
Master System and Network Engineering

Automatic SSH public key fingerprint retrieval

and publication in DNSSEC

Research Project (1) report

Marc Buijsman, Pascal Cuylaerts

{marc.buijsman, pascal.cuylaerts}@os3.nl

6 February 2011

Contents

1 Introduction 1

1.1 Research question . 2

2 Research 3

2.1 The desired mechanism . 3

2.2 Shared secrets . 4

2.3 Authentication without shared information . 4

3 Mechanism design 6

3.1 The key retrieval mechanism . 6

3.2 The key retrieval mechanism under attack . 7

3.2.1 Attacker forwards messages . 7

3.2.2 Attacker modifies messages . 8

4 Implementation 9

4.1 Secrets file . 9

4.2 Secret look up at the remote host . 9

4.3 SSH connection . 10

4.4 Local DNSSEC validation . 11

4.5 Encryption . 12

4.6 Pushing updates to the DNS . 12

4.7 Existing list of SSHFP records . 12

4.8 OpenSSH patch . 12

4.9 System requirements . 13

4.9.1 Overview . 13

4.9.2 Description . 14

5 Conclusion 15

References 17

A Program code and configuration files i

A.1 For the administration machine . i

A.1.1 Application . i

A.1.2 Configuration file . viii

A.1.3 Usage . viii

A.1.4 Python interface to SSH client functionality . viii

A.2 For the remote host . xviii

A.2.1 Application . xviii

A.2.2 Configuration file . xxii

1 Introduction

The concept of trust is fundamental in computer network security. Although not everyone is aware of
this, encrypted network connections are not much safer than unencrypted ones if the person that initiates
such a connection does not explicitly trust that he or she is talking to the intended endpoint.

Take for example an HTTPS connection to a bank’s website. If the browser shows that the SSL certificate
used for the authentication of the bank’s website is valid and that the channel is encrypted (e.g. by
showing a lock icon or a green address bar), then one may trust that it really is that bank where he or
she is sending sensitive data to (and that no one else can read it).

However, many people do not think about what their trust is actually based on. They implicitly trust
the browser’s maintainers who ship the browser with a list of what they think are trustworthy certificate
authorities (CAs). These are the organisations (third parties) which ultimately need to be trusted since
they are the ones signing the certificates, thereby claiming that the website is truly in hands of the
associated organisation (the bank in this example).

Unfortunately, someone might not notice that a certificate has been signed by a CA which he or she
does not actually trust, but which has been included by the browser’s maintainers. If one cannot trust
a “secure” connection to another machine, then it cannot be ruled out that an eavesdropper sits in
between. Moreover, such a man-in-the-middle could maliciously impair the data flow.

The Secure Shell (SSH) protocol is, like SSL (or TLS), a way to have a secure (encrypted) connection
between two computers. It is a protocol used for remotely accessing a machine’s command line (shell)
with end-to-end encryption. Unlike with SSL as in the example, with SSH one is likely to be confronted
with the trust aspect more often. A machine’s shell is usually supposed to be accessible by only a
few people, whereas websites are aimed at serving many people. Because of this, it makes little sense
to purchase a certificate from a CA to secure SSH connections. That is why an SSH client normally
involves the user in the authentication process instead.

When one is connecting to a host using SSH for the first time, a so-called fingerprint derived from the
remote host’s public key is usually presented [1]. In the OpenSSH client this is a hexadecimal presentation
of the MD5 hash of the public key. The user can either accept the fingerprint and continue connecting, or
refuse it to abort the connection. This step is important. If the user believes that the public key belongs
to the private key that is held by the intended host, then it is safe to continue. In the initialisation
process the remote host must cryptographically prove that it possesses the private key to authenticate
itself.

If the user does not trust the fingerprint, then it would be unwise to accept it. It could be the fingerprint
of an eavesdropper for instance. To be able to verify the fingerprint, the user must have had contact
with the host’s administrator to retrieve it safely. If the user trusts the way the fingerprint has been
retrieved, then this person can also trust that he or she is trying to connect to the intended host machine
if the presented fingerprint matches the one retrieved out-of-band. The chance that there still is an
eavesdropper in the middle is very small since it is hard to generate a public and private key pair with
exactly the same fingerprint.

It would however be convenient for a person who is initiating an SSH connection to have a way of
verifying the authenticity of a received SSH public key without his or her intervention. Possible human
error when comparing fingerprints would also be eliminated. Such a means would require the person (if
he or she cares about security) to trust an automated verification process, such that when the key is
positively verified he or she can implicitly trust the key to be valid.

If this trust is based on a locally stored list of public keys or fingerprints that was composed by the
person him- or herself then a simple automated lookup in this list would suffice. However, this solution
is not very scalable. Every person has to compose his or her own list, and keys of previously unknown
hosts still have to be verified manually.

1

The use of the Domain Name System (DNS) offers a better solution, as this is a single database that
can be accessed by everyone. An administrator can publish a public key fingerprint in the DNS so that
it is instantly publicly available, making it an easy way of distributing fingerprints.

The response to a DNS lookup request can be trusted if DNSSEC (DNS Security [2] [3] [4]) is used. If
the retrieved resource record has been signed by an instance that is part of a DNSSEC chain of trust
which is ultimately signed by a trusted instance (most commonly the DNS root), then the authenticity of
the record can be verified. This would mean that a DNSSEC-validated SSH fingerprint resource record
(SSHFP RR [5]) that is tied to a domain name can be trusted to be authenticated by the instance that
has the authority over that domain name.

We earlier mentioned that a person would need to contact a host’s administrator to retrieve the machine’s
fingerprint. This could however pose a problem if this person is an organisation’s administrator him-
or herself. If he or she administers only one machine, then it is not a big deal to walk to the machine,
access it directly to retrieve its fingerprint and carrying it back to a workstation. This is the safest way
to transport the fingerprint. But if there are many machines of which the fingerprints are yet unknown,
then this becomes a cumbersome task.

For someone in such a situation it would be convenient to automate this task. A workstation can be
used to collect the fingerprints, which could also push them to the DNS so that other workstations can
easily retrieve them as well. When automating this whole process it is inevitable that the a potentially
untrusted computer network will be used for the fingerprint retrieval. During our project we investigated
a way of retrieving the fingerprints of remote machines securely over an insecure network in the situation
where public keys are yet untrusted as a means of host authentication. Such a mechanism of validating
a host’s fingerprint opens the way for automated fingerprint retrieval and publication in DNSSEC.

1.1 Research question

Most of our research was focused on the problem of the insecure connection between an administrator’s
workstation and a remote machine whose SSH public key is unknown. We have investigated if this
channel can be secured, and if so how this can be implemented in a software tool. We have also tried to
enable this tool to automatically publish fingerprints in the DNS. This is the practical side of our project;
to enable the tool to automatically collect fingerprints in a secure way, the research is a prerequisite for
its implementation.

Our research question is:

How can SSH public key fingerprints be automatically collected from
remote machines and published in DNSSEC in a secure way?

This can be further divided into the following subquestions:

• What are the possible solutions for secure data transfer over an untrusted network?

• Can we make use of existing methods or protocols to realise the possible solutions?

• How can these solutions be implemented in a tool that automates the collection of SSH public
keys?

• How can we insert the SSH public key fingerprints into the DNS and sign them using DNSSEC in
an automated way?

2

2 Research

In the introduction we explained how DNSSEC can be used to verify the validity of SSH fingerprints
and therefore the validity of public keys. If a trust anchor was reached during the DNSSEC-validation
of a resource record, then it can be trusted that this record has been authenticated by the instance that
has the authority over the concerning domain name. Ultimately, this instance itself needs be trusted as
well. If one does not trust that the instance took great care of publishing the correct SSH fingerprint in
the DNS, then doing DNSSEC validation makes little to no sense.

A DNS SSHFP record contains a SHA-1 hash (called “fingerprint”) of either an RSA or DSA public
key [5]; both types can be used in the SSH authentication protocol. The hash is preceded by a number
denoting the type of key used (1 for RSA and 2 for DSA) and a number denoting the used hashing
algorithm (1 for SHA-1). An example is as follows:

domain.com IN SSHFP 2 1 d066788e581f8d91faf1e715954fca596324e851

2.1 The desired mechanism

We will be describing a mechanism for automatic public key retrieval from remote machines and finger-
print publication in the DNS. We focus for a large part on the situation where the public keys of the
remote machines are not certain to belong to those machines. If one uses such a mechanism and he or
she wants to be sure that the correct public key fingerprints are published, then there must be a way
to verify that a received public key really belongs to the intended machine. After all, there could be an
attacker in the middle with whom the actual SSH connection has been set up.

Since in such a situation one cannot be sure whether or not a public key belongs to a certain machine,
it cannot be used for the authentication of the machine’s identity, even if the machine can prove that
it possesses the corresponding private key. It is our goal to collect the public key in such a trustworthy
way that it eventually can be used for this purpose. This is necessary for SSH connections where public
key cryptography plays a central role in server authentication.

Therefore, some secure mechanism is needed to establish the authenticity and the integrity of a collected
public key. That is, we want to make sure that a public key belongs to the machine with a certain
identity, and we want to ensure that its integrity has been preserved during transfer to prevent a possible
publication of a wrong or malicious fingerprint into the DNS.

The most secure way to collect public keys would be transporting them out-of-band from each machine
separately. This would require a person to physically access these machines one by one to extract the
public key. If there are many machines with many administrators, then this task can be simplified by
asking each administrator to send their machine’s public key in a GPG [6] [7] signed email, for example.
However, the senders’ GPG public keys first need to be trusted as well. If many machines are under
control of a single administrator, this solution may not be workable because he or she still needs to
physically access a relatively large number of machines.

In the last case, it would be very convenient to be able to automate the key retrieval process by a
computer program without further human intervention needed. This will however need to be done over
a potentially insecure network, because there is no other way a computer program can contact a remote
machine. What we have here is a classic chicken-and-egg problem. We need to authenticate a machine
for which we need its public key and we want the machine to proof that this really is its public key, but
then we already need to have authenticated the machine. The machine therefore needs something else
than a public and private key pair to be able to identify itself.

3

2.2 Shared secrets

In general, a person that needs to authenticate him- or herself, will need to know something (e.g. a
passphrase), have something (e.g. a smartcard), be something (e.g. his fingerprint), do something (e.g.
a signature) or a combination of these. The authority that is authenticating this person needs to be
able to verify the provided information. In computer security, if two machines need to authenticate one
another, they will often know each others public key and use challenge-response authentication combined
with public key encryption. An alternative is to have both machines to know some shared secret such
that each computer can prove somehow that it knows what the secret is, without revealing it to the
outside world.

A shared secret can be seen as a passphrase. Just like passphrases, such a secret needs to stay secret
between two parties to prevent a third party from misusing it. Unlike with public and private key pairs,
both parties need to protect the secret since they both need to know it to be able to authenticate each
other. If only one of the parties needs to authenticate itself to the other using a public and private key
pair, then this party needs to protect the private key whereas the other party does not need to protect
anything. It does need to know the public key, but since this key is publicly available is does not have
to be protected from outsiders.

It could be easy to use a shared secret as a means of authentication in some cases though. A machine
specific system identifier can be looked up by the machine itself or by someone having elevated privileges
on the machine. A system’s Universally Unique Identifier (UUID) for example is a good candidate for
a machine identifier (as will be explained later), which is usually only readable by users who have root
privileges. We decided to make use of a shared secret since some system identifiers might be listed on
hardware inventory lists that are available within an organisation.

Having these numbers on paper already makes a walk to every machine within the organisation, to
retrieve the identifiers manually, unnecessary. They could be entered in a computer file straight away.
Once this has been done, a program can use this file to perform the automatic public key retrieval
process. The only assumption we made is that the identifiers have not been copied by an untrusted
party during the identifiers’ retrieval process and that the inventory lists are stored safely, something
that is important when using them as secrets but which we have not further investigated.

2.3 Authentication without shared information

At first, we tried to come up with a protocol that does not need any pre-shared data for the machines
to be able to authenticate one another. In this case, there is no shared information that can be used
for host authentication. Most of the possible solutions for this problem we have read about consisted
of identity-based key agreement schemes that require a trusted third party to act as a key generation
center (KGC [8]) that creates key pairs. Apart from the need for a trusted third party, these schemes
where too complex for our application.

Methods to detect a man in the middle can also be used, such as the leap-of-faith method [9]. If there is
someone in between during the first connection, then he must be in between during all the subsequent
connections to prevent the administrator from being warned that the public key has changed. This
could be hard to do for the attacker and therefore a second connection can be set up after a certain
timespan to see if there will indeed be a warning. If so, then the administrator will know that there was
someone in between either during the first connection or the second, making the received data during
either connection untrusted.

An administrator could also make assumptions about the network between him or her and the remote
host to determine if it will be safe enough to proceed without having the ability to authenticate the
received data. Such an assumption can for example be that only the local area network (LAN) will be
used which may be considered clear from intruders. Also, since our mechanism needs to be used only
once to retrieve public keys, the risk of an attacker being present during the retrieval process is reduced

4

to only one connection for each host. This could be considered an acceptable risk.

However, since there is no information available to authenticate a remote host in these situations, data
exchange can never be completely secure. We need information that can be used to authenticate a host
to be able to set up a secure session with the host, so ensure that no malicious fingerprints will be
published in the DNS. For our mechanism this information will be a pre-shared secret.

5

3 Mechanism design

3.1 The key retrieval mechanism

Figure 1: Key retrieval mechanism.

The mechanism we devised to securely retrieve remote hosts’ fingerprints and publish them in the DNS
(signed using DNSSEC) is illustrated in figure 1. This mechanism assumes that an administrator wants
to collect the SSH public keys from a number of remote hosts (RHs) using one administration machine
(AM).

To authenticate the responses that the AM will receive from the RHs, a list of shared secrets needs to be
available on the AM with an entry for each RH. Because this shared secret is the only means for a remote
host to authenticate its identity, this data needs proper protection and must at least be encrypted when
stored on disk. Another requirement is that the fingerprint from the AM’s SSH public key (FP(Kpub AM))
is stored in the secure domain name system (DNSSEC) (1).

The AM will contact a RH to retrieve its SSH public key (Kpub RH) using SSH. This connection is
untrusted and the account used to log in on the RH must have restricted permissions (since the credentials
can be read by an eavesdropper). When the connection is being established, the AM will receive Kpub AM
and store it temporarily to use at the end of the process (2).

Once the connection has been established, the AM will send a request to the RH to ask for its public
key and in this request the AH will include Kpub AM (3). When the RH receives this request, it will
look up the SSHFP records in the DNSSEC using the domain name of the AM (4) which needs to be
pre-configured on the RH. The SSHFP records (with the associated RRSIGs) in the answer (5) will
be validated locally and compared to the fingerprint derived from Kpub AM (6). If the two fingerprints
match, the RH will send a response to the AM which includes its secret and SSH public key. If the
fingerprints did not match, the RH will respond with a bogus answer (7).

6

A valid response (8) is built up as follows:

Kpub_AM{H(secret + Kpub_rsa_RH + Kpub_dsa_RH)} + Kpub_rsa_RH + Kpub_dsa_RH

The secret is concatenated with the RH’s RSA and (if present) DSA public keys and this string is hashed.
The resulting hash will be encrypted with Kpub AM and then concatenated with the cleartext RSA and
DSA public keys of the RH.

Upon retrieval of this response, the AM will decrypt the hash with its private key (Kpriv AM) (9) and
calculate its own hash (10) with the received public keys and the secret it has stored locally. If the
hashes match the AM can be sure that the response came from the RH he intended to contact and that
the response has not been modified on the way back. The hash is therefore used to check the integrity
of the public keys that were sent along. Since the secret is incorporated, the keys’ authenticity can also
be verified.

As an extra security check, the AM can now compare the public key he stored at the beginning of the
process with the one he just received. If they do not match, the machine he was communicating with
must have been an attacker that was performing a man-in-the-middle attack and who forwarded the
request to the actual RH to let it respond with a valid answer. However, the keys’ fingerprints can still
be published in the DNS if the hashes match since that proves that the answer was not tampered with
by the man in the middle.

3.2 The key retrieval mechanism under attack

3.2.1 Attacker forwards messages

Figure 2: Key retrieval mechanism under MITM attack.

7

If this mechanism is under a man-in-the middle attack, as illustrated in figure 2, the public key stored at
the start (2) will be the one from the man in the middle (MiM). The MiM will just forward the request
from the AM (3) to the RH (4) which will validate Kpub AM using DNSSEC (5, 6, 7) and think it is
really talking to the AM. As a result it will respond with a valid answer (8) but the hash of the secret
concatenated with the public keys will be encrypted with the public key of the AM (9). This makes the
intercepted response unreadable for the MiM because he does not know the AM’s private key.

After the MiM forwarded the response to the AM (10), the AM will decrypt the hash (11) and calculate
the hash itself with the received public keys and the secret it has stored locally (12). If the MiM has not
tampered with the public keys and the hashes still match, the AM still does not have a clue that a third
party was in the middle, which accepted the SSH connection and saw the login credentials passing by.
But because the public key from the host he connected to was stored when the connection was set up
(2), he can now check whether it matches the public key from the response. If not, he knows something
suspicious happened.

3.2.2 Attacker modifies messages

Figure 3: Key retrieval mechanism under attack directly.

When an intruder (Int) manages to log in directly into the RH and requests the secret (2) without
forwarding the AM’s request as illustrated in figure 3, the RH will notice that the Int is not the AM
because the fingerprint of its public key does not match the one he looked up in the DNS (3, 4, 5). As
a result, the RH will return a bogus answer (6, 7) encrypted with the Int’s public key. This answer will
contain a hash from a random string concatenated with the RH’s public keys. The Int will be able to
decrypt the hash and may assume he received a valid answer. He can now perform offline attacks in an
attempt to recover the secret but he will only end up with a random string.

Not sending a response when the fingerprint of the intruder’s public key (Kpub Int) does not match the
fingerprint found in the DNS would simplify the attacker’s job since he would have less hashes to perform
attacks on. It also prevents the AM to notice that something is going on, which would be a good thing
to know such that the situation can be further investigated.

8

4 Implementation

We implemented this mechanism as a proof of concept with two programs written in Python (listing 1 in
A.1.1 and listing 5 in A.2.1) for the Linux OS that will handle the communication between both parties.
The programs need to be configured using a configuration file (listing 2 in A.1.2 and listing 6 in A.2.2).

The program that will be executed on the administration machine has two modes of operation. In the
normal mode, the program will retrieve the public keys from the remote hosts and push their fingerprints
to the DNS in the form of SSHFP records. The second mode takes a list of SSHFP records as input and
pushes them directly to the DNS.

4.1 Secrets file

In normal mode, the program needs to have access to a file with one line of information for every host
that needs to be contacted. This line will have the following format:

host.domain.org:4445434C-5700-1050-8034-B7C04F56344A:..CN7084106E00YU.Product Name

The first part is the domain name, then a strong secret followed by a weaker secret to which the program
can fall back if the strong secret is not available. These are all separated by colons which we believe are
acceptable separators for the types of secrets we had in mind.

We chose the system’s Universally Unique Identifier (UUID) as the strong secret because of its selection
from a large key space, making it hard to guess, and because it is the best information to uniquely
identify virtual machines (VMs) and thus to authenticate them. The UUID is usually also listed in the
configuration file of a VM which can easily be processed in an automated way to collect the UUIDs from
all guest VMs if one has access to the host machine.

The weak secret is a concatenation of the serial number of the system’s motherboard and its product
name to enlarge the key space. Assuming that a detailed inventory is kept of all hardware used in an
organisation’s network with this kind of information, it should be easy to generate a list of physical hosts
with their secrets. If the UUID of the machine is also listed in the inventory, then that is an advantage,
because of the larger key space.

Note that the weak secret is more vulnerable to dictionary attacks. Building up a dictionary of known
product names would be easy and a part of the motherboard’s serial number also refers to the manufac-
turer, reducing the possible combinations. Any information that is already available to the administrator
can be used to authenticate the remote hosts, and for our proof of concept we considered the serial number
and product name identifiers secure enough.

4.2 Secret look up at the remote host

The remote host can find out its own secret from the output of the dmidecode command. This program
will parse the contents of the system management BIOS (SMBIOS) table and present them in a human-
readable format. The SMBIOS contains a description of the system’s hardware components and other
useful information such as serial numbers and details about the BIOS. Dmidecode will access the file
/dev/mem to access this data. A user that wants access to this file will need elevated permissions.

The values read from the SMBIOS table are not always reliable, because manufacturers can leave values
empty or can choose to fill in different kinds of information. The SMBIOS standard [10] is specified by
the Distributed Management Task Force (DMTF) and not all the fields of the SMBIOS table are required
to be filled in to comply to the standard. The UUID and the Product Name are required fields, but the

9

motherboard’s serial number is not required. Although it may be empty according to the standard, we
still chose to use the motherboard’s serial as part of the secret, because it is a good identifier and most
manufacturers seem to fill it in correctly.

Because the information in the secrets file is so critical for the authentication of a host, it should only
be stored on disk at the administrator’s side with proper encryption. Therefore our program will accept
an AES encrypted file and prompt the administrator for the passphrase it needs to decrypt the file.

Please provide your credentials for the remote hosts.
Username:
Password:

Please provide the passphrase to decrypt the secrets file.
Passphrase:

On the remote hosts a restricted user account must be configured. This account will be used to set up
the untrusted SSH connection over which the authenticated key retrieval will take place. Our program
will prompt the administrator for these credentials at start up so he will not have to enter them in a
configuration file in cleartext.

In order for the program that will be executed on the remote host to be able to read /dev/mem, the
restricted user account needs to be able to run our program with elevated permissions. Therefore we
added a line in the sudoers file /etc/sudoers and use sudo when executing the program.

untrusted ALL = (root) NOPASSWD: /path/to/program

This line means that the user untrusted can execute from ALL terminals, acting as root the program
/path/to/program without being prompted for a password.

4.3 SSH connection

When the credentials have been entered and the secrets file could be decrypted (which is done using
gpg), the program at the administrator’s side will go through the secrets file line by line, creating one
SSH session after the other with the host at each of the domain names. To be able to set up an SSH
connection it uses a Python module that interfaces with the libssh2 C library. We created this module
ourselves (which we called sshexec, see listing 4 in A.1.4), with the basic functionality needed for an
SSH session. It has been implemented using the Python C API [11] so that it could be included in the
program.

In its current implementation only one SSH connection can exist at a time. It was largely based on an
example source file that came with libssh2. When a connection has been initiated using the module,
it returns the remote host’s public key. This key will later be used to check if there was someone
eavesdropping on the connection.

Once connected the program will ask the remote host to authenticate its RSA and (if present) DSA
public keys using the type of shared secret. If both a strong and a weak secret are listed, then the strong
secret will be used. It will do this by executing a command on the remote shell which will initiate the
program at the remote machine’s side. Once an answer has been received or when the execution timed
out, the connection will be closed and the program will continue with the next line in the secrets file
after it validated the public keys with the hash if that was sent back.

An answer consists of the encrypted hash concatenated with the RSA and DSA public keys in Base64
encoding, separated by colons (which do not occur in the Base64 encoding scheme). This string is

10

preceded by the response type, which can be ”ANSWER”, ”ERROR” or ”WARNING”. Only with
”ANSWER” a hash will be sent, the others will accompany a human readable message for alert and
debug purposes.

An example of an ”ANSWER” response is as follows:

ANSWER:saDp4JhJNNDttXgu9UidZEZDdq6VInS2Pyt1innR2SZLfBaFuZazzNnsOvW2S9DkV/yng0Aee
t2dLuj1vJH3dVlbAPE4qQWj4uBdCJQE4oSU3A5PjYnedZZYXpCjYQxzFDrKD166yqRUQdtFmpRbgI/bf
i+rEcn1YSUl5pdVjuzQK/B3moYPuScCtj/7o9rn/Yn3auUCC3NzrlmPPibFi94ryLBcAQc3dOYW2N9S2
+0Fy1CZfdyRZIemr8g8P+W+gFeTKZEeSiG3GwZxeNuWxmLgkBsu+P4dViHR419dPayfeBTxcVDlT7PLX
e4/t3Q5GnzM4lzT6p478l4TTmBg+w==:AAAAB3NzaC1yc2EAAAABIwAAAQEA+EVTkCxclj1gI2J3HrH2
gkQFgg4dZXBwq6aV49330VGP6RRcn78RwkF+3zr1jnYhBCelUmePQhmlsZH4ivXWY33XX27JX5ZZjsQ0
wPXXcS8lwCb2pOY4R2+pNKtpOuOM3YWSVXyLCaNIaBWBay+QPFnwyswcJ4o3AUhKuWz1hKUKpHGv1OIs
2nIkyjY2Z1IcLbKlFEswurlWf4lZRqqRkanS7T3UraxtrSC+Hz4aEuB9/WGJ4t/NReXpYBD1m78CgrfX
bjE5LAMWGyR+Rri97KUB2vH/XN/aI7VVOu9ik7gH3PrlaeTsNOUMgSC45TQwiygaGIOuNUZPyx3ISX5K
gQ==:AAAAB3NzaC1kc3MAAACBAImVL4qXUVVOzlqYg/OaGvfXqEW3CIuJ3DcO+ENo9ueKNu9p/RJ8+eZ
bN5vD8bEOwVWvg7/dirheKmMNVMUpDox99b7VaJaUUfY8gZT8OomN7NvBSQ64hWXuHA/xMbGdg6r6YDN
Am0PSnnLR9OkWhLOWKIHn9INU68VtmcC8siGXAAAAFQDE6PYVTjb5XKtn1Uvs/jzYx+TenQAAAIBMBwb
2/A0E6/q/EZzWTp94oGNDDJlVEWd6X7kdgsYjAXM0fk/eH2ri82+7X3JpeGS6LELaBqIhs3hG2HZp9wj
6bp5gLqjc1dWH8IKQpc0xJA/SDGDaH+xKklsolpxqIad/wivMAFo3I/+ch1777K/EKXN4uIzEETMUPLO
mq++nrAAAAIAjOUS3QZGpcpdWMFX8eVDnsrcTvEcRJfgdUJx7pnr0sSX+NNNhTEB8J0XggHg5htfItEp
g2sBfp+Kpr9PpL+e1Gl4VTqNs47jJsadnvQZSRUJ5aZaKeX7VpEpyZxd98Cqcn4B0MLKLs5nEHTHyNoq
QkGVIoGB33+b2WLVa8dTpCg==

4.4 Local DNSSEC validation

The program at the remote host’s side makes use of the LibUnbound [12] Python module to do local
DNSSEC validation of the RSA public key it receives from the administration machine. The program
looks up the SSHFP records of the domain name that was locally configured as the domain name of the
administration machine. When the fingerprint of the received public key matches the fingerprint in an
SSHFP record, and if that record has been validated using DNSSEC, the program will respond with the
shared secret. If the fingerprint could not be validated, a bogus answer will be generated.

This step is important in the sense that it prevents an eavesdropper from discovering the host’s secret.
The generated hash will be encrypted with the received public key and only if this key belongs to the
administration machine, that machine can decrypt the hash using its private key. If the key could not
be verified as belonging to the administration machine, then it is possible that an eavesdropper is in
between.

When the hash is encrypted by the eavesdropper’s public key, he will also be able to decrypt it. By
sending a bogus answer when the public key’s fingerprint does not match, he will receive an invalid hash,
making an offline attack on the hash to discover the secret pointless since it has not been involved in
creating the hash. If the eavesdropper forwards the answer to the administration machine it can detect
that something is wrong since the hash will not match the one it generates itself.

The DNSSEC validation must be done locally so that the whole validation process does not rely on the
“last mile” between the DNS server and the host in which the DNSSEC answer could be forged to look
valid when it is actually not. It is therefore necessary to have the certificate of a trust anchor installed
at the host which in our case was the DNS root’s certificate. One might consider to run Unbound as
the local DNS resolver so that the root certificate is automatically updated when its key has been rolled
over.

11

4.5 Encryption

As mentioned before a remote host uses the RSA public key of the administration machine to encrypt the
hash. We included the M2Crypto [13] Python module for encryption functionality. A public key object
is created from the RSA exponent and modulus that are extracted from the administrator’s public key
which is passed on to M2Crypto along with the hash to perform the encryption.

RSA “Optimal Asymmetric Encryption Padding” (OAEP) is applied just before the encryption to min-
imise the chance of a successful cryptographic attack [14]. This also causes the ciphertext to be different
each time the same hash is being encrypted, making it impossible for an attacker to find out if an an-
swer from the remote host is actually valid by trying to see if the answer stays the same after multiple
identical requests (e.g. with a replay attack). Without the padding a valid answer would not change
indeed, whereas a bogus answer is randomly generated at each rejected request.

At the administrator’s side, M2Crypto is used again to decrypt the hash. The machine’s private key
is passed to the module, which is the reason why the program must run with root privileges since the
private key is not world readable.

4.6 Pushing updates to the DNS

In case a list of SSHFP records is provided, the application will immediately try to push the new records
to the DNS server, skipping the key retrieval process. Otherwise, the public keys are first retrieved from
all the remote hosts whereafter SSHFP records are generated for the trusted keys. To perform dynamic
DNS updates, we use nsupdate which is part of the package bind9utils.

Transaction signatures (TSIG) [15] are used to authenticate the updates. These signatures rely on a
shared secret between the administration host and the DNS server. The secret key needs to be configured
on the DNS server and the path to the local keyfile also needs to be configured in the configuration
file of our application. Hash-based Message Authentication Codes (HMAC), HMAC-SHA512 in our
implementation, are then used to ensure authenticity and integrity. We also force nsupdate to use TCP
instead of UDP to ensure a successful update.

4.7 Existing list of SSHFP records

As mentioned before (2 Research), public keys can also be retrieved out-of-band or via encrypted email
(GPG). We added the functionality to push an existing list of SSHFP records to the DNS, just by feeding
the file to our administration application. The administrator just needs to offer the program a file with
valid SSHFP records each on a new line. The help section of the application (listing 3 in A.1.3) shows
how to use the arguments.

4.8 OpenSSH patch

The result of this whole process is of course more useful if one has a client application that actually looks
up the SSHFP records in DNS and does local DNSSEC validation of the answers.

On the website http://www.dnssec-tools.org/ one can find a whole suite of tools that make use of
DNSSEC. First the DNSSEC-Tools package will need to be installed, which will install the DNSSEC-Tools
resolver and validator libraries and headers on the system. Then OpenSSH [16] [17] can be patched with
the patch included in the package. More detailed installation instructions can be found in the README
file of the package, or on the website.

Once OpenSSH has been patched successful, a new option can be used, StrictDnssecChecking, in

12

http://www.dnssec-tools.org/

ssh config. This option can have the values yes, no and ask. One will also need to enable VerifyHostKeyDNS.
This option is already available in the normal version of OpenSSH, but the patch is needed to add vali-
dation of the DNS answer using the RRSIG resource records.

When one tries to connect to a host whose fingerprint cannot be validated using DNSSEC, the following
warning will be shown:

@@@
@ WARNING: UNTRUSTED DNS RESOLUTION FOR HOST KEY! @
@@@

If the key has also changed since the previous connection (according to the known hosts file), an even
stronger warning will be displayed:

@@@
@ WARNING: UNTRUSTED DNS RESOLUTION FOR HOST KEY! @
@@@
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
ba:7e:98:3c:42:96:54:b6:67:30:7a:3c:df:fd:33:7d.
Please contact your system administrator.
Add correct host key in /home/<user>/.ssh/known_hosts to get rid of this message.
Offending key in /home/<user>/.ssh/known_hosts:<line number>
RSA host key for host.domain.org has changed and you have requested strict checking.
Host key verification failed.

When the public key of the remote host can be trusted, a user will immediately be prompted for his or
her credentials and will not be bothered with any message, not even the public key’s fingerprint.

4.9 System requirements

4.9.1 Overview

Administration machine

• Python application (listing 1 in A.1.1)

• dependencies (argparse, M2Crypto, libssh2, bind9utils)

• Python interface for libssh2 C library (listing 4 in A.1.4)

• configuration file (listing 2 in A.1.2)

• encrypted secrets file

• shared (with DNS) key file

Remote host

13

• Python application (listing 5 in A.2.1)

• dependencies (argparse, M2Crypto, libunbound)

• configuration file (listing 6 in A.2.2)

• restricted user account

• edited sudoers file (see 4.2 Secret look up at the remote host)

DNS server

• SSHFP records for administration machine

• edited named.conf

• allow for dynamic updates (nsupdate)

• shared (with AM) key in named.conf

4.9.2 Description

The tools we created were meant as a proof of concept only intended to be used under a Linux OS. The
two programs have their own dependencies end these can also have dependencies themselves. We have
not tested any configurations other than our own, so it is always possible that one will need to have some
library that is not listed in the overview above.

Dependencies
One will need to have at least the packages python, python-argparse and python-M2Crypto installed
on the administration machine (AM) and the remote hosts (RH). The application at the AM needs
libssh2 in order to set up the SSH connections and bind9utils to perform the dynamic updates with
nsupdate. On the RH, an installation of libunbound is required to do the DNSSEC local validation. For
our application to be able to use the libssh2 C library, the included Python interface we have developed
needs to be present too.

Configuration
For both applications a configuration file is used to adjust the program to a specific implementation.
On the RH a restricted user account needs to be configured and the sudoers file needs to be modified to
allow the user to run our application with root permissions. For secure dynamic updates, a shared key
needs to be present on the AM and the DNS server (in named.conf). The AM needs to be allowed to
perform updates and the fingerprint of its public key needs to be published in the DNS beforehand.

14

5 Conclusion

The SSH protocol provides an encrypted channel with a remote host in order to securely use its shell.
To authenticate the remote host it makes use of public key encryption. During the first connection setup
with a remote host, the user of an SSH client program is usually asked to verify the host’s public key
fingerprint. However, this fingerprint may be unknown to the user. Normally, he or she should retrieve
the fingerprint from the remote host’s administrator out-of-band and check if it matches the one received
over the network. If this is not the case, then a man in the middle could be listening on the line and
modify the sent data if the user still accepts the fingerprint and proceeds with the connection.

It would be convenient to have a mechanism that can be used to retrieve and verify a yet untrusted
public key without human intervention. In our project we have worked towards a solution in order to
make that possible. In the introduction of this report we gave the research question of our project,
divided into subquestions. The research question was:

How can SSH public key fingerprints be automatically collected from
remote machines and published in DNSSEC in a secure way?

By answering the subquestions, the research question can be answered.

What are the possible solutions for secure data transfer over an untrusted network?

We wanted to have a way to authenticate data sent by certain remote hosts without the use of their
public and private key pairs, since these are yet untrusted in the described situation. We also wanted
to automate this process such that it would not be necessary to do this manually. If there are a lot
of machines for which this needs to be done, then the solution for this problem offers the possibility of
authenticating the hosts’ public keys easily.

We have investigated what the possible solutions for this problem are without de need to rely on a trusted
third party. We can distinguish two types of solutions: one type where the remote host’s identity cannot
be verified due to the lack of information about that host, and another type where such information is
known such that a host’s identity can be established.

The first type of solutions can never be completely secure. The administrator (who is initiating the
automatic public key retrieval process) has to make some assumptions about the part of the network he
or she uses and determine if it is safe enough to proceed without having the ability to authenticate the
received data. Such an assumption can for example be that only the local area network (LAN) will be
used which may be considered clear from intruders.

There are also methods for detecting man-in-the-middle attacks, such as the leap-of-faith method. If there
is someone in between during the first connection, then he must be in between during all the subsequent
connections to prevent the administrator from being warned that the public key has changed. This could
be hard to do for the attacker and therefore a second connection can be set up after a certain timespan
to see if there will indeed be a warning.

For the second type of solutions it is necessary to have certain information such that a host can be
authenticated. As such, data sent by the host can be authenticated by the administrator to come from
this host unaltered. It must be trusted that the part of the information that needs to be secret has not
fallen into the wrong hands, though. This is the case with a public and private key pair, in which the
private key has to be kept secret from everyone else. Since these cannot be used for authentication, we
decided that a hard to guess pre-shared secret (e.g. the system’s UUID) would be the best alternative.

We made use of shared secrets in our mechanism so that public keys could be authenticated, which
subsequently could be used for secure data transfer. By creating hashes of the sent data concatenated
with the secret, both the integrity of the data and its authenticity can be verified. By letting the remote

15

host verify the administrator’s public key using DNSSEC and using this key to encrypt the hashes, it
can be prevented that an eavesdropper does not get to see a hash in which the secret has been involved.
If the public key could not be verified, a bogus answer can be sent back. Offline attacks to discover the
secret will be pointless for the eavesdropper in that case.

Can we make use of existing methods or protocols to realise the possible solutions?

We have seen that most possible solutions to the key retrieval process involve trusted third parties. This
is not desirable for this simple application. Soon it became clear that a pre-shared secret was the most
feasible solution. The SSH protocol itself can be used in the retrieval mechanism. Using this protocol,
an eavesdropper can be detected by comparing the public key received when the SSH connection was
initiated and the public key received from the remote host later in the process. If the eavesdropper
lets this last key unaltered, the two keys that the administrator received will not match. If he replaces
the key with his own key, then there will be a match but then the hash cannot be validated. In both
scenarios the administrator will be noticed that something is going on.

The DNS can be used to let the administrator’s public key be verified by the remote hosts, by validating
the key’s fingerprint from the DNS with DNSSEC. If this is done locally and the public key is found to
be valid, then it can be certain that a hash encrypted with this public key can only be decrypted by the
administrator.

How can these solutions be implemented in a tool that automates the collection of SSH
public keys?

We combined existing programs and libraries to implement the mechanism we came up with in a solution
that requires a program on the administration machine to contact each host and execute of second
program on this host in order to retrieve the public keys in a secure way. The mechanism makes use
of the methods and protocols mentioned above. Our implementation also made it possible to automate
this process for a list of hosts, given their domain name and a shared secret.

How can we insert the SSH public key fingerprints into the DNS and sign them using
DNSSEC in an automated way?

For the BIND installation we used in our proof of concept, the easiest way of pushing dynamic updates
to the DNS server was by using the program nsupdate. Authentication of the administration machine
was enforced by using a pre-shared key and the updates themselves used transaction signatures to ensure
authentication and integrity of the SSHFP resource records that needed to be inserted. The nsupdate
program also makes sure that the new records are signed using DNSSEC, provided that it can find the
private key needed for this process.

16

References

[1] Ylonen & Lonvick, The Secure Shell (SSH) Protocol Architecture, RFC 4251, January 2006,
http://tools.ietf.org/html/rfc4251.

[2] Arends, et al., DNS Security Introduction and Requirements, RFC 4033, March 2005,
http://tools.ietf.org/html/rfc4033.

[3] Arends, et al., Resource Records for the DNS Security Extensions, RFC 4034, March 2005,
http://tools.ietf.org/html/rfc4034.

[4] Arends, et al., Protocol Modifications for the DNS Security Extensions, RFC 4035, March 2005,
http://tools.ietf.org/html/rfc4035.

[5] Schlyter & Griffin , Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints, RFC 4255,
January 2006, http://tools.ietf.org/html/rfc4255.

[6] Callas, et al., OpenPGP Message Format, RFC 4880, November 2007,
http://tools.ietf.org/html/rfc4880.

[7] GnuPG project homepage,
http://www.gnupg.org/.

[8] Al-Riyami & Paterson, (2003). Certificateless Public Key Cryptography, University of London.

[9] Arkko, Jari, Nikander & Pekka, (2003). Weak Authentication: How to Authenticate Unknown Prin-
cipals without Trusted Parties, Ericsson Research NomadicLab.

[10] System Management BIOS, DMTF standard DSP0134, July 2010,
http://dmtf.org/standards/smbios.

[11] Python/C API Reference Manual,
http://docs.python.org/c-api/.

[12] Unbound documentation,
http://www.unbound.net/documentation/libunbound.html.

[13] Chandler Wiki: Me Too Crypto,
http://chandlerproject.org/bin/view/Projects/MeTooCrypto.

[14] What is OAEP?,
http://www.rsa.com/rsalabs/node.asp?id=2346.

[15] Vixie, et al., Secret Key Transaction Authentication for DNS (TSIG), RFC 2845, May 2000,
http://tools.ietf.org/html/rfc2845.

[16] OpenSSH project homepage,
http://www.openssh.com/.

[17] OpenBSD. OpenBSD Reference Manual (SSH).
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh.

17

http://tools.ietf.org/html/rfc4251
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc4034
http://tools.ietf.org/html/rfc4035
http://tools.ietf.org/html/rfc4255
http://tools.ietf.org/html/rfc4880
http://www.gnupg.org/
http://dmtf.org/standards/smbios
http://docs.python.org/c-api/
http://www.unbound.net/documentation/libunbound.html
http://chandlerproject.org/bin/view/Projects/MeTooCrypto
http://www.rsa.com/rsalabs/node.asp?id=2346
http://tools.ietf.org/html/rfc2845
http://www.openssh.com/
http://www.openbsd.org/cgi-bin/man.cgi?query=ssh

A Program code and configuration files

A.1 For the administration machine

A.1.1 Application

Listing 1: tool AM.py
1 #!/usr/bin/python

2

3 ### imports ###

4 import ConfigParser # reading config files

5 import argparse # parsing parameters

6 import subprocess # spawning new processes

7 import shlex # determining the correct tokenization for args

8 import hashlib # computing hashes

9 import sys

10 import os

11 import base64 # base64 encoding/decoding

12 import logging # will handle the logging of messages

13 import getpass # password prompt , input is not printed

14 from M2Crypto import RSA

15 sys.path.append("lib")

16 from sshexec import * # python code to access libssh ’s C library

17

18 ### default parameters ###

19 logger = None

20 logfile = "tool_AM.log"

21 username = ""

22 password = ""

23 RH_path_program = "tool_RH.py"

24 clear_secrets = ""

25 secrets_path = "secrets/secrets_aes.txt"

26 SSHFP_list = []

27 SSHFP_ttl = 1800

28 DN_DNS = "localhost"

29 DNS_zone = ""

30 DNS_update_file = "DNS_update.tmp"

31 Kpub_RH = ""

32 private_key_DNS_admin = ""

33 ###

34

35 ### functions ###

36 def decryptAES_File(secrets_file , passphrase):

37 global clear_secrets

38 logger.info("decrypting secrets file \"" + secrets_file + "\"...")

39 if os.access(secrets_file , os.F_OK): # if the file exists

40 command = subprocess.Popen(shlex.split("gpg --quiet --yes --logger -file /dev/null

--passphrase " + passphrase + " -d " + secrets_file),stdout = subprocess.PIPE)

41 clear_secrets = command.communicate ()[0] # put the decrypted file in a global

variable

42 if clear_secrets == "":

43 logger.info("wrong passphrase ...")

44 error_quit("the secrets file could not be decrypted ...")

45 else:

46 logger.info("secrets decrypted ...")

47 else:

48 error_quit("the secrets file \"" + secrets_file + "\" can not be accessed ..")

49

50 def processList_Of_Hosts ():

51 logger.info("start processing hosts ...")

52 global clear_secrets

53 records = clear_secrets.splitlines ()

54

55 for line in records:

56 processHost(line)

57 logger.info("all hosts processed ...")

58

i

59 def processHost(record):

60 global username

61 global password

62 global RH_path_program

63

64 host = record.split(":")[0]

65 strong_secret = record.split(":")[1]

66 weak_secret = record.split(":")[2]

67 logger.info("processing host " + host + "...")

68

69 # which secret can be used?

70 secret_type = getSecret_Type(strong_secret , weak_secret)

71

72 # get the public key of the AM

73 public_key = getPublic_Key () # if public key not found -> program exits

74

75 # check parameters

76 allOK = True

77 if username == "":

78 allOK = False

79 if password == "":

80 allOK = False

81 if RH_path_program == "":

82 allOK = False

83 if host == "":

84 allOK = False

85 if secret_type == "":

86 allOK = False

87

88 # contact host

89 if allOK:

90 response = getAnswer_From_RH(RH_path_program , host , username , password , secret_type ,

public_key) # [answers list , exit code]

91 if response is None:

92 logger.error("no valid answer received from remote host ...")

93 else:

94 resp_list = response [0]

95 for resp in resp_list:

96 # process answer , rep: <type >:<hash >:<rsa public key >:<dsa public key >

97 msg = resp.split(":", 1)[1]

98 msg_type = resp.split(":")[0]

99 if msg_type == "ERROR":

100 logger.error(msg)

101 break

102 elif msg_type == "WARNING":

103 logger.info("WARNING: " + msg)

104 elif msg_type == "ANSWER":

105 if secret_type == "strong":

106 processAnswer(msg , strong_secret , host)

107 elif secret_type == "weak":

108 processAnswer(msg , weak_secret , host)

109 break

110 else:

111 logger.error("one of the parameters was not set ...")

112

113 def getSecret_Type(strong , weak):

114 secret_type = ""

115 if not strong == "":

116 secret_type = "strong"

117 elif not weak == "":

118 secret_type = "weak"

119 return secret_type

120

121 def getPublic_Key ():

122 logger.info("locating public key...")

123 path_rsa = "/etc/ssh/ssh_host_rsa_key.pub"

124 path_dsa = "/etc/ssh/ssh_host_dsa_key.pub"

125 if os.access(path_rsa , os.F_OK):

126 return readFirst_Line(path_rsa).split()[1]

127 elif os.access(path_dsa , os.F_OK):

ii

128 return readFirst_Line(path_dsa).split()[1]

129 else:

130 error_quit("the SSH public key file could not be accessed ...")

131

132 def readFirst_Line(path):

133 f = open(path , ’r’)

134 line = f.readline ()

135 f.close()

136 return line

137

138 def getAnswer_From_RH(path , host , uname , passwd , secret_type , public_key):

139 global Kpub_RH

140 answer = None

141 IP_list = domainToIPs(host)

142 if (len(IP_list) == 0):

143 logger.error("domain name could not be resolved to an IP address ...")

144 return None

145 IP = IP_list [0]

146 # connect through SSH

147 # need to add a timeout here

148 logger.info("connecting to " + host + " at " + IP)

149 SSH_connection = initConnection(IP)

150 Kpub_RH = SSH_connection [0] # put the key in the global variable

151 if SSH_connection:

152 logger.info("connection established ...")

153 # log in

154 if loginPassword(uname , passwd):

155 logger.info("login succeeded ...")

156 # execute command

157 answer = execCommand("sudo " + path + " -s " + secret_type + " -k " + public_key)

158

159 if answer is not None and len(answer [0]) == 0:

160 answer = None

161 if answer is not None:

162 logger.info("response received ...")

163 else:

164 logger.error("login failed; the credentials were not accepted ...")

165 # disconnect

166 closeConnection ()

167 logger.info("connection closed ...")

168 else:

169 logger.error("failed to set up a connection with the remote host ...")

170 return answer

171

172 def processAnswer(answer , secret , host):

173 global Kpub_RH

174 key_type = base64.b64decode(Kpub_RH)[4:11]

175 logger.info("processing answer ...")

176 logger.debug("answer :\n" + answer)

177

178 # parse answer # <hash >:<rsa public key >:<dsa public key >

179 untrusted_hash = answer.split(":")[0]

180 logger.info("decrypting hash ...")

181 untrusted_hash = decryptRSA(untrusted_hash , key_type)

182 untrusted_rsa_key = answer.split(":")[1]

183 untrusted_dsa_key = answer.split(":")[2]

184

185 #compare the public keys

186 key_ok = False

187 if key_type == "ssh -rsa":

188 if Kpub_RH == untrusted_rsa_key:

189 logger.info("rsa public key matched ...")

190 else:

191 logger.warning("the public key returned by the remote host doesn ’t match the key

used to set up the SSH connection. You may be a victim of a man -in -the -middle

attack ... ")

192 elif key_type == "ssh -dss":

193 if Kpub_RH == untrusted_dsa_key:

194 logger.info("dsa public key matched ...")

195 else:

iii

196 logger.warning("the public key returned by the remote host doesn’t match the key

used to set up the SSH connection. You may be a victim of a man -in-the -middle

attack ... ")

197

198 # calculate the hash with local data

199 trusted_hash = makeHash(secret , untrusted_rsa_key , untrusted_dsa_key)

200 if trusted_hash == untrusted_hash:

201 logger.debug("hash " + trusted_hash + " is trusted ...")

202 logger.info("hash is TRUSTED ...")

203 # generate SSHFP records

204 makeSSHFP_Records(host , untrusted_rsa_key , untrusted_dsa_key)

205 else:

206 # warn admin

207 logger.warning("the hash received from host \"" + host + "\" is UNTRUSTED! The

remote host did NOT proof its knowledge of the secret. You may be a victim of a

man -in -the -middle attack , or your public key was not accepted. The retrieved

public key(s) won’t be pushed to the DNS server ..")

208

209 def decryptRSA(msg , key_type):

210 msg = base64.b64decode(msg)

211 Kpriv_AM_path = getPrivate_Key_Path(key_type)

212 try:

213 key = RSA.load_key(Kpriv_AM_path)

214 except:

215 error_quit("unable to load private key (wrong permissions ?)")

216 decrypted_hash = key.private_decrypt(msg , RSA.pkcs1_oaep_padding)

217 return decrypted_hash

218

219 def makeHash(secret , rsa , dsa):

220 data = secret + rsa + dsa

221 return hashlib.sha512(data).hexdigest ()

222

223 def makeSSHFP_Records(hostname , rsa_key , dsa_key):

224 global SSHFP_list

225 global SSHFP_ttl

226 logger.info("generating SSHFP records ...")

227

228 # generate SSHFP records

229 SSHFP_rsa = hostname + " " + SSHFP_ttl + " IN SSHFP 1 1 " +

hashlib.sha1(base64.b64decode(rsa_key)).hexdigest ()

230 SSHFP_dsa = hostname + " " + SSHFP_ttl + " IN SSHFP 2 1 " +

hashlib.sha1(base64.b64decode(dsa_key)).hexdigest ()

231

232 logger.info("SSHFP records generated ...")

233 logger.debug("SSHFP_rsa: " + SSHFP_rsa)

234 logger.debug("SSHFP_dsa: " + SSHFP_dsa)

235

236 # collect them in a list

237 SSHFP_list.append(SSHFP_rsa)

238 SSHFP_list.append(SSHFP_dsa)

239

240 def processList_Of_SSHFP_records(path):

241 global SSHFP_list

242

243 if os.access(path , os.F_OK):

244 f = open(path , ’r’)

245 contents = f.read()

246 logger.debug("list of SSHFP records to push to DNS:\n" + contents)

247 for line in contents.splitlines ():

248 SSHFP_list.append(line)

249 f.close()

250 logger.info("list read by program ...")

251 else:

252 error_quit("the list of SSHFP records \"" + path + "\" could not be accessed ...")

253

254 def testSSHFP_list(SSHFP_list):

255 notEmpty = False

256 if len(SSHFP_list) > 0:

257 notEmpty = True

258 else:

iv

259 logger.info("no SSHFP records to be pushed to DNS...")

260 return notEmpty

261

262 def makeDNS_Update(path , server , zone , SSHFP_list):

263 logger.info("generating DNS update in temporary file \"" + path + "\"...")

264 f = open(path ,"w")

265 f.write("server " + server + "\n")

266 f.write("zone " + zone + "\n")

267 for record in SSHFP_list:

268 f.write("update add " + record + "\n")

269 f.write("show \n")

270 f.write("send \n")

271 f.close()

272

273 # just for debugging

274 f = open(path ,"r")

275 logger.debug("update :\n" + f.read())

276

277 def pushSSHFP_records(key , DNS_update):

278 if os.access(key , os.F_OK):

279 logger.info("trying to push SSHFP RR’s to the DNS...")

280 command = subprocess.Popen(shlex.split("nsupdate -k " + key + " -v " + DNS_update),

stdout = subprocess.PIPE)

281 #response = command.communicate ()[0]

282 output = command.communicate ()

283 response = output [0]

284

285 # test response for errors

286 status = "ERROR"

287 for line in response.splitlines ():

288 if "status: " in line:

289 status = line.split(",")[1]. split(":")[1]. strip() # extract the status

290 if status == "NOERROR":

291 logger.info("DNS update was successful ...")

292 elif response == "":

293 logger.error("DNS update was NOT successful ..")

294 logger.error("no response from DNS server received or the DNS could not be

contacted.")

295 else:

296 logger.error("DNS update was NOT successful ..")

297 logger.debug("response :\n" + response)

298

299 # clean up

300 os.remove(DNS_update)

301 logger.info("temporary file \"" + DNS_update + "\" with DNS update removed ...")

302 else:

303 logger.info("the private key file \"" + key + "\" could not be accessed ,the DNS

update will not be executed ...")

304

305 def error_quit(msg):

306 logger.error(msg)

307 logger.info("program has terminated ...")

308 sys.exit (1)

309

310 def getPrivate_Key_Path(key_type):

311 logger.info("locating private key...")

312 path_rsa = "/etc/ssh/ssh_host_rsa_key"

313 path_dsa = "/etc/ssh/ssh_host_dsa_key"

314 if key_type == "ssh -rsa":

315 if os.access(path_rsa , os.F_OK):

316 return path_rsa

317 else:

318 error_quit("the SSH private key file could not be accessed ...")

319 elif key_type == "ssh -dss":

320 if os.access(path_dsa , os.F_OK):

321 return path_dsa

322 else:

323 error_quit("the SSH private key file could not be accessed ...")

324

325 ### main program ###

v

326 def main():

327 global logger

328 global logfile

329 global username

330 global password

331 global RH_path_program

332 global clear_secrets

333 global secrets_path

334 global SSHFP_list

335 global SSHFP_ttl

336 global DN_DNS

337 global DNS_zone

338 global DNS_update_file

339 global Kpub_RH

340 global private_key_DNS_admin

341

342 # parse arguments #

343 prog_description = "This tool can be used to retrieve the SSH public host keys from

remote machines and push their fingerprints to a DNS server. If you already have a

list of SSHFP records , you can feed them to this program and push them to DNS.

This way you can skip the key retrieval process."

344 arg_parser = argparse.ArgumentParser(description = prog_description)

345

346 arg_parser.add_argument(’-l’,

347 required = False ,

348 default = "",

349 dest = ’SSHFP_RR_list ’,

350 action = ’store ’,

351 help = ’The path to a list of SSHFP resource records , ready to push to the DNS

server.’)

352

353 arg_parser.add_argument(’-q’,

354 required = False ,

355 default = False ,

356 dest = ’quiet’,

357 action = ’store_const ’,

358 const = True ,

359 help = ’Quiet mode. No output will be printed to stdout.’)

360

361 arg_parser.add_argument(’-v’,

362 required = False ,

363 default = False ,

364 dest = ’verbose ’,

365 action = ’store_const ’,

366 const = True ,

367 help = ’Verbose mode. Debug info will also be printed to stdout.’)

368

369 arg_parser._optionals.title = "flag arguments" # fixes the "optional arguments" in the

help

370 arguments = arg_parser.parse_args ()

371

372 conf = True

373 ## configuration ##

374 # parse config file #

375 config_file = "config/tool_AM.conf"

376 config_parser = ConfigParser.RawConfigParser ()

377 if len(config_parser.read(config_file)) > 0:

378 # from config #

379 if config_parser.has_option(’secrets file’, ’path’):

380 secrets_path = config_parser.get(’secrets file’, ’path’)

381

382 if config_parser.has_option(’remote host’, ’path to program ’):

383 RH_path_program = config_parser.get(’remote host’, ’path to program ’)

384

385 if config_parser.has_option(’DNS server ’, ’domain name DNS server ’):

386 DN_DNS = config_parser.get(’DNS server ’, ’domain name DNS server ’)

387

388 if config_parser.has_option(’DNS server ’, ’private key admin’):

389 private_key_DNS_admin = config_parser.get(’DNS server ’, ’private key admin’)

390

vi

391 if config_parser.has_option(’DNS server ’, ’zone file’):

392 DNS_zone = config_parser.get(’DNS server ’, ’zone file’)

393

394 if config_parser.has_option(’DNS server ’, ’ttl’):

395 SSHFP_ttl = config_parser.get(’DNS server ’, ’ttl’)

396

397 if config_parser.has_option(’logging ’, ’path logfile ’):

398 logfile = config_parser.get(’logging ’, ’path logfile ’)

399 else:

400 conf = False

401

402 # from arguments #

403 SSHFP_list_path = arguments.SSHFP_RR_list

404 quiet = arguments.quiet

405 verbose = arguments.verbose

406

407 # configure logging #

408 # info levels: DEBUG (10) < INFO (20) < WARNING (30) < ERROR (40) < CRITICAL (50)

409 logger = logging.getLogger("standaard_log")

410 logger.setLevel(logging.DEBUG) # lowest level it will log

411 ch_stdout = logging.StreamHandler(sys.stdout)

412 if verbose:

413 ch_stdout.setLevel(logging.DEBUG)

414 else:

415 ch_stdout.setLevel(logging.INFO)

416 fm_stdout = logging.Formatter("%(levelname)s - %(message)s")

417 ch_stdout.setFormatter(fm_stdout)

418

419 ch_file = logging.FileHandler(logfile)

420 ch_file.setLevel(logging.INFO) # lowest level it will log -> omit DEBUG messages

421 fm_file = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")

422 ch_file.setFormatter(fm_file)

423

424 if not quiet:

425 logger.addHandler(ch_stdout) # log to stdout

426 logger.addHandler(ch_file) # log to file

427

428 if SSHFP_list_path == "":

429 # prompt user for credentials

430 print "\nPlease provide your credentials for the remote hosts."

431 username = raw_input("Username: ")

432 password = getpass.getpass("Password: ")

433 print ""

434 print "Please provide the passphrase to decrypt the secrets file."

435 Kdecrypt = getpass.getpass("Passphrase: ")

436 print ""

437

438 ## program flow ##

439 logger.info("program started ...")

440 if not conf:

441 logger.warning("nothing read from configuration file")

442 if SSHFP_list_path == "":

443 logger.info("no SSHFP list provided , the public keys will be retrieved

dynamically ...")

444 # decrypt the secrets file

445 decryptAES_File(secrets_path , Kdecrypt)

446 # process each host in the secrets file

447 processList_Of_Hosts ()

448 if testSSHFP_list(SSHFP_list):

449 # generate the DNS update command

450 makeDNS_Update(DNS_update_file , DN_DNS , DNS_zone , SSHFP_list)

451 # push the RR’s to DNS

452 pushSSHFP_records(private_key_DNS_admin , DNS_update_file)

453 else:

454 logger.info("a list of SSHFP records is provided ...")

455 # put the list in the global variable

456 processList_Of_SSHFP_records(SSHFP_list_path)

457 if testSSHFP_list(SSHFP_list):

458 # generate the DNS update command

459 makeDNS_Update(DNS_update_file , DN_DNS , DNS_zone , SSHFP_list)

vii

460 # push the RR’s to DNS

461 pushSSHFP_records(private_key_DNS_admin , DNS_update_file)

462 logger.info("program has terminated ...")

463

464 if __name__ == "__main__":

465 main()

A.1.2 Configuration file

Listing 2: conf/tool AM.conf
1 [secrets file]

2 path=path/to/secrets/file.txt

3

4 [remote host]

5 path to program=path/to/program.py

6

7 [DNS server]

8 domain name DNS server=dns.domain.org

9 private key admin=path/to/keyfile.private

10 zone file=zone.domain.org

11 ttl =1800 ;ttl for the SSHFP records in ms

12

13 [logging]

14 path logfile=path/to/logfile.log

A.1.3 Usage

Listing 3: ./tool AM.py -h
1 usage: tool_AM.py [-h] [-l SSHFP_RR_LIST] [-q] [-v]

2

3 This tool can be used to retrieve the SSH public host keys from remote

4 machines and push their fingerprints to a DNS server. If you already have a

5 list of SSHFP records , you can feed them to this program and push them to DNS.

6 This way you can skip the key retrieval process.

7

8 flag arguments:

9 -h, --help show this help message and exit

10 -l SSHFP_RR_LIST The path to a list of SSHFP resource records , ready to

11 push to the DNS server.

12 -q Quiet mode. No output will be printed to stdout.

13 -v Verbose mode. Debug info will also be printed to stdout.

A.1.4 Python interface to SSH client functionality

Listing 4: lib/source/sshexec.c
1 /*

2 **

3 * sshexec.c (in) sshexec.so (out) *

4 * *

5 * THIS IS A MODIFIED VERSION OF ssh2_exec.c FROM libssh2 ’s EXAMPLE FILES. *

6 * IT WAS MEANT TO BE COMPILED TO A PYTHON MODULE WITH THE FOLLOWING COMMAND: *

7 * *

8 * gcc -shared -I/usr/include/python2 .6/ -lpython2 .6 -lssh2 -o sshexec.so sshexec.c *

9 * *

10 * SSH module for Python to execute a command on a remote host. *

11 * At the moment only one connection can exist at a time. *

12 **

13 */

14

15 #include "libssh2_config.h"

16 #include <libssh2.h>

17 #include <Python.h>

18

19 #ifdef HAVE_WINSOCK2_H

viii

20 # include <winsock2.h>

21 #endif

22 #ifdef HAVE_SYS_SOCKET_H

23 # include <sys/socket.h>

24 #endif

25 #ifdef HAVE_NETINET_IN_H

26 # include <netinet/in.h>

27 #endif

28 #ifdef HAVE_SYS_SELECT_H

29 # include <sys/select.h>

30 #endif

31 # ifdef HAVE_UNISTD_H

32 #include <unistd.h>

33 #endif

34 #ifdef HAVE_ARPA_INET_H

35 # include <arpa/inet.h>

36 #endif

37

38 #include <sys/time.h>

39 #include <sys/types.h>

40 #include <stdlib.h>

41 #include <fcntl.h>

42 #include <errno.h>

43 #include <stdio.h>

44 #include <ctype.h>

45 #include <netdb.h>

46 #include <unistd.h>

47 #include <pwd.h>

48 #include <string.h>

49 #include <time.h>

50

51 //#define LIBSSH2_ALLOC(session , count) session ->alloc((count), &(session)->abstract)

52 #define TIMEOUT 20

53

54 const char *homedir = "";

55 int sock;

56 LIBSSH2_SESSION *session = NULL;

57 int auth = 0;

58

59 /*

60 * (c) Daniel Stenberg

61 *

62 * Found this function at

63 * http :// www.mail -archive.com/libssh2 -devel@lists.sourceforge.net/msg01630.html

64 */

65 size_t _libssh2_base64_encode(const char *inp , size_t insize , char ** outptr) {

66 // extern LIBSSH2_SESSION *session;

67 const char table64 []=

68 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 +/";

69 unsigned char ibuf [3];

70 unsigned char obuf [4];

71 int i;

72 int inputparts;

73 char *output;

74 char *base64data;

75 const char *indata = inp;

76

77 *outptr = NULL; /* set to NULL in case of failure before we reach the end */

78

79 if(0 == insize)

80 insize = strlen(indata);

81

82 base64data = output = malloc(insize *4/3+4); // LIBSSH2_ALLOC(session , insize *4/3+4);

83 if(NULL == output)

84 return 0;

85

86 while(insize > 0) {

87 for (i = inputparts = 0; i < 3; i++) {

88 if(insize > 0) {

89 inputparts ++;

ix

90 ibuf[i] = *indata;

91 indata ++;

92 insize --;

93 } else {

94 ibuf[i] = 0;

95 }

96

97 }

98

99 obuf [0] = (unsigned char) ((ibuf [0] & 0xFC) >> 2);

100 obuf [1] = (unsigned char) (((ibuf [0] & 0x03) << 4) | \

101 ((ibuf [1] & 0xF0) >> 4));

102 obuf [2] = (unsigned char) (((ibuf [1] & 0x0F) << 2) | \

103 ((ibuf [2] & 0xC0) >> 6));

104 obuf [3] = (unsigned char) (ibuf [2] & 0x3F);

105

106 switch(inputparts) {

107 case 1: /* only one byte read */

108 snprintf(output , 5, "%c%c==",

109 table64[obuf [0]],

110 table64[obuf [1]]);

111 break;

112 case 2: /* two bytes read */

113 snprintf(output , 5, "%c%c%c=",

114 table64[obuf [0]],

115 table64[obuf [1]],

116 table64[obuf [2]]);

117 break;

118 default:

119 snprintf(output , 5, "%c%c%c%c",

120 table64[obuf [0]],

121 table64[obuf [1]],

122 table64[obuf [2]],

123 table64[obuf [3]]);

124 break;

125 }

126 output += 4;

127 }

128

129 *output = 0;

130 *outptr = base64data; /* make it return the actual data memory */

131

132 return strlen(base64data); /* return the length of the new data */

133 }

134

135 static int waitsocket(int socket_fd , LIBSSH2_SESSION *session) {

136 struct timeval timeout;

137 int rc;

138 fd_set fd;

139 fd_set *writefd = NULL;

140 fd_set *readfd = NULL;

141 int dir;

142

143 timeout.tv_sec = 10;

144 timeout.tv_usec = 0;

145

146 FD_ZERO (&fd);

147

148 FD_SET(socket_fd , &fd);

149

150 /* now make sure we wait in the correct direction */

151 dir = libssh2_session_block_directions(session);

152

153 if(dir & LIBSSH2_SESSION_BLOCK_INBOUND)

154 readfd = &fd;

155

156 if(dir & LIBSSH2_SESSION_BLOCK_OUTBOUND)

157 writefd = &fd;

158

159 rc = select(socket_fd + 1, readfd , writefd , NULL , &timeout);

x

160

161 return rc;

162 }

163

164 static void closesession(void) {

165 extern int sock;

166 extern LIBSSH2_SESSION *session;

167 libssh2_session_disconnect(session , "Normal disconnect");

168 libssh2_session_free(session);

169 session = NULL;

170 close(sock);

171 }

172

173 static int closechannel(LIBSSH2_CHANNEL *channel , unsigned int to) {

174 extern int sock;

175 int exitcode = 127;

176 int rc;

177 time_t start;

178

179 // Close channel

180 start = time(NULL);

181 while ((rc = libssh2_channel_close(channel)) == LIBSSH2_ERROR_EAGAIN) {

182 // Time -out?

183 if (time(NULL) - start >= to) {

184 break;

185 }

186 waitsocket(sock , session);

187 }

188

189 // Get exit status

190 if (rc == 0) {

191 exitcode = libssh2_channel_get_exit_status(channel);

192 }

193

194 libssh2_channel_free(channel);

195

196 return exitcode;

197 }

198

199 static PyObject* py_domainToIPs(PyObject* self , PyObject* args) {

200 const char *domain;

201 struct hostent *he;

202 int i;

203 PyObject *ip;

204 PyObject *lst;

205

206 // Parse arguments

207 if (! PyArg_ParseTuple(args , "s", &domain)) {

208 return Py_None;

209 }

210

211 // Get addresses for host at domain

212 he = gethostbyname(domain);

213 if (!he) {

214 return PyList_New (0);

215 }

216

217 // Count number of addresses

218 for (i = 0; he ->h_addr_list[i]; i++);

219 if (i == 0) {

220 return PyList_New (0);

221 }

222

223 // Create Python list

224 lst = PyList_New(i);

225

226 // Add addresses to list

227 i = 0;

228 while (he->h_addr_list[i]) {

229 ip = PyString_FromString(inet_ntoa (*(struct in_addr *)(he->h_addr_list[i])));

xi

230 if (!ip) {

231 return Py_None;

232 }

233 PyList_SetItem(lst , i, ip);

234 i++;

235 }

236

237 return lst;

238 }

239

240 static PyObject* py_initConnection(PyObject* self , PyObject* args) {

241 extern int sock;

242 extern LIBSSH2_SESSION *session;

243 const char *ip;

244 char *khp = "/.ssh/known_hosts";

245 unsigned int to = TIMEOUT;

246 time_t start;

247 char *kh;

248 char check = 0;

249 unsigned long hostaddr;

250 struct sockaddr_in sin;

251 LIBSSH2_KNOWNHOSTS *nh;

252 int rc;

253 size_t len;

254 int type;

255 const char *key;

256 char *key_base64;

257 struct libssh2_knownhost *host;

258 PyObject *mismatch = Py_False;

259 PyObject *ret;

260

261 // Parse arguments

262 if (! PyArg_ParseTuple(args , "s|sI", &ip , &khp , &to)) {

263 return Py_None;

264 }

265

266 // Check if a session has already been initiated

267 if (session) {

268 return Py_None;

269 }

270

271 if (strcmp(khp , "/.ssh/known_hosts")) {

272 kh = khp;

273 } else {

274 kh = malloc(strlen(homedir)+strlen("/.ssh/known_hosts")+1);

275 strcpy(kh, homedir);

276 strcat(kh, khp);

277 check |= 1;

278 }

279

280 // Create socket and connect

281 hostaddr = inet_addr(ip);

282 sock = socket(AF_INET , SOCK_STREAM , 0);

283 sin.sin_family = AF_INET;

284 sin.sin_port = htons (22);

285 sin.sin_addr.s_addr = hostaddr;

286 if (connect(sock , (struct sockaddr *)(&sin),

287 sizeof(struct sockaddr_in)) != 0) {

288 return Py_None;

289 }

290

291 // Create a session instance

292 session = libssh2_session_init ();

293 if (! session) {

294 close(sock);

295 return Py_None;

296 }

297

298 // Tell libssh2 we want it all done non -blocking

299 libssh2_session_set_blocking(session , 0);

xii

300

301 // Start it up. This will trade welcome banners , exchange keys ,

302 // and setup crypto , compression , and MAC layers

303 start = time(NULL);

304 while ((rc = libssh2_session_startup(session , sock)) ==

305 LIBSSH2_ERROR_EAGAIN) {

306 // Time -out?

307 if (time(NULL) - start >= to) {

308 closesession ();

309 return Py_None;

310 }

311 }

312 if (rc) {

313 closesession ();

314 return Py_None;

315 }

316

317 // Check if the host’s key is in the known -hosts file

318 nh = libssh2_knownhost_init(session);

319 if (!nh) {

320 closesession ();

321 return Py_None;

322 }

323 key = libssh2_session_hostkey(session , &len , &type);

324 libssh2_knownhost_readfile(nh, kh, LIBSSH2_KNOWNHOST_FILE_OPENSSH);

325 if (check & 1) {

326 free(kh);

327 }

328 if (key) {

329 if (libssh2_knownhost_check(nh, (char *)ip, (char *)key , len ,

330 LIBSSH2_KNOWNHOST_TYPE_PLAIN|

331 LIBSSH2_KNOWNHOST_KEYENC_RAW ,

332 &host) ==

333 LIBSSH2_KNOWNHOST_CHECK_MISMATCH) {

334 mismatch = Py_True;

335 }

336 } else {

337 closesession ();

338 libssh2_knownhost_free(nh);

339 return Py_None;

340 }

341 libssh2_knownhost_free(nh);

342

343 // Convert binary key into base64 format and return it

344 _libssh2_base64_encode(key , len , &key_base64);

345 ret = Py_BuildValue("(s,O)", key_base64 , mismatch);

346 free(key_base64);

347 return ret;

348 }

349

350 static PyObject* py_loginPassword(PyObject* self , PyObject* args) {

351 extern LIBSSH2_SESSION *session;

352 extern int auth;

353 const char *username;

354 const char *password;

355 unsigned int to = TIMEOUT;

356 time_t start;

357 int rc;

358

359 // Parse arguments

360 if (! PyArg_ParseTuple(args , "ss|I", &username , &password , &to)) {

361 return Py_None;

362 }

363

364 // Check if there is an active session

365 if (! session) {

366 return Py_None;

367 }

368

369 // Try password login

xiii

370 start = time(NULL);

371 while ((rc = libssh2_userauth_password(session , username , password)) ==

372 LIBSSH2_ERROR_EAGAIN);

373 // Time -out?

374 if (time(NULL) - start >= to) {

375 return Py_False;

376 }

377 if (rc) {

378 return Py_False;

379 }

380

381 auth = 1;

382 return Py_True;

383 }

384

385 static PyObject* py_loginPublicKey(PyObject* self , PyObject* args) {

386 extern LIBSSH2_SESSION *session;

387 extern int auth;

388 const char *username;

389 char *puk = "/.ssh/id_rsa.pub";

390 char *pvk = "/.ssh/id_rsa";

391 char *pub;

392 char *prv;

393 char check = 0;

394 const char *passphrase = "";

395 unsigned int to = TIMEOUT;

396 time_t start;

397 int rc;

398

399 // Parse arguments

400 if (! PyArg_ParseTuple(args , "s|sssI", &username , &puk , &pvk , &passphrase , &to)) {

401 return Py_None;

402 }

403

404 // Check if there is an active session

405 if (! session) {

406 return Py_None;

407 }

408

409 // Construct path to public key

410 if (strcmp(puk , "/.ssh/id_rsa.pub")) {

411 pub = puk;

412 } else {

413 pub = malloc(strlen(homedir)+strlen("/.ssh/id_rsa.pub")+1);

414 strcpy(pub , homedir);

415 strcat(pub , puk);

416 check |= 1;

417 }

418

419 // Construct path to private key

420 if (strcmp(pvk , "/.ssh/id_rsa")) {

421 prv = pvk;

422 } else {

423 prv = malloc(strlen(homedir)+strlen("/.ssh/id_rsa")+1);

424 strcpy(prv , homedir);

425 strcat(prv , pvk);

426 check |= 2;

427 }

428

429 // Try public key login

430 start = time(NULL);

431 while ((rc = libssh2_userauth_publickey_fromfile(session , username , pub ,

432 prv , passphrase)) ==

433 LIBSSH2_ERROR_EAGAIN) {

434 // Time -out?

435 if (time(NULL) - start >= to) {

436 // Free memory

437 if (check & 1) {

438 free(pub);

439 }

xiv

440 if (check & 2) {

441 free(prv);

442 }

443 return Py_False;

444 }

445 }

446

447 // Free memory

448 if (check & 1) {

449 free(pub);

450 }

451 if (check & 2) {

452 free(prv);

453 }

454

455 // Check if succeeded

456 if (rc) {

457 return Py_False;

458 }

459

460 auth = 1;

461 return Py_True;

462 }

463

464 static PyObject* py_execCommand(PyObject* self , PyObject* args) {

465 extern int sock;

466 extern LIBSSH2_SESSION *session;

467 extern int auth;

468 const char *command;

469 unsigned int to = TIMEOUT;

470 time_t start;

471 int rc;

472 char buffer [0 x4000];

473 int pos;

474 int exitcode;

475 int i;

476 int j;

477 LIBSSH2_CHANNEL *channel;

478 int lenanswers = 10;

479 char ** answers;

480 char **temp;

481 int numanswers = 0;

482 PyObject *lst;

483

484 // Parse arguments

485 if (! PyArg_ParseTuple(args , "s|I", &command , &to)) {

486 return Py_None;

487 }

488

489 // Check if there is an active session and if the user has been logged in

490 if (! session || !auth) {

491 return Py_None;

492 }

493

494 answers = malloc(lenanswers*sizeof(char*));

495 if (answers == NULL) {

496 return Py_None;

497 }

498

499 // Exec non -blocking on the remote host

500 start = time(NULL);

501 while ((channel = libssh2_channel_open_session(session)) == NULL &&

502 libssh2_session_last_error(session ,NULL ,NULL ,0) ==

503 LIBSSH2_ERROR_EAGAIN) {

504 // Time -out?

505 if (time(NULL) - start >= to) {

506 if (channel != NULL) {

507 closechannel(channel , to);

508 }

509 free(answers);

xv

510 return Py_None;

511 }

512 waitsocket(sock , session);

513 }

514 if (channel == NULL) {

515 free(answers);

516 return Py_None;

517 }

518

519 // Execute command

520 start = time(NULL);

521 while ((rc = libssh2_channel_exec(channel , command)) ==

522 LIBSSH2_ERROR_EAGAIN) {

523 // Time -out?

524 if (time(NULL) - start >= to) {

525 closechannel(channel , to);

526 free(answers);

527 return Py_None;

528 }

529 waitsocket(sock , session);

530 }

531 if (rc != 0) {

532 closechannel(channel , to);

533 free(answers);

534 return Py_None;

535 }

536

537 // Loop until all answers have been received

538 start = time(NULL);

539 for (;;) {

540 // Loop until we block

541 do {

542 rc = libssh2_channel_read(channel , buffer , sizeof(buffer));

543 if (rc > 0) {

544 i = j = 0;

545

546 // Split answer on newlines and put every substring in the

547 // answers array

548 while (j < rc) {

549 for (; buffer[j] != ’\n’ && j < rc; j++);

550 pos = numanswers;

551 numanswers ++;

552

553 // Check if there still is enough memory

554 if (numanswers > lenanswers) {

555 lenanswers *= 2;

556 temp = realloc(answers , lenanswers*sizeof(char*));

557

558 // If realloc failed , free memory and return

559 if (temp == NULL) {

560 numanswers --;

561 for (i = 0; i < numanswers; i++) {

562 free(answers[i]);

563 }

564 free(answers);

565 closechannel(channel , to);

566 return Py_None;

567 }

568 answers = temp;

569 }

570 answers[pos] = malloc ((j-i+1)*sizeof(char));

571 strncpy(answers[pos], &buffer[i], (j-i));

572 answers[pos][j-i] = ’\0’;

573 j++;

574 i = j;

575 }

576 }

577 }

578 while (rc > 0);

579

xvi

580 // This is due to blocking that would occur otherwise so we loop on

581 // this condition

582 if (rc == LIBSSH2_ERROR_EAGAIN) {

583 // Time -out?

584 if (time(NULL) - start >= to) {

585 closechannel(channel , to);

586 for (i = 0; i < numanswers; i++) {

587 free(answers[i]);

588 }

589 free(answers);

590 return Py_None;

591 }

592 waitsocket(sock , session);

593 } else {

594 break;

595 }

596 }

597

598 // Close channel

599 exitcode = closechannel(channel , to);

600

601 // Create Python list

602 lst = PyList_New(numanswers);

603

604 // Convert answers

605 for (i = 0; i < numanswers; i++) {

606 PyList_SetItem(lst , i, PyString_FromString(answers[i]));

607 free(answers[i]);

608 }

609 free(answers);

610

611 return Py_BuildValue("(O,i)", lst , exitcode);

612 }

613

614 static PyObject* py_closeConnection(PyObject* self , PyObject* args) {

615 extern LIBSSH2_SESSION *session;

616 extern int auth;

617

618 // Check if there is an active session

619 if (! session) {

620 return Py_False;

621 }

622

623 closesession ();

624 auth = 0;

625

626 return Py_True;

627 }

628

629 static PyMethodDef sshexec_methods [] = {

630 {"domainToIPs", py_domainToIPs , METH_VARARGS},

631 {"initConnection", py_initConnection , METH_VARARGS},

632 {"loginPassword", py_loginPassword , METH_VARARGS},

633 {"loginPublicKey", py_loginPublicKey , METH_VARARGS},

634 {"execCommand", py_execCommand , METH_VARARGS},

635 {"closeConnection", py_closeConnection , METH_VARARGS},

636 {NULL , NULL}

637 };

638

639 void initsshexec () {

640 extern const char *homedir;

641 struct passwd *pw;

642

643 (void) Py_InitModule("sshexec", sshexec_methods);

644

645 // Get user’s home directory

646 pw = getpwuid(getuid ());

647 homedir = pw->pw_dir;

648 }

xvii

A.2 For the remote host

A.2.1 Application

Listing 5: tool RH.py
1 #!/usr/bin/python

2

3 ### imports ###

4 import ConfigParser # reading config files

5 import argparse # parsing parameters

6 import subprocess # spawning new processes

7 import shlex # determining the correct tokenization for args

8 import hashlib # computing hashes

9 import sys

10 import os

11 import string

12 import base64 # base64 encoding/decoding

13 import random

14 import math

15 import struct

16 from M2Crypto import RSA , DSA

17 from unbound import ub_ctx , RR_TYPE_SSHFP , RR_CLASS_IN

18

19 ### default parameters ###

20 TOOL_CONF = "conf/tool_RH.conf"

21 RESOLV_CONF = "/etc/resolv.conf"

22 TRUSTED_KEY = "/etc/unbound/root.key"

23 HOST_KEYS = "/etc/ssh"

24 AM_DOMAIN = "localhost"

25

26 ### functions ###

27 def warning(msg):

28 print "WARNING:" + msg

29

30 def error(msg):

31 print "ERROR:" + msg

32 sys.exit (1)

33

34 def answer(digest , rsa_key , dsa_key , am_key):

35 print "ANSWER:" + encrypt(digest , am_key) + ":" + rsa_key + ":" + dsa_key

36 sys.exit (0)

37

38 def encrypt(msg , key):

39 key = base64.b64decode(key)

40 fields = []

41

42 sb = key [0:4]

43 if len(sb) != 4:

44 error("bad key")

45 sd = struct.unpack(">I", sb)[0]

46 type = key [4:4+ sd]

47 if len(type) != sd:

48 error("bad key")

49

50 if type =="ssh -dss":

51 error("RSA key required") # DSA cannot be used for encryption/decryption

52 elif type != "ssh -rsa":

53 error("bad key")

54

55 # Extract exponent and modulus

56 s = 4 + sd

57 for i in range (2):

58 sb = key[s:s+4]

59 if len(sb) != 4:

60 error("bad key")

61 sd = struct.unpack(">I", sb)[0]

62 val = key[s+4:s+4+sd]

63 if len(val) != sd:

xviii

64 error("bad key")

65 fields.append(sb + val)

66 s += 4 + sd

67

68 e = fields [0]

69 n = fields [1]

70

71 key = RSA.new_pub_key ((e, n))

72

73 return base64.b64encode(key.public_encrypt(msg , RSA.pkcs1_oaep_padding))

74

75 def getRandomString(length):

76 return ’’.join(random.choice(string.printable) for x in range(length))

77

78 def getSystemUUID ():

79 command = subprocess.Popen(shlex.split(’dmidecode -s system -uuid’),

stdout=subprocess.PIPE)

80 return command.communicate ()[0]. rstrip ()

81

82 def getSystemProductName ():

83 command = subprocess.Popen(shlex.split(’dmidecode -s system -product -name’),

stdout=subprocess.PIPE)

84 return command.communicate ()[0]. rstrip ()

85

86 # not required according to SMBIOS specification

87 def getMotherboardSerial ():

88 command = subprocess.Popen(shlex.split(’dmidecode -s baseboard -serial -number ’),

stdout=subprocess.PIPE)

89 return command.communicate ()[0]. rstrip ()

90

91 def makeHash(secret , rsa_key , dsa_key):

92 secret += rsa_key + dsa_key

93 return hashlib.sha512(secret).hexdigest ()

94

95 def getPublicKey_rsa ():

96 try:

97 f = open(HOST_KEYS + ’/ssh_host_rsa_key.pub’, ’r’)

98 key = f.readline ().split()[1]

99 except IOError:

100 return ""

101 except:

102 key = ""

103

104 f.close()

105 return key

106

107 def getPublicKey_dsa ():

108 try:

109 f = open(HOST_KEYS + ’/ssh_host_dsa_key.pub’, ’r’)

110 key = f.readline ().split()[1]

111 except IOError:

112 return ""

113 except:

114 key = ""

115

116 f.close()

117 return key

118

119 def getStrong_Secret ():

120 return getSystemUUID ()

121

122 def getWeak_Secret ():

123 # motherboard_serial+system_product_name

124 return getMotherboardSerial ()+getSystemProductName ()

125

126 def getBogus_Secret ():

127 # random string , with padding to minimize collisions

128 return "~@$^*)"+getRandomString (128)+" ‘!#%&("

129

130 def getSecretHash(secret_type , rsa_key , dsa_key):

xix

131 secret=""

132 if secret_type == "strong":

133 secret=getStrong_Secret ()

134 elif secret_type == "weak":

135 secret=getWeak_Secret ()

136 elif secret_type == "bogus":

137 secret=getBogus_Secret ()

138 else:

139 error("wrong type of secret")

140

141 if not secret:

142 error("wrong permissions")

143

144 return makeHash(secret , rsa_key , dsa_key)

145

146 def checkPublic_Key_AM(key , domain):

147 # validate the public key with the SSHFP record

148

149 types = {"ssh -rsa": 1, "ssh -dss": 2}

150

151 try:

152 key = base64.b64decode(key)

153 except:

154 error("bad key")

155

156 # Get key type

157 keytype = key [4:11]

158

159 if keytype not in types:

160 return False

161

162 keytype = types[keytype]

163

164 # Get key hash

165 digest = hashlib.sha1(key).hexdigest ()

166

167 # Init Unbound

168 ctx = ub_ctx ()

169 ctx.resolvconf(RESOLV_CONF)

170

171 # Read trusted (root) public key for DNSSEC validation

172 if (os.path.isfile(TRUSTED_KEY)):

173 ctx.add_ta_file(TRUSTED_KEY)

174

175 # Resolve SSHFP records for the domain name

176 status , result = ctx.resolve(domain , RR_TYPE_SSHFP , RR_CLASS_IN)

177

178 # Check if resolving succeeded and if the DNSSEC validation was positive

179 if status == 0 and result.havedata and result.secure:

180 sshfp = dict()

181

182 # Loop through the resolved SSHFP records

183 for record in result.data.address_list:

184 fp = record.split(".")

185

186 # Get public key type and digest type

187 pub = int(fp.pop(0))

188 dig = int(fp.pop(0))

189

190 # Digest algorithm must be SHA1; also no need to compute unused key types

191 if dig != 1 or pub != keytype:

192 continue

193

194 conv = ""

195

196 # Convert FP from decimal to hexadecimal string

197 for num in fp:

198 h = hex(int(num))[2:]

199 if len(h) == 1:

200 h = "0"+h

xx

201 conv += h

202

203 # Store FP

204 if pub not in sshfp:

205 sshfp[pub] = []

206 sshfp[pub]. append(conv)

207

208 # See if the fingerprints match

209 if digest in sshfp[keytype]:

210 return True

211

212 return False

213

214 ### main program ###

215 def main():

216 global TOOL_CONF

217 global RESOLV_CONF

218 global TRUSTED_KEY

219 global HOST_KEYS

220 global AM_DOMAIN

221

222 # parse arguments #

223 prog_description = "This tool will return the secret of this machine."

224 arg_parser = argparse.ArgumentParser(description=prog_description)

225 arg_parser.add_argument(’-s’,

226 choices =[’strong ’, ’weak’],

227 required=True ,

228 dest=’type_secret ’,

229 action=’store ’,

230 help=’The type of secret that must be returned "strong" or "weak".’)

231 arg_parser.add_argument(’-k’,

232 required=True ,

233 dest=’rsa_public_key ’,

234 action=’store ’,

235 help=’The client\’s public key.’)

236 arg_parser.add_argument(’-c’,

237 required=False ,

238 default=sys.path [0]+"/"+TOOL_CONF ,

239 dest=’path_to_conf ’,

240 action=’store ’,

241 help=’The path of the configuration file.’)

242

243 arg_parser._optionals.title = "flag arguments" # fixes the "optional arguments" in the

help

244 arguments=arg_parser.parse_args ()

245

246 ## configuration ##

247 # parse config file #

248 TOOL_CONF = arguments.path_to_conf

249 config_parser = ConfigParser.RawConfigParser ()

250 if len(config_parser.read(TOOL_CONF)) > 0:

251 # from config #

252 if config_parser.has_option(’administration machine ’, ’domain_name ’):

253 AM_DOMAIN = config_parser.get(’administration machine ’, ’domain_name ’)

254

255 if config_parser.has_option(’key files ’, ’host_keys ’):

256 HOST_KEYS = config_parser.get(’key files ’, ’host_keys ’)

257

258 if config_parser.has_option(’config files’, ’resolv_conf ’):

259 RESOLV_CONF = config_parser.get(’config files’, ’resolv_conf ’)

260

261 if config_parser.has_option(’key files ’, ’trusted_key ’):

262 TRUSTED_KEY = config_parser.get(’key files’, ’trusted_key ’)

263 else:

264 warning("nothing read from configuration file")

265

266 # from arguments #

267 Kpub_AM = arguments.rsa_public_key

268 TypeSecret = arguments.type_secret

269

xxi

270 # program flow #

271 rsa_key = getPublicKey_rsa ()

272 dsa_key = getPublicKey_dsa ()

273

274 if not rsa_key and not dsa_key:

275 error("no host key(s) found")

276

277 if checkPublic_Key_AM(Kpub_AM , AM_DOMAIN):

278 # return secret

279 answer(getSecretHash(TypeSecret , rsa_key , dsa_key), rsa_key , dsa_key , Kpub_AM)

280 else:

281 # return bogus answer

282 answer(getSecretHash("bogus", rsa_key , dsa_key), rsa_key , dsa_key , Kpub_AM)

283

284 if __name__ == "__main__":

285 main()

A.2.2 Configuration file

Listing 6: conf/tool RH.conf
1 [administration machine]

2 domain_name=admin.domain.org

3

4 [key files]

5 host_keys=/etc/ssh

6 trusted_key=/etc/unbound/root.key

7

8 [config files]

9 resolv_conf=/etc/resolv.conf

xxii

	Introduction
	Research question

	Research
	The desired mechanism
	Shared secrets
	Authentication without shared information

	Mechanism design
	The key retrieval mechanism
	The key retrieval mechanism under attack
	Attacker forwards messages
	Attacker modifies messages

	Implementation
	Secrets file
	Secret look up at the remote host
	SSH connection
	Local DNSSEC validation
	Encryption
	Pushing updates to the DNS
	Existing list of SSHFP records
	OpenSSH patch
	System requirements
	Overview
	Description

	Conclusion
	References
	Program code and configuration files
	For the administration machine
	Application
	Configuration file
	Usage
	Python interface to SSH client functionality

	For the remote host
	Application
	Configuration file

