by resource
sharing. Figure 12 shows just a cluster. In this research we have explored the
potential of using such a Cloud based cluster as a Grid resource and as such
make it part of the Grid. We have explored augmenting the Grid with a Grid
resource on Cloud fabric; “a Cloud in the Grid”, and not “a Grid in the Cloud”.

In the following sections the research question defined in the introduction
will be answered:

5.1 Can Grid computing be offered as a Cloud service?

Cloud resources can be leveraged to augment the Grid, but under certain con-
ditions.

The conditions are twofold and in analogy with the classic Grid papers [11, 9]
we categorize them as anatomical and physiological.

5.1.1 Anatomical

By equipping a virtual cluster with the Globus Toolkit (GT) we were able to
use it with an existing Grid application. But the Grid application was under
our direct tight control. When the Cloud resource would be used indirectly,
for example using a third party metascheduler that would allocate resources
in the Cloud as a last resort, authentication problems would emerge because
of the unestablished Certificate Authority endorsing the identity of the Cloud
resource.

Grid Security Infrastructure (GSI) has the crucial role of enabling Grid col-
laborations and the compliance with the agreements in them. GSI is designed
to enable the allocation of resources. Dynamically instantiated resources were
not anticipated during its design, but we believe GSI is flexible enough to ad-
dress the matter. Based on an usage example of [25] we have illustrated in 3.2.3
that by reorganizing and anticipating the allocation of resources, the current
architecture of our implementation would be sufficient to be able to collaborate
in bigger Grid collaborations.

As a simpler and more realistically achievable alternative we suggest trust-
ing a resource when it is endorsed (signed) by the same “User End Entity
Certificate”, as the Proxy Certificate used in allocating the resource. A user,
represented by delegation (or directly), can trust itself. However, this implies
that the dynamically instantiated resource would need to communicate with the
Grid user to receive its delegation. The independent nature of our solutions is
not optimal for such application. The integration of the Nimbus Cloud Client
with GT, would make it a more suitable candidate.
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5.1.2 Physiological

Cloud computing has many attractive properties that Grids do not have [1]. It
has the illusion of infinite availability of compute capacity on demand, where
Grid collaborations give access to static perceptible fixed sized resources. It does
not involve upfront commitments, where Grid collaborations are perpetuated in
agreements. Resources are paid only when used, where for Grid participation
one has to contribute a resource.

By augmenting Grid with a Cloud resource, the Grid inherits those bene-
fits. Leveraging a Cloud based Grid resource, existing Grid applications will
enjoy the benefits of Cloud computing without loosing the architectural and
organizational (anatomic and physiologic) advantages of the Grid.

This is ideal for Urgent Computing, where the demand for capacity may
peak on occasions, because it effectively eliminates the need to provision ahead
to anticipate those incidents. Also experimental use cases, for which using the
bigger Grid is not appropriate or unattainable, can benefit greatly from Grid
on Demand. It is available directly, without needing permissions or having to
behave.

Still, a subscription with a Cloud service involves an agreement with a Cloud
provider that puts limitations on its usage. An Amazon Elastic Compute Cloud
agreement has a default limitation of twenty running instances per region (of
which there are currently four). Of course, this is merely an administrative
matter because more then one subscription could be leveraged to add computing
power.

Before we started our research the default limitation of twenty running in-
stances per region was extended to seventy running instances per region. As
an ultimate proof of concept we wanted to run a thousand instances. Accord-
ing to [23] one Elastic Compute Unit (ECU) equals 4.4 billion Floating Point
Operations Per second (GFLOPs). The “High-CPU Extra Large Instance”
(c1.xlarge) type has 20 ECUs. When launching a thousand c1.xlarge in-
stance types we will employ a resource with the theoretical capacity of 35.2
TFLOPS, costing $760.00 per hour. As of June 2010 this would have put the
resource at position 219 in the top 500 supercomputing list27; a formidable
result. However one has to take into account that the physical hardware under-
lying the instances may bear more then one instance.

During our research we were unable to negotiate, an extension to instantiate
a thousand running instances in the European region. Especially running the
c1.xlarge was an issue, one costumer using eight thousand CPU’s would put
a big strain on the European region where “currently there is a lot of demand
for c1.xlarge instances” as a business development manager for Amazon EC2
stated.

27 The top-500 Supercomputers: http://www.top500.org/list/2010/06/300

http://www.top500.org/list/2010/06/300
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A Appendix: Grid on Demand User guide

This appendix demonstrates the usage of Grid on Demand by way of screenshots.

A.1 Launching Grid on Demand

Before launching Grid on Demand, it is important to have the correct firewall
configuration for the instance. Figure 15 shows the configuration of the Security
Group that should be chosen on launch. Port 2119 for GRAM’s gatekeeper
service, 2881 for GridFTP, 8443 for GT web services and port 22 to be able to
access the instance and Grid on Demand’s web based user interface.

After clicking the “Launch Instance” button from the Amazon Management
Console, we choose the latest version of Grid on Demand from the community
AMIs repository (figure 16 and 17).

The status of the just created instance can be monitored in the “My In-
stances” section of the console. When connecting to the running instance in
the default Amazon way (figure 18, 19 and 20), we are told to either connect
as “ubutu” for maintenance (for example to equip the volume with application
specific components or to enable Grid services on the Collective layer (see 3.2)),
or as “griduser”. The instructions shown also settle the local port forwarding
so that the web interface of Grid on Demand becomes accessible from the local
computer.

In figure 21 we login as “griduser” and the web interface of Grid on Demand
is available via http://localhost:8080/ as shown in figure 22.

Besides the functionality to further configure Grid on Demand, the web
interface allows for monitoring of the Elastic Cluster. It shows the number of
running and queued jobs, running and pending compute nodes and the total
money spent using the Grid on Demand cluster.

The Grid on Demand head node is also operating as a compute node. Jobs
are deployed among cores. Because we have launched an instance type with two
cores (m1.large) we are able to simultaneously run two jobs. The RRDtool
plots reflect the available slots for running jobs and will show the progress of
the status of the jobs over time. The plots from top till bottom show increasing
larger time spans. The top plot has a one minute span, below that a 10 minute
span, then four hours, twelve hours, 24 hours, one week and four weeks.

Because we have logged in as “griduser” we can immediately use Grid on
Demand. A PC is already initialized. We may now use GridFTP, the GT web
services, or submit a job via GRAM’s gatekeeper service as show in figure 23.

http://localhost:8080/


A Appendix: Grid on Demand User guide 40

Figure 15: Firewall Settings

Figure 16: About to launch Grid on Demand
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Figure 17: Selecting the AMI

Figure 18: Connecting with the “head node”
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Figure 19: Copy the suggested ssh command ...

Figure 20: ... and paste
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Figure 21: Logged in as griduser with local port forwarding

Figure 22: The web interface is now available
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Figure 23: Grid on Demand can immediately be used

A.2 Configuring the cluster

To enable the Elastic Cluster functionality, we now have to provide the Amazon
Access Credentials. A link to the location of those credentials is conveniently
given in the web interface (figure 24). After copying (figure 25) and submitting
(figure 26) the Amazon Access Credentials the cluster configuration pane shows
up (figure 27).

In the configuration pane we can specify how many compute nodes should
minimally and maximally be run. The instance type of compute nodes will be
the one selected as the “startup type”.

To prevent excessive costs when many tiny tasks are submitted, a “startup
window” setting can be given. New compute nodes will be launched to accom-
modate the minimum number of jobs that were pending during last number of
seconds in “startup window”.
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Figure 24: Click here to view your Amazon Access Credentials

Figure 25: Copy ...
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Figure 26: ... and paste

Figure 27: The Elastic Cluster is ready an can be configured



A Appendix: Grid on Demand User guide 47

A.3 Real Grid certificate usage

Grid on Demand can be used with real accredited CA signed Grid Proxy Certifi-
cates (PCs), enabling the potential to participate in bigger Grid collaborations.

In figure 28 we first initialize our own PC at our own workstation.
In figure 27 in the upper right corner of the interface is a button to enter the

“User Management” of the interface, shown in figure 29. To authorize a Grid
user to use Grid on Demand, the subject of his or her EEC (his or her identity)
has to be added to the list by copying the subject in the input field and clicking
on “add”. Figure 29 shows that we have just authorized ourself.

Because of the mutual authentication in Grid usage, we also have to be able
to establish the identity of our Grid on Demand. For this, we have to add the
newly created CA for this specific Grid on Demand instantiation to our list
of trusted CAs. Right next to the “hostname” of our head node, is a link to
download the CA certificate package.

Figure 30 shows how the CA certificate package is unpacked, so that the
identity of Grid on Demand can be established and is thus authenticated to be
used. As the preamble of the next subsection, we submit ten jobs each job lasting
five seconds longer and the time between submissions gradually increasing.

Figure 28: Initializing a real Grid proxy certificate. Copying the identity line
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Figure 29: Identity line added to the list of authorized users for this resource

Figure 30: Unpacking the CA package, and submitting “jobs”
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A.4 Elasticity of the cluster

In the RRDtool plots we can see the progress of the ten submitted jobs (fig-
ure 31). Because the jobs are so short, it would have been wasteful to just
launch new compute nodes to accommodate pending jobs.

The “startup window” setting delivers the retention needed. In figure 31 it
is set to 30 seconds. On 21:56.44 for the last 30 seconds, the lowest demand was
for an extra slot to be able to run one job. Only one extra instance is needed.
Because we have instantiated a 64-bit instance type, the smallest available in-
stance type has two cores. On 21:56.44 it is launched potentially providing two
extra slots for jobs, indicated by the yellow line to show it is pending and will
soon join the cluster.

In figure 32 the just launched compute node joins the cluster indicated by the
yellow (pending) slots becoming green (available/running). Apparently Torque
also needs some time to be able to schedule the queued jobs on the freshly
available slots, because on 21:57.52 the queued job is scheduled on a slot that
became available on the head node. On 21:57.59 we therefor started an extra
job, which is run on the new available compute node.

On Amazon, instances are payed per whole hour. Grid on Demand takes
this into account and terminates idle compute nodes just before it would reach
another whole hour of up time, and would cost another hourly fee. Figure 33
shows that on 22:54.04, the compute node is killed, 2 minutes and 40 seconds
before it would reach a whole hour.

Figure 31: Progress of the jobs and retention of launching compute nodes
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Figure 32: The freshly started compute node joins the cluster

Figure 33: The idle compute node terminates just before the new hourly fee

Grid on Demand determines the uptime of a compute node on the launch time
reported by Amazon. It kills idle compute nodes 3 minutes before reaching a
whole hour of uptime. Because the compute node was killed 2 minutes and
40 seconds, and not 3 minutes before reaching a whole hour of uptime, we can
deduce that the by Amazon reported launch time is 20 seconds later then the
time we actually started the compute node.
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A.5 Saving your settings

Our instance of Grid on Demand has a newly created CA. We have been through
the hassle of configuring our own Grid infrastructure to acknowledge this CA,
and now we would like to save the Grid on Demand with its CA and the Amazon
Access Credentials, so that we can instantiate more Grids like them. To do this
we have to click “Shutdown for reuse” (figure 34).

Grid on Demand then shows the money spent and the instance identity
(figure 35), which may now be used to create an AMI from, for personal use.

That new AMI can then be used to launch multiple Grid on Demands from,
which are already equipped with the settings for your personal environment.
Further developments can be made based on the AMI. The AMI could be
equipped with software targeted at specific Grid applications, or specific ser-
vices on the Collective layer could be enabled and configured.

When such a further developed AMI might be interesting for other parties,
and one wishes to make it public, “Shutdown for sharing” shuts the instance
down shredding29 the CA, Amazon’s Access Credentials and all other sensitive
information. An AMI should then be created from the for sharing shutdown
stopped instance, which may “safely” be made public.

Figure 34: Shutdown for reuse

29 The content of the files containing the credentials are overwritten with random data before
being removed.
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Figure 35: Thank you for using Grid on Demand

Figure 36: Creating a new AMI based on the instance’s volume
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Glossary

Amazon Machine Image (AMI) A special type of virtual appliance which is used to
instantiate (create) a virtual machine within the Amazon Elastic Compute Cloud
(EC2)∗. 10, 11, 24–26, 28, 31, 39, 51

Application Programming Interface (API) An interface implemented by a software
component which enables it to interact with other software components.. 7, 12,
21, 23, 24, 31

Advanced School for Computing and Imaging (ASCI) Designed the DAS-3 distributed
cluster.. 30

Certificate Authority (CA) An entity that issues digital certificates for use by other
parties. It is an example of a trusted third party. CA’s are characteristic of
many Public Key Infrastructure (PKI) schemes∗. 10, 11, 15–19, 21, 25–28, 36,
47, 51

Condor A specialized workload management system for compute-intensive jobs (Job
Scheduler). The metaphor is vindicated in the 1993 Research Sampler Hunting
for Wasted Computing Power:

Like a vulture circling the desert, Condor scavenges for processing
power that would otherwise be lost.

. 20, 21

Distributed ASCI Supercomputer 3 (DAS-3) A five-cluster wide-area distributed sys-
tem designed by Advanced School for Computing and Imaging (ASCI).. 30, 32

The UvA part of the Distributed ASCI Supercomputer 3 (DAS-3-UvA) The Univer-
sity of Amsterdam (UvA) 32 node cluster that is part of Distributed ASCI
Supercomputer 3 (DAS-3).. 30–34

Dynamic Host Configuration Protocol (DHCP) A computer networking protocol used
by hosts (DHCP clients) to retrieve IP address assignments and other configu-
ration information∗. 26

Amazon Elastic Block Storage (EBS) Provides block level storage volumes for use
with Amazon Elastic Compute Cloud (EC2) instances. Amazon EBS volumes
are off-instance storage that persists independently from the life of an instance..
10, 11, 24–26

Amazon Elastic Compute Cloud (EC2) Amazon’s IaaS that provides resizable com-
pute capacity in the cloud.. 2, 10, 21–24, 26, 37

End Entity Certificate (EEC) An X.509 Public Key Certificate issued to an end entity,
such as a user or a service, by a Certificate Authority (CA).. 15–19, 22, 25–28,
36, 47

Amazon EC2 Elastic IP Addresses (EIP) Static IP addresses designed for dynamic
cloud computing. An Elastic IP address is associated with your account, not a
particular instance, and you control that address until you choose to explicitly
release it.. 17, 23

Eucalyptus An open-source software infrastructure for the implementation of cloud
computing on computer clusters which provides an interface that is compatible
with the Amazon EC2 service∗. Eucalyptus is an acronym for ”Elastic Utility
Computing Architecture for Linking Your Programs To Useful Systems”.. 24

∗ These descriptions are copied from Wikipedia in the second week of July 2010

http://www.cs.wisc.edu/condor/doc/WiscIdea.html
http://www.cs.wisc.edu/condor/doc/WiscIdea.html
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Global Grid Forum (GGF) Organization established in 1998 to bring together devel-
opers, practitioners, and users of Grid technologies. In 2006, GGF became Open
Grid Forum (OGF) after a merge with an industry group named Enterprise Grid
Alliance (EGA).. 55

Globus Alliance An international association dedicated to developing fundamental
technologies needed to build grid computing infrastructures.. 11, 15, 21, 22

Grid Resource Allocation Manager (GRAM) A software component of the Globus Toolkit
that can locate, submit, monitor, and cancel jobs on Grid computing resources∗.
12, 21, 26, 39

Grid File Transfer Protocol (GridFTP) An extension of the standard File Transfer
Protocol (FTP) for use with Grid computing∗. 12, 39

Grid Security Infrastructure (GSI) A specification for secret, tamper-proof, delegat-
able communication between software in a grid computing environment [14, 4].
GSI employs a number of different open standards to this end, such as: Trans-
port Layer Security (TLS) [6], GSS-API [20], Public Key Infrastructure (PKI)
and X.509 Certificates [15], but most notably X.509 Proxy Certificate (PC)s
[25] which were originally developed to address the need for delegation in GSI.
Originally developed for the Globus Toolkit (GT), GSI is now an Open Grid
Forum (OGF) standard [27].. 12, 13, 18, 19, 36

Globus Toolkit (GT) The Globus Toolkit is an open source software toolkit used for
building grids∗. It is being developed by the Globus Alliance and many others
all over the world. A growing number of projects and companies are using the
Globus Toolkit to unlock the potential of grids for their cause.. 2, 10–13, 17,
20, 21, 25, 26, 30, 31, 36, 39

Hardware as a Service (HaaS) Cloud infrastructure services that delivers a physical
managed computer infrastructure. Traditionally offered as an outsourcing ser-
vice.. 5, 6

HyperText Transfer Protocol (HTTP) An Application Layer protocol for distributed,
collaborative, hypermedia information systems∗. 24

Infrastructure as a Service (IaaS) Cloud infrastructure services that delivers computer
infrastructure, typically a platform virtualization environment as a service.. 5–8,
13, 17, 20–23

Internet Engineering Task Force (IETF) The IETF develops and promotes Internet
standards, cooperating closely with the W3C and ISO/IEC standards bodies
and dealing in particular with standards of the TCP/IP and Internet protocol
suite∗. 17

International Grid Trust Federation (IGTF) A body to establish common policies and
guidelines between its Policy Management Authorities (PMA)’s members and
to ensure compliance to this Federation Document amongst the participating
PMAs.. 15, 27

Incubator Management Project (IMP) A Globus Alliance project that is responsible
for helping new efforts to join the Globus Alliance.. 21

Job Scheduler A software application that is in charge of unattended background
executions, commonly known for historical reasons as batch processing∗. 20

Load Sharing Facility (LSF) A commercial computer software Job Scheduler sold by
Platform Computing∗. 20

∗ These descriptions are copied from Wikipedia in the second week of July 2010
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Monitoring and Discovery System (MDS) A suite of web services to monitor and dis-
cover resources and services on Grids. This system allows users to discover what
resources are considered part of a Virtual Organization (VO) and to monitor
those resources. MDS services provide query and subscription interfaces to ar-
bitrarily detailed resource data and a trigger interface that can be configured to
take action when pre-configured trouble conditions are met.. 12

Machine Oriented Mini-server (MOM) A Portable Batch System (PBS) service pro-
vided by the pbs mom command whose responsibility is to place jobs into execu-
tion as directed by the server, establish resource usage limits, monitor the job’s
usage, and notify the server when the job completes.. 20

Message Passing Interface (MPI) A specification for an API that allows many com-
puters to communicate with one another∗. 20

Nimbus An open source toolkit that allows you to turn your cluster into an Infrastructure-
as-a-Service (IaaS) Cloud. Nimbus is developed by the Globus Alliance incuba-
tor project Virtual Workspaces. Nimbus is Latin for Cloud.. 21, 22, 24, 36

Organization for the Advancement of Structured Information Standards (OASIS) A
not-for-profit consortium that drives the development, convergence and adoption
of open standards for the global information society.. 56

Oracle Grid Engine (OGE) Previously known as Sun Grid Engine (SGE), previously
known as CODINE (COmputing in DIstributed Networked Environments) or
GRD (Global Resource Director), is an open source batch-queuing system, de-
veloped and supported by Sun Microsystems∗. 20

Open Grid Forum (OGF) The community of users, developers, and vendors leading
the global standardization effort for grid computing.. 11

Open Grid Services Architecture (OGSA) Describes an architecture for a service-oriented
grid computing environment for business and scientific use, developed within the
Global Grid Forum (GGF) [3]. OGSA was first suggested in [12].. 11

Open Science Grid Consortium (OSGC) An organization that administers a world-
wide grid of technological resources called the Open Science Grid, which facili-
tates distributed computing for scientific research∗. 21

Platform as a Service (PaaS) Cloud software services that delivers middleware, typ-
ically used by application developers.. 5, 6

Portable Batch System (PBS) The name of computer software that performs job
scheduling∗. 20, 21, 56

Proxy Certificate (PC) A certificate that is derived from, and signed by, a normal
X.509 Public Key End Entity Certificate or by another Proxy Certificate for
the purpose of providing restricted proxying and delegation within a Public Key
Infrastructure (PKI) based authentication system [25].. 15–19, 27, 36, 39, 47

Public Key Infrastructure (PKI) A set of hardware, software, people, policies, and
procedures needed to create, manage, distribute, use, store, and revoke digital
certificates∗. 15, 53

Policy Management Authorities (PMA) Coordinates authentication for people and
services. Manages authentication guidelines policies. Trust domain for research
and academic grids.. 54

Amazon Simple Storage Service (S3) An online storage web service offered by Ama-
zon Web Services∗. 24

∗ These descriptions are copied from Wikipedia in the second week of July 2010
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Software as a Service (SaaS) Cloud software services that deliver applications, typ-
ically accessed by a browser or Application Programming Interface (API).. 5,
6

Secure Copy (scp) Unix tool to copy files between hosts on a network. It uses Secure
SHell (ssh) for data transfer.. 21

Software Development Kit (SDK) A set of development tools that allows for the cre-
ation of applications for a certain software package, software framework, hard-
ware platform, computer system, video game console, operating system, or sim-
ilar platform∗. 12

System- and Network-Engineering (SNE) University of Amsterdam (UvA) master ed-
ucation in System and Network Engineering.. 2, 31, 36, 38

Simple Object Access Protocol (SOAP) A protocol specification for exchanging struc-
tured information in the implementation of Web Services in computer networks∗.
23

Secure SHell (ssh) A program for logging into a remote machine and for executing
commands on a remote machine. It provides secure encrypted communications
between two untrusted hosts over an insecure network.. 27, 56

Transport Layer Security (TLS) Cryptographic protocols that provide security for com-
munications over networks∗. TLS is an Internet Engineering Task Force (IETF)
standards track protocol, last updated in RFC 5246 [6], that was based on the
earlier Secure Socket Layer (SSL) specifications developed by Netscape Corpo-
ration.. 15–17

Torque Resource Manager (Torque) An open source distributed resource manager
providing control over batch jobs and distributed compute nodes. Its name
stands for Terascale Open-Source Resource and QUEue Manager. It is a com-
munity effort based on the original Portable Batch System (PBS)∗. 10, 20, 21,
25, 26, 28, 29, 31, 49

University of Amsterdam (UvA) A Dutch University located in Amsterdam.. 2, 30,
36, 38

Virtual Workspaces The Globus Alliance incubator project that develops Nimbus..
21, 55

Virtual Machine (VM) A software implementation of a machine (i.e. a computer)
that executes programs like a physical machine∗. 10, 13, 21–25, 28

Virtual Organization (VO) A dynamic set of individual and/or institutions defined
around a set of resource-sharing rules and conditions. All these virtual organi-
zations share some commonality among them, including common concerns and
requirements, but may vary in size, scope, duration, sociology, and structure∗.
3–5, 12, 13

Web Services Description Language (WSDL) An Extensible Markup Language (XML)-
based language that provides a model for describing Web services∗. 21, 24

Web Services Resource Framework (WSRF) A generic framework for modeling and
accessing persistent resources using Web services so that the definition and im-
plementation of a service and the integration and management of multiple ser-
vices is made easier [2]. WSRF is developed by Organization for the Advance-
ment of Structured Information Standards (OASIS).. 21

Extensible Markup Language (XML) A set of rules for encoding documents in machine-
readable form∗. 23, 56

∗ These descriptions are copied from Wikipedia in the second week of July 2010
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Acronyms

AMI Amazon Machine Image. 53
API Application Programming Interface. 53
ASCI Advanced School for Computing and Imaging.

53

CA Certificate Authority. 53

DAS-3 Distributed ASCI Supercomputer 3. 53
DAS-3-UvA The UvA part of the Distributed ASCI

Supercomputer 3. 53
DHCP Dynamic Host Configuration Protocol. 53

EBS Amazon Elastic Block Storage. 53
EC2 Amazon Elastic Compute Cloud. 53
EEC End Entity Certificate. 53
EIP Amazon EC2 Elastic IP Addresses. 53

GGF Global Grid Forum. 54
GRAM Grid Resource Allocation Manager. 54
GridFTP Grid File Transfer Protocol. 54
GSI Grid Security Infrastructure. 54
GT Globus Toolkit. 54

HaaS Hardware as a Service. 54
HTTP HyperText Transfer Protocol. 54

IaaS Infrastructure as a Service. 54
IETF Internet Engineering Task Force. 54
IGTF International Grid Trust Federation. 54
IMP Incubator Management Project. 54

LSF Load Sharing Facility. 54

MDS Monitoring and Discovery System. 55
MOM Machine Oriented Mini-server. 55

MPI Message Passing Interface. 55

OASIS Organization for the Advancement of Struc-
tured Information Standards. 55

OGE Oracle Grid Engine. 55
OGF Open Grid Forum. 55
OGSA Open Grid Services Architecture. 55
OSGC Open Science Grid Consortium. 55

PaaS Platform as a Service. 55
PBS Portable Batch System. 55
PC Proxy Certificate. 55
PKI Public Key Infrastructure. 55
PMA Policy Management Authorities. 55

S3 Amazon Simple Storage Service. 55
SaaS Software as a Service. 56
scp Secure Copy. 56
SDK Software Development Kit. 56
SNE System- and Network-Engineering. 56
SOAP Simple Object Access Protocol. 56
ssh Secure SHell. 56

TLS Transport Layer Security. 56
Torque Torque Resource Manager. 56

UvA University of Amsterdam. 56

VM Virtual Machine. 56
VO Virtual Organization. 56

WSDL Web Services Description Language. 56
WSRF Web Services Resource Framework. 56

XML Extensible Markup Language. 56
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