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1 Introduction

The concept of trust is fundamental in computer network security. Although not everyone is aware of
this, encrypted network connections are not much safer than unencrypted ones if the person that initiates
such a connection does not explicitly trust that he or she is talking to the intended endpoint.

Take for example an HT'TPS connection to a bank’s website. If the browser shows that the SSL certificate
used for the authentication of the bank’s website is valid and that the channel is encrypted (e.g. by
showing a lock icon or a green address bar), then one may trust that it really is that bank where he or
she is sending sensitive data to (and that no one else can read it).

However, many people do not think about what their trust is actually based on. They implicitly trust
the browser’s maintainers who ship the browser with a list of what they think are trustworthy certificate
authorities (CAs). These are the organisations (third parties) which ultimately need to be trusted since
they are the ones signing the certificates, thereby claiming that the website is truly in hands of the
associated organisation (the bank in this example).

Unfortunately, someone might not notice that a certificate has been signed by a CA which he or she
does not actually trust, but which has been included by the browser’s maintainers. If one cannot trust
a “secure” connection to another machine, then it cannot be ruled out that an eavesdropper sits in
between. Moreover, such a man-in-the-middle could maliciously impair the data flow.

The Secure Shell (SSH) protocol is, like SSL (or TLS), a way to have a secure (encrypted) connection
between two computers. It is a protocol used for remotely accessing a machine’s command line (shell)
with end-to-end encryption. Unlike with SSL as in the example, with SSH one is likely to be confronted
with the trust aspect more often. A machine’s shell is usually supposed to be accessible by only a
few people, whereas websites are aimed at serving many people. Because of this, it makes little sense
to purchase a certificate from a CA to secure SSH connections. That is why an SSH client normally
involves the user in the authentication process instead.

When one is connecting to a host using SSH for the first time, a so-called fingerprint derived from the
remote host’s public key is usually presented [1]. In the OpenSSH client this is a hexadecimal presentation
of the MD5 hash of the public key. The user can either accept the fingerprint and continue connecting, or
refuse it to abort the connection. This step is important. If the user believes that the public key belongs
to the private key that is held by the intended host, then it is safe to continue. In the initialisation
process the remote host must cryptographically prove that it possesses the private key to authenticate
itself.

If the user does not trust the fingerprint, then it would be unwise to accept it. It could be the fingerprint
of an eavesdropper for instance. To be able to verify the fingerprint, the user must have had contact
with the host’s administrator to retrieve it safely. If the user trusts the way the fingerprint has been
retrieved, then this person can also trust that he or she is trying to connect to the intended host machine
if the presented fingerprint matches the one retrieved out-of-band. The chance that there still is an
eavesdropper in the middle is very small since it is hard to generate a public and private key pair with
exactly the same fingerprint.

It would however be convenient for a person who is initiating an SSH connection to have a way of
verifying the authenticity of a received SSH public key without his or her intervention. Possible human
error when comparing fingerprints would also be eliminated. Such a means would require the person (if
he or she cares about security) to trust an automated verification process, such that when the key is
positively verified he or she can implicitly trust the key to be valid.

If this trust is based on a locally stored list of public keys or fingerprints that was composed by the
person him- or herself then a simple automated lookup in this list would suffice. However, this solution
is not very scalable. Every person has to compose his or her own list, and keys of previously unknown
hosts still have to be verified manually.



The use of the Domain Name System (DNS) offers a better solution, as this is a single database that
can be accessed by everyone. An administrator can publish a public key fingerprint in the DNS so that
it is instantly publicly available, making it an easy way of distributing fingerprints.

The response to a DNS lookup request can be trusted if DNSSEC (DNS Security [2] [3] [4]) is used. If
the retrieved resource record has been signed by an instance that is part of a DNSSEC chain of trust
which is ultimately signed by a trusted instance (most commonly the DNS root), then the authenticity of
the record can be verified. This would mean that a DNSSEC-validated SSH fingerprint resource record
(SSHEP RR [5]) that is tied to a domain name can be trusted to be authenticated by the instance that
has the authority over that domain name.

We earlier mentioned that a person would need to contact a host’s administrator to retrieve the machine’s
fingerprint. This could however pose a problem if this person is an organisation’s administrator him-
or herself. If he or she administers only one machine, then it is not a big deal to walk to the machine,
access it directly to retrieve its fingerprint and carrying it back to a workstation. This is the safest way
to transport the fingerprint. But if there are many machines of which the fingerprints are yet unknown,
then this becomes a cumbersome task.

For someone in such a situation it would be convenient to automate this task. A workstation can be
used to collect the fingerprints, which could also push them to the DNS so that other workstations can
easily retrieve them as well. When automating this whole process it is inevitable that the a potentially
untrusted computer network will be used for the fingerprint retrieval. During our project we investigated
a way of retrieving the fingerprints of remote machines securely over an insecure network in the situation
where public keys are yet untrusted as a means of host authentication. Such a mechanism of validating
a host’s fingerprint opens the way for automated fingerprint retrieval and publication in DNSSEC.

1.1 Research question

Most of our research was focused on the problem of the insecure connection between an administrator’s
workstation and a remote machine whose SSH public key is unknown. We have investigated if this
channel can be secured, and if so how this can be implemented in a software tool. We have also tried to
enable this tool to automatically publish fingerprints in the DNS. This is the practical side of our project;
to enable the tool to automatically collect fingerprints in a secure way, the research is a prerequisite for
its implementation.

Our research question is:

How can SSH public key fingerprints be automatically collected from
remote machines and published in DNSSEC in a secure way?

This can be further divided into the following subquestions:

e What are the possible solutions for secure data transfer over an untrusted network?

e Can we make use of existing methods or protocols to realise the possible solutions?

How can these solutions be implemented in a tool that automates the collection of SSH public
keys?

e How can we insert the SSH public key fingerprints into the DNS and sign them using DNSSEC in
an automated way?



2 Research

In the introduction we explained how DNSSEC can be used to verify the validity of SSH fingerprints
and therefore the validity of public keys. If a trust anchor was reached during the DNSSEC-validation
of a resource record, then it can be trusted that this record has been authenticated by the instance that
has the authority over the concerning domain name. Ultimately, this instance itself needs be trusted as
well. If one does not trust that the instance took great care of publishing the correct SSH fingerprint in
the DNS, then doing DNSSEC validation makes little to no sense.

A DNS SSHFP record contains a SHA-1 hash (called “fingerprint”) of either an RSA or DSA public
key [5]; both types can be used in the SSH authentication protocol. The hash is preceded by a number
denoting the type of key used (1 for RSA and 2 for DSA) and a number denoting the used hashing
algorithm (1 for SHA-1). An example is as follows:

domain.com IN SSHFP 2 1 d066788e581£8d91fafl1e715954fcab96324e851

2.1 The desired mechanism

We will be describing a mechanism for automatic public key retrieval from remote machines and finger-
print publication in the DNS. We focus for a large part on the situation where the public keys of the
remote machines are not certain to belong to those machines. If one uses such a mechanism and he or
she wants to be sure that the correct public key fingerprints are published, then there must be a way
to verify that a received public key really belongs to the intended machine. After all, there could be an
attacker in the middle with whom the actual SSH connection has been set up.

Since in such a situation one cannot be sure whether or not a public key belongs to a certain machine,
it cannot be used for the authentication of the machine’s identity, even if the machine can prove that
it possesses the corresponding private key. It is our goal to collect the public key in such a trustworthy
way that it eventually can be used for this purpose. This is necessary for SSH connections where public
key cryptography plays a central role in server authentication.

Therefore, some secure mechanism is needed to establish the authenticity and the integrity of a collected
public key. That is, we want to make sure that a public key belongs to the machine with a certain
identity, and we want to ensure that its integrity has been preserved during transfer to prevent a possible
publication of a wrong or malicious fingerprint into the DNS.

The most secure way to collect public keys would be transporting them out-of-band from each machine
separately. This would require a person to physically access these machines one by one to extract the
public key. If there are many machines with many administrators, then this task can be simplified by
asking each administrator to send their machine’s public key in a GPG [6] [7] signed email, for example.
However, the senders’ GPG public keys first need to be trusted as well. If many machines are under
control of a single administrator, this solution may not be workable because he or she still needs to
physically access a relatively large number of machines.

In the last case, it would be very convenient to be able to automate the key retrieval process by a
computer program without further human intervention needed. This will however need to be done over
a potentially insecure network, because there is no other way a computer program can contact a remote
machine. What we have here is a classic chicken-and-egg problem. We need to authenticate a machine
for which we need its public key and we want the machine to proof that this really is its public key, but
then we already need to have authenticated the machine. The machine therefore needs something else
than a public and private key pair to be able to identify itself.



2.2 Shared secrets

In general, a person that needs to authenticate him- or herself, will need to know something (e.g. a
passphrase), have something (e.g. a smartcard), be something (e.g. his fingerprint), do something (e.g.
a signature) or a combination of these. The authority that is authenticating this person needs to be
able to verify the provided information. In computer security, if two machines need to authenticate one
another, they will often know each others public key and use challenge-response authentication combined
with public key encryption. An alternative is to have both machines to know some shared secret such
that each computer can prove somehow that it knows what the secret is, without revealing it to the
outside world.

A shared secret can be seen as a passphrase. Just like passphrases, such a secret needs to stay secret
between two parties to prevent a third party from misusing it. Unlike with public and private key pairs,
both parties need to protect the secret since they both need to know it to be able to authenticate each
other. If only one of the parties needs to authenticate itself to the other using a public and private key
pair, then this party needs to protect the private key whereas the other party does not need to protect
anything. It does need to know the public key, but since this key is publicly available is does not have
to be protected from outsiders.

It could be easy to use a shared secret as a means of authentication in some cases though. A machine
specific system identifier can be looked up by the machine itself or by someone having elevated privileges
on the machine. A system’s Universally Unique Identifier (UUID) for example is a good candidate for
a machine identifier (as will be explained later), which is usually only readable by users who have root
privileges. We decided to make use of a shared secret since some system identifiers might be listed on
hardware inventory lists that are available within an organisation.

Having these numbers on paper already makes a walk to every machine within the organisation, to
retrieve the identifiers manually, unnecessary. They could be entered in a computer file straight away.
Once this has been done, a program can use this file to perform the automatic public key retrieval
process. The only assumption we made is that the identifiers have not been copied by an untrusted
party during the identifiers’ retrieval process and that the inventory lists are stored safely, something
that is important when using them as secrets but which we have not further investigated.

2.3 Authentication without shared information

At first, we tried to come up with a protocol that does not need any pre-shared data for the machines
to be able to authenticate one another. In this case, there is no shared information that can be used
for host authentication. Most of the possible solutions for this problem we have read about consisted
of identity-based key agreement schemes that require a trusted third party to act as a key generation
center (KGC [8]) that creates key pairs. Apart from the need for a trusted third party, these schemes
where too complex for our application.

Methods to detect a man in the middle can also be used, such as the leap-of-faith method [9]. If there is
someone in between during the first connection, then he must be in between during all the subsequent
connections to prevent the administrator from being warned that the public key has changed. This
could be hard to do for the attacker and therefore a second connection can be set up after a certain
timespan to see if there will indeed be a warning. If so, then the administrator will know that there was
someone in between either during the first connection or the second, making the received data during
either connection untrusted.

An administrator could also make assumptions about the network between him or her and the remote
host to determine if it will be safe enough to proceed without having the ability to authenticate the
received data. Such an assumption can for example be that only the local area network (LAN) will be
used which may be considered clear from intruders. Also, since our mechanism needs to be used only
once to retrieve public keys, the risk of an attacker being present during the retrieval process is reduced



to only one connection for each host. This could be considered an acceptable risk.

However, since there is no information available to authenticate a remote host in these situations, data
exchange can never be completely secure. We need information that can be used to authenticate a host
to be able to set up a secure session with the host, so ensure that no malicious fingerprints will be
published in the DNS. For our mechanism this information will be a pre-shared secret.



3 Mechanism design

3.1 The key retrieval mechanism

DNS server (DNS)

1.securely push FP(Kpub_AM) to the DNS
5.DNSSEC answer

2.save Kpub RH during
connection initialisation remote host (RH)

4. look up SSHFP(DN_AM)

administration -

machine (AM)

3.request Kpub_RH({Kpub_»AM)

>

untrusted S5H connection
with restricted account

™ 8.Kpub_AM{

g Hi{secret + Kpub rsa_RH + Kpub_dsa_RH)}
+ Kpub_rsa_RH

+ Kpub_dsa_RH

6.validate Kpub_AM
9. decrypt the hash with Kpriv_AM
10. authentication: calculate the hash locally and
compare with the received hash

7.respond with a valid
or bogus answer

11.compare received Kpub with saved Kpub

Figure 1: Key retrieval mechanism.

The mechanism we devised to securely retrieve remote hosts’ fingerprints and publish them in the DNS
(signed using DNSSEC) is illustrated in figure 1. This mechanism assumes that an administrator wants
to collect the SSH public keys from a number of remote hosts (RHs) using one administration machine
(AM).

To authenticate the responses that the AM will receive from the RHs, a list of shared secrets needs to be
available on the AM with an entry for each RH. Because this shared secret is the only means for a remote
host to authenticate its identity, this data needs proper protection and must at least be encrypted when
stored on disk. Another requirement is that the fingerprint from the AM’s SSH public key (FP (Kpub_AM) )
is stored in the secure domain name system (DNSSEC) (1).

The AM will contact a RH to retrieve its SSH public key (Kpub_RH) using SSH. This connection is
untrusted and the account used to log in on the RH must have restricted permissions (since the credentials
can be read by an eavesdropper). When the connection is being established, the AM will receive Kpub_AM
and store it temporarily to use at the end of the process (2).

Once the connection has been established, the AM will send a request to the RH to ask for its public
key and in this request the AH will include Kpub_AM (3). When the RH receives this request, it will
look up the SSHFP records in the DNSSEC using the domain name of the AM (4) which needs to be
pre-configured on the RH. The SSHFP records (with the associated RRSIGs) in the answer (5) will
be validated locally and compared to the fingerprint derived from Kpub_AM (6). If the two fingerprints
match, the RH will send a response to the AM which includes its secret and SSH public key. If the
fingerprints did not match, the RH will respond with a bogus answer (7).



A wvalid response (8) is built up as follows:
Kpub_AM{H(secret + Kpub_rsa_RH + Kpub_dsa_RH)} + Kpub_rsa_RH + Kpub_dsa_RH

The secret is concatenated with the RH’s RSA and (if present) DSA public keys and this string is hashed.
The resulting hash will be encrypted with Kpub_AM and then concatenated with the cleartext RSA and
DSA public keys of the RH.

Upon retrieval of this response, the AM will decrypt the hash with its private key (Kpriv_AM) (9) and
calculate its own hash (10) with the received public keys and the secret it has stored locally. If the
hashes match the AM can be sure that the response came from the RH he intended to contact and that
the response has not been modified on the way back. The hash is therefore used to check the integrity
of the public keys that were sent along. Since the secret is incorporated, the keys’ authenticity can also
be verified.

As an extra security check, the AM can now compare the public key he stored at the beginning of the
process with the one he just received. If they do not match, the machine he was communicating with
must have been an attacker that was performing a man-in-the-middle attack and who forwarded the
request to the actual RH to let it respond with a valid answer. However, the keys’ fingerprints can still

be published in the DNS if the hashes match since that proves that the answer was not tampered with
by the man in the middle.

3.2 The key retrieval mechanism under attack

3.2.1 Attacker forwards messages

DNS server (DNS)

1.securely push FP(Kpub_AM) to the DNS _|=——

6.DNSSEC answer

2.save Kpub MiM during
connection initialisation

remote host (RH)

5.look up SSHFP{DN_AM)

administration man-in-the-

machine (AM middle (MIM)
3.request Kpub_RH{Kpub_»AM) 4.request Kpub_RH{Kpub_AM)
>
untrusted 55H connection untrusted 55H connection
with restricted account with restricted account
, - g
+ 10.Kpub AM{H(secret 7 9.Kpub AM{H(secret
g + Kpub_rsa_RH g + Kpub_rsa_RH
+ Kpub_dsa_RH)}} + Kpub_dsa RH)}
+ Kpub_rsa_RH + Kpub_rsa_RH
+ Kpub_dsa_RH
* Kpub_dsa_RH pub =2 7.validate Kpub_AM
11.decrypt the hash with Kpriv_AM B.respond with a valid
12. authentication: calculate the hash locally and or bogus answer

compare with the received hash
13.compare Kpub_MiM with Kpub_RH, no match -= WARNING

Figure 2: Key retrieval mechanism under MITM attack.



If this mechanism is under a man-in-the middle attack, as illustrated in figure 2, the public key stored at
the start (2) will be the one from the man in the middle (MiM). The MiM will just forward the request
from the AM (3) to the RH (4) which will validate Kpub_AM using DNSSEC (5, 6, 7) and think it is
really talking to the AM. As a result it will respond with a valid answer (8) but the hash of the secret
concatenated with the public keys will be encrypted with the public key of the AM (9). This makes the
intercepted response unreadable for the MiM because he does not know the AM’s private key.

After the MiM forwarded the response to the AM (10), the AM will decrypt the hash (11) and calculate
the hash itself with the received public keys and the secret it has stored locally (12). If the MiM has not
tampered with the public keys and the hashes still match, the AM still does not have a clue that a third
party was in the middle, which accepted the SSH connection and saw the login credentials passing by.
But because the public key from the host he connected to was stored when the connection was set up
(2), he can now check whether it matches the public key from the response. If not, he knows something
suspicious happened.

3.2.2 Attacker modifies messages

DNS server (DN5S)

4.DMNSSEC answer

1.securely push FP(Kpub_AM) to the DNS

remote host (RH)

administration 3.look up SSHFP(DN_AM)
machine (AM) Intruder (Int)

2.request Kpub_RH(Kpub_Int)

untrusted S5H connection
with restricted account

™ 1,1 7.Kpub_Int{H{bogus secret
g g + Kpub_rsa_RH

+ Kpub_dsa_RH)}

+ Kpub_rsa_RH

+ Kpub_dsa_RH

S.validate Kpub_Int
-= NOT valid

6.respond with a
bogus answer

Figure 3: Key retrieval mechanism under attack directly.

When an intruder (Int) manages to log in directly into the RH and requests the secret (2) without
forwarding the AM’s request as illustrated in figure 3, the RH will notice that the Int is not the AM
because the fingerprint of its public key does not match the one he looked up in the DNS (3, 4, 5). As
a result, the RH will return a bogus answer (6, 7) encrypted with the Int’s public key. This answer will
contain a hash from a random string concatenated with the RH’s public keys. The Int will be able to
decrypt the hash and may assume he received a valid answer. He can now perform offline attacks in an
attempt to recover the secret but he will only end up with a random string.

Not sending a response when the fingerprint of the intruder’s public key (Kpub_Int) does not match the
fingerprint found in the DNS would simplify the attacker’s job since he would have less hashes to perform
attacks on. It also prevents the AM to notice that something is going on, which would be a good thing
to know such that the situation can be further investigated.



4 Implementation

We implemented this mechanism as a proof of concept with two programs written in Python (listing 1 in
A.1.1 and listing 5 in A.2.1) for the Linux OS that will handle the communication between both parties.
The programs need to be configured using a configuration file (listing 2 in A.1.2 and listing 6 in A.2.2).

The program that will be executed on the administration machine has two modes of operation. In the
normal mode, the program will retrieve the public keys from the remote hosts and push their fingerprints
to the DNS in the form of SSHFP records. The second mode takes a list of SSHFP records as input and
pushes them directly to the DNS.

4.1 Secrets file

In normal mode, the program needs to have access to a file with one line of information for every host
that needs to be contacted. This line will have the following format:

host.domain.org:4445434C-5700-1050-8034-B7C04F56344A: . .CN7084106E00YU.Product Name

The first part is the domain name, then a strong secret followed by a weaker secret to which the program
can fall back if the strong secret is not available. These are all separated by colons which we believe are
acceptable separators for the types of secrets we had in mind.

We chose the system’s Universally Unique Identifier (UUID) as the strong secret because of its selection
from a large key space, making it hard to guess, and because it is the best information to uniquely
identify virtual machines (VMs) and thus to authenticate them. The UUID is usually also listed in the
configuration file of a VM which can easily be processed in an automated way to collect the UUIDs from
all guest VMs if one has access to the host machine.

The weak secret is a concatenation of the serial number of the system’s motherboard and its product
name to enlarge the key space. Assuming that a detailed inventory is kept of all hardware used in an
organisation’s network with this kind of information, it should be easy to generate a list of physical hosts
with their secrets. If the UUID of the machine is also listed in the inventory, then that is an advantage,
because of the larger key space.

Note that the weak secret is more vulnerable to dictionary attacks. Building up a dictionary of known
product names would be easy and a part of the motherboard’s serial number also refers to the manufac-
turer, reducing the possible combinations. Any information that is already available to the administrator
can be used to authenticate the remote hosts, and for our proof of concept we considered the serial number
and product name identifiers secure enough.

4.2 Secret look up at the remote host

The remote host can find out its own secret from the output of the dmidecode command. This program
will parse the contents of the system management BIOS (SMBIOS) table and present them in a human-
readable format. The SMBIOS contains a description of the system’s hardware components and other
useful information such as serial numbers and details about the BIOS. Dmidecode will access the file
/dev/mem to access this data. A user that wants access to this file will need elevated permissions.

The values read from the SMBIOS table are not always reliable, because manufacturers can leave values
empty or can choose to fill in different kinds of information. The SMBIOS standard [10] is specified by
the Distributed Management Task Force (DMTF) and not all the fields of the SMBIOS table are required
to be filled in to comply to the standard. The UUID and the Product Name are required fields, but the



motherboard’s serial number is not required. Although it may be empty according to the standard, we
still chose to use the motherboard’s serial as part of the secret, because it is a good identifier and most
manufacturers seem to fill it in correctly.

Because the information in the secrets file is so critical for the authentication of a host, it should only
be stored on disk at the administrator’s side with proper encryption. Therefore our program will accept
an AES encrypted file and prompt the administrator for the passphrase it needs to decrypt the file.

Please provide your credentials for the remote hosts.
Username:
Password:

Please provide the passphrase to decrypt the secrets file.
Passphrase:

On the remote hosts a restricted user account must be configured. This account will be used to set up
the untrusted SSH connection over which the authenticated key retrieval will take place. Our program
will prompt the administrator for these credentials at start up so he will not have to enter them in a
configuration file in cleartext.

In order for the program that will be executed on the remote host to be able to read /dev/mem, the
restricted user account needs to be able to run our program with elevated permissions. Therefore we
added a line in the sudoers file /etc/sudoers and use sudo when executing the program.

untrusted ALL = (root) NOPASSWD: /path/to/program

This line means that the user untrusted can execute from ALL terminals, acting as root the program
/path/to/program without being prompted for a password.

4.3 SSH connection

When the credentials have been entered and the secrets file could be decrypted (which is done using
gpg), the program at the administrator’s side will go through the secrets file line by line, creating one
SSH session after the other with the host at each of the domain names. To be able to set up an SSH
connection it uses a Python module that interfaces with the 1ibssh2 C library. We created this module
ourselves (which we called sshexec, see listing 4 in A.1.4), with the basic functionality needed for an
SSH session. It has been implemented using the Python C API [11] so that it could be included in the
program.

In its current implementation only one SSH connection can exist at a time. It was largely based on an
example source file that came with 1ibssh2. When a connection has been initiated using the module,
it returns the remote host’s public key. This key will later be used to check if there was someone
eavesdropping on the connection.

Once connected the program will ask the remote host to authenticate its RSA and (if present) DSA
public keys using the type of shared secret. If both a strong and a weak secret are listed, then the strong
secret will be used. It will do this by executing a command on the remote shell which will initiate the
program at the remote machine’s side. Once an answer has been received or when the execution timed
out, the connection will be closed and the program will continue with the next line in the secrets file
after it validated the public keys with the hash if that was sent back.

An answer consists of the encrypted hash concatenated with the RSA and DSA public keys in Base64
encoding, separated by colons (which do not occur in the Base64 encoding scheme). This string is

10



preceded by the response type, which can be ”ANSWER”, "ERROR” or ”"WARNING”. Only with
”ANSWER” a hash will be sent, the others will accompany a human readable message for alert and
debug purposes.

An example of an "ANSWER” response is as follows:

ANSWER : saDp4JhJNNDttXgu9UidZEZDdq6VInS2Pyt1innR2SZL{BaFuZazzNns0vW239DkV/yngOAee
t2dLuj1vJH3dV1bAPE4qQWj4uBdCIQE40SU3AEP jYnedZZYXpCjYQxzFDrKD166yqRUQAtFmpRbgI/bf
i+rEcn1YSU15pdVjuzQK/B3moYPuScCtj/709rn/Yn3auUCC3NzrlmPPibFi94ryLBcAQc3d0YW2N9S2
+0Fy1CZfdyRZIemr8g8P+W+gFeTKZEeSiG3GwZxeNuWxmLgkBsu+P4dViHR419dPayfeBTxcVD1T7PLX
e4/t3Q5GnzM41zT6p47814TTmBg+w==: AAAAB3NzaC1lyc2EAAAABIWAAAQEA+EVTkCxclj1gI2J3HrH2
gkQFgg4dZXBwq6aV49330VGP6RRcn78RwkF+3zr1jnYhBCelUmePQhmlsZH41ivXWY33XX27JX5ZZjsQ0
wPXXcS81wCb2p0Y4R2+pNKtpOuOM3YWSVXyLCaNIaBWBay+(PFnwyswcJ403AUhKuWz1hKUKpHGv10Is
2nTkyjY2Z1IcLbK1FEswurlWf41ZRqqRkanS7T3UraxtrSC+Hz4aEuB9/WGJ4t/NReXpYBD1m78CgriX
bjESLAMWGYR+Rri97KUB2vH/XN/aI7VV0u9ik7gH3PrlaeTsNOUMgSC45TQwiygaGIOuNUZPyx3ISX5K
gQ==:AAAAB3NzaC1kc3MAAACBAIMVL4qXUVV0z1qYg/0aGvEXqEW3CIuJ3Dc0+ENo9ueKNu9p/RI8+eZ
bN5vD8bEOWVWvg7/dirheKmMNVMUpDox99b7VaJalUf Y8gZT80omN7NvBSQ64hWXuHA/xMbGdg6r6YDN
AmOPSnnLROOKWhLOWKIHn9INU68VtmcC8siGXAAAAFQDE6GPYVT jb5XKtnlUvs/ jzYx+TenQAAATBMBub
2/A0E6/q/EZzWTp940GNDDJ1VEWAd6X 7kdgsY jAXMOfk/eH2ri82+7X3JpeGS6LELaBqIhs3hG2HZp9w ]
6bp5glqjc1dWH8IKQpcOxJA/SDGDaH+xKklsolpxqlad/wivMAFo3I/+ch1777K/EKXN4uIzEETMUPLO
mq++nrAAAATAjOUS3NZGpcpdWMFX8eVDnsrcTvEcCRIfgdUJx7pnrO0sSX+NNNhTEB8J0XggHgbht £ ItEp
g2sBfp+Kpr9PpL+e1G14VTgNs47 jJsadnvQZSRUJ5aZaKeX7VpEpyZxd98Cqcn4BOMLKLs5nEHTHyNog
QkGVIoGB33+b2WLVa8dTpCg==

4.4 Local DNSSEC validation

The program at the remote host’s side makes use of the LibUnbound [12] Python module to do local
DNSSEC validation of the RSA public key it receives from the administration machine. The program
looks up the SSHFP records of the domain name that was locally configured as the domain name of the
administration machine. When the fingerprint of the received public key matches the fingerprint in an
SSHFP record, and if that record has been validated using DNSSEC, the program will respond with the
shared secret. If the fingerprint could not be validated, a bogus answer will be generated.

This step is important in the sense that it prevents an eavesdropper from discovering the host’s secret.
The generated hash will be encrypted with the received public key and only if this key belongs to the
administration machine, that machine can decrypt the hash using its private key. If the key could not
be verified as belonging to the administration machine, then it is possible that an eavesdropper is in
between.

When the hash is encrypted by the eavesdropper’s public key, he will also be able to decrypt it. By
sending a bogus answer when the public key’s fingerprint does not match, he will receive an invalid hash,
making an offline attack on the hash to discover the secret pointless since it has not been involved in
creating the hash. If the eavesdropper forwards the answer to the administration machine it can detect
that something is wrong since the hash will not match the one it generates itself.

The DNSSEC validation must be done locally so that the whole validation process does not rely on the
“last mile” between the DNS server and the host in which the DNSSEC answer could be forged to look
valid when it is actually not. It is therefore necessary to have the certificate of a trust anchor installed
at the host which in our case was the DNS root’s certificate. One might consider to run Unbound as
the local DNS resolver so that the root certificate is automatically updated when its key has been rolled
over.
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4.5 Encryption

As mentioned before a remote host uses the RSA public key of the administration machine to encrypt the
hash. We included the M2Crypto [13] Python module for encryption functionality. A public key object
is created from the RSA exponent and modulus that are extracted from the administrator’s public key
which is passed on to M2Crypto along with the hash to perform the encryption.

RSA “Optimal Asymmetric Encryption Padding” (OAEP) is applied just before the encryption to min-
imise the chance of a successful cryptographic attack [14]. This also causes the ciphertext to be different
each time the same hash is being encrypted, making it impossible for an attacker to find out if an an-
swer from the remote host is actually valid by trying to see if the answer stays the same after multiple
identical requests (e.g. with a replay attack). Without the padding a valid answer would not change
indeed, whereas a bogus answer is randomly generated at each rejected request.

At the administrator’s side, M2Crypto is used again to decrypt the hash. The machine’s private key
is passed to the module, which is the reason why the program must run with root privileges since the
private key is not world readable.

4.6 Pushing updates to the DNS

In case a list of SSHFP records is provided, the application will immediately try to push the new records
to the DNS server, skipping the key retrieval process. Otherwise, the public keys are first retrieved from
all the remote hosts whereafter SSHFP records are generated for the trusted keys. To perform dynamic
DNS updates, we use nsupdate which is part of the package bind9utils.

Transaction signatures (TSIG) [15] are used to authenticate the updates. These signatures rely on a
shared secret between the administration host and the DNS server. The secret key needs to be configured
on the DNS server and the path to the local keyfile also needs to be configured in the configuration
file of our application. Hash-based Message Authentication Codes (HMAC), HMAC-SHA512 in our
implementation, are then used to ensure authenticity and integrity. We also force nsupdate to use TCP
instead of UDP to ensure a successful update.

4.7 Existing list of SSHFP records

As mentioned before (2 Research), public keys can also be retrieved out-of-band or via encrypted email
(GPG). We added the functionality to push an existing list of SSHFP records to the DNS, just by feeding
the file to our administration application. The administrator just needs to offer the program a file with
valid SSHFP records each on a new line. The help section of the application (listing 3 in A.1.3) shows
how to use the arguments.

4.8 OpenSSH patch

The result of this whole process is of course more useful if one has a client application that actually looks
up the SSHFP records in DNS and does local DNSSEC validation of the answers.

On the website http://www.dnssec-tools.org/ one can find a whole suite of tools that make use of
DNSSEC. First the DNSSEC-Tools package will need to be installed, which will install the DNSSEC-Tools
resolver and validator libraries and headers on the system. Then OpenSSH [16] [17] can be patched with
the patch included in the package. More detailed installation instructions can be found in the README
file of the package, or on the website.

Once OpenSSH has been patched successful, a new option can be used, StrictDnssecChecking, in
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ssh_config. This option can have the values yes, no and ask. One will also need to enable VerifyHostKeyDNS.
This option is already available in the normal version of OpenSSH, but the patch is needed to add vali-
dation of the DNS answer using the RRSIG resource records.

When one tries to connect to a host whose fingerprint cannot be validated using DNSSEC, the following
warning will be shown:

defeleldccedddeeelelelddcdededddeeeleledddddecdedddeeeleledddedddeddddedeeeldeddededdd
@ WARNING: UNTRUSTED DNS RESOLUTION FOR HOST KEY! c]
defelelcccddddddddeeleledededdecdddeeelededededdeeddeeleleddedddedddddeeelcdedcdedcdedd

If the key has also changed since the previous connection (according to the known_hosts file), an even
stronger warning will be displayed:

clelcleleeleleledeldeleeeleelddededdeldddeddedddedededdddeddeddddededddedededdededdeddddeded

@ WARNING: UNTRUSTED DNS RESOLUTION FOR HOST KEY! e
clelelelelefeleleleldelcleleleelceleleelceddeededeecdeddeeddeddeeddedededddeddeeededdd
cdclelddddeecddddeleeldddeleelddeddedddedeeddeddelddededdddddededddedeldddeded

¢ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! e
lclclclefclecdeldeldedeleelddededdeddddedeedddedddeddddeddeddddedddddedededdededdedddeded

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could