
University of Amsterdam
System & Network Engineering

Research Project 1

Extended Validation using DNSSEC

Authors:
Danny Groenewegen
danny.groenewegen@os3.nl

Pieter Lange
pieter.lange@os3.nl

Coordinators:
Michiel Leenaars
michiel@nlnet.nl

Rick van Rein
rick@openfortress.nl

Abstract

Remote trust on the web is mostly handled by so called Certificate Authorities. compa-
nies, government bodies or other types of organisations that users go to to obtain their
own certificates. There is a significant leap of faith involved: why should you blindly trust
the hundreds of Certificate Authorities preloaded in your browser to not abuse their root
certificates, when many Certificate Authorities are organisations you don’t know any-
thing about - which means you might not want to trust them for all purposes, certainly
not if you can avoid it. What if the websites and services you care about can publish the
certificates they use safely and authoritatively through the DNS? Historically, the answer
was that DNS itself was not safe enough. With DNSSEC you get a chain of trust from
the signed root of the internet to the service you want to connect to.
We have researched different ways of doing this and made available an add-on to the
new Firefox 4.0 browser software which enables end-users and server administrators to
leverage the DNSSEC chain of trust as anchor for their certificates.

February 7, 2011

Acknowledgements

We would like to thank the following people and organisations for their guidance and support
during our project:

• Michiel Leenaars (NLnet Foundation) for his supervision and incredible support;

• Rick van Rein (OpenFortress) for his insight, ideas and feedback;

• The System and Network Engineering (University of Amsterdam) group for the means and
opportunity to conduct the research project.

2

Contents

1 Introduction 4

2 Standards 7

2.1 Design Considerations . 7

2.1.1 Record Type . 7

2.1.2 Policy and Legacy . 8

2.1.3 Placement in DNS Hierarchy . 8

2.2 IETF . 8

2.2.1 Dane Working Group . 9

2.2.2 Current Specification . 9

2.2.3 Discussion Topics . 10

2.3 Kaminsky Alternative . 11

2.3.1 Defense For Choosing TXT . 11

2.3.2 Specification of TXT v=key1 record . 12

2.3.3 Parameters and features . 12

3 Implementation 13

3.1 Current implementations . 13

3.1.1 DNSSEC Validator . 13

3.1.2 DNSSEC Drill: Extension for Firefox . 14

3.1.3 DNSSEC-Tools . 14

3.1.4 Phreebird Suite - Phreeload . 14

3.2 The browser . 14

3.3 Add-on . 15

3.3.1 Local validating DNS resolver . 15

3.3.2 Validation methods . 15

3.3.3 HTTP Strict Transport Security . 15

4 Conclusion 17

4.1 Future work . 17

A Flowcharts 18

B Example DNSSEC signature chase 21

3

Chapter 1

Introduction

Anyone who spends any time with DNSSEC realizes eventually it’ll be used for much
more than simply validating IP addresses.

Dan Kaminsky, 17-10-2009

∼

The Domain Name System Security Extensions, or ‘DNSSEC’, are a suite of specifications that
secure the Domain Name System (DNS). PKIX (Public Key Infrastructure X.509) is a set of
specifications used for – among other things – the SSL certificates in HTTPS.

This report assumes a basic understanding of DNS(SEC), X.509 and public key infrastructures
in general, however we’ll try to give a brief overview of the most important features used in our
implementation.

DNSSEC

DNSSEC was designed to cope with the security issues introduced by the legacy DNS specification.
The original system was specified[16] in 1987 and was not designed to deal with the hostile nature
of the Internet as we know it now. Security researchers have proven[1] for many years that the
DNS system is vulnerable to a number of issues such as (but not limited to):

1. Cache poisoning due to predictable transaction IDs[10] or name-chaining;

2. Man-in-the-middle and other packet interception attacks;

3. “Betrayal” by trusted server (for example OpenDNS[21]).

DNSSEC is a system that enables every zone operator to cryptographically sign the records in their
zone and have the parent zone provide a signed delegation along with its regular NS delegation.
This creates a chain of trust that end users can verify by only having a copy of the public key of
the root zone. (Refer to page 18 for a simplified view of the chain of trust.)

Because of this chain of trust the DNSSEC infrastructure as specified in RFC4033 through
RFC4035 provides end users with origin authenticity and data integrity.

4

CHAPTER 1. INTRODUCTION 5

Quick overview of DNSSEC chain of trust validation

DNSSEC validators (i.e. libraries and validating resolvers[14]) will validate records bottom-up.
Every DNSSEC enabled answer is accompanied by digital signatures in the RRSIG record (resource
record signature). The digital signature can be verified by locating the correct public key in the
DNSKEY record in the zone its apex. DNSKEY records are authenticated by the DS (delegation signer)
record in the parent zone.

In practice the DNSKEY records are usually split in a key signing key (KSK) and a zone signing
key (ZSK), introducing another step in the validation process. The parent zone’s DS record will
associate with the KSK, which in turn signs the ZSK. The ZSK can be used to sign the other
records in the zone and be changed more often.

The RRSIG records have a limited period in which they are valid which is independent from the
original ‘Time To Live’. This means a zone must be periodically resigned to assure validity of the
answers.

An example signature ‘chase’ validating the entire DNSSEC chain of trust from the DNS label
www.os3sec.org up onto the trusted (root) anchor can be read in appendix B.

X.509 Certificates

X.509 is a standard for public key infrastructures, single sign-on and privilege management infras-
tructures. There are multiple versions of the X.509 standard, which originally only supported a
hierarchical system of certificate authorities for signing certificates. For the purposes of this project
we limited ourselves to the public key infrastructure and public key certificate format specifications
of the standard as specified by the PKIX working group of the IETF[2].

As with DNSSEC there are chains of trust to be followed up onto a trusted anchor. Certificate
authorities issue certificates that are bound to a distinguished name such as a domain name or
an e-mail address. The certificate chain of trust has to be provided by the peer or otherwise
publicly available. Some semantics are similar, but there are significant differences with regard to
DNSSEC:

1. There are multiple root anchors preconfigured in most implementations;

2. Certificates contain an extendible set of policies or constraints;

• Certificates have a specific purpose (i.e. certificates can or cannot sign other certifi-
cates);

• New constraints can be added, clients that do not support them cannot continue;

3. Compromised certificates have to be revoked using a certificate revocation list (CRL) or the
online certificate status protocol (OCSP).

Some of these differences are clear when looking at the certificate structure:

• Certificate

– Version

– Serial number

– Algorithm ID

– Issuer

– Validity

5

CHAPTER 1. INTRODUCTION 6

∗ Not before

∗ Not after

– Subject

– Subject public key information

∗ Public key algorithm

∗ Public key

– Extensions

• Certificate signature algorithm

• Certificate signature

The problem with X.509

Because most client applications have a big set[3] of root anchors defined in agreements between
the web browser manufacturers and certificate authorities[4], clients are unable to make a final
judgement on the authenticity of a certificate. A content provider might choose to use one certifi-
cate authority, but if the client receives a valid certificate signed by another certificate authority,
the client will accept it without a problem.

This enables foreign goverments or anyone else with leverage over these certificate authorities to
do hostile takeovers of websites and other services secured with these certificates.

What DNSSEC enables us to do

Because the trust of DNSSEC is rooted in one single trust anchor a lot of effort has been put in
to ensure that people will keep trusting the DNS root. The impartiality of the root is of upmost
importance. Which is why the private key for the root was generated in a special ceremony with
trusted representatives from Internet Society chapters and other impartial observers from all over
the world.

These representatives have signed the public key on their own, seeding the trust for these keys.
By utilizing the PGP web of trust we’re able to verify the authenticity of the root – that is, if we
trust the representatives.

Security researchers have noted that this root anchor and subsequent chains will receive a lot more
scrutiny because of their importance. This means we will have the ability to verify the authenticity
of any answer, so long as we trust the entities in the chain – just by having the public key part of
the DNS root.

So the concept is clear; the hard question is how we will do this. Design decisions now will have
a lot of impact in the future.

Overview

The next chapter will discuss two different answers to how we should solve this problem, after
which we’ll discuss our implementation and finally we’ll discuss our findings.

6

Chapter 2

Standards

The nice thing about standards is that there are so many of them to choose from.

Andrew Tanenbaum

∼

Now that the DNS root servers have been successfully signed since the 15th of July 2010, efforts
are underway to make use of the chain of trust DNSSEC provides to bootstrap trust into other
protocols. This chapter discusses the design parameters and where choices are to be made. We
also discuss two methods that are currently in development: the Internet Engineering Task Force
(IETF) draft standard and the method used by Dan Kaminsky’s tool Phreebird.

2.1 Design Considerations

There are many ways one can associate a DNS entry with a x509 certificate. It is possible to put
a copy of the entire certificate into a record on the same label to create a one-to-one relation with
the certificate. The facility to publish a wide array of different certificate types in DNS is already
implemented in the CERT[7] record type, but it is important to note that the RFC doesn’t specify
any requirements for publishing the CERT record at related labels.

One also has to consider the size of such records: certificates can easily span multiple kilobytes,
while a hash of that certificate will certainly be adequate to use as a base for building a relation
with the certificate. However, it is wise to keep the option of having full certificates open; clients
might not implement all hash functions and having a full copy of the certificate would require no
more steps than a simple comparison operation.

2.1.1 Record Type

The new standard could extend an existing resource record type or specify an entirely new resource
record type. Both options have merit.

A new record type would mean that we do not have to deal (as much) with backward compatibility,
as old clients will not requests these records and therefore do not deal with our policies – these
clients will have to validate the certificate using some other method to bootstrap their trust.

Reusing or overloading an old resource record type has the benefit of less (re-)integration work
for the numerous DNS management tools. The difficulty is to find a type that will conform to
the data constraints set by the new standard. Special care has to be taken not to simply put the

7

CHAPTER 2. STANDARDS 8

data in a TXT record. This method is tempting because TXT record types allow you to put in any
character strings, which allow you to make key=value associations within the TXT record.[19]

However, another much more recent RFC notes that using TXT for these purposes is almost always
a bad idea. The most important objections come from the fact that it is hard to coordinate the
use of such a free namespace. There are no semantics to prevent collisions. Also, the amount of
TXT records will increase. Multiple records could be associated with one label while each record
has its own purpose. This in turn will increase the size of DNS answers, forcing more connections
to TCP.

To make the parsing of the record more easy for the client the record should also include a separate
parameter indicating the hash algorithm, if used.

2.1.2 Policy and Legacy

Arguably the most important part of the standard is creating proper recommendations for client
policies, keeping support for the current x509 public key infrastructure in mind. A standard that
doesn’t provide backward compatibility with legacy systems will prove to be useless because lack
of deployment.

To provide legacy support we’ll also need to make policy decisions in the standard, because the
new bootstrap system and the old certificate policies have conflicting interests. Certificates have
constraints like the common name of the server. Certificates expire, usually after a year or so.
Certificates can sometimes sign other certificates – surely we do not want to install new root
certificates in our client application, so we’ll have to strip certain data from the certificate before
we’ll add it into our certificate cache.

Should the client honor the restrictions in the certificate, even if it got a valid DNSSEC-authenticated
response? After all, DNS(SEC) also specifies these fields:

• common name relates to the fully qualified domain name;

• DNS records expire all the time due to TTL and expiring RRsig records.

There is also the issue of dealing with multiple TLS enabled services running on one host, possibly
each with their own certificate and key material. This would mean that there are multiple records
containing certificate data at the same label. Should the record also include the port number
associated with the certificate in the record, or should the client just accept any record that
matches?

2.1.3 Placement in DNS Hierarchy

Again we are faced with multiple options. The most obvious choice is to put the certificate payload
– whether it is a hash or the full certificate – in a special or adopted record type on the label of
the host we’re trying to access. This provides the benefit of transparent CNAME redirection to the
final DNS label with the A or AAAA record containing the IP address of the host.

Of course the label itself can also contain the certificate payload - if it is a hash with sufficient
compression to fit inside a DNS label (256 characters). This means the client would have to first
connect to the service to receive the certificate, after which the client can do a lookup for the DNS
entry containing the hash prepended to the original label.

2.2 IETF

The Internet Engineering Task Force (IETF) has set up a working group to deal with the issue of
“Using Secure DNS to Associate Certificates with Domain Names For TLS”. IETF working groups

8

CHAPTER 2. STANDARDS 9

are organized in areas depending on the topics discussed. Current areas include: Applications,
General, Internet, Operations and Management, Real-time Applications and Infrastructure, Rout-
ing, Security and Transport. The DNS-based Authentication of Named Entities (dane) working
group is operating in the ‘security area’.

2.2.1 Dane Working Group

The working groups’ objective is specified as follows[5]:

“Specify mechanisms and techniques that allow Internet applications to establish
cryptographically secured communications by using information distributed through
DNSSEC for discovering and authenticating public keys which are associated with a
service located at a domain name.”

As with any other working group, the standard will be distilled through a process of getting
‘rough consensus’ on specific issues in the specification. Sometimes the process is also influenced
by ‘running code’; if working implementations exist they can be studied ‘in the wild’ and be
evaluated. Working groups that discuss topics which affect a majority of users or administrators
are naturally more difficult to achieve full consensus on all matters. A mailing list is used for
communication between anyone willing to participate in the standards process.

The working group has the following milestones:

• Apr 2011 ⇒ First WG draft of standards-track protocol for using DNS to associate hosts
with keys for TLS and DTLS

• May 2011 ⇒ First WG draft of standards-track protocols for using DNS to associate hosts
with IPsec

• Sep 2011⇒ Protocol for using DNS to associate domain names with keys for TLS and DTLS
to IESG

• Sep 2011⇒ Protocols for using DNS to associate domain names with keys for IPsec to IESG

• Nov 2011 ⇒ Recharter

With revision three of the document describing (D)TLS association in DNSSEC released the
working group is well on schedule to meet the milestones.

2.2.2 Current Specification

Please note that this subsection describes a document that is currently being discussed by the
working group. Details may change in the future or already have changed. Refer to the original
document for implementation details.
The current draft document[18] deals only with TLS and DTLS server identification. It is further
limited to PKIX certificates as specified by RFC5280[2].

Certificate associations are made using either a fingerprint of the certificate or by using the full
binary certificate itself and a domain name. This is done using a newly specified DNS record type,
TLSA. The specification currently expects the TLSA record at the same DNS label.

The format of the TLSA specifies three parameters:

1. Certificate type [one octet];

2. Hashing algorithm, if used [one octet];

9

CHAPTER 2. STANDARDS 10

3. Certificate for association.

Four certificate types are supported. A DNS administrator can choose to either select the certificate
of the TLS server itself (end-entity) in hashed form or in full, or to associate the DNS label with a
parent certificate, also hashed or in full, to be provided in the certificate-chain by the TLS server.
The first type of association (end-entity certificate) is more useful for smaller to medium sites with
just one server per label. The second type is useful for larger (i.e. load-balancing) setups where
every single server gets its own certificate which is signed by the parent certificate.

The hash type is 0 when no hashing is used (certificate type 2 and 4), otherwise the correct value
most be picked from a to-be-assigned IANA registry. Currently only SHA1 (1), SHA256(2) and
SHA384(3) are supported.

Lastly, the certificate for association is given. This will be either the hash or the full DER encoded
certificate. This results in the following wire format for the TLSA record:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Cert type | Hash type | /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ /

/ /

/ Certificate for association /

/ /

+-+

The document further describes a small set of policies regarding the use of TLSA records as trusted
anchors. Care must be taken that the record is obtained using a trusted source; either a local (on
the same machine) validating resolver, a local library or a secured channel to a remote validating
name server. If the client fails to associate the certificate using TLSA, it must try to validate it in
the normal fashion (using certificate authorities pre-configured in the client). If a client fails to
associate an end-entity certificate it must fail with an access denied error.

2.2.3 Discussion Topics

Some important implementation parameters are left out of the document because no consensus
has been formed on these matters yet. For instance “Issue 1” has not reached consensus: How to
deal with multiple TLS-based services under one domain name?

Multiple TLS services on one DNS label Right now it is impossible to know what port
and/or protocol a TLSA record belongs to. There are basically two main categories for solutions:

1. Include the port number and protocol in the TLSA record response;

2. Include the port number and protocol in the request.

Solution #1 will simply add another parameter in the response. That means the client is less able
to select specific TLSA records, thereby vastly increasing the response size if multiple TLS services
are present for the domain. The client will also have to parse each of these records.

Solution #2 advocates extra labels in the DNS request. Instead of a DNS question for TLSA records
for www.example.org, the client will have to request the TLSA records for 443. tcp.www.example.org.
One might recognize this scheme: the same is used for SRV records.

Some have also mentioned solutions using service discovery schemes such as NAPTR records[15],
but it is feared that the added complexity of these records will slow down deployment of TLSA.

10

CHAPTER 2. STANDARDS 11

Downgrade attacks and policy Another important issue is the possibility of downgrade at-
tacks. This is a matter of policy ; should the client always connect to the secure variant of the
service, and if so, how would the client know where to find this service?

Implicit policies where HTTP clients (port 80) would automatically connect to the HTTPS variant
(port 443) of the service might have undesirable effects. The mailing list participants proposed
a new resource record type – HASTLSA – which would document the secure and insecure services
available at a host. Choice of the secure or insecure variant would be at the clients’ discretion.

Other policies PKIX certificates are able to set a wide range of restrictions, such as the common
name attribute which has to be the same fully qualified domain name as the server that’s being
accessed. Additionally, the certificate will have an expiry date.

It is still up to the working group to decide whether these restrictions should be honoured; most
likely they will be, except for the common name as that can already be deduced from the name
where the TLSA record is retrieved.

2.3 Kaminsky Alternative

Security researcher Dan Kaminsky chose another approach. Instead of arriving to a standard
through the consensus process, he delivered a working proof of concept. He believes that the
open-source model of release early, release often is a suitable model for defining the new standard.
Of course this means that his releases will have imperfections and a lot of his design choices are
arguably made by ‘gut decisions’. He does try to rationalize his decisions, and because of the
‘blog’ system he uses for his publications, anyone can respond to his system.

His documentation on what he calls the Domain Key Infrastructure[9] consists of six ‘blog posts’
on the system itself and after that three more posts defending DNSSEC versus DNSCurve, caching
implications and alternative DNS transports such as HTTP. This section will only cover his design
of the DNS record[8].

2.3.1 Defense For Choosing TXT

His first design choice is already a controversial one; he chose to embed the certificate material
in the already existing TXT record. The IETF standards body made an RFC in late 2009 specif-
ically recommending NOT to use TXT records for this purpose[17]. Kaminsky is aware of these
recommendations as he cited the document himself. The most important objections to using TXT

include the fact that those records provide no semantics to prevent collisions with other uses of the
record. Another important objection are the space considerations: if every application developer
would choose the easy road, clients might be flooded with a wide array of records that they have
no need for. This is especially true in the case of putting public key material in DNS - these
messages might get quite large in comparison to other resource records’ payload.

Kaminsky argues that there are several important reasons for choosing TXT, one of them being
backward compatibility. The other arguments seem to be based on statistics and what everyone
else is doing.

Backward compatibility is maintained because not all (home-)routers’ built-in DNS server have
support for new record types. This means the messages would effectively be blocked by the router.
At the other side of the spectrum, publishers of DNS data will have a more easy job because DNS
web panels and back ends do not have to be updated to support a new record type.

The next argument he uses is that other projects have tried to use their own specific resource
record type, but moved back to TXT records after failed and lacking deployment. His examples
include the Sender Policy Framework (SPF), DomainKeys (DKIM), GPGs PKA and PGP Key

11

CHAPTER 2. STANDARDS 12

Retrieval and lastly FreeSWAN’s IPsec implementation. The formats of these records all use a
key=value system as documented in an RFC published in 1993[19].

It is clear that Kaminsky is aiming for maximum backward compatibility, but one has to wonder
what good it will do if everyone will already have to take a serious look at their DNS infrastructure
because of the dependency on DNSSEC.

2.3.2 Specification of TXT v=key1 record

Last section mentioned 4 other protocols that use TXT records:

• ‘‘v=spf1 a -all’’

• ‘‘v=DKIM1;p=MIGfMA0G cQ2QIDAQAB’’

• ‘‘v=pka1;fpr=[#1];uri=[#2]’’

• ‘‘X-IPsec-Server(10)=192.1.1.5 AQMM3s1Q==’’

All of these records except the IPsec record begin with a so called magic cookie; an identifying
string in a blob of text, used to identify the start of a parsable section. In this case the magic
cookie is v=, followed by the protocol and optionally its version. Kaminsky chose a similar scheme.

After the protocol and version are the protocol parameters. The parameters are defined as key-
value pairs separated by spaces. Kaminsky defined the following parameters:

• ha=[HASH ALGORITHM]

• h=[HASH]

• lh=[0|1]

• hr=[cert|pubkey]

• sts=[0|1]

• sn=[0|1]

2.3.3 Parameters and features

The ha parameter specifies the hashing algorithm that is used on the attached data. Instead of
a value from a IANA registry, as in the IETF draft, Kaminsky used a textual representation of
the hashing algorithm. Currently the sha1 algorithm is the only one explicitly listed. The h

parameter contains the hash of the certificate, confirming to the hash algorithm specified in the
ha parameter.

A feature called Livehashing can be enabled by setting lh=1 in the TXT record. If livehashing
is enabled, and the hash of the certificate is not specified, the client should calculate the hash of
the retrieved certificate. A second lookup should be done with the hash prepended as an extra
label to the domain name. If the response contains any secure record, the domain name and hash
are considered to be acceptably linked. Although an extra round trip is required, this improves
deployability for large sites. The hr, Hash Range, parameter specifies what is stored in DNS. In
the case of hr=cert, a hash of the entire certificate is published. And if hr=pubkey, then only the
public key is hashed.

Kaminsky also supports a sts parameter. A value of 1 indicates Strict-Transport-Security[6], to
enforce the use of TLS when accessing web sites. This solves a problem of STS during the first
connection to a site. Since there is no STS to enforce the initial connection being secure, can you
trust the value for STS you receive? Thus, the specification of Kaminsky can be used to securely
express TLS only connections to a server. The sn parameter is used to indicate that the server
supports Secure Negotiation.

12

Chapter 3

Implementation

We implemented a working proof of concept that shows the potential of an certificate less internet
through a browser add-on that checks for the availability of valid certificates over DNS using
DNSSEC, and where relevant uses them and/or compares them with regularly available certificates.

In the next section we will give an overview of the current available implementations, followed by
our choices regarding the browser. Finally we will conclude this chapter with the implementation
details of our add-on.

3.1 Current implementations

There are only a few implementations of DNSSEC validation for web browsers. They all offer
a implementation that validates DNS responses for A and AAAA record types. What we are
interested in is checking the validity of a certificate using DNSSEC. Currently there is only one
implementation of that, Phreeload. However, this doesn’t work with together with the current
web browsers. In the following sections we will present four implementations and why they are
not suitable for our goals.

3.1.1 DNSSEC Validator

DNSSEC Validator is an add-on for the Mozilla Firefox web browser, which allows you to check
the existence and validity of DNSSEC DNS records for domain names in the address of the page
currently displayed in your browser window. The result of this check is displayed using color keys
and information texts in the page’s address bar[11]

The DNSSEC Validator extension is currently one of the most usable extensions for DNSSEC
validation. However there is an important security issue. During the validation process it relies
on the AD flag, authenticated data, being set in the DNS response packet. If the AD flag is set
in a response, the name server considers all RRsets in the Answer and Authority sections of the
response to be authentic. But this is just a bit that is set at the name server. Since one can usually
not trust the last hop, from the DNS resolver to the client, the AD flag inside the response can
be spoofed. The result of this add-on can therefore only be trusted if one would use it together
with a local validating DNS resolver, for example Unbound[14].

Another reason for not completely basing our add-on on DNSSEC Validator is related to the
validation process. Validating the DNS responses is implemented in the add-on and can therefor
only be used in the web browser. Whilst we think that a validating resolver should be provided
by the Operating System or as a shared library so that multiple applications can use it.

13

CHAPTER 3. IMPLEMENTATION 14

3.1.2 DNSSEC Drill: Extension for Firefox

This extension performs DNSSEC lookups for the main hostname of the current page in firefox.
It uses Drill to chase the signatures up to a trusted key. The user can specify trusted keys by
putting them in a directory of his choice[12] The DNSSEC Drill extension created by NLnet Labs
depends on ldns[13] being present on the system. ldns is a DNS library supporting recent RFCs
including DNSSEC. One of the bundled tools with ldns is drill. This tool is used by the extension
to chase the DNSSEC signatures up to a trusted key.

This add-on calls the drill executable on the system and checks the exit code. Based on the exit
code, the add-on can show if the domain is secured by DNSSEC. Due to this implementation
method only the exit code, and not the actual DNS answer, is accessible from the add-on. This
means that the browser itself can continue with a spoofed DNS answer, even though a separate
DNS lookup outside the browser is perfectly valid.

3.1.3 DNSSEC-Tools

The goal of the DNSSEC-Tools project is to create a set of software tools, patches, applications,
wrappers, extensions, and plugins that will help ease the deployment of DNSSEC related tech-
nologies.[20]

This set of tools provides, among others, a patch for Firefox. The patch enables DNSSEC val-
idation of DNS lookups in the Firefox application suite (the Firefox browser, Mozilla, etc). An
important difference between a patch and add-on is that a patch requires a recompilation of
Firefox. While an add-on can easily be added to an existing installation.

3.1.4 Phreebird Suite - Phreeload

Phreebird is a DNSSEC proxy that operates in front of an existing DNS server (such as BIND, Un-
bound, PowerDNS, Microsoft DNS, or QIP) and supplements its records with DNSSEC responses.
Features of Phreebird include automatic key generation, real time record signing, support for arbi-
trary responses, zero configuration, NSEC3 ”White Lies”, caching and rate limiting to deter DoS
attacks, and experimental support for both Coarse Time over DNS and HTTP Virtual Channels.
The suite also contains a large amount of sample code, including support for federated identity over
OpenSSH. Finally, Phreeload enhances existing OpenSSL applications with DNSSEC support.[9]

Phreeload, which is included in the Phreeburd Suite, adds DNSSEC verification to OpenSSL
apps. It does this by hooking into LD PRELOAD. But browsers don’t use OpenSSL, Internet
Explorer uses CryptoAPI and Firefox and Chrome use Network Security Services (NSS). A different
implementation is therefore still required to user DNSSEC to associate certificates with domain
names in a web browser.

3.2 The browser

Our implementation will be an add-on for the Firefox web browser. The architecture of Firefox
allows for easy add-on development. A few implementations for the Firefox web browser already
exist. Although none of them are completely usable for our purposes, they can serve as a good
starting point.

We specifically choose to only support Firefox 4.0, even though this is still in beta. Version 4.0
provides a feature to call native C functions without any glue code. This allows us to easily
distribute the add-on together with libunbound, which is described in section 3.3.1, for multiple
platforms. This is a useful feature since it makes it possible to create an add-on that doesn’t rely
on any non-standard tools or libraries being installed on the system.

14

CHAPTER 3. IMPLEMENTATION 15

3.3 Add-on

In the next sections we will describe the important details of the add-on. Section 3.3.1 will give an
overview of the validating DNS resolver that is integrated in the add-on. Followed by a description
of the validation methods and possible result states in section 3.3.2. Finally, section 3.3.3 outlines
a problem with Strict Transport Security that is caused by two non compliant drafts.

3.3.1 Local validating DNS resolver

As we mentioned before in section 3.1.1, we can only rely on the DNS AD flag, if the validating
DNS resolver is running locally. In some environments one might be able to trust the (local) path
to a DNS resolver, but this is usually not the case when using your ISPs resolver or while being
connected to an open WiFi network. Running a local validating DNS resolver as a server might
not be desired on certain systems. An alternative to this is a stub-resolver that is linked into
an application. One of the components of Unbound[14], a server daemon implementation of a
validating DNS resolver, is the library API libunbound.

Our add-on uses libunbound for performing validated DNS lookups. We believe that an implan-
tation of the functionality provided by libunbound should be available on every system. For the
time being the add-on will include libunbound as a fall back mechanism if it is not provided by
the system.

3.3.2 Validation methods

The add-on performs two validation methods. It checks if the domain is signed by DNSSEC and
whether the DNS response is valid. If the domain is signed by DNSSEC and the connection to
the web server happens over a secure channel, the validity of the certificate will also be checked.
Firefox provides an interface, nsIWebProgressListener, that can be implemented to listen in on
the progress associated with the loading of requests. When a new request is made, the add-on
will do a lookup for the domain using libunbound and check if a valid and secured DNS response
is received. Without this, all policies and validation data published in DNS can’t be trusted.
The flowchart in Figure A.2 shows that if a domain isn’t signed by DNSSEC, the add-on doesn’t
continue with the validation process and gives control back to the browser. It’s important to
realize that any further checks wouldn’t add any security in the case of a unsigned domain. If an
attacker would be intercepting the connection, then the DNS responses containing the validation
data can be spoofed as well.

The second validation method will be called if the connection to the web server is on a secure
channel. The certificate received trough the HTTPS connection will be checked for validity. First
the certificate will be validated using the WebTrust Certificate Authorities that are available in
the browser. If the DNS records of the domain contain data that can be used to validate the
certificate, then this is also checked. The flowchart in Figure A.3 shows the possible security
states after validating the certificate. A self-signed certificate would normally not get accepted by
the browser. If it can be trusted based on validated data obtained from DNS, an exception for the
certificate is passed to the browser. This exception will disable the self-signed certificate warning
and the end-user will be able to browse a secured version of the web page.

3.3.3 HTTP Strict Transport Security

Firefox 4 supports the IETF draft HTTP Strict Transport Security (HSTS)[6]. HSTS is a mech-
anism enabling Web sites to declare themselves accessible only via secure connections. Besides
the Strict-Transport-Security (STS) header set by a web server during an HTTPS response, Fire-
fox also provides an interface for add-ons to enable STS for sites that don’t set the STS header
themselves.

15

CHAPTER 3. IMPLEMENTATION 16

A problem with the current HSTS draft is that it is not compliant with the in Section 2.2.2
described draft Using Secure DNS to Associate Certificates with Domain Names For TLS or
the specification described in Section 2.3.2. The HSTS policy states that the user agent should
terminate any secure transport connection attempts upon any and all secure transport errors or
warnings, including those caused by a site presenting self-signed certificates. This conflicts with
the other drafts that state that a self-signed certificate should be accepted if a valid corresponding
fingerprint record is found under the domain name of the web server.

The HSTS implementation in Firefox 4 complies to the previous statement and doesn’t allow ex-
ceptions for self-signed certificates when STS is enabled for a domain. This has some consequences
for our add-on. If a record under a domain name specifies that STS should be enabled, it can’t be
followed without some further checks. The domain can only be marked as STS when the browser
already accepts the certificate, signed by a Certificate Authority. If the certificate presented by the
web server can only be validated using DNSSEC, the add-on adds only adds an exception to accept
the certificate. The domain will be redirected to HTTPS, but won’t be marked as STS enabled,
since that conflicts with accepting the self-signed certificate based on validated DNS records.

Not being able to enable STS when specified in a DNS record also affects resources loaded by the
main document, such as images or style sheets. If STS could be enabled, all these sub documents
are also forced to use a secure connection.

16

Chapter 4

Conclusion

At the time of writing, the IETF is defining the standard described in section 2.2. Many options
are being considered while working towards a complete design. Although a consensus on all these
choices takes a long time, it will in the end lead to a well considered standard. In contrast, Dan
Kaminsky showed that using a release early, release often approach has advantages as well. His
choice of a TXT record could be considered bad, but did work out to a quick and very practical
solution. Taking the quick route at this moment has its advantages. Since the subject is very
active at this moment, having a quick practical solution showed what is possible and which choices
are important to consider in the process.

With DNSSEC being a requirement for associating certificates with domain names using the
Domain Name System, an important problem had to be solved. Namely the last hop of a secure
DNS system, from the end client to the DNS resolver. Relying on the AD flag is not sufficient,
especially when taking open WiFi networks in consideration. Running a full local DNS resolver is
not desirable on every system, neither is having every application implementing its own DNSSEC
validation methods. We can conclude that DNSSEC support should be provided by the operating
system or as a library API that can be shared by multiple applications.

From the development of our proof of concept add-on we can conclude that it’s not that difficult
to integrate a local validating resolver, in our case libunbound, into an add-on or application.
Once the standard on using secure DNS to associate certificates with domain names is nearing
completion, the implementation can be adopted quickly by web browsers and other applications.

4.1 Future work

Future research needs to be done on the transitioning path from checking certificates using signing
authorities to using the secure channel provided by the DNSSEC infrastructure. If there’s no
valid certificate association published in DNS, should a client application always fall back to the
current method using Certificate Authorities? And what are the implications of having this fall
back mechanism, do we want to end up with a weakest link situation?

There’s no future in domain validated certificates; a more secure alternative will exist soon. How-
ever, associating certificates with domain names using secure DNS only confirms the domain name.
Certificate Authorities can add value by confirming the actual entity behind a domain. We think
that the hypothetical .trusted could add value against phishing attacks. Inside this top-level do-
main CA’s could publish Extended Validation certificates in a secure way. Future research could
explore the organizational structure for this TLD and different certificate ’class’ sub domains(ie.
*.bank.trusted to indicate domains safe for online banking).

17

Appendix A

Flowcharts

Figure A.1: Simplified DNSSEC chain of trust

18

APPENDIX A. FLOWCHARTS 19

Figure A.2: DNS flowchart

19

APPENDIX A. FLOWCHARTS 20

Figure A.3: State flowchart

20

Appendix B

Example DNSSEC signature chase

1 plange@fx160 −24:˜$ dig +s i g cha s e www. os3sec . org
2 ; ; RRset to chase :
3 www. os3sec . org . 600 IN CNAME web . o s3 sec . org .
4
5
6 ; ; RRSIG of the RRset to chase :
7 www. os3sec . org . 600 IN RRSIG CNAME 8 3 600 20110306042501 20110204042501 771 os3 sec . org . Sf535bnI3Mj8VzfdoJCFDbdPe3a7Xmbee5miLsP0BIfTLur/xnJ55V6N d8aVHkhxNT0y5kL7mtNZEIIM9OCR+MtmYc6bUrd8+WRIWcgm5I/zPdKX eq45K1OcnoG0OX9ZdDOhCNwkhYOysTuvzCb+XSwKxuS8MiBZoZCtqwoa cY0=
8
9

10
11 Launch a query to f i nd a RRset o f type DNSKEY for zone : o s3 sec . org .
12
13 ; ; DNSKEYset that s i gn s the RRset to chase :
14 os3 sec . org . 600 IN DNSKEY 256 3 8 AwEAAdfNZBq/QmeXgR+4NSFvDIczaha1qTs3udqsMwuW/wGedZIEIY51 VfamB8ErYyokM+Yw2IoHejMysXnq2IPUe0Pf35iXtnYqeRsJcb0xkTjF glZddRSP9TsZ+RuXcMKcPZ8OeZU8ANgFMbi8wuhIQqH8a6Sy7f7AA9V0 w2+0WB/ l
15 os3 sec . org . 600 IN DNSKEY 257 3 8 AwEAAcfrYpMPBosrQdMLAC6wxHzEwli2YvfDlN1VmKNbGIp1Oz2pGNKC 6adBMxAbdLwGyf+STwp9OsjHbQHHp1PQVvKxelinFEhQcl2IiQunIn6Y PDfdAIDYu691FWJl6G41a5Vcdq7lc4q9kDfnroKTHnr9CRVNGYtAkcrB GrgQcS/W1ddQ/zBlj1fqq1zrEodocEcPYP0UQLBuGC+OPEOycAhhGz0z QixSvIF1eGj3EPYYOfvnT17ri07h1g1jqeQOLOoqDhET4TzgyDRWgq6h Lt4511LmnD8eJDcVk4MsdIYu3Y1rcxUq5JtMOfLLfROhNb7+CWstyf3D Jg+gDc0kMeU=
16
17
18 ; ; RRSIG of the DNSKEYset that s i gn s the RRset to chase :
19 os3 sec . org . 600 IN RRSIG DNSKEY 8 2 600 20110306042501 20110204042501 771 os3 sec . org . ywYW3fciAYpGXHHDz9z3EssVHnDDDjr4K+umv8ar7CwQgxBhOjtTUj8s 0x/700DOz2KMxIeB7rk0FnvGykrvcJmXql+weunPyG3BLoEWKB7r1406 u9EILeBAJ0dS51VcXQhKjbVQ8S1j4vWwaz72JjB5Ujf1Mreg8OeTjXDP xHQ=
20 os3sec . org . 600 IN RRSIG DNSKEY 8 2 600 20110306042501 20110204042501 6694 os3sec . org . l4NY7rRUfJTyoR67GmsxVv8tQJHkf1utUid7fXTzy/VCzgTZINe8Q85d zLMKeoVzOqs4ksA7ULzys9L/QMcukMhoi56c2gS38KjICo92qm1+KgWX JXwo0H391UA748wymkrr6XHVNtH/fmmsEW73hZPZPASu2QH2X+PhfwoQ WQn0Sh10Fgy9b+5wX2dBMFXtWzVf8G0p2Y+uNEPxYUeDdzmWL37jk12W m882uEkPbtnSYH8YfX6/BRwiAr7EciGqDnEy9n+g7TGf7aBGEo6xdBJS w+hQ9eSM6NCO28Ost085TkxZGhK4JmW7Ohhr0eeVFoe0jnOQbeTDyUrQ V/hpiw==
21
22
23
24 Launch a query to f i nd a RRset o f type DS for zone : o s3 sec . org .
25
26 ; ; DSset o f the DNSKEYset
27 os3 sec . org . 76493 IN DS 6694 8 2 BB2E6ECC8F31007B33B09121F501ED6A5F4804AD0C559FB230542EF9 A27A1F3A
28
29
30 ; ; RRSIG of the DSset o f the DNSKEYset
31 os3 sec . org . 76493 IN RRSIG DS 7 2 86400 20110215155636 20110201145636 34260 org . R4iL6MI5ybP8uf0JyNVlh0w5GPtothuI2yE/OBJWw4L09lhtf4PPUutv EfrpdjkIThxOIIYi ls+8oizBLtN2hbySDO/G8Y1/x3/SYVoQEZSQKoh+ srqzSd5ZWT6LArm244nVk8IB0Qe6OSO48dUM5Yzh40LiwXbDLeDuakkt kac=
32
33
34
35
36 ; ; WE HAVE MATERIAL, WE NOW DO VALIDATION
37 ; ; VERIFYING CNAME RRset for www. os3 sec . org . with DNSKEY: 7 7 1 : su c c e s s
38 ; ; OK We found DNSKEY (or more) to va l i d a t e the RRset
39 ; ; Now, we are going to va l i d a t e t h i s DNSKEY by the DS
40 ; ; OK a DS va l i d s a DNSKEY in the RRset
41 ; ; Now v e r i f y that t h i s DNSKEY va l i d a t e s the DNSKEY RRset
42 ; ; VERIFYING DNSKEY RRset for os3 sec . org . with DNSKEY:6694 : su c c e s s
43 ; ; OK th i s DNSKEY (va l i da t ed by the DS) v a l i d a t e s the RRset o f the DNSKEYs, thus the DNSKEY va l i d a t e s the RRset
44 ; ; Now, we want to va l i d a t e the DS : r e c u r s i v e c a l l
45
46
47 Launch a query to f i nd a RRset o f type DNSKEY for zone : org .
48
49 ; ; DNSKEYset that s i gn s the RRset to chase :
50 org . 900 IN DNSKEY 256 3 7 AwEAAZTErUFsgGZliJ7xFCdRUIIrvuz5LU8wgryBBNZXZ/xkhZ/4hw/D L8dBvBVNNXeKBb848kEEnwaOffWjVm24Lfxpc4vh+rGP0A1ExO7kKDY6 +l60L7xl5zrSJ /9/OwxxLwpeX0xp3VkSLy+UK8UJffvIDXNEI3EuXWZ7 7KGHCUkD
51 org . 900 IN DNSKEY 257 3 7 AwEAAYpYfj3aaRzzkxWQqMdl7YExY81NdYSv+qayuZDodnZ9IMh0bwMc YaVUdzNAbVeJ8gd6jq1sR3VvP/SR36mmGssbV4Udl5ORDtqiZP2TDNDH xEnKKTX+jWfytZeT7d3AbSzBKC0v7uZrM6M2eoJnl6id66rEUmQC2p9D rrDg9F6tXC9CD/zC7/y+BNNpiOdnM5DXk7HhZm7ra9E7ltL13h2mx7kE gU8e6npJlCoXjraIBgUDthYs48W/sdTDLu7N59rjCG+bp i l+c8oZ9f7N R3qmSTpTP1m86RqUQnVErifrH8KjDqL+3wzUdF5ACkYwt1XhPVPU+wSI lzbaAQN49PU=
52 org . 900 IN DNSKEY 257 3 7 AwEAAZTjbIO5kIpxWUtyXc8avsKyHIIZ+LjC2Dv8naO+Tz6X2fqzDC1b dq7HlZwtkaqTkMVVJ+8gE9FIreGJ4c8G1GdbjQgbP1OyYIG7OHTc4hv5 T2NlyWr6k6QFz98Q4zwFIGTFVvwBhmrMDYsOTtXakK6QwHovA1+83BsU ACxlidpwB0hQacbD6x+I2RCDzYuTzj64Jv0/9XsX6AYV3ebcgn4hL1jI R2eJYyXlrAoWxdzxcW//5yeL5RVWuhRxejmnSVnCuxkfS4AQ485KH2tp dbWcCopLJZs6tw8q3jWcpTGzdh/v3xdYfNpQNcPImFlxAun3BtORPA2r 8ti6MNoJEHU=
53 org . 900 IN DNSKEY 256 3 7 AwEAAZMKvhAE5BARHVleVsDcGRBQBFYdfAbhixOI9a3tZ4av7wX0HB6/ ZUWDp5m+WeUoR/lGNIyrp+oGMTzU4ZymsU4s1b5vZ+lUIpgF99Vji8Zc jxqcW97JFxrrWB4Bt88Dc/4FxCl6KwmWCbyD8WnTh0MQajJ+mhDvw1Ib +YE3L8iD
54
55
56 ; ; RRSIG of the DNSKEYset that s i gn s the RRset to chase :

21

APPENDIX B. EXAMPLE DNSSEC SIGNATURE CHASE 22

57 org . 900 IN RRSIG DNSKEY 7 1 900 20110215155636 20110201145636 21366 org . PjQQCVPqiLJBF95iGjP3wntwRd/+1LFLxoqrM0JGc1ouaOr0BJeVggtf 5XeN2knGzNA1vLxZZTag0l1QwS3DwtluL1mT4MHJgriuzSVu52+QuKQz A6YBCT2UiZbLwwXVAR1kgxRham4Iu099Qvr0VJwTwCVHm7gtfU7FtckB FOKNeO/nXlmGqQM1mMpXki+IHeMJ1xK2u/LNxlfeD3sFaIDzdvNV+g/D 8staoamrqTsnNzxDYZhTtWUtdFoyvJkksYCp4SF6cJgUNF7EjaG2angs xZhmSpqM0qx+YZLzUyhOjUJja8LCaNJW32G1SKOYUr8ETbOyHrAhGX3B b8ExzQ==
58 org . 900 IN RRSIG DNSKEY 7 1 900 20110215155636 20110201145636 34260 org . FCc6z/OzEZDBXML5lL//VbKw0LiCB63lyDYZYCvpLvMZg3lDZTZFgxsj S9SnLkJ8sqeWZSOroy7kGrNXaw3mvc6fbXHvC0H5PiFBSLjZNMgTzqvY eJvZK6WaZwvf7f3qAgCac9tLRTuH8sHCBqN833ECqQ9KMTZcYPPd9qNV 3T8=
59
60
61
62 Launch a query to f i nd a RRset o f type DS for zone : org .
63
64 ; ; DSset o f the DNSKEYset
65 org . 35434 IN DS 21366 7 1 E6C1716CFB6BDC84E84CE1AB5510DAC69173B5B2
66 org . 35434 IN DS 21366 7 2 96EEB2FFD9B00CD4694E78278B5EFDAB0A80446567B69F634DA078F0 D90F01BA
67
68
69 ; ; RRSIG of the DSset o f the DNSKEYset
70 org . 35434 IN RRSIG DS 8 1 86400 20110210000000 20110202230000 21639 . unpuP88/6v/CvH0WFlZsV4nKPkUuef390g+PYr3cTkJGj7ALSeyYZ1LD yIlYqs /yNvTiSUgedSPJAvW96/guEp3sH9zjdcaYiwrT6boni9WYII/ f tjYFgoANVha/MsAEB5tZJ0iqrEBXiN/lPDjw2z3Bdyl+DHrpr5jWw8Om YMU=
71
72
73
74
75 ; ; WE HAVE MATERIAL, WE NOW DO VALIDATION
76 ; ; VERIFYING DS RRset for os3 sec . org . with DNSKEY:34260 : su c c e s s
77 ; ; OK We found DNSKEY (or more) to va l i d a t e the RRset
78 ; ; Now, we are going to va l i d a t e t h i s DNSKEY by the DS
79 ; ; OK a DS va l i d s a DNSKEY in the RRset
80 ; ; Now v e r i f y that t h i s DNSKEY va l i d a t e s the DNSKEY RRset
81 ; ; VERIFYING DNSKEY RRset for org . with DNSKEY:21366 : su c c e s s
82 ; ; OK th i s DNSKEY (va l i da t ed by the DS) v a l i d a t e s the RRset o f the DNSKEYs, thus the DNSKEY va l i d a t e s the RRset
83 ; ; Now, we want to va l i d a t e the DS : r e c u r s i v e c a l l
84
85
86 Launch a query to f i nd a RRset o f type DNSKEY for zone : .
87
88 ; ; DNSKEYset that s i gn s the RRset to chase :
89 . 169131 IN DNSKEY 256 3 8 AwEAAb5gVAzK59YHDxf/DnswfO1RmbRZ6W16JfhFecfI+EUHRXPWlXDi 47t2FHaKyMMEROapL5SZ8HiCzl05lORZGGdN37WY7fkv55rs+kwHdVRS rQdl81fUnEspt67IIgaj3SrGyZqgzyixNk /8oT3yEfKDycTeJy4chKPt 0JegWrjL
90 . 169131 IN DNSKEY 257 3 8 AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relS Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA+Uk1ihz0=
91
92
93 ; ; RRSIG of the DNSKEYset that s i gn s the RRset to chase :
94 . 169131 IN RRSIG DNSKEY 8 0 172800 20110214235959 20110131000000 19036 . US/x2AqVVg24lZSXALdxBdZFa8U4WctveUBw2pIpN1TDtM6QNqZEqFSS 29KF62Owf9PvyeKHXVhSjg0brLPB2wpDTVs7l6NGxxhR24KAas6ufRQx BnBkGSGm8kWdz6lNp9gGIjIMnYypXSp0VUaFpheHJ0Qxq/gpgpnCPB4o ByJhUBDbSplqeZAdr1/jDCLtJliotE8gQ8vs5p6qMSO+H5Xry/oWTcs7 Ub7qc+5oEali4XhbyXsno5wHFKWFlMTVgnaMcwsV1mHqhezEPXijvime 026sRDy2L+6w4Xp5AAEJex/1fmozMPY1hiHuOykYM4UcRUF9c21VzWPX d/+HmA==
95
96
97
98 Launch a query to f i nd a RRset o f type DS for zone : .
99 ; ; NO ANSWERS: no more

100
101 ; ; WARNING There i s no DS for the zone : .
102
103
104
105 ; ; WE HAVE MATERIAL, WE NOW DO VALIDATION
106 ; ; VERIFYING DS RRset for org . with DNSKEY:21639 : su c c e s s
107 ; ; OK We found DNSKEY (or more) to va l i d a t e the RRset
108 ; ; Ok, f i nd a Trusted Key in the DNSKEY RRset : 19036
109 ; ; VERIFYING DNSKEY RRset for . with DNSKEY:19036 : su c c e s s
110
111 ; ; Ok t h i s DNSKEY i s a Trusted Key , DNSSEC va l i d a t i on i s ok : SUCCESS

22

Bibliography

[1] R. Austein D. Atkins. Threat analysis of the domain name system (dns). Technical report,
IETF Request For Comments, 2004. https://datatracker.ietf.org/doc/rfc3833/.

[2] S. Farrell D. Cooper, S. Santesson. Internet x.509 public key infrastructure certificate and
certificate revocation list (crl) profile. Technical report, IETF Request For Comments, 2008.
https://datatracker.ietf.org/doc/rfc5280/.

[3] Electronic Frontier Foundation. The eff ssl observatory. http://www.eff.org/observatory,
2010.

[4] WebTrust Certification Authorities Advisory Group. Guidelines for the issuance and man-
agement of extended validation certificates, 2008. version 1.1.

[5] IETF. dane charter. http://datatracker.ietf.org/wg/dane/charter/, 2010.

[6] A. Barth J. Hodges, C. Jackson. Http strict transport security (hsts). Techni-
cal report, Internet Engineering Task Force, 2011. http://tools.ietf.org/html/

draft-ietf-websec-strict-transport-sec-00.

[7] S. Josefsson. Storing certificates in the domain name system (dns). Technical report, IETF
Request For Comments, 2006. https://datatracker.ietf.org/doc/rfc4398/.

[8] Dan Kaminsky. The dnssec diaries. http://dankaminsky.com/2010/12/13/dnssec-ch1/,
December 2010.

[9] Dan Kaminsky. Introducing the domain key infrastructure. In Phreebird suite, 2010.

[10] Amit Klein. Bind9 dns cache poisoning. Technical report, 2007. http://www.trusteer.com/
bind9dns.

[11] CZ.NIC Labs. Dnssec validator. http://www.dnssec-validator.cz/, 2010. version 1.0.4.

[12] NLnet Labs. Dnssec drill: Extension for firefox. http://nlnetlabs.nl/projects/drill/

drill_extension.html, 2010. version 0.7.1.

[13] NLnet Labs. ldns. http://www.nlnetlabs.nl/projects/ldns/, 2010.

[14] NLnet Labs. Unbound. http://www.unbound.net/, 2011. version 1.4.8.

[15] R. Daniel M. Mealling. The naming authority pointer (naptr) dns resource record. Tech-
nical report, IETF Request For Comments, 2000. https://datatracker.ietf.org/doc/

rfc2915/.

[16] P. Mockapetris. Domain names - implementation and specification. Technical report, IETF
Request For Comments, 1987. https://datatracker.ietf.org/doc/rfc1035/.

[17] P. Koch P. Faltstrom, R. Austein. Design choices when expanding the dns. Technical report,
IETF Request For Comments, 2009. https://datatracker.ietf.org/doc/rfc5507/.

23

https://datatracker.ietf.org/doc/rfc3833/
https://datatracker.ietf.org/doc/rfc5280/
http://www.eff.org/observatory
http://datatracker.ietf.org/wg/dane/charter/
http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-00
http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-00
https://datatracker.ietf.org/doc/rfc4398/
http://dankaminsky.com/2010/12/13/dnssec-ch1/
http://www.trusteer.com/bind9dns
http://www.trusteer.com/bind9dns
http://www.dnssec-validator.cz/
http://nlnetlabs.nl/projects/drill/drill_extension.html
http://nlnetlabs.nl/projects/drill/drill_extension.html
http://www.nlnetlabs.nl/projects/ldns/
http://www.unbound.net/
https://datatracker.ietf.org/doc/rfc2915/
https://datatracker.ietf.org/doc/rfc2915/
https://datatracker.ietf.org/doc/rfc1035/
https://datatracker.ietf.org/doc/rfc5507/

BIBLIOGRAPHY 24

[18] J. Schlyter P. Hoffman. Using secure dns to associate certificates with domain names for tls.
Technical report, Internet Engineering Task Force, 2011. http://tools.ietf.org/html/

draft-ietf-dane-protocol-03.

[19] R. Rosenbaum. Using the domain name system to store arbitrary string attributes. Tech-
nical report, IETF Request For Comments, 1993. https://datatracker.ietf.org/doc/

rfc1464/.

[20] DNSSEC Tools. Dnssec-tools. https://www.dnssec-tools.org/resources/tools.html,
2010. version 1.8.

[21] David Ulevitch. Opendns. http://www.opendns.com/.

24

http://tools.ietf.org/html/draft-ietf-dane-protocol-03
http://tools.ietf.org/html/draft-ietf-dane-protocol-03
https://datatracker.ietf.org/doc/rfc1464/
https://datatracker.ietf.org/doc/rfc1464/
https://www.dnssec-tools.org/resources/tools.html
http://www.opendns.com/

	Introduction
	Standards
	Design Considerations
	Record Type
	Policy and Legacy
	Placement in DNS Hierarchy

	IETF
	Dane Working Group
	Current Specification
	Discussion Topics

	Kaminsky Alternative
	Defense For Choosing TXT
	Specification of TXT v=key1 record
	Parameters and features

	Implementation
	Current implementations
	DNSSEC Validator
	DNSSEC Drill: Extension for Firefox
	DNSSEC-Tools
	Phreebird Suite - Phreeload

	The browser
	Add-on
	Local validating DNS resolver
	Validation methods
	HTTP Strict Transport Security

	Conclusion
	Future work

	Flowcharts
	Example DNSSEC signature chase

