
University of Amsterdam
System & Network Engineering

RP2 Project

HTTP Session Identification

Authors:
Kevin de Kok
kevin.dekok@os3.nl

Marcus Bakker
marcus.bakker@os3.nl

Coordinators:
Bart Roos

roos@fox-it.com

Sander Peters
peters@fox-it.com

Abstract

Previous research from two former students state the importance of
identifying HTTP sessions[1]. The identification of HTTP sessions is not
trivial, because HTTP is a sessionless protocol. In the header of the
HTTP protocol[2] is no field defined that can identify a session.

During this research project the behaviour of the HTTP protocol was
analysed and the results were used to define methods to identify HTTP
sessions. The methods are placed into two categories. One category de-
fines the starting point of a HTTP session. The other category can cor-
relate HTTP messages that belong to a specific HTTP session.

The defined methods are based on web 1.0. Some methods are more
successful then others.

July 5, 2010

CONTENTS 1

Contents

1 Introduction 2

2 Project approach 3

3 Identifying HTTP sessions 6
3.1 Definition of a HTTP session . 6
3.2 HTTP traffic characteristics . 6

3.2.1 Referrer . 7
3.2.2 Time between successive fetches 7
3.2.3 Location header . 8

3.3 Distinguish HTTP sessions . 9
3.3.1 Client separation . 9
3.3.2 Start of a HTTP session 10
3.3.3 HTTP message correlation 12
3.3.4 Not suitable . 17

3.4 Limitations . 19
3.4.1 Javascript . 19
3.4.2 Web 1.0 . 19

4 Method verification 20
4.1 Start of a HTTP session . 20

4.1.1 Time between successive fetches 21
4.1.2 No referrer . 22
4.1.3 Hyperlink present at GET header 24
4.1.4 Conclusion . 25

4.2 HTTP message correlation . 26
4.2.1 Link the referrers . 26
4.2.2 HTML body HTTP GET correlation 27
4.2.3 Use the Location header to link HTTP messages 28

5 Recommendations 29
5.1 Host based identification . 29
5.2 Web 2.0 . 29

6 Conclusion 30
6.1 Research question . 30
6.2 Future work . 30

A Proof Of Concept 32
A.1 HTTParser . 32
A.2 Client separation . 40
A.3 Time between successive fetches 41
A.4 No referrer . 43
A.5 View HTML messages . 44
A.6 Truncated HTML code . 46

Kevin de Kok
Marcus Bakker

July 5, 2010

1 INTRODUCTION 2

1 Introduction

Two former OS3 students T. Kinkhorst and M. van Kleij did a research about
detection of drive-by downloads[1]. This has developed the need to identify
HTTP sessions.

A HTTP session can be defined as all HTTP traffic that is generated from
visiting one single web-page. The content of the main web-page, but also all
content retrieved from other sources (e.g. images and advertisements) can be a
part of a HTTP session.

The possibility to identify HTTP sessions can be used to analyse HTTP
traffic. Since HTTP is a stateless protocol it is hard to distinguish sessions
from each other. The HTTP protocol does not have a field in the header that
identifies a HTTP session.

A web browser however does have this possibility to distinguish HTTP ses-
sions from each other. The browser maintains TCP sockets on which it sends
en receives HTTP messages. It also knows which TCP socket belongs to which
browser tab. Every browser tab contains one single HTTP session. By knowing
which TCP sockets belongs to a specific browser tab, a browser is perfect ca-
pable of knowing which HTTP messages belong to which HTTP session. The
knowledge on which TCP socket belongs to which browser tab is not known for
this research.

This research project will look into methods to identify HTTP sessions by
analysing HTTP messages from a distant view, not by using any form of host
based analysis. By analysing the HTTP protocol and their behaviour there are
possibilities to identify a HTTP session.

Research questions

The project has the following main research question:

• How can HTTP sessions be distinguished from each other?

The main research question can be divided in the following sub-questions:

• What is the definition of a HTTP session?

• Which characteristics of HTTP traffic can be used to develop a method
to identify HTTP sessions?

Scope

• HTTP session identification will be based on the HTTP protocol (RFC:
2616 [2]);

• The methods to identify HTTP sessions will be developed for web 1.0;

• HTTP session identification will be executed from a central point in the
network (no host-based detection);

• The research project will mainly focus on the development of HTTP ses-
sion identification methods and not on a possible PoC.

Kevin de Kok
Marcus Bakker

July 5, 2010

2 PROJECT APPROACH 3

2 Project approach

This research project was done in multiple stages. Every stage needed to be
completed to continue with the next stage. The following stages were defined:

Stage 1: Theoretical research

In the first week of the research project a literature review was executed to
gather information about the subject. The literature review consisted of: read-
ing previous research and reading RFC2616 (Hypertext Transfer Protocol –
HTTP/1.1)[2].

Stage 2: Defining identification methods

Based on the theoretical research of the previous stage, methods to identify
HTTP sessions were defined (chapter 3). These methods were verified at stage
5 (chapter 4). The defined identification methods were not adjusted during the
verification of the methods (stage 5). By this one can prove their theory in
practice according to the predefined identification methods.

Stage 3: Creating the test setup

To get familiar with the HTTP protocol and the behaviour a lab set-up was cre-
ated (figure 1). The set-up consisted of two servers and multiple clients. Server
A (Psyduck) was the gateway for the clients and had a web server[3] running.
Server B (Bulbasaur) was only running a web server. All the HTTP network
traffic from the clients to the web servers was captured on server A’s eth1 net-
work interface. The actual capturing of the network traffic was performed at
stage 4.

Kevin de Kok
Marcus Bakker

July 5, 2010

2 PROJECT APPROACH 4

Figure 1: Network diagram of the test setup

Two different websites were used for the test set-up, namely:

• Website lab environment (labsite)

– Main web page

� image;

� text;

� iframe;

� hyperlink 1 to local web page 1 ;

� hyperlink 2 to local web page 2 ;

� hyperlink 3 to remote website 2.

– local web page 1 (hyperlink 1)

� remote image;

� text.

– local web page 2 (hyperlink 2)

� Redirection to remote website 1.

– Remote web page 1

� image;

� text.

– Remote web page 2

� image;

� text.

• Dutch website security.nl

Kevin de Kok
Marcus Bakker

July 5, 2010

2 PROJECT APPROACH 5

The lab website (labsite) was created such that it contains all elements
needed to verify the identification methods. The website security.nl was added
to the dataset to see until what extend the developed methods also worked on
a more complex website.

Stage 4: Creating the dataset

The two websites from stage 3 were used to create a dataset. The dataset
contains the traffic that is generated from visiting both websites. The dataset
was created by using predefined steps:

1. Start capture;

2. Open bookmark labsite;

3. Open bookmark security.nl;

4. Open hyperlink 1 from labsite;

5. Open hyperlink 2 from labsite;

6. Open hyperlink 3 from labsite;

7. Open news item security.nl;

8. Open news item security.nl;

9. Open news item security.nl;

10. End capture.

Stage 5: Method verification

The defined identification methods of stage 2 were verified by making use of the
created dataset from stage 4. The dataset was analysed by means of Wireshark
and some analysis made use of the PoC (appendix A). The theoretical methods
were applied on this dataset to verify if the methods worked as expected.

Stage 6: Document findings

At this stage the results of the research project were documented. Documenta-
tion was done during the entire period of the research project.

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 6

3 Identifying HTTP sessions

In this chapter the characteristics that can identify a HTTP session within
HTTP traffic are defined. The definition of a HTTP session is presented in
section 3.1.

At section 3.2 the characteristics of HTTP traffic that can be used to identify
HTTP session are presented. At section 3.3 the methods to distinguish HTTP
sessions are defined. In the last section (section 3.4) the limitations of the
identification methods are being discussed.

Important in every section of this chapter are the terms: HTTP request
message(s), HTTP response message(s) and HTTP session. These can be de-
fined using set theory as shown below. These abbreviations will be used in the
pseudocode (section 3.3) and if necessary also in other parts of this chapter.

A = Rq ∪Rs A = All HTTP messages
S ⊂ A S = HTTP session
Rq ∈ A Rq = all HTTP request messages
Rs ∈ A Rs = all HTTP response messages
Rqn ∈ Rq Rqn = one sinlge HTTP request message
Rsn ∈ Rs Rsn = one sinlge HTTP response message

3.1 Definition of a HTTP session

A HTTP session can be defined as all HTTP request and response messages
that are involved in getting the content of one single web page. The content
exists of the main web page and can contain embedded objects from other web
sources (e.g. images and video). A session starts when an user types in an
URL into the browser and hits ”enter”. At his point TCP connection(s) will
be established between the client (web browser) and server(s) (web server(s)).
The content will be retrieved by means of HTTP request messages from client
to server. The server will respond with HTTP response messages containing
the content. A session is said to be finished, when all content is received by the
client.

The user will now take his time to read the web page. After reading the web
page the user may click on a hyperlink. The action of clicking on this hyperlink,
will establish a new HTTP session. A HTTP session can be started by typing
the URL into the browser, by clicking on a hyperlink and another possibility is
the usage of a bookmark. All these actions will open a new web page.

3.2 HTTP traffic characteristics

In this section the characteristics of HTTP traffic that can be used to identify
a HTTP session are presented. In the next section (section 3.3) these charac-
teristics are used to define the methods to identify a HTTP session.

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 7

3.2.1 Referrer

The referrer[4] of a HTTP request message contains the URI from where the
request originated. This can be used to follow a request to a website outside
of the visited website. Embedded objects are a good an example of that. This
section shows an overview of different usages of the referrer.

Embedded objects

An embedded object can be included into a website, embedded object are: Flash
applets, Java applets, advertisement banners, images, stylesheets and other web
related objects. If for example a Flash applet is included on a website. The
HTTP request to fetch that Flash applet will contain a referrer that is pointing
to the location of the website that included the Flash applet. This also holds
for other embedded objects.

Iframe

An iframe[5] is a inline frame that contains another document. In the case of
an iframe the referrer works as follows:
A client does a HTTP request to a web page on server A, and that web page
contains an iframe which is located on server B. The client does a new HTTP
request to fetch the iframe on server B. The referrer in that HTTP request
contains the source URI from where the HTTP request originated (the web page
that includes the iframe). Below an overview is shown of the HTTP messages
that are send and received during this process:

1. REQUEST to server A;
http request(’http://serverA/rp2/’)

2. RESPONSE from server A;
http response(’<body> HTML code

iframe src = "http://serverB/iframe/index.html"

</body>’)

3. REQUEST to server B;
http request(’http://serverB/iframe/index.html’)
http request.referrer(’http://serverA/rp2/’)

4. RESPONSE from server B;
http response(’<body> HTML code </body>’)

3.2.2 Time between successive fetches

Besides plain HTML code, a web page can also contain embedded objects.
These objects can be anything from plain HTML code (iframe) to a built-in
Flash video player.

Embedded objects can be fetched in parallel by means of multiple TCP
connections to different web servers that serve embedded objects. Clients (an

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 8

user agent like Mozilla Firefox) can further choose to pipeline the requests for
the embedded objects over one single TCP connection. The server must send
the responses in the same order it received the requests from the client[2]. These
two techniques will speed up the process to fetch a whole web page, including
the embedded objects.

It will take however a certain amount of time before an embedded object is
successfully fetched. Y. Bhole and A.Popescu[6] describe in their paper[6] that
there is a time gap between successive fetches of embedded objects. They define
this as the inter-arrival time or Active Off time (AOT). The Active Off Time
lies between 10 and 600 ms.

3.2.3 Location header

The location header is used in HTTP response messages when the requested
content is moved permanently (301) or when the requested content is moved
temporarily (302). The client is forced to load the different web page present
at the location header.

Below a part from the RFC2616[2] (Hypertext Transfer Protocol – HTTP/1.1)
about the Location header:

The Location response-header field is used to redirect the recipient

to a location other than the Request-URI for completion of the

request or identification of a new resource. For 201 (Created)

responses, the Location is that of the new resource which was created

by the request. For 3xx responses, the location SHOULD indicate the

server’s preferred URI for automatic redirection to the resource. The

field value consists of a single absolute URI.

Location = "Location" ":" absoluteURI

A moved permanently (301) works according to the following predefined
steps:

1. REQUEST to server B;
http request(’http://serverB/remote’)

2. RESPONSE from server B;
http response(’<title>301 Moved Permanently</title> <body> HTML code

<p>The document has moved here.</p>

</body>’)

3. REQUEST to server B;
http request(’http://serverB/remote/’)

4. RESPONSE from server B;
http response(’<body> HTML code </body>’)

The minor difference is in the missing ’/’ at the end of the request from
step 1.

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 9

3.3 Distinguish HTTP sessions

In this section all methods that are used to identify a HTTP session are being
presented. The methods are placed into three categories:

• 3.3.2 - Start of a HTTP session

• 3.3.3 - HTTP message correlation

• 3.3.4 - Not suitable

The methods in the first two categories will contain pseudocode to further define
the methods. The pseudocode will include set theory as described at beginning
of section 3.

Before the methods of the different categories are being presented. One
method is first discussed. This method does not fit into any of the predefined
categories. This method is being used to separate clients and is described in
section 3.3.1.

3.3.1 Client separation

Identifying a HTTP session consists of separating the clients. This step is needed
to distinguish the different clients that are present on a network. Every client
will start their own HTTP sessions with a different source IP.

The method will first look at the source IP-address from where HTTP re-
quest messages originated. Different sets of HTTP request messages will be
created that are having the same source IP-address. The corresponding HTTP
response messages are added to the correct set by looking at the destination
IP-address of the HTTP response messages. The destination IP-address of such
a message has to match the source IP-address of the HTTP request message to
be added to that set.

Method 1 Client separation

{Create separate listX for every client containing all Rqn and Rsn of that
client}
for all Rqn in Rq do

if Rqn.srcIP not in listX then
new listX {create new list for client X}

end if
listX.append(Rqn) {Add Rqn to correct listX}

end for

{Add all Rsn to correct listX}
for all Rsn in Rs do

listX.append(Rsn) {Add Rsn to correct listX}
end for

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 10

3.3.2 Start of a HTTP session

This section will describe all methods that can be used to find the start of a
HTTP session. If the HTTP messages are taken into account, than the start of
a HTTP session can be defined as a pair consisting of the first HTTP request
message and corresponding HTTP resonse message of a HTTP session.

The functions storePair(HTTPMessage) and getPair(HTTPMessage) are
used in the pseudocode to get the corresponding HTTP request message or
HTTP response message of the given HTTPMessage. The function storePair(HTTPMessage)

stores the pair to define the start of a HTTP session S, and will later be used for
the HTTP message correlation (section 3.3.3). The function getPair(HTTPMessage)

will only return the pair.

3.3.2.1 Time between successive fetches

As described at section 3.1 a new HTTP session is established by an user action.
Typing in a URL, clicking on a hyperlink or opening a bookmark. If one can
detect these actions, the start of a new HTTP session can be identified.

After the web page is fetched from the server by the client, the user will
take time to read the content on the web page. As described by Y. Bhole and
A.Popescu[6] the average read time, or Passive Off time as they call it is 18
seconds. This implies, that there is a period of silence on the wire. The user is
reading the web page but no web content is fetched any more.

This period of silence on HTTP traffic can be used to identity the start of a
HTTP session. As discussed earlier at section 3.2.2 the time between successive
fetches mostly lies between 10 and 600 ms. Which is called the Active Off
time. When the period of silence is greater then a defined Active Off Time, the
assumption can be made that a new HTTP session is started.

Method 2 Time between successive fetches
AOT = 0.6 {The Active Off Time is set to 600ms}
for all Rsn in Rs do

if (Rsn.time−Rsn−1.time) > AOT then
print A new HTTP session was detected
S = storePair(Rsn)

end if
end for

3.3.2.2 No referrer

The referrer as discussed at section 3.2.1 can be used to find the starting point
of a HTTP session. When the user-agent (web browser) is fetching a website,
it will send along the referrer with every request when retrieving the embedded
objects. But, the first request to the website when an user types in an URL
in the address bar or when an user opens a bookmark does not contain any

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 11

referrer. Such user action defines the start of a new HTTP session, as discussed
at section 3.1.

The absence of a referrer can be related to an user action. The user action
can than further be related to the start of a new HTTP session.

Method 3 No referrer
for all Rqn in Rq do

if Rqn.referrer == Null then
print A new HTTP session was detected
S = storePair(Rqn)

end if
end for

3.3.2.3 Hyperlink present at GET header

The body of a website contains hyperlinks, those hyperlinks are used to navigate
to other parts of a website. When an user clicks on a hyperlink then a new HTTP
session is started (see section 3.1). A characteristic of these hyperlinks is that
they can only be opened by an user action. This characteristic can be used to
define the start of a new HTTP session.

Two conditions have to be met before the assumption can be made that a
new HTTP session is started. First, the URI in the GET header has to match
the hyperlink in the body of a HTTP response message. Match means in this
matter that their is a match between the hyperlink and the end of the GET
header. For example:

• Hyperlink: 1/index.html

• GET header: /rp2/new_website/1/index.html

This is a valid match because the hyperlink is present at the end of the GET
header. This match identifies the start of a new HTTP session.

The second condition is that only HTTP response messages (containing the
hyperlinks) that where received before a HTTP request message (containing
the GET header) can be used to find such a match. This constraint is needed
to make sure that it was the user that clicked on the hyperlink. The user can
only have clicked on this hyperlink (which will appear at a GET header) if the
HTML body was already received by a HTTP response message.

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 12

Method 4 Hyperlink present at GET header

for all Rsn in Rs do
for all Rqn in Rq where Rqn.ID > Rsn.ID do

if Rqn.GET in Rsn.hyperlinks then
print A new HTTP session was detected
S = storePair(Rqn)

end if
end for

end for

3.3.3 HTTP message correlation

This section will describe all methods that are being used to correlate HTTP
messages that belong to one HTTP session. The starting point of the first
two methods will be a HTTP session defined as S. S is defined by the function
storePair(HTTPMessage) by one of the methods in the previous section (section
3.3.2).

Until now, S only contains two HTTP messages (Rq1 and Rs1). The meth-
ods below will add other HTTP messages that belong to a specific HTTP session
S. The function storePair(HTTPMessage) is also used by these methods, but
is now called getPair(HTTPMessage). This function will not store the pair but
will only return a pair.

3.3.3.1 Link the referrers

As discussed at section 3.2.1, it is possible with the referrer to see where a HTTP
request message originated from. By making use of this property, it is possible
to link all HTTP messages that are involved in fetching a web page. Lets have
an example of this usage.

Picture 2 shows a simplified overview of fetching a web page. The HTTP
response messages are not included in the picture, only the HTTP request
messages are shown. In the first step the client will request the main web
page of www.example.com and will not send along any referrer. In the next
step the iframe that is emedded at www.example.com will be requested from
www.iframe.com. The referrer for this request will have the value www.example.com.
The iframe located at www.iframe.com contains a picture that is located at
www.img.com. The client will send a request to www.img.com to retrieve this
picture. The referrer of this request will contain the value www.img.com, that
is the website which hosts the image.

By making use of the referrer it is possible to see where a HTTP request
message originated from and thereby linking HTTP request messages to each
other. These linked HTTP messages are belonging to the same HTTP session.
In the case of the situation above, all HTTP messages can be linked, and are
belonging to the same HTTP session.

The method can be explained in a more explicit way, by making use of

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 13

Figure 2: Diagram that shows the referrers of fetching a web page.

pseudocode (method 5).
The linking of HTTP message will be done by comparing the value of a

referrer with an URI. The URI is composed of the combined value Host header
+ GET header of a HTTP request message that contains a HTML body. The
first HTTP message of S is just such a message. The value for the referrer can
come from any HTTP request message, but only if it also meets the following
two conditions:

• A HTTP request message can not belong to more than one HTTP session.
A HTTP request message already belonging to a session S, can thus not
be placed in any other session S (Rqn not in any S).

• A HTTP request message can only be matched if that message was re-
ceived after the HTTP request message from which the URI was derived
(Rqn.ID > ID).

A match is valid if the above to conditions are met, and there is a match
between the referrer of that HTTP request message and the earlier defined
URI. The function call getPair(Rqn) will than be used to find the corresponding
HTTP response message of that HTTP request message. This pair will than be
added to the correct HTTP session S.

This process will continue for every defined HTTP session S. The method
can recursively link to the whole chain of HTTP messages that are linked by
referrers. This is for example the case with the iframe from figure 2. This
iframe is embedded at www.example.com but also contains an image which uses
a different referrer. The pseudocode for this method can be found on the next
page.

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 14

Method 5 Link the referrers
for all S in A do

link(S, S.Rqn)
end for

function link(S, Rqn)
URI = Rqn.Host + Rqn.GET
ID = Rqn.ID
for all Rqn in Rq do

if (Rqn.referrer == URI) and (Rqn.ID > ID) and (Rqn not in any S)
then

pair = getPair(Rqn)
S.append(pair) {add the HTTP message pair to the HTTP session S}
if pair.Rsn.hasHTMLBody then

link(S, Rqn)
end if

end if
end for
end function

3.3.3.2 HTML body HTTP GET correlation

The HTML code of a web page contains URIs to embedded objects. These
embedded objects can be located on the same domain, or located on a different
domain as the main web page. Which embedded objects are being requested
by a client can be determined by looking at the HTTP GET headers of the
HTTP request messages. By looking at the URIs for embedded object that are
present in the main web page’s HTML code and the HTTP GET headers one
can assume which HTTP messages do or do not belong to a HTTP session.

When the main web page’s HTML code does not contain a URI that matches
a HTTP GET header, then that HTTP message belongs to another session. But
all HTTP GET headers that do have a URI which correlates to the HTML code
belong to the same HTTP session.

It will get more difficult if a website contains an iframe. The HTML code
of the iframe has also be taken into account. If the iframe contains embedded
objects, then these are also considered to be part of the main web page. All
HTTP GET headers that have a URI present at the HTML code of the iframe,
do belong to the same HTTP session as the main web page.

The pseudocode for this method (method 6), gives a more explicit definition
on the inner workings. Just as the previous method, it starts with a list of
HTTP sessions S and the function link(S, Rsn) will be used to link HTTP
messages and add them to the correct HTTP session S.

Linking HTTP messages will be done by matching the URIs of embedded
objects to the GET header of HTTP request messages. The URI of a embedded
object has to match to the end of a GET header. The example below is a valid

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 15

match:

• URI embedded object: lokaal_plaatje.png

• GET header: /rp2/new_website/lokaal_plaatje.png

The value for the GET header can come from any HTTP request message
that meets the following two conditions:

• A HTTP request message can not belong to more then one HTTP session.
A HTTP request message already belonging to a session S, can thus not
be placed in any other session S (Rqn not in any S).

• A HTTP request message can only be matched if that message was re-
ceived after the HTTP response message from where the URIs of the
embedded objects were derived (Rqn.ID > Rsn.ID).

A match is valid if the above two condition are met, and there is match
between the GET header and URI of an embedded object, as described earlier.
The function getPair(Rqn) will be used to find the corresponding HTTP re-
sponse message of the matched HTTP request message. This pair will be added
to the correct HTTP session S.

Just like the previous method, this process will continue for every defined
HTTP session S. Tthe method is also recursive, like the previous one, to be
able to also link all HTTP messages of a HTTP session.

Method 6 HTML body HTTP GET correlation

for all S in A do
link(S, Rsn)

end for

function link(S, Rsn)
URI = S.Rsn.embeddedOcjets {return all embedded objects URIs of the
HTML body}
for all Rqn in Rq do

if (Rqn.GET in URI) and (Rqn.ID > Rsn.ID) and (Rqn not in any S)
then

pair = getPair(Rqn)
S.append(pair) {add the HTTP message pair to the HTTP session S}
if pair.Rsn.hasHTMLBody then

link(S, Rsn)
end if

end if
end for
end function

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 16

3.3.3.3 Use the Location header to link HTTP messages

The Location header as discussed at section 3.2.3 can be used to link HTTP
messages to each other. If the URI present at the Location headers is found
at a HTTP GET header of a HTTP request message then the HTTP request
message containing the URI in the GET header can be linked to a previous
HTTP response message containing that URI in the Location header.

Method 7 Use the Location header to link HTTP messages

for all Rsn in Rs were Rsn.location not Null do
location = Rsn.location
for all Rqn in Rq do

if (location in Rqn.GET) and (Rsn.ID < Rqn.ID) then
print Rqn and Rsn belong to the same HTTP session

end if
end for

end for

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 17

3.3.4 Not suitable

This section will describe two possible methods that can not be used for HTTP
session identification. The explanation will this time not contain any pseu-
docode.

3.3.4.1 Cookies

Lets have an example on the usage of an cookie to see why it can not be used
for HTTP session identification.

An user will go to www.example.com where to web server of that website will
send the user a cookie to store in its browser. Every time the user will go to this
website or a particle part of this website (e.g. www.example.com\article1.html),
it will send the cookie along with every HTTP request message. The cookie will
not change while it is in the browser of the user (until it expires and the browser
may receive a new one). It is static peace of information.

www.example.com also contains pictures that are hosted on www.pics.com.
If an user visits www.example.com, the picture of this website are part of the
same HTTP session. www.pics.com will probably also use a cookie. This cookie
is however different than the one from www.example.com, and can not be related
to each other. The HTTP request messages (containing a cookie) that will fetch
the HTML body of www.example.com and the pictures at www.pics.com can
thus also not be related to each other. These HTTP request messages are
however part of the same HTTP session.

When looked at the situation that an user will open several articles from
the same website, than these user actions will start new HTTP sessions. The
HTTP request messages to fetch these articles will however all contain the same
cookie. Again the cookie can not be used to separate these different HTTP
request messages.

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 18

3.3.4.2 TCP port numbers

A simplified explanation of using TCP port numbers for HTTP session identi-
fication is as follows:

An user visits the website www.example.com. The website contains
embedded pictures hosted on www.pics.com. First a TCP connec-
tion to fetch the content of www.example.com will be established.
This TCP connection will have a certain source port x. Shortly
after the HTML body of www.example.com is fetched, the browser
will set up a new TCP connection to fetch the embedded pictures
from www.pics.com. This TCP connection will than have source
port x + 1.

Because the source port of this second TCP connection is increment
with one, it can be related to that first TCP connection. If they can
be related to each other, all the content that is fetched across the
two TCP connection can also be related to each other. This states
that all HTTP message going across those two TCP connection are
belonging to the same HTTP session.

The problem of this idea is that source port numbers are not increment by
one or any other number. The browser will ask the Operating System (OS) to
open a TCP socket, the OS will return a TCP socket with a randomly chosen
source port.

Kevin de Kok
Marcus Bakker

July 5, 2010

3 IDENTIFYING HTTP SESSIONS 19

3.4 Limitations

In this section the limitations of the identification method are being discussed.

3.4.1 Javascript

When Javascript is used there might be a chance that the referrers are invalid.
Invalid means that the referrer does not contain the URI from the originating
site. It is very easy to change the referrer within Javascript[7]. Javascript may
break or change the referrer and the referrer can not be trusted from that point
any more.

3.4.2 Web 1.0

During time constrains the research is focused on web 1.0 [8] (static content)
related objects and not into web 2.0 [9] (user generated content). Techniques
as: Ajax, XML, Json, Flash can generate HTTP traffic even if the website is
already full fetched, to update the content of the website (e.g. Google Docs).
This makes it harder to identify HTTP sessions. The research is limited to web
1.0 as already mentioned at the scope of the introduction.

Kevin de Kok
Marcus Bakker

July 5, 2010

4 METHOD VERIFICATION 20

4 Method verification

This section describes the verification of the methods. The methods are classi-
fied in two categories, namely:

• Start of a HTTP session - section 4.1

• HTTP message correlation - section 4.2

With the methods from the category “Start of HTTP session” one can iden-
tify the start of a HTTP session. With the methods from “HTTP message
correlation” one can correlate HTTP messages that belong to the same HTTP
session. The dataset that was created at stage 4: “Creating the dataset” (section
2) is used for the verification.

4.1 Start of a HTTP session

The base time line (figure 3) presents the start time in seconds of all HTTP
sessions from the dataset. The dataset contains a total of 8 HTTP sessions.
The actions that start a HTTP session are displayed in table: 1. The following
methods are represented in the category “Start of HTTP session”;

• Time between successive fetches;

• No referrer;

• Hyperlink present at GET header.

The verification of methods are also displayed on a timeline. If the time is
presented in bold, it means that is in line with the base time line and counted
as a true positive.

0

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

1 2 3 4 5 6 7 8 9 10

S1

0.0
S2

1.06
S3

2.26
S4

2.95
S5

3.97
S6

6.18
S7

6.90
S8

7.68

Figure 3: Start time of the HTTP session in seconds.

Kevin de Kok
Marcus Bakker

July 5, 2010

4 METHOD VERIFICATION 21

Request for from source
S1 - labsite bookmark
S2 - security.nl bookmark
S3 - Hyperlink web page 1 labsite
S4 - Hyperlink web page 2 labsite
S5 - Hyperlink web page 3 labsite
S6 - Hyperlink article 1 security.nl
S7 - Hyperlink article 2 security.nl
S8 - Hyperlink article 3 security.nl

Table 1: “request to” and originating source.

4.1.1 Time between successive fetches

This method was verified by making use of the PoC (appendix A.3).

Findings

Five out of eight sessions are detected. Four out of five detected sessions corre-
spond with the timestamps from the base time line. Session 1 is the first session
in the dataset, thus always detected. Session 2 is a false positive.

0

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

1 2 3 4 5 6 7 8 9 10

S1

0.0
S2

1.55
S3

2.95
S4

3.97
S5

6.18

Figure 4: Start time of the HTTP session in seconds.

Request for from source false/true positive
S1 - labsite bookmark true
S2 - /favicon.ico security.nl false
S3 - Hyperlink web page 2 labsite true
S4 - Hyperlink web page 3 labsite true
S5 - Hyperlink article 1 security.nl true

Table 2: “request to” and originating source.

Defining the starting point of a HTTP session by using a timeframe is very
hard. This approach is most useful by using “slow” browsing. When opening
a lot of websites (e.g. tabs) in a short amount of time then the timeframe
wont exceed the AOT of 600ms. These user actions of opening a lot amount

Kevin de Kok
Marcus Bakker

July 5, 2010

4 METHOD VERIFICATION 22

of websites wont be detected as new HTTP sessions. These can be called true
negatives. It can however be very useful to detect HTTP session on mobile
phones. With a mobile phone if is very hard or impossible to open a lot amount
of website in a short amount of time. This is de cause of the restrictive user
interface.

By applying web 2.0 technologies a lot of false positives can be generated.
Sessions remain open for longer amount of time. If the AOT is passed, it can
still happen that a web 2.0 website (e.g. Google Docs) loads content from within
an existing HTTP session. But due the fact that the AOT time is passed, it
will be detected as a new HTTP session.

Conclusion

The method works well with ”slow” browsing. But a problem occurs at the
moment an user opens a lot of websites in a short amount of time (”fast”
browsing). Or when the user visits a web 2.0 website like Google docs.

”Fast” browsing can generate true negatives and web 2.0 website can gener-
ate false positives. Web 2.0 may also have other implications on this method,
but these were not taken into account for this research.

Sessions:
True positives 4
False positives 1
Real sessions 8

Table 3: Results “Time between successive fetches”.

4.1.2 No referrer

This method was verified by making use of the PoC (appendix A.4).

Findings

The first two HTTP sessions are identified due to an user action of opening a
bookmark and are thereby true positives. The other three HTTP sessions (S3

till S5) are generated from Javascript code from Google and are detected as
false positives.

The results show that method works as expected if an user opens a website
from a bookmark. The result will be the same if the user opens the website not
by means of a bookmark, but by typing in the URL into the address bar. In
this case the same HTTP request message would have been send.

But the last three sessions are false positives, because the Javascript code
from Google does not send any referrer with the HTTP request message. This
problem could be solved, if HTTP request messages originating from Javascript
are ignored for this method. This may be achieved by interpreting the Javascript

Kevin de Kok
Marcus Bakker

July 5, 2010

4 METHOD VERIFICATION 23

0

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

1 2 3 4 5 6 7 8 9 10

S1

0.0
S2

1.06
S3

2.15

S4

2.17

S5

8.15

Figure 5: Sessions start time in seconds.

Request for from source false/true positive
S1 - labsite bookmark true
S2 - security.nl bookmark true
S3 - /pagead/js/graphics.js pagead2.googlesyndication.com false
S4 - /pagead/abglogo/abg-nl-100c-ffffff.png pagead2.googlesyndication.com false
S5 - /pagead/sma8.js pagead2.googlesyndication.com false

Table 4: “request to” and originating source.

code inside the HTML body, and see what HTTP request messages it will send.
Those HTTP request messages can than be ignored for this method.

Conclusion

The results are in line with the method as explained at section: 3.3.2.2. But if
there is any Javascript code present at the website that clears the referrer, the
method could generate false positives. This problem can be solved if all HTTP
request message originated from Javascript are ignored for this method.

Sessions:
True positives 2
False positives 3
Real sessions 8

Table 5: Results “No referrer”.

Kevin de Kok
Marcus Bakker

July 5, 2010

4 METHOD VERIFICATION 24

4.1.3 Hyperlink present at GET header

This method was verified by making use of a packet analysis tool and from the
PoC (A.5).

Findings

All HTTP sessions, except for S3 and S5 are true positives. The user actions of
clicking on a hyperlink from the labsite and security.nl are correctly identified.

0

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

1 2 3 4 5 6 7 8 9 10

S1

2.26
S2

2.95

S3

2.98

S4

3.97

S5

3.99

S6

6.18
S7

6.90
S8

7.68

Figure 6: Start time of the HTTP session in seconds.

Request for from source false/true positive
S1 - Hyperlink web page 1 labsite true
S2 - Hyperlink web page 2 labsite true
S3 - Hyperlink web page 2 (301) labsite false
S4 - Hyperlink web page 3 labsite true
S5 - Hyperlink web page 3 (301) labsite false
S6 - Hyperlink article 1 security.nl true
S7 - Hyperlink article 2 security.nl true
S8 - Hyperlink article 3 security.nl true

Table 6: “request to” and originating source.

The results show that method works as expected if an user opens a web page
from a hyperlink

The two false positives are the cause of a 301 Moved Permanently. The
body of the 301 HTTP response message contains a hyperlink that is followed
by the client. The client will send a HTTP request message containing the URI
of this hyperlink in the GET header. This will cause a false match between the
hyperlink and the GET header.

Conclusion

The results are in line with the method as explained at section: 3.3.2.3. All user
actions by means of clicking on a hyperlink are detected. A HTTP response

Kevin de Kok
Marcus Bakker

July 5, 2010

4 METHOD VERIFICATION 25

message with response code: 301 will generate a false positive (S1 S3). This
problem can be solved, by ignoring all HTTP response messages with response
code: 301 for this method. And thereby generate only true positives.

Sessions:
True positives 6
False positives 2
Real sessions 8

Table 7: Results “Hyperlink presence at GET header”.

4.1.4 Conclusion

The first method: “Time between successive fetches” is not reliable in some
situations due to the fact that in can only give correct results with ”slow”
browsing behaviour. When a user opens multiple websites in a short amount
of time, this method will generate true negatives. But to detect the start of
a HTTP session on mobile phones it may be very effective. The cause is the
restrictive user interface, which results into ”slow” browsing. Web 2.0 can also
cause problems if the website starts sending traffic after the AOT has elapsed.
This will generate false positives.

The other two methods: “No referrer” and “Hyperlink present at GET
header” work really well. The second method, has a problem that it can gen-
erate false positives when a request is generated by a HTTP response message
containing a 301 Moved permanently. This problem can easily be solved by
ignoring these kind of HTTP messages. Then it will only detect true positives.

The method: “No referrer” also has a problem of generating false positives,
when a HTTP request has no referrer due to the use of Javascript. This problem
can be solved by ignoring any HTTP message originated from Javascript.

If the problems of the last two methods are solved, the combination of those
two methods will give a perfect view of when a HTTP session is started. “No
referrer” will identify all user actions of typing in a URL or opening a bookmark.
The method: “Hyperlink present at GET header” will identify every user action
of opening a hyperlink. These are all the action that can start a new HTTP
session, as defined at section 3.1.

Kevin de Kok
Marcus Bakker

July 5, 2010

4 METHOD VERIFICATION 26

4.2 HTTP message correlation

This section will describe the verification of the methods from the category
“HTTP message correlation”:

• Link the referrers;

• HTML body HTTP GET correlation;

• Use the Location header to link HTTP messages.

4.2.1 Link the referrers

This method was verified by making use of a packet analysis tool and from the
PoC (A.5).

Findings

Using the referrers to correlate HTTP messages to a HTTP session works very
well. While verifying two problems did appear. One is the cause of Javascript
and the other one has to do with a HTTP response message with response code
301.

Javascript can change the value of the referrer. In the dataset the re-
ferrer value: http://pagead2.googlesyndication.com/pagead/ads?client=
<VERY LONG STRING> showed up. The problem is that this referrer value can not
be related to any other HTTP message. The results is that the HTTP request
message containing this referrer value and the corresponding HTTP response
message can not me assigned to any HTTP session.

This problem may be solved by interpreting the Javascript code in the HTML
body. The HTTP request message containing the referrer value, will belong to
the same HTTP session as the HTML body (including the Javascript code),
from which this referrer value was generated. A problem to this approach is
however, that the referrer value may not be static. In this case the referrer
value of the dataset that is being analysed, will be different as the referrer value
this is generated at the HTTP session identification process.

The second problem has to do with a HTTP response message 301. An
example:

1. GET /remote/1

2. 301 Moved Permanently

3. GET /remote/1/

4. 200 OK

Message 1 is defined as the start of HTTP session. It will be immediately moved
to another location (message 2) to get the requested content. The client will
fetch this content from the new location at message 3. The server answers with
the requested content at message 4.

Normally message 3 will contain a referrer that points to the location of
message one (/remote/1). But due to the 301 Moved Permanently it will not

Kevin de Kok
Marcus Bakker

July 5, 2010

4 METHOD VERIFICATION 27

point to this message. Because the referrer value does not point to the first
message, it can also not be linked to that message, and thereby not assigned to
that HTTP session. Section 4.2.3 will present a solution to this problem.

Conclusion

The method works really well to correlate HTTP messages and assign them to
the correct HTTP session. A problem occurs when Javascript is used to change
the referrer value. This problem may be solved by interpreting the Javascript
code at the HTML body. Another problem occurs when an HTTP response
message with response code 301 is received. A solution is presented for this last
problem at section 4.2.3.

4.2.2 HTML body HTTP GET correlation

This method was verified by making use of a packet analysis tool and from the
PoC (A.5).

Findings

Using the HTML body and the GET headers of HTTP request messages to
correlate HTTP message gives good results. The method is able to find almost
all HTTP message that belong to a specific HTTP session.

The case where it does not work has to do with Javascript. Javascript may
be used to generate the URI of an embedded object in real-time. An example
from the dataset is as follows:

document.write(unescape("%3Cscript src=’" + gaJsHost +

"google-analytics.com/ga.js’ type=’text/javascript’%3E %3C/script%3E"));

The URI of the embedded object is not available as plaintext in the HTML
body. It will be generated by the Javascript code:

+ gaJsHost + "google-analytics.com/ga.js

Because the URI value is not known it can not be matched with any GET header
of a HTTP request message.

The solution to this problem may be to interpret the Javascript code, and
see which URI value will be used. The problem of this solution is that the value
of the URI may not be static. In this case the generated URI will not show up in
the dataset that is being analysed. The URI present at the dataset (at a GET
header) will be older as the URI that is generated at the process of analysing
the dataset.

Conclusion

The results from this method are positive by means of correlating HTTP mes-
sages and assign them to the correct HTTP session. A problem occurs when

Kevin de Kok
Marcus Bakker

July 5, 2010

4 METHOD VERIFICATION 28

Javascript is used to generate the URI of an embedded object in real-time. This
problem may be solved by interpreting the Javascript code at the process of
HTTP session identification.

4.2.3 Use the Location header to link HTTP messages

This method was verified by making use of a packet analysis tool.

Findings

This method performs really poor in correlating HTTP messages. It is only able
to correlate a HTTP response message with response code 301, with a HTTP
request message. This HTTP request message will request the content from the
new location as mentioned at the HTTP response message 301.

It can however be used to solve a problem that the method: “Link the
referrers” had. That problem occurs with a HTTP response message 301.

An example of the usage:

1. GET /remote/1

2. 301 Moved Permanently

3. GET /remote/1/

4. 200 OK

This method can correlate message 2 with message 3 as belonging to the
same HTTP session. The method: “Link the referrers” could only correlate
message 1 and 2 as belonging to the same HTTP session. This method will add
message 3 to the same session as message 1 belongs to. The method: “Link the
referrers” can thereby continue its process of correlating HTTP messages.

Because message 4 is the response of message 3, it can also be added to the
same HTTP session.

Conclusion

The method is not that useful to correlate a lot of HTTP message to a specific
HTTP session. It can be used to solve the problem with the HTTP response
message with response code 301 that the method: “Link the referrers” has.
Thereby it is very useful if used in combination with the method: “Link the
referrers”.

Kevin de Kok
Marcus Bakker

July 5, 2010

5 RECOMMENDATIONS 29

5 Recommendations

This section describes two recommendations that can help to identify HTTP
sessions, but fall out of the scope of this research project.

5.1 Host based identification

It would be interesting to research the possibilities of HTTP session identifi-
cation performed at the host itself. Hosts can maintain their own state, and
pinpoint HTTP sessions to a browser tab. The techniques that are used in
browsers could be adapted for this purpose. A plug-in in a browser, for example
in Firefox, could extend the HTTP header with a extra field that binds a HTTP
message to a browser tab by using a random ID for every browser tab.

Another way to extend the HTTP header is by adding an extra header field
with javascript. Javascript could be injected in the HTTP response messages
to accomplish this.

5.2 Web 2.0

Web 2.0 websites make use of new web technologies to provide the content to
their end users. An example of such a technology is Ajax. The methods of this
research may not be that effective if these kind of techniques are being used.

It would however be interesting to research web 2.0 techniques and see if
these techniques add or leave any extra information, that can be used to identify
HTTP sessions.

Kevin de Kok
Marcus Bakker

July 5, 2010

6 CONCLUSION 30

6 Conclusion

In this chapter the research question as mentioned in the introduction is an-
swered and the future work is being discussed.

6.1 Research question

• How can HTTP sessions be distinguished from each other?

To distinguish HTTP sessions two categories were created with different
methods. The first category “Start of HTTP session” contains three methods
and are being used to define the start of a HTTP session:

• Time between successive fetches - section 3.3.2.1;

• No referrer- section 3.3.2.2;

• Hyperlink present at GET header - section 3.3.2.3.

The second category “HTTP message correlation” is used to correlate HTTP
messages and assign them to a HTTP session. The starting point of each of
those methods will be a HTTP session as defined by one of the methods from
the previous category:

• Link the referrers - section 3.3.3.1;

• HTML body HTTP GET correlation - section 3.3.3.2;

• Use the Location header to link HTTP messages - section 3.3.3.3.

The description of the methods can be found at section 3.3.2 and section
3.3.3. The methods were verified at chapter 4. The results of the method
verification showed that every method has its pros and cons.

By combining the methods it is possible to identify HTTP sessions within
the limits of the defined scope. The see how the methods perform in practice,
outside the controlled lab environment, large scale testing is needed.

6.2 Future work

The following topics are defined for future work.

Large scale testing

As mentioned above, large scale testing is needed to see how the methods per-
form in practise, outside the controlled lab environment. It is recommended to
perform large scale testing in an automated fashion. As this project has shown,
it takes a lot of time to analyse HTTP traffic by hand.

Mobile phones

It would be interesting to see how effective the the method: “Time between
successive fetches” is on mobile phones. Mobile phones use slow interaction to

Kevin de Kok
Marcus Bakker

July 5, 2010

6 CONCLUSION 31

open a website. One cannot open multiple websites on a mobile phone below a
predefined AOT, because of the way of providing input on a mobile phone. This
characteristic could be very useful for the method: “Time between successive
fetches”.

Web 2.0

Web 2.0 was out of the scope for this project. Web 2.0 can introduce new
problems in identifying HTTP sessions. It is necessary to see to which extend
the developed methods of this research also work on web 2.0.

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 32

A Proof Of Concept

This appendix describes the different parts of the PoC. Except for A.6, which
describes a limitation of the PoC. The source code of the PoC is also included.

A.1 HTTParser

The HTTParser provides an API to retrieve the information from the HTTP
messages inside a pcap file in a simple manner. The HTTParser was later used
in other stages of the PoC to implement three identification methods.

Figure 7 shows a diagram of the HTTParser. In step 1 Thsark (a command
line version of Wireshark[10]) decodes the pcap file and takes care of things like
reassembling chunked HTTP messages[11]. The output is a text file that is used
at step 2 by the HTTParser’s Python code. HTTParser.py parses this text file
and puts the necessary information for the identification methods into Python
Class Instances (HTTP message objects). The HTTP message object are later
being used to implement the identification methods.

Figure 7: Diagram of the HTTParser

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 33

1 import re , hash l ib , os
2
3 HOUR = 3600
4 MIN = 60
5 id packe t = 1
6 id s t ream = 1
7 t ime base = []
8 l i s t p a c k e t s = [] # Li s t o f a l l HTTPacket o b j e c t in s tance s
9 l i s t s t r e am s = [] # Li s t o f TCP streams

10 f i l e p c a p = ””
11
12 # HTTPacket c l a s s t ha t i s used to save the necessary informat ion o f

HTTP response and reque s t messages .
13 class HTTPacket :
14 def i n i t (s e l f) :
15 s e l f . i d packe t = 0
16 s e l f . id f rame = 0
17 s e l f . i d s e s s i o n = 0
18 s e l f . id s t ream = 0
19 s e l f . time = []
20 s e l f . t im e d i f f = 0
21 s e l f . s r c IP = ””
22 s e l f . dstIP = ””
23 s e l f . s r cPor t = 0
24 s e l f . dstPort = 0
25 s e l f . responseCode = ””
26 s e l f . userAgent = ””
27 s e l f . host = ””
28 s e l f . date = ””
29 s e l f . l o c a t i o n = ””
30 s e l f . get = ””
31 s e l f . r e f e r r e r = ””
32 s e l f . contentType = ””
33 s e l f . contentLength = 0
34 s e l f . body = ””
35 s e l f . r eque s t = 0
36 s e l f . r e sponse = 0
37 s e l f . hype r l i nk s = []
38
39 # Print a l l a v a i l a b l e packet in format ion
40 def p r i n t a l l (s e l f) :
41 i f s e l f . r e sponse == 1 :
42 print ” <<< RESPONSE <<<”
43 else :
44 print ” >>> REQUEST >>>”
45 print ”Packet ID : ” , s e l f . i d packe t
46 print ”Frame ID : ” , s e l f . id f rame
47 print ”Stream ID : ” , s e l f . id s t ream
48 i f s e l f . i d s e s s i o n != 0 :
49 print ” Se s s i on ID : ” , s e l f . i d s e s s i o n
50 print ”Time : ” , s e l f . t im e d i f f
51 tex t = s e l f . s r c IP+” : ”+s e l f . s r cPort
52 print ”SRC : ” , t ex t
53 text = s e l f . dstIP+” : ”+s e l f . dstPort
54 print ”DST : ” , t ex t
55 i f s e l f . host != ”” :
56 print ”Host : ” , s e l f . host

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 34

57 i f s e l f . get != ”” :
58 print ”GET : ” , s e l f . get
59 i f s e l f . userAgent != ”” :
60 print ”User−Agent : ” , s e l f . userAgent
61 i f s e l f . responseCode != ”” :
62 print ”Response Code : ” , s e l f . responseCode
63 i f s e l f . date != ”” :
64 print ”Date : ” , s e l f . date
65 i f s e l f . l o c a t i o n != ”” :
66 print ”Locat ion : ” , s e l f . l o c a t i o n
67 i f s e l f . r e f e r r e r != ”” :
68 print ” Re f e r r e r : ” , s e l f . r e f e r r e r
69 i f s e l f . contentType != ”” :
70 print ”Content−Type : ” , s e l f . contentType
71 i f s e l f . contentLength != 0 :
72 print ”Content−Length : . . . ” , s e l f . contentLength
73 i f s e l f . body != ”” :
74 print ”Body :\n ” , re . sub (”\n” , ”\n ” , s e l f . body)
75 print ”

−−−\
76 −−−−−−−−−−−−−−−−−−−−−−−−−−−”
77
78 # TCPStream c l a s s i s used to save the p r op e r t i e s o f d i f f e r e n t TCP

streams in the pcap f i l e
79 class TCPStream :
80 def i n i t (s e l f) :
81 s e l f . id s t ream = 0
82 s e l f . s r c IP = ””
83 s e l f . dstIP = ””
84 s e l f . s r cPor t = 0
85 s e l f . dstPort = 0
86
87 def p r i n t a l l (s e l f) :
88 print ”ID : ” , s e l f . id s t ream
89 print ”dstIP : ” , s e l f . dstIP
90 print ” src IP : ” , s e l f . s rc IP
91 print ” dstPort : ” , s e l f . dstPort
92 print ” s rcPort : ” , s e l f . s r cPor t
93 print ”−−”
94
95 # Removes any whi tespace at the end o f the s t r i n g
96 def removeWhitespace (s t r i n g) :
97 return re . sub (r ” (. ∗) \ s ” , r ”\1” , s t r i n g)
98
99 # Calcu la t e d i f f e r e n c e in the a r r i v a l time o f two HTTP messages

100 def t imeDi f f (t1 , t2) :
101 d i f f = in t (t2 [0]) − t1 [0]
102 d i f f += in t (t2 [1]) − t1 [1]
103 d i f f += f l o a t (t2 [2]) − t1 [2]
104 return round (d i f f , 6)
105
106 # Print a HTTPacket ins tance with a s p e c i f i c ID
107 def pr intPacket (i d packe t) :
108 for p in l i s t p a c k e t s :
109 i f p . id packe t == id packe t :
110 p . p r i n t a l l ()
111

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 35

112 # Print a l l HTTPacket in s tance s
113 def pr in tA l lPacke t s () :
114 for p in l i s t p a c k e t s :
115 p . p r i n t a l l ()
116
117 # Print a l l packet from the g iven c l i e n t IP−address
118 def pr intPacketsFromClient (ip) :
119 l i s t = getPacketsFromClient (ip)
120 for p in l i s t :
121 p . p r i n t a l l ()
122
123 # Print a l l the packe t s from the g iven l i s t
124 def pr intPacketsFromList (l i s t) :
125 for l in l i s t :
126 l . p r i n t a l l ()
127
128 # Set the pcap f i l e to use
129 def setPcap (pcap) :
130 global f i l e p c a p
131 f i l e p c a p = pcap
132
133 # Get a l i s t o f c l i e n t s
134 def g e tA l lC l i e n t s () :
135 l i s t = []
136 for p in l i s t p a c k e t s :
137 i f p . r eque s t == 1 and p . s rc IP not in l i s t :
138 l i s t . append (p . s rc IP)
139 return l i s t
140
141 # Get a l l HTTP message from a s p e c i f i c c l i e n t
142 def getPacketsFromClient (ip) :
143 l i s t = []
144 for p in l i s t p a c k e t s :
145 i f p . r eque s t == 1 and p . s rc IP == ip :
146 l i s t . append (p)
147 e l i f p . re sponse == 1 and p . dstIP == ip :
148 l i s t . append (p)
149 return l i s t
150
151 # Create a l i s t o f TCP streams
152 def getTCPStreams () :
153 global l i s t s t r e ams , id s t ream
154 for p in l i s t p a c k e t s :
155 i f p . r eque s t == 1 :
156 i f streamExist (p) == 0 :
157 stream = TCPStream ()
158 stream . dstIP = p . dstIP
159 stream . src IP = p . s rc IP
160 stream . dstPort = p . dstPort
161 stream . s rcPort = p . s r cPor t
162 stream . id s t ream = id st ream
163 l i s t s t r e am s . append (stream)
164 id s t ream += 1
165
166 # Check i f the TCP stream already e x i s t s
167 def streamExist (packet) :
168 global l i s t s t r e am s

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 36

169 for s in l i s t s t r e am s :
170 i f packet . r eque s t == 1 :
171 i f packet . dstIP == s . dstIP and packet . s rc IP == s .

s rc IP and \
172 packet . dstPort == s . dstPort and packet . s r cPor t == s .

s r cPor t :
173 return 1
174 return 0
175
176 # Set the TCP stream IDs of a l l packe t s in l i s t p a c k e t s
177 def setStreamID () :
178 getTCPStreams ()
179 for p in l i s t p a c k e t s :
180 for s in l i s t s t r e am s :
181 i f p . r eque s t == 1 and \
182 p . dstIP == s . dstIP and p . s rc IP == s . s rc IP and\
183 p . dstPort == s . dstPort and p . s r cPort == s . s r cPor t :
184 p . id s t ream = s . id s t ream
185 break
186 e l i f p . s rc IP == s . dstIP and p . dstIP == s . s rc IP

and\
187 p . s r cPor t == s . dstPort and p . dstPort == s . s r cPort :
188 p . id s t ream = s . id s t ream
189 break
190
191 # Return a l i s t conta in ing a pa i r
192 def getPa i r (packet) :
193 l i s t = getStream (packet . id s t ream)
194 pa i r = []
195 id = packet . i d packe t
196 pos = 0
197
198 #de f ine pos in l i s t
199 for l in l i s t :
200 i f l . i d packe t == packet . i d packe t :
201 break
202 pos += 1
203
204 i f packet . r eque s t == 1 :
205 for l in l i s t [pos :] :
206 i f l . r e sponse == 1 :
207 pa i r . append (packet)
208 pa i r . append (l)
209 break
210 else :
211 for l in r eve r s ed (l i s t [: pos]) :
212 i f l . r eque s t == 1 :
213 pa i r . append (l)
214 pa i r . append (packet)
215 break
216 return pa i r
217
218 # Return a l i s t o f packe t s from stream with the g iven id
219 def getStream (id) :
220 l i s t p k t s = []
221 for p in l i s t p a c k e t s :
222 i f p . id s t ream == id :

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 37

223 l i s t p k t s . append (p)
224 return l i s t p k t s
225
226 # Walk through a l l l i n e s o f the Tshark t e x t f i l e and crea t e c l a s s

in s tance s o f the HTTPacket c l a s s
227 def parse () :
228 # Only generate the Tshark f i l e i f i t does not e x i s t s
229 m = hash l i b .md5()
230 m. update (f i l e p c a p)
231 f i l e t s h a r k = m. hexd ige s t () [0 : 1 0] + ” . t shark ”
232 i f not os . path . e x i s t s (f i l e t s h a r k) :
233 command = ” tshark −r ” + f i l e p c a p + ” −R http −V > ” +

f i l e t s h a r k
234 os . system (command)
235
236 global i d packe t
237 global l i s t p a c k e t s
238 global t ime base
239 fd t sha rk = open (f i l e t s h a r k , ” r ”)
240 l i n e s = fd t sha rk . r e a d l i n e s ()
241 l ength = len (l i n e s)
242 x = 0
243
244 while x < l ength :
245 l i n e = l i n e s [x]
246 x+=1
247 #f ind beg inning o f packet
248 i f re . match (”Frame [0−9]+ \ (.∗\) ” , l i n e) :
249 ht tp ob j = HTTPacket ()
250 ht tp ob j . i d packe t = id packe t
251 ht tp ob j . id f rame = re . sub (r ”Frame ([0 −9]∗) \ (.∗ ” , r ”\1

” , l i n e)
252 ht tp ob j . id f rame = removeWhitespace (h t tp ob j . id f rame)
253 l i s t p a c k e t s . append (ht tp ob j)
254 id packe t += 1
255 e l i f re . match (” Ar r i va l Time : .∗ ” , l i n e) :
256 time = re . sub (r ” .∗ ([0 −9]{2} : [0 −9]{2} : [0 −9]{2}\ . [0 −9]+)

.∗ ” , r ”\1” , l i n e)
257
258 ht tp ob j . time = re . s p l i t (” : ” , time)
259 ht tp ob j . time [0] = in t (h t tp ob j . time [0]) ∗ HOUR
260 ht tp ob j . time [1] = in t (h t tp ob j . time [1]) ∗ MIN
261 ht tp ob j . time [2] = f l o a t (h t tp ob j . time [2])
262
263 #I f t h i s i s the f i r s t packet s e t the t ime base v a r i a b l e
264 i f i d packe t == 2 :
265 t ime base = ht tp ob j . time
266 ht tp ob j . t im e d i f f = 0.000000
267 else :
268 ht tp ob j . t im e d i f f = t imeDi f f (t ime base , h t tp ob j .

time)
269 e l i f re . match (” Source :

[0 −9]{1 ,3}\ . [0 −9]{1 ,3}\ . [0 −9]{1 ,3}\ . [0 −9]{1 ,3} ” , l i n e) :
270 ht tp ob j . s rc IP = re . sub (r ” Source :

([0 −9]{1 ,3}\ . [0 −9]{1 ,3}\ . [0 −9]{1 ,3}\ . [0 −9]{1 ,3}) .∗ ”
, r ”\1” , l i n e)

271 ht tp ob j . s rc IP = removeWhitespace (h t tp ob j . s rc IP)

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 38

272 e l i f re . match (” Des t ina t i on :
[0 −9]{1 ,3}\ . [0 −9]{1 ,3}\ . [0 −9]{1 ,3}\ . [0 −9]{1 ,3} ” , l i n e) :

273 ht tp ob j . dstIP = re . sub (r ” Des t inat i on :
([0 −9]{1 ,3}\ . [0 −9]{1 ,3}\ . [0 −9]{1 ,3}\ . [0 −9]{1 ,3}) .∗ ”
, r ”\1” , l i n e)

274 ht tp ob j . dstIP = removeWhitespace (h t tp ob j . dstIP)
275 e l i f re . match (” Source port : .∗ ” , l i n e) :
276 ht tp ob j . s r cPort = re . sub (r ” Source port : . ∗ \ ((. ∗) \)

” , r ”\1” , l i n e)
277 ht tp ob j . s r cPort = removeWhitespace (h t tp ob j . s r cPort)
278 e l i f re . match (” Des t ina t i on port : .∗ ” , l i n e) :
279 ht tp ob j . dstPort = re . sub (r ” Des t inat i on port :

. ∗ \ ((. ∗) \) ” , r ”\1” , l i n e)
280 ht tp ob j . dstPort = removeWhitespace (h t tp ob j . dstPort)
281 e l i f re . match (r ” HTTP/1 .1 [0−9]{3} [a−zA−Z]+\\ r \\n” ,

l i n e) :
282 ht tp ob j . responseCode = re . sub (r ” HTTP/1 .1 ([0−9]{3}

[a−zA−Z]+) .∗ ” , r ”\1” , l i n e)
283 ht tp ob j . responseCode = removeWhitespace (h t tp ob j .

responseCode)
284 e l i f re . match (” Request URI : .∗ ” , l i n e) :
285 ht tp ob j . get = re . sub (r ” Request URI : (. ∗) .∗ ” , r

”\1” , l i n e)
286 ht tp ob j . get = removeWhitespace (h t tp ob j . get)
287 e l i f re . match (r ” Date : .∗\\ r \\n” , l i n e) :
288 ht tp ob j . date = re . sub (r ” Date : (. ∗) \\ r \\n” , r ”\1” ,

l i n e)
289 ht tp ob j . date = removeWhitespace (h t tp ob j . date)
290 e l i f re . match (r ” Server : .∗\\ r \\n” , l i n e) :
291 ht tp ob j . r e sponse = 1
292 e l i f re . match (r ” Locat ion : .∗\\ r \\n” , l i n e) :
293 ht tp ob j . l o c a t i o n = re . sub (r ” Locat ion : (. ∗) \\ r \\n” ,

r ”\1” , l i n e)
294 ht tp ob j . l o c a t i o n = removeWhitespace (h t tp ob j . l o c a t i o n)
295 e l i f re . match (r ” User−Agent : .∗\\ r \\n” , l i n e) :
296 ht tp ob j . r eque s t = 1
297 ht tp ob j . userAgent = re . sub (r ” User−Agent : (. ∗) \\ r \\

n” , r ”\1” , l i n e)
298 ht tp ob j . userAgent = removeWhitespace (h t tp ob j .

userAgent)
299 e l i f re . match (r ” Host : .∗\\ r \\n” , l i n e) :
300 ht tp ob j . host = re . sub (r ” Host : (. ∗) \\ r \\n” , r ”\1” ,

l i n e)
301 ht tp ob j . host = removeWhitespace (h t tp ob j . host)
302 e l i f re . match (r ” Re f e r e r : .∗\\ r \\n” , l i n e) :
303 ht tp ob j . r e f e r r e r = re . sub (r ” Re f e r e r : (. ∗) \\ r \\n” ,

r ”\1” , l i n e)
304 ht tp ob j . r e f e r r e r = removeWhitespace (h t tp ob j . r e f e r r e r)
305 e l i f re . match (r ” Content−Type : .∗\\ r \\n” , l i n e) :
306 ht tp ob j . contentType = re . sub (r ” Content−Type : (. ∗)

\\ r \\n” , r ”\1” , l i n e)
307 ht tp ob j . contentType = removeWhitespace (h t tp ob j .

contentType)
308 i f re . match (”ˆ image /∗ . ” , h t tp ob j . contentType) :
309 ht tp ob j . body = ” \n”
310 ht tp ob j . body += ” | | \n”
311 ht tp ob j . body += ” | PICTURE | \n”

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 39

312 ht tp ob j . body += ” | | \n”
313 ht tp ob j . body += ” ”
314 e l i f re . match (r ” Content−Length : .∗\\ r \\n” , l i n e) :
315 l = re . sub (r ” Content−Length : ([0−9]+) .∗ ” , r ”\1” ,

l i n e)
316 l = removeWhitespace (l)
317 ht tp ob j . contentLength = in t (l)
318 e l i f re . match (”ˆLine−based text data : t ex t / .∗ ” , l i n e) :
319 ht tp ob j . body = ””
320 # Greb a l l l i n e s u n t i l a new frame and at them to the

body
321 i f i d packe t == 119 :
322 print ” t e s t ”
323 while not re . match (”Frame [0−9]+ \ (.∗\) ” , l i n e s [x]) and

x+1 < l ength :
324 ht tp ob j . body += re . sub (r ” (\\n) | (\\ t) ” , r ”” , l i n e s [

x])#\ [t runcated \]
325 x += 1 ;
326 fd t sha rk . c l o s e ()
327 setStreamID ()

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 40

A.2 Client separation

The client separation as discussed at chapter 3.3.1 is actually implemented in
the HTTParser from above. HTTParser contains two function for this purpose,
nameley:

getAllClients() This function can be used to get a list of
all client IP-address present in the pcap
file.

getPacketsFromClient(ip) This function can be used to retrieve a
list of HTTP message objects from a
client with a specific IP-address.

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 41

A.3 Time between successive fetches

The method “Time between successive fetches” is implemented by making use
of the HTTP message objects provided by HTTParser. It will print out the time
in microseconds when the start of a new HTTP session was detected. Along
with the time it will also print the first HTTP request and response message of
that HTTP session.

1 #!/ usr / bin /python
2 import HTTParser as ht , sys
3
4 DEFAULT PCAP = ”” # Has to be s e t to a v a l i d f i l e l o c a t i on
5 TIME GAP = 0.6
6 h t t p s e s s i o n s = []
7
8 argv l en = len (sys . argv)
9 i f argv l en > 1 :

10 f i l e p c a p = sys . argv [1]
11 else :
12 print ”No pcap f i l e i s s p e c i f i e d . Set to d e f au l t : ” ,

DEFAULT PCAP, ”\n”
13 f i l e p c a p = DEFAULT PCAP
14
15 class HTTPSession :
16 def i n i t (s e l f) :
17 s e l f . i d s e s s i o n = 0
18 s e l f . h t tp pkt s = []
19
20 def addPacket (s e l f , p) :
21 s e l f . h t tp pkt s . append (p)
22
23 def g e tS i z e (s e l f) :
24 return l en (s e l f . h t tp pkt s)
25
26 # I n i t i a l i z e HTTParser
27 ht . setPcap (f i l e p c a p)
28 ht . parse ()
29 pkts = ht . l i s t p a c k e t s
30
31 # Walk through a l l the packe t s and de f ine the s t a r t o f the HTTP

se s s i on s
32 t ime 1 = []
33 t ime 2 = []
34 s e s s i o n = []
35 f i r s t = 1
36 i d s e s s i o n = 1
37 for p in pkts :
38 i f p . re sponse == 1 and f i r s t == 1 : # Has only to be execute

once to s e t t ime 1
39 t ime 1 = p . time
40 f i r s t = 0
41 h t t p s e s s i o n = HTTPSession ()
42 h t t p s e s s i o n . ht tp pkt s = ht . ge tPa i r (p)
43 h t t p s e s s i o n . i d s e s s i o n = i d s e s s i o n
44 h t t p s e s s i o n s . append (h t t p s e s s i o n)

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 42

45 i d s e s s i o n += 1
46 continue
47 e l i f p . re sponse == 1 :
48 t ime 2 = p . time
49 i f ht . t imeDi f f (t ime 1 , t ime 2) > TIME GAP:
50 h t t p s e s s i o n = HTTPSession ()
51 h t t p s e s s i o n . h t tp pkt s = ht . ge tPa i r (p)
52 h t t p s e s s i o n . i d s e s s i o n = i d s e s s i o n
53 h t t p s e s s i o n s . append (h t t p s e s s i o n)
54 i d s e s s i o n += 1
55 t ime 1 = time 2
56
57 print ”TOTAL SESSION : ” , l en (h t t p s e s s i o n s)
58 for s in h t t p s e s s i o n s :
59 print ”# #### New HTTP s e s s i o n : ” , s . i d s e s s i o n , ”#### #”
60 print ” Time : ” , s . h t tp pkt s [0] . t im e d i f f
61 print ””
62 ht . pr intPacketsFromList (s . h t tp pkt s)
63 print ””
64 print ”# #### #### #”

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 43

A.4 No referrer

The method “No referrer” is implemented by making use of the HTTP message
objects provided by HTTParser. It will print out the time in microseconds when
the start of a new HTTP session was detected. Along with the time it will also
print the first HTTP request and response message of that HTTP session.

1 #!/ usr / bin /python
2 import HTTParser as ht , sys
3
4 DEFAULT PCAP = ”” # Has to be s e t to a v a l i d f i l e l o c a t i on
5 h t t p s e s s i o n s = []
6 i d s e s s i o n = 1
7
8 argv l en = len (sys . argv)
9 i f argv l en > 1 :

10 f i l e p c a p = sys . argv [1]
11 else :
12 print ”No pcap f i l e i s s p e c i f i e d . Set to d e f au l t : ” ,

DEFAULT PCAP, ”\n”
13 f i l e p c a p = DEFAULT PCAP
14
15 class HTTPSession :
16 def i n i t (s e l f) :
17 s e l f . i d s e s s i o n = 0
18 s e l f . h t tp pkt s = []
19
20 def addPacket (s e l f , p) :
21 s e l f . h t tp pkt s . append (p)
22
23 def g e tS i z e (s e l f) :
24 return l en (s e l f . h t tp pkt s)
25
26 # I n i t i a l i z e HTTParser
27 ht . setPcap (f i l e p c a p)
28 ht . parse ()
29 pkts = ht . l i s t p a c k e t s
30
31 for p in pkts :
32 i f p . r eque s t == 1 and p . r e f e r r e r == ”” :
33 h t t p s e s s i o n = HTTPSession ()
34 h t t p s e s s i o n . ht tp pkt s = ht . ge tPa i r (p)
35 h t t p s e s s i o n . i d s e s s i o n = i d s e s s i o n
36 h t t p s e s s i o n s . append (h t t p s e s s i o n)
37 i d s e s s i o n += 1
38
39 print ”TOTAL SESSION : ” , l en (h t t p s e s s i o n s)
40 for s in h t t p s e s s i o n s :
41 print ”# #### New HTTP s e s s i o n : ” , s . i d s e s s i o n , ”#### #”
42 print ” Time : ” , s . h t tp pkt s [0] . t im e d i f f
43 print ””
44 ht . pr intPacketsFromList (s . h t tp pkt s)
45 print ””
46 print ”# #### #### #”

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 44

A.5 View HTML messages

View HTML messages is a quite simple Python executable file that calls func-
tions of HTTParser to print out all packets of the given pcap file.

An example of the output (some parts of the output are omitted with x):

>>> REQUEST >>>

Packet ID:........ 1

Frame ID:......... 1

TCP stream ID:.... 1

Time:............. 0.0

SRC:.............. xxx.xxx.xxx.xxx:45467

DST:.............. xxx.xxx.xxx.xxx:80

Host:............. xxxxxxx.xxx.nl

GET:.............. /rp2/new_website/

User-Agent:....... Opera/9.80 (X11; Linux i686; U; en-GB)

Presto/2.2.15 Version/10.10

--

<<< RESPONSE <<<

Packet ID:........ 2

Frame ID:......... 2

TCP stream ID:.... 1

Time:............. 0.000828

SRC:.............. xxx.xxx.xxx.xxx:80

DST:.............. xxx.xxx.xxx.xxx:45467

Response Code:.... 200 OK

Date:............. Thu, 17 Jun 2010 19:20:51 GMT

Content-Type:..... text/html

Content-Length:... 855

Body:

<html>

<body>

xxx

HTML code

xxx

</body>

</html>

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 45

1 #!/ usr / bin /python
2 import HTTParser as ht , sys
3
4 DEFAULT PCAP = ”” # Has to be s e t to a v a l i d f i l e l o c a t i on
5
6 argv l en = len (sys . argv)
7 i f argv l en > 1 :
8 f i l e p c a p = sys . argv [1]
9 else :

10 print ”No pcap f i l e i s s p e c i f i e d . Set to d e f au l t : ” ,
DEFAULT PCAP, ”\n”

11 f i l e p c a p = DEFAULT PCAP
12
13 # I n i t i a l i z e HTTParser
14 ht . setPcap (f i l e p c a p)
15 ht . parse ()
16 # Print HTTP messages
17 ht . p r in tA l lPacke t s ()

Kevin de Kok
Marcus Bakker

July 5, 2010

A PROOF OF CONCEPT 46

A.6 Truncated HTML code

The output of Tshark will truncate very long lines in the HTML body. This
problem could not be solved by making use of any options of Thsark. Wireshark
gives the same result.

These truncated lines of the HTML body caused problems when proper
parsing of the HTML body was needed. That in its turn prevented proper
parsing of the URIs of hyperlinks and embedded objects. The latter was a
requirement to implement any other identification methods besides A.3 and
A.4.

This problem can be solved, by not relaying on Tshark for parsing the pcap
file. Due to time constrains there was no time to rewrite the PoC and solve this
problem.

Kevin de Kok
Marcus Bakker

July 5, 2010

REFERENCES 47

List of Tables

1 “request to” and originating source. 21
2 “request to” and originating source. 21
3 Results “Time between successive fetches”. 22
4 “request to” and originating source. 23
5 Results “No referrer”. 23
6 “request to” and originating source. 24
7 Results “Hyperlink presence at GET header”. 25

List of Figures

1 Network diagram of the test setup 4
2 Diagram that shows the referrers of fetching a web page. 13
3 Start time of the HTTP session in seconds. 20
4 Start time of the HTTP session in seconds. 21
5 Sessions start time in seconds. 23
6 Start time of the HTTP session in seconds. 24
7 Diagram of the HTTParser . 32

References

[1] T. Kinkhorst and M. van Kleij. Busting the ghost on the web: real time
detection of drive-by-infections, June 2009. URL http://www.delaat.

net/~cees/sne-2008-2009/p46/report.pdf.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Rfc 2616, hypertext transfer protocol – http/1.1, 1999.
URL http://www.rfc.net/rfc2616.html.

[3] Apache web server. URL http://www.apache.org.

[4] Http referrer. URL http://en.wikipedia.org/wiki/HTTP_referrer.

[5] W3C. Iframe. URL http://www.w3schools.com/tags/tag_iframe.asp.

[6] Y. Bhole and A.Popescu. Measurement and analysis of http traffic, De-
cember 2005.

[7] Fun with the referrer property, July 2001. URL http://www.netmechanic.

com/news/vol4/javascript_no14.htm.

[8] Wikipedia. Web 1.0, . URL http://en.wikipedia.org/wiki/Web_1.0.

[9] Wikipedia. Web 2.0, . URL http://en.wikipedia.org/wiki/Web_2.0.

[10] Wireshark, . URL http://www.wireshark.org.

Kevin de Kok
Marcus Bakker

July 5, 2010

http://www.delaat.net/~cees/sne-2008-2009/p46/report.pdf
http://www.delaat.net/~cees/sne-2008-2009/p46/report.pdf
http://www.rfc.net/rfc2616.html
http://www.apache.org
http://en.wikipedia.org/wiki/HTTP_referrer
http://www.w3schools.com/tags/tag_iframe.asp
http://www.netmechanic.com/news/vol4/javascript_no14.htm
http://www.netmechanic.com/news/vol4/javascript_no14.htm
http://en.wikipedia.org/wiki/Web_1.0
http://en.wikipedia.org/wiki/Web_2.0
http://www.wireshark.org

REFERENCES 48

[11] Packet reassembling, . URL http://www.wireshark.org/docs/wsug_

html_chunked/ChAdvReassemblySection.html.

Kevin de Kok
Marcus Bakker

July 5, 2010

http://www.wireshark.org/docs/wsug_html_chunked/ChAdvReassemblySection.html
http://www.wireshark.org/docs/wsug_html_chunked/ChAdvReassemblySection.html

	Introduction
	Project approach
	Identifying HTTP sessions
	Definition of a HTTP session
	HTTP traffic characteristics
	Referrer
	Time between successive fetches
	Location header

	Distinguish HTTP sessions
	Client separation
	Start of a HTTP session
	HTTP message correlation
	Not suitable

	Limitations
	Javascript
	Web 1.0

	Method verification
	Start of a HTTP session
	Time between successive fetches
	No referrer
	Hyperlink present at GET header
	Conclusion

	HTTP message correlation
	Link the referrers
	HTML body HTTP GET correlation
	Use the Location header to link HTTP messages

	Recommendations
	Host based identification
	Web 2.0

	Conclusion
	Research question
	Future work

	Proof Of Concept
	HTTParser
	Client separation
	Time between successive fetches
	No referrer
	View HTML messages
	Truncated HTML code

