#### DNS Anomaly Detection superDAD

Nick Barendregt Hidde van der Heide



# Agenda

- Introduction
- Methods
- Results
- Conclusion
- Questions and Discussion

# Introduction

"Examine the feasibility of detecting malware infected systems using DNS log data and develop a scheme for detecting these anomalies in DNS traffic.

Develop a simple proof of concept capable of processing text based output from our DNS logger."

#### Methods

- Non-DNS packets on port 53
- MX requests
- Keyword detection
- Blacklists
- Covert channel (DNS tunnel) detection
- Character frequency analysis
- Fast-flux detection
- Timing analysis
- Scoring mechanism

# **DNS Tunnel Detection**

#### Characteristics

- Non DNS data
- Large number of packets
- Large packets
  - Long domain names
  - $\circ$  Large strings in NULL or TXT records
- Random data when compressed or encrypted

# **DNS Tunnel Detection**

- Configure Iodine (tunnel DNS software)
- Downstream modes:
  - o Raw UDP
  - o NULL (experimental)
  - $\circ TXT$
  - $\circ$  CNAME
  - 0 **A**
  - o etc.
- Encoded Base32/64/128

# **Character Frequency Analysis**

| English | ı Unigrams |                   | Domai  | n Unigrams |
|---------|------------|-------------------|--------|------------|
| LETTER  | FREQUENCY  |                   | LETTER | FREQUENCY  |
| e       | 0.12702    |                   | е      | 0.10139    |
| t       | 0.09056    |                   | а      | 0.08935    |
| а       | 0.08167    | K /               | i      | 0.07346    |
| 0       | 0.07507 ·  | $\mathbf{X}$      | 0      | 0.07105    |
| i       | 0.06966 •  |                   | S      | 0.06804    |
| n       | 0.06749    | $\checkmark$      | r      | 0.06524    |
| S       | 0.06327 ·  | $\sim$            | t      | 0.06263    |
| h       | 0.06094    | / `               | n      | 0.06094    |
| r       | 0.05987    |                   | I      | 0.04849    |
| d       | 0.04253 🔹  |                   | С      | 0.03861    |
| I       | 0.04025    | $\mathbf{X}$      | m      | 0.03249    |
| C       | 0.02758    | $\langle \rangle$ | d      | 0.03247    |
| u       | 0.02758    | -                 | u      | 0.03105    |
| m       | 0.02406    |                   | р      | 0.02689    |

| English Bigrams |           | Domain Bigrams |           |  |
|-----------------|-----------|----------------|-----------|--|
| LETTER          | FREQUENCY | LETTER         | FREQUENCY |  |
| th              | 0.03883   | in             | 0.01702   |  |
| he              | 0.03681   | er             | 0.01550   |  |
| in              | 0.02284   | an             | 0.01333   |  |
| er              | 0.02178   | re             | 0.01290   |  |
| an              | 0.02141   | es             | 0.01271   |  |
| re              | 0.01749 🔸 | ar             | 0.01188   |  |
| nd              | 0.01572   | on             | 0.01135   |  |
| on              | 0.01418   | or             | 0.01051   |  |
| en              | 0.01383   | te             | 0.01017   |  |
| at              | 0.01336   | al             | 0.00976   |  |
| ou              | 0.01286   | st             | 0.00921   |  |
| ed              | 0.01276   | ne             | 0.00921   |  |
| ha              | 0.01275   | en             | 0.00897   |  |

# **Character Frequency Analysis**



Domain N-gram Frequency

#### **Fast-Flux Detection**



#### **Fast-Flux Detection - Example**

\$ dig naughtydateingsite.net

| ;; ANSWER SECTION:  |       |        |    |    |      |      |        |          |      |
|---------------------|-------|--------|----|----|------|------|--------|----------|------|
| naughtydateingsite. | net.  | 300    | IN |    | A    | 77.  | 127.10 | 66.235   |      |
| naughtydateingsite. | net.  | 300    | IN |    | A    | 82.  | 228.65 | 5.61     |      |
| naughtydateingsite. | net.  | 300    | IN |    | A    | 84.  | 109.81 | 1.176    |      |
| naughtydateingsite. | net.  | 300    | IN |    | A    | 92.  | 253.40 | 0.134    |      |
| naughtydateingsite. | net.  | 300    | IN |    | A    | 94.  | 54.254 | 4.3      |      |
| naughtydateingsite. | net.  | 300    | IN |    | A    | 94.  | 228.11 | 18.59    |      |
| naughtydateingsite. | net.  | 300    | IN |    | A    | 114  | .33.13 | 31.22    |      |
| naughtydateingsite. | net.  | 300    | IN |    | A    | 118  | .101.2 | 225.28   |      |
| naughtydateingsite. | net.  | 300    | IN |    | A    | 201  | .167.1 | 15.123   |      |
| naughtydateingsite. | net.  | 300    | IN |    | A    | 203  | .99.23 | 33.142   |      |
| ;; AUTHORITY SECTIO | N:    |        |    |    |      |      |        |          |      |
| naughtydateingsite. | net.  | 172318 |    | IN | N    | S    | ns1.   | 7418391. | com. |
| naughtydateingsite. | net.  | 172318 |    | IN | N    | S    | ns2.7  | 7418391. | com. |
| naughtydateingsite. | net.  | 172318 |    | IN | N    | S    | ns3.   | 7418391. | com. |
| naughtydateingsite. | net.  | 172318 |    | IN | N    | S    | ns4.   | 7418391. | com. |
| naughtydateingsite. | net.  | 172318 |    | IN | N    | S    | ns5.   | 7418391. | com. |
| naughtydateingsite. | net.  | 172318 |    | ΙN | N    | S    | ns6.   | 7418391. | com. |
| ; ADDITIONAL SECTIO | N:    |        |    |    |      |      |        |          |      |
| ns1.7418391.com.    | 85917 | IN     | A  |    | 173. | 212. | 75.160 | C        |      |
| ns2.7418391.com.    | 85917 | IN     | A  |    | 79.1 | 19.1 | 88.9   |          |      |
| ns3.7418391.com.    | 85917 | IN     | A  |    | 88.8 | 7.25 | 1.45   |          |      |
| ns4.7418391.com.    | 85917 | IN     | A  |    | 82.2 | 28.6 | 5.61   |          |      |
| ns5.7418391.com.    | 85917 | IN     | A  |    | 79.1 | 17.1 | 22.25  |          |      |
| ns6.7418391.com.    | 85917 | IN     | A  |    | 186. | 114. | 80.139 | 9        |      |

# **DNS** Timing Analysis

- Group activity
- Regular queries (polling)
- Outside office hours

# Scoring Mechanism



#### Results

- DNS Tunnel Detection
- Single Flux Detection
- Double Flux Detection

# **DNS Tunnel Detection**

- Configured DNS tunnel software
- Captured stream of scp 10Mb random data
- Loaded in memory with Python Scapy
- Created frequency distribution graphs with NLTK toolkit
- Compare:
  - $\circ$  Other tunnel software
  - $\circ$  Frequency distribution for top sites
  - $\circ$  Frequency distribution for language

#### **DNS Tunnel Detection - Base 32**

| Tunnel DNS Dump Unigrams Base32 |           |  |  |
|---------------------------------|-----------|--|--|
| Letter                          | Frequency |  |  |
| d                               | 0.09367   |  |  |
| a                               | 0.08899   |  |  |
| m                               | 0.07194   |  |  |
| q                               | 0.07153   |  |  |
| r                               | 0.06279   |  |  |
| b                               | 0.05572   |  |  |
| g                               | 0.04647   |  |  |
| W                               | 0.04637   |  |  |
| h                               | 0.04044   |  |  |
| у                               | 0.03982   |  |  |
| С                               | 0.03971   |  |  |
| f                               | 0.03951   |  |  |
| t                               | 0.03909   |  |  |
| 2                               | 0.02817   |  |  |

| Domain Unigrams |           |  |
|-----------------|-----------|--|
| LETTER          | FREQUENCY |  |
| е               | 0.10139   |  |
| а               | 0.08935   |  |
| i               | 0.07346   |  |
| 0               | 0.07105   |  |
| S               | 0.06804   |  |
| r               | 0.06524   |  |
| t               | 0.06263   |  |
| n               | 0.06094   |  |
| I               | 0.04849   |  |
| C               | 0.03861   |  |
| m               | 0.03249   |  |
| d               | 0.03247   |  |
| u               | 0.03105   |  |
| р               | 0.02689   |  |

#### **DNS Tunnel Detection - Base 128**

| Tunnel DNS Dump Unigrams Base128 |           |  |  |  |
|----------------------------------|-----------|--|--|--|
| Letter                           | Frequency |  |  |  |
| b                                | 0.05615   |  |  |  |
| у                                | 0.05273   |  |  |  |
| а                                | 0.04613   |  |  |  |
| Þ                                | 0.04156   |  |  |  |
| k                                | 0.03635   |  |  |  |
| I                                | 0.03097   |  |  |  |
| g                                | 0.0308    |  |  |  |
| 3/4                              | 0.02608   |  |  |  |
| m                                | 0.02575   |  |  |  |
| 4                                | 0.02371   |  |  |  |
| W                                | 0.02298   |  |  |  |
| С                                | 0.02249   |  |  |  |
| 2                                | 0.02119   |  |  |  |
| n                                | 0.01988   |  |  |  |
|                                  |           |  |  |  |

| Domain Unigrams |           |  |
|-----------------|-----------|--|
| LETTER          | FREQUENCY |  |
| е               | 0.10139   |  |
| а               | 0.08935   |  |
| i               | 0.07346   |  |
| 0               | 0.07105   |  |
| S               | 0.06804   |  |
| r               | 0.06524   |  |
| t               | 0.06263   |  |
| n               | 0.06094   |  |
| I               | 0.04849   |  |
| C               | 0.03861   |  |
| m               | 0.03249   |  |
| d               | 0.03247   |  |
| u               | 0.03105   |  |
| р               | 0.02689   |  |

# **DNS Tunnel Detection**



# **Fast-flux Detection**

- Single Flux Detection

   Simple bash system nslookup
   Threaded python nslookup
- Double Flux Detection
  - DNS library
  - SOA Record
  - $\circ$  A Record
  - NS Record
    - ANY Record
- Database
  - Lookup previous entries
  - Takes time with more data

#### **Fast Flux Detection**



#### **Fast Flux Detection**

Good sites vs Blacklisted, Double Flux Detection



# Conclusion

- Promising methods need to be done off-line
- The amount of data needed for proper time analysis becomes problematic
- Best probe position would be at the network border since TTL is unreliable
- Good results for methods, better when combined

• Yes!

# Future Work

- Create full working tool
- Research best scoring mechanism
- Timing analysis
- Live data

#### Fun Facts

Single: 116 x 1 x 10.728 = 1.244.448
Double: 174 x 3 x 10.728 = 5.600.016
Good : 22 x 3 x 10.000 = 660.000 +
Total domain queries: 7.504.464
Extra 48 hour run: ~2.400.000

Tracked domains: 10.728 Unique IP addresses: 32.466 Total amount of time spend: ~5.000 minutes

Lines of code: ~15 Cups of coffee: 2 : Research papers read: ~30

~1500 2 x 20 x ~4 = ~160 ~30

#### **Questions and Discussion**

