
Privacy Issues with the Android Market

RP1 Project Paper

Bastiaan Wissingh Thorben Krüger

January 28, 2011

Contents

1 Introduction and Motivation 2

2 Background Research 2
2.1 Android Market: Informal Definition 3
2.2 Android Market: Functionality 3

2.2.1 The Installation Procedure 4
2.2.2 The Remove Procedure 4
2.2.3 Cloud to Device Messaging service (C2DM) 5

3 Methodology 5
3.1 The Android Emulator . 6
3.2 Traffic captures . 6
3.3 APK Disassembly . 8

3.3.1 The Reverse Engineering Process 9

4 Results 9
4.1 How does the Android Market work 10

4.1.1 The installation procedure in depth 10
4.1.2 The remove procedure in depth 12

4.2 Security Implications . 12
4.2.1 AppBrain . 13

5 Mitigation Proposal 13

6 Findings Beyond Scope 14
6.1 Android Permission System . 14

7 Conclusion 15

A Division of Workload 16

1

1 Introduction and Motivation

In the growing market of the so called smart-phones, Google’s open source An-
droid platform in recent years has established a firm foothold. As an operating
system, Android primarily targets commercial mobile hardware with (compara-
bly) limited processing power, such as smart phones and (recently) tablets.

The user of such a device is often given the opportunity to install additional
(third party) mobile applications, (colloquially abbreviated to ”apps”), which
one commonly finds, installs and manages through a preinstalled catalogue ap-
plication.

Although there exist several different implementations of such an applica-
tion, the most ubiquitous on the Android platform is probably the ”Android
Market” distributed by Google on almost all Android-branded mobile devices.
When a third party decides to publish an Android application with the goal of
exposing it to as many users as possible, the most common approach is to aim
for publication in the ”Android Market”, which does not require much more
than paying a one-time fee and agreeing to a number of terms and conditions.

As the sole authority over the Android Market, Google reserves the right to
remotely remove any application that has been installed via this channel, should
it turn out to violate any of the terms of service agreements. Indeed, function-
ality to achieve this has been implemented in the Android Market application
and already made use of to remove a proof of concept ”malicious” application
by security researcher Jon Oberheide[7][6].

This questionable “feature” of the Android Market to support the remote-
controlled removal of an application gives rise to speculations about undisclosed
additional functionality with even higher impact on the integrity of a system.
However, there has been little further research into this topic and its possible
implications.

This project aims to establish verified facts pertaining to this topic before
investigating remedies for any issues found.

At the beginning of this project, the following questions were established as
worth investating:

• What exactly is the Android Market?

• How does the Android Market work, with respect to application installa-
tion/removal procedures

• Are these procedures vulnerable for malicious attacks? And, if so, for what
kind of attacks?

2 Background Research

In the following paragraphs, a brief look into Google’s Android Market system
with regard to the above-posed questions is provided, according to publicly avail-

2

able information like the documentation on the Android website from Google
and already published papers regarding the Android Market.

2.1 Android Market: Informal Definition

The Android Market is a solution from Google for an online software store to
host free and paid applications for the Android platform. The Android Market
was announced on 28 August 2008 and was made available to users on 22 Oc-
tober 2008. The Android Market can be compared to online software stores for
other smart phone platforms like the App Store, developed by Apple for their
iOS platform.

The applications published on the Android Market platform can be browsed
and downloaded through a special application on an Android device, called
Market. Browsing is also possible through a common web browser by accessing
the platform’s website, which essentially exposes the same information as is also
accessible from the Market application itself. However only the latter offers the
functionality for downloading and istalling an application on the actual device.
An entirely web-based download of apps is not possible. Recently1[9][8], support
has been added into the Market website for triggering application installation
on a user-registered device without requiring any interaction with the device
itself.

The Market application is proprietary and comes pre installed on most fac-
tory installed Android devices.

2.2 Android Market: Functionality

As mentioned in the previous paragraph, the Android Market is used as a way
to distribute applications for the Android platform. The applications on the An-
droid platform are distributed and installed through so called .apk files, which
stands for Android Application Package file. These self-contained .apk files
contain all components needed for a certain application, like the application’s
code (.dex files), the resources, the assets, and the manifest file [13].

On the Android Operating System there are two services available for han-
dling the .apk files:

• A so called Package Installer application[23], which is a higher level appli-
cation that interacts with the Package Manager service to install applica-
tions. This PackageInstaller.apk package can be located in the directory
/system/app/.

• A so called Package Manager service[22], which is a standard feature of
the Android operating system used for managing packages and can be
directly used by issuing the command pm which is located in the directory
/system/bin/.

1February 2011, so these developments could not be taken into account for this project
any more. [9][8] are still highly relevant to the topics we discuss here, so are recommended
reading to put our research in current perspective.

3

The Package Installer service can be used when .apk files are directly in-
stalled, for example from and SD-Card, while the Package Manager service is
used when applications are installed through the Android Market application
or through the Android Debug Bridge tool of the Android SDK.

2.2.1 The Installation Procedure

On Android there are basically three different methods of installing Applications
(or .apk) files[24]:

• The first method is by using the Market application on an Android device,
which interacts directly with Package Manager.

• The second method is by installing .apk files directly from the device
memory or SD-Card with the Package Installer service.

• The third method is by using the adb (Android Debug Bridge) tool from
the Android SDK, which interacts directly with the Package Manager.

In the Android Operating System applications are separated from each other
by the kernel through the use of sandboxes. This means that an application by
default does not have direct access to shared system resources or data. To be
able to share resources and data with other applications, an application must
explicitly be granted with the required permissions.

Those permissions are granted to a certain application by the Package Man-
ager service upon installation. The Package Manager service grants those per-
missions based on checks of the signatures of the applications declaring those
permissions and/or interaction with the user (it displays the permissions of the
application to the user, in order for the user to agree).2

Also .apk files need to be signed with an certificate (does not need to
be a certificate authority) in order to distinguish the developers of different
applications.[14]

2.2.2 The Remove Procedure

On Android there are basically two different methods of removing Applications
(or .apk) files:

• The first method is by unstalling .apk files directly from the device mem-
ory or SD-Card with the Package Installer service by using the Manage
applications function of the System Settings.

• The second method is by using the adb (Android Debug Bridge) tool from
the Android SDK, which interacts directly with the Package Manager.

Beside these two methods to remove applications from the Android platform,
there is also a third option, however, this option can not be used by a user of
an Android device but only by Google. This third option gives Google the
possibility to remotely remove applications by sending a specific command to
an Android device[6].

2See section 6 below for further details on the permission system.

4

2.2.3 Cloud to Device Messaging service (C2DM)

C2DM, also known as Android Cloud to Device Messaging, is a service from
Google that helps developers send data from their servers to their applications on
Android devices. The service provides a mechanism that servers can use to tell
mobile applications to contact the server directly to fetch updated application
or user data.

The C2DM service from Google basically exists of three parts:

• The Android device with the application that needs to receive push mes-
sages from the developer.

• The C2DM service servers from Google, which forward the messages be-
tween the developer and the application on the Android devices.

• The developer servers who push messages to the C2DM servers from
Google, to contact the applications on the Android devices.

In order for the developers server to be able to send push messages to the
application on the Android device, the Android device first needs to be registered
with the Google C2DM service. This is because the Google C2DM servers work
as sort of in the middle service. The developers servers can send a message to
the Google C2DM service, which then sends the message to the Android device,
in order for the Android device to directly contact the developers server for the
new data.

In the pictures below, it will first show the registration process, after which
it shows how the sending message process works.

5

3 Methodology

This chapter describes the technical configuration and decisions made for setting
up the Android and capturing environment.

3.1 The Android Emulator

There are two different possibilities to be able to work with the Android plat-
form, either by using a mobile device (e.g., a smart phone) with the Android
OS installed, or by using an emulator to run the Android OS. For this research
project, initially all work was undertaken on emulators with the Android OS,
although a physical device was made available at a later stage as well.

Google released an Android Emulator[11], which is an emulator which en-
ables a developer to run a virtual mobile device on a standard computer in
order to design, debug, and test applications in an actual Android run-time en-
vironment. It is provided among a number of additional tools with the Android
Software Development Kit[12] (also known as Android SDK), intended to aid
the devlopment of applications for the plattform.[15]

One downside of using the emulator is that it by default only creates very
minimal base-system images. Crucially, these come without the proprietary
Google application collection, which would include the Market app. So in order
to use the Market on the emulator, its package and the required dependencies
have to be obtained through inofficial channels in order to be installed manually.

The Market application itself is provided by the Vending.apk package and
depends on the Google Services Framework (provided by the GoogleServicesFramework.apk)
for communication with the Google servers.

For this project installation instructions from a tutorial written by Varunk-
umar Nagarajan[19] were used to correctly deploy these packages on emulator

6

instances.

Besides the Android Market and Google Services Framework, the GTalk
Service Monitor (which monitors the Google Talk Service) was deemed a use-
ful addition, since the Market app appears to make use of this Google Talk
Service[21] for part of the communication with Google. To get the GTalk Ser-
vice Monitor running, the Talk.apk and gtalkservice.apk from the Google
application collection also had to be installed.

3.2 Traffic captures

For purposes of introspection into the encrypted data passed between Google’s
servers and a device running the Market application, some means for decrypting
an SSL/TLS session is needed. Since SSL has been designed to prevent exactly
this, there is no straight forward way to do this. However, if one manages to
convince the device to trust a faked SSL certificate and establish oneself as a
proxy somewhere between the server and the targeted device, one is in a posi-
tion to perform a “man in the middle” (MITM) attack on any encrypted session
that the device intends to establish with said server. Instead of establishing the
session with the intended destination, the client unwittingly establishes a secure
connection only with the proxy, which then in turn establishes a “normal” con-
nection to said destination. Data sent from either party ends up at the proxy
in the clear. The logical modus operandi for this setup is the forwarding of
data from either end to the other, while logging the contents. Now, the session
between proxy and client would normally not be trusted by the latter, since
the faked certificate used by the former to identify itself is (most probably) not
signed by any certificate authority (CA) which the client trusts. The easiest
way to get the fake certificate accepted is to sign it with a self-generated CA
certificate that the client has been led to trust beforehand. (In this case the
attack is also known as a “trusted man in the middle”.) In case of an Android
device, this last part requires physical (i.e., USB) access to a device with enabled
debugging functionality (or an equivalently emulator setup). Apart from this
requirement, the rest of the setup is a comparatively straight-forward process
of following a simple tutorial[17] so we omit the details here.

(Due to the relative obscurity of the processes, setting up a suitable proxy
to conduct the MITM attack and collect the data made up a disproportion-
ately large part of this research. The tools sslsniff[18] (specialized for this
scenario), mitm-proxy[1] (dedicated tool, heavily customized3 in an efford to
make it usable for this research),WebScarab[2] (general purpose traffic analy-
sis/manipulation toolkit that turned out to be too complex and buggy for our
needs) and stunnel (general purpose SSL encryption wrapper) were among
those evaluated for this purpose.)

The native support for the MITM use-case varies widely from tool to tool.
While especially mitm-proxy (and to a lesser degree sslsniff) as a dedicated
tool for this scenario is highly automated, conducting the same attack with the
help of e.g., stunnel requires some additional work, mainly with respect to cer-

3in an unfortunately pretty non-reusable (i.e., “hackish”) way

7

tificate handling and the “plumbing” of traffic[3].

Initial focus lay on making the mitm-proxy tool usable for the purposes of
this research. Without modification, this tool only sniffs HTTPS without re-
laying any packets that come without a proxy-header. The open-source nature
of this tool allowed for a number of modifications which were made towards a
more universal proxy. Although this endeavour was ultimately successful for
purposes of proxying and sniffing any traffic from a common web browser, we
unfortunately could not apply the result to the Android platform due to com-
patibility issues that ultimately were beyond our capabilities to fix.

The stunnel tool is intended as a very general purpose way for agnostically
wrapping TCP traffic inside an SSL-encrypted tunnel. It does not offer proxying
capability itself. Indeed, an stunnel can only provide a single (prespecified) cer-
tificate to a connecting client, ruling out any scenario other than a very targeted
attack (for a single known destination). With this tool, the entire actual MITM
infrastructure has to be provided by different means. Apart from a stunnel lis-
tening for client connections, a second stunnel needs to be set up to on-demand
connect to the remote server. The traffic data needs to be passed between client
and server-stunnel and also logged. (In our implementation, a major mistake
was made at the logging-stage of this setup: Since the stunnels were locally
interconnected via sockets on the localhost it was incorrectly deemed sufficient
to dump all traffic from the loopback interface. For unknown reasons, these
dumps turned out to only show severly garbled and incomplete data, leading to
several days of vain debugging before the problem was found.)

The approach that ultimately proved to be the most fruitful involved the
usage of sslsniff. As the name implies, the purpose of this tool matches our
usecase rather well. On paper[18], the tool supports the on-the-fly creation and
signing of faked certificates depending on the intended destination and using
those to automatically perform a MITM-attack on a connecting client that in-
tends to establish an SSL session with any remote host. However, after the
initial evaluation of the program did not produce very promising results4, we
temporarily focused on the above mentioned (and at that time) more promising
alternative approaches instead before turning back to it once more. While the
automatic mode still couldn’t be made work as advertised, a different attack-
mode was workable. In this targeted mode, one provides (manually signed)
certificates for a number of targets. A connecting client then gets served with
the corresponding faked certificate, depending on the intended destination. For
convenience, a customized script was used to semi-automatically generate the
required certificates from our fake root CA, which we had arranged to be trusted
by the targeted clients.

(sslsniff is meant to be run as a transparent proxy. In this mode, a client is
not aware of its connections going through a proxy and therefore does not need
to have support for proxy headers. Transparent proxies have the drawback that
they can not easily be deployed on the same host as the clients. With almost
no knowledge about such topics, we faced a rather steep learning curve, since

4I.e., we experienced a lot of random segmentation faults during testing.

8

this turned out to require setting up a specialized machine for the purposes of
interception and correct routing of all traffic through said machine with some
additional port forwarding/packet mangling to reroute those packets we wanted
to intercept to the corresponding MITM-setup.)

3.3 APK Disassembly

The ideal approach for learning more about the possible functionality of an
application would be source code introspection. However, since the application
is only distributed in a pre-compiled binary format, this is not directly possible.
Fortunately there exist dissassemblers specifically targeting binaries compiled
for the Dalvik virtual machine (which is central to the Android system).

“Android includes a set of core libraries that provides most of the
functionality available in the core libraries of the Java programming
language.

Every Android application runs in its own process, with its own
instance of the Dalvik virtual machine. Dalvik has been written
so that a device can run multiple VMs efficiently. The Dalvik VM
executes files in the Dalvik Executable (.dex) format which is opti-
mized for minimal memory footprint. The VM is register-based, and
runs classes compiled by a Java language compiler that have been
transformed into the .dex format[. . .].

The Dalvik VM relies on the Linux kernel for underlying func-
tionality such as threading and low-level memory management.”[16]

The .dex format is a very efficient binary format of machine instructions
for the Dalvik VM. Although there exists some documentation about the exact
opcodes used by the machine, reverse engineering an application on this level
would be rather daunting. However, luckily there is baksmali:

“smali/baksmali is an assembler/disassembler for the dex format
used by dalvik, Android’s Java VM implementation. The syntax
[. . .] supports the full functionality of the dex format (annotations,
debug info, line info, etc.).”[10]

From the reverse engineering perspective this is almost as good as it gets.
baksmali produces a form of high-level assembly, the syntax of which is very
unfamiliar from the perspective of someone used to higher-level languages. Fi-
nally, if one desires to recreate the directory structure of the disassembled code,
there is APKTool:

“[APKTool] is a tool for reengineering 3rd party, closed, binary
Android apps. It can decode resources to nearly original form and
rebuild them after making some modifications; it makes possible to
debug smali code step by step. Also it makes working with app
easier because of project-like files structure and automation of some
repetitive tasks like building apk, etc.

Features [. . .] decoding [of] resources to nearly original form (in-
cluding resources.arsc, XMLs and 9.png files) and rebuilding them.”
[5]

9

3.3.1 The Reverse Engineering Process

1. One might start with greping the smali files produced by running APKTool

for any such telltale character sequences that were found through the above
described traffic analysis.

2. Analyzing the matching lines from the previous step, one might find cer-
tain regularities, such as the character sequences being defined as string
constants.

3. Constructing a broader search from those regularities (e.g., search for all
string constants) and inspect those matches as well

4 Results

After having briefly looked at what the Android Market is and how the instal-
lation and remove procedures work, this section will give a more in depth view
of the installation and remove procedures of the Android Market and discuss
whether or not these procedures are vulnerable to malicious attacks. To be able
to look into the installation and remove procedures in more depth, there has
been made use of intercepted network traffic from the Android OS during these
procedures and of the different logging possibilities available on the Android
platform which can be accessed by using the logcat utility in the Android SDK.

Also an interesting observation is that the Android operating system tries
to keep up a connection with the GTalk Servers from Google. A soon as there
is network connectivity (cellular data or WiFi), the Android operating system
connects to the GTalk Servers. Research done for a previous project indicates5

that a connection with the GTalk Servers might be prefered over a cellular
data connection, but such a connection is not mandatory. Contrary to WiFi, a
cellular data TCP connection can persist even if the device switches connectivity
to a different GPRS/UMTS cell. Due to the extremely small amount of data
being passed through this connection, one could argue that the cost impact of
this is probably negilible6.

To connect to the GTalk Servers, the Android platform makes uses of the
XMPP (Extensible Messaging and Presence Protocol)[25] to connect to mtalk.google.com
on port 5228. This protocol is an open-standard communications protocol which
is based on XML (Extensible Markup Language).

4.1 How does the Android Market work

During the research project, we tested the following versions of the Android
Market application (which were available at the moment):

• Android Market version 1.8.2

• Android Market version 2.2.6

5Reportedly, an Android phone connected to a WiFi hotspot for purposes of traffic analysis
chose GPRS for the GTalk connection, as was determinde by also doing traffic analysis on the
phone itself.

6It might be worth investigating if things are handled differently when the device is con-
figured for roaming.

10

4.1.1 The installation procedure in depth

If we take a look at the log files created by the Android OS during the installation
procedure with the following command adb logcat -v long *:V, we can see
that the Android Market does not install applications itself, but it downloads
the applications and let the Package Manager service install the applications.

Android Market version 1.8.2 To test this, we installed a random appli-
cation from the Android Market onto the Android Emulator. While the instal-
lation took place, we did a Man-in-the-Middle attack on the Android Emulator
and kept a look at the logfile of the emulator. If we then take a closer look at the
logfile, you can see that the Market application (or Vending.apk) downloads
the apk file, passes it on to the Package Manager which installs the apk and
reports back to the Market application when the package is installed.

An interesting observation is that during the installation process, the SSL/TLS
Man-in-the-Middle was able to intercept traffic on the GTalk Service connection.
More specific, when the installation button in the Android Market application
was pressed, it triggered some service at Google to send an INSTALL_ASSET

message through the GTalk Service connection to the Android OS which then
started the download and install procedures on the Android OS.

Below is a (pretty-printed) example of the INSTALL_ASSET messageinter-
cepted during the installation of the CNN application from the Android Mar-
ket:

tickle_id 1295709543744

assetid -3618933983076165489

asset_name CNN

asset_type APPLICATION

asset_package com.neoapps.android.cnnnews

asset_size 223526

asset_signature 5U3_HpYkDMUGNnhgihad4ZbWxi4

asset_blob_url http://android.clients.google.com/market/download/

Download?assetId=-3618933983076165489

&userId=13426579174145539424

&deviceId=4369701806128838147

download_auth_cookie_name MarketDA

download_auth_cookie_value 00380775007263922778

direct_download_key \$AIJ80zEinxs9R0bxyNxlsKn/e/UOTrkUcA==

@J0:1295709543754037X

Based on the intercepted INSTALL_ASSET message, we could see in the logfile
of the Android system that the download is initiated with the assetid, which
is passed to the Android Market application which starts the download of the
apk file. This can be seen in a part of the logfile presented below:

[01-22 16:18:41.185 60:0x51 I/ActivityManager]

Displayed activity com.android.vending/.TabbedAssetInfoActivity:

1056 ms (total 1056 ms)

[01-22 16:18:48.445 60:0x101 I/ActivityManager]

Starting activity:

11

Intent { act=android.intent.action.VIEW

cmp=com.android.vending/.AssetPermissionsSubActivity (has extras) }

[01-22 16:18:49.976 60:0x51 I/ActivityManager]

Displayed activity com.android.vending/.AssetPermissionsSubActivity:

1440 ms (total 1440 ms)

\textbf{ [01-22 16:18:59.445 183:0x133 D/vending]

[21] LocalAssetDatabase.notifyListener():

-3618933983076165489 / DOWNLOAD_PENDING }

[01-22 16:19:02.345 183:0x140 D/vending]

[27] AssetDownloader.downloadAndInstall():

Initiating Download for 1 applications.

[01-22 16:19:02.355 183:0x140 I/vending]

[27] DownloadManagerUtil.enqueueDownload():

Enqueue for download com.android.vending.util.DownloadManagerUtil

\$Request@44fcdff0

Android Market version 2.2.6 To look into the installation procedure of
this version of the Android Market application and compare it with the installa-
tion procedure of the 1.8.2 version of the Android Market application, the same
procedure has been used. So a random application is installed from the Android
Market onto the Android Emulator. While the installation took place, we did
a Man-in-the-Middle attack on the Android Emulator and kept a look at the
logfile of the emulator.

If we then take a closer look at the logfile, you can see that the activities used
to install the .apk file are similar to the 1.8.2 version of the Android Market
application. So the Market application (or Vending.apk) downloads the .apk

file, passes it on to the Package Manager which installs the .apk and reports
back to the Market application when the package is installed.

Although the installation procedure looks similar for both version when look-
ing at the logfile of the Android Emulator, there is an interesting difference.
During the installation of an application through the Android Market version
1.8.2, an INSTALL_ASSET message is send from an Google server through the
GTalk Service connection to the Android platform. However, this does not
seem to happen with the 2.2.6 version of the Android Market application. This
can be checked by starting the GTalk Service Monitor, which is a tool that
keeps track of the GTalk Service connections and shows the types of messages
send and received.

4.1.2 The remove procedure in depth

So during the installation process, some service at Google is triggered to send
and installation message (INSTALL ASSET) to your Android device, which then
starts the installation. But how does it work when a user wants to remove an ap-
plication, is that then also initiated by and deinstallation message (REMOVE ASSET)
like John Oberheide described[7]?

12

If we take a look at the logfiles created by the Android OS during the remove
procedure with the following command adb logcat -v long *:V, we can see that
the removing of applications is not done through the Android Market (there is
not even an option in the Android Market application to remove applications)
but you need to take the following steps.

In the Settings application of the Android system, there is an option to man-
age packages. Within that package managing option, you can delete an installed
application, which will cause the PackageInstaller to start the deinstallation pro-
cess by opening the Package Manager, which removes all files belonging to the
specific package.

So when a user removes an application, there is no deinstallation message
(REMOVE ASSET) involved, this means that such a message is only used when
Google remotely deinstalls an application from an Android device[7].

4.2 Security Implications

The Android Market neither appears to be a particularly easy target nor does
it have many obvious security flaws. However, there is the interesting case of
AppBrain:

4.2.1 AppBrain

According to their website, AppBrain is a website for discovering Android ap-
plications and in addition to providing search and browse functionality, users of
Android phones can download the applications they choose by simply clicking
an install button on the website. AppBrain then stores the application in an
application wish list and a companion native Android application then lets the
user efficiently make all the desired changes on the phone.

So how does this installation process work? Does this interact with the Mar-
ket application on the Android or does it use a separate service? To find out
more about the process, we contacted the developers of the AppBrain concept
for more information and performed a Man-in-the-Middle attack on the instal-
lation process during the use of AppBrain.

When we did a Man-in-the-Middle attack on the installation process and
looked at the logfiles, we were able to intercept an INSTALL ASSET message just
as with the installation process of the Market application and we could also see
that the same processes were called as during the installation process of the
Market application.

Also according to the developers of AppBrain, the Market application from
Google does not immediately initiate the download of an application once the
install button is pressed, but it first sends a message to the Google servers. The
Google servers then respond by sending a message which initiates the download
and installation (the INSTALL ASSET message mentioned before). AppBrain
simulates this process by faking the initial message send from the Market appli-
cation to the Google server when pressing the installation button on the website,

13

which then starts the download and installation process on the Android Phone.
To be able to use this functionality, you need to install the AppBrain application
and the Fast Web Installer application, which ”fake” the installation process of
the Market application.

5 Mitigation Proposal

Since the initial suspicion of “back-door-like functionality” couldn’t be con-
firmed, the point of discussing mitigations is almost mute. The remote applica-
tion removal feature remains the almost sole point of potential issue for some.
In order to disable this functionality, the following approach might solve the
issue:

Binary Android applications can be disassembled as well as reassembled back
to a working version using the above described APKTool. This can facilitate the
creation of a modified version of the Market application with the relevant func-
tionality disabled by inserting a “premature” return instruction at the begining
of the corresponding section of the disassembled code. As a result of the pre-
mature function return, the rest of the code is not executed, so a call to that
subroutine remains without effect.

Since the Market application is proprietary however, the distribution of a
patched binary has legal implications which one might wish to avoid. This
could be achieved by developing an easy to use patch application (similar to the
iPhone jailbreak toolkits) which each person with an interest in patching his
own Market application can then execute. The patch application (which can’t
run on an Android device itself) could make use of assembly-level patches in
conjunction with a bundled distribution of the APKTool in order to avoid any
legal issues which might remain with common binary patches.

6 Findings Beyond Scope

While researching the feasibility for using the above introduced APKTool to
automatically rebuild an application for the purposes of intermediate patch-
ing, it was discovered that (due to issues with the cryptographical signing of
the reassembled application) the Market application honors the (sophisticated)
application permission system which is integral part of the android platform.
Specifically, permission error messages were observed on the debug console of
an emulator instance after a rebuilt version of the Market application was in-
structed to install a random app. The installation failed accordingly, since the
permission system reported insufficient rights for the application to initiate this
process.

This discovery strikes a significant blow to the (implicit) assumption (and
premise of this project) that, as part of the core system, the Market application
has additional privileges and somehow bypasses the mechanisms which were put
into place for securing the system against malicious third-party apps. Indeed, it
turns out that even functionality which might be deemed “critical” or “special”

14

(such as the discussed remote application removal) requires explicit permission
from the system.

Had this fact been known from the beginning, we would have “wasted” less
time on trying to “open the black box” that is the Market application and
instead shifted the focus of this research to the sophisticated (and thankfully
open source) framework exerting equal control over all services and applications
running on an Android device.

6.1 Android Permission System

The Android permission system has been subject to repeated criticism[4] from
various sources. While allowing an application developer to have exceedingly
fine-grained control over what kinds of permissions his application may need in
order to function properly, the potential user of the application is only given
two options prior to installation:

1. grant all permissions the application requests in order to be able to install
and use it

2. not to install the application

The ability to selectively deny an application the permission to send (expen-
sive) MMSes would be very welcome by many users, but apparently Google (as
the major developer of the Android system) has little interest in rectifying this
issue.

Some very promising scientific research has been done in this area with the
development of Apex[20], an extension upon the core (and open source) parts
of the android system to expose the fine grained control over permissions to the
end user of an application. However, upon iquiry about the status of the project
the former lead developer declared it effectively dead due to university policies
and copyright issues (among others). However he declared himself willing to aid
any reimplementation efford of his work with the expressed goal of releasing the
results as open source for wider adoption within the android community. (In
face of this remarkable proposition, further steps have been taken to hopefully
ensure the revival of this work.)

7 Conclusion

Although the questions we proposed to investigate at the beginning of this
project appear to have lost relevance somewhat, it maybe makes sense to reca-
pitulate on them anyway:

The suspicion we set out to investigate, namely the presence of hidden
remote-controllable functionality or even backdoors in the Android Market Ap-
plication proved to be unfounded. As an answer to the question “what is the
android market?” one might at least reply: “It is not (obviously) a back-door”.
Contrary to our expectations, the feature’s implementation does not take the
form of a hidden backdoor at all. Our work could certainly have been made a

15

lot more straight forward, had we known or even suspected this from the begin-
ning. The surprising fact that the entire application, even including “critical”
functionality that is intended to be remotely enforceable is implemented with-
out bypassing the built-in permission system only became clear in the very late
stages of this project.

The answer to the third question (“Are these procedures vulnerable for ma-
licious attacks? And, if so, for what kind of attacks?”) turns out to be a rather
boring “not really”. (The MITM-like modus operandi of AppBrain might be
worth mentioning, but there are no obvious gaping holes in the system.)

This does not mean that the application is without issue however. Many
users rightfully even regard the remote-deletion capability with suspicion and
an uneasy feeling. While this “feature” “merely” impacts the integrity of one’s
mobile device, the privacy implications are thankfully limited.

Final remark: As outlined in section 6 our very “forensic” approach to ana-
lyzing the application as a black box first might have been not entirely applicable
for this task.

16

A Division of Workload

• Week 1

– Initial research - Both

– Project proposal - Both

• Week 2

– Full background research

Practical information - Both

Related research - Bastiaan

– Practical analysis of the application

MITM Sniffing - Both

App Analysis - Thorben

– Start on paper - Bastiaan

• Week 3

– Theoretical analysis of the gained data, w.r.t., privacy issues

Captured network traffic - Both

Decompiled program code - Thorben

– Develop proposal for mitigations - Thorben

– Continue working on final paper - Bastiaan

• Week 4

– Additional practical research7 - Thorben

– Finalize both paper and presentation - Both

• Week 5

– Presentation - Both

7Due to unexpected discoveries

17

References

[1] http://preview.tinyurl.com/6ozvel.

[2] http://preview.tinyurl.com/2f3vpo.

[3] http://preview.tinyurl.com/6kqp55h.

[4] http://preview.tinyurl.com/377v7jh.

[5] Brut.all. android-apktool. online documentation, February 2011. http:

//preview.tinyurl.com/yfs27jl.

[6] Rich Cannings. Exercising our remote application removal feature. blog
post, June 2010. http://preview.tinyurl.com/2dofgzs.

[7] (crve). Google uses remote delete to remove android apps from smartphones
- update. only news post, June 2010. http://preview.tinyurl.com/

5top56a.

[8] (crve). Android market poses remote installation risk - update. only news
post, February 2011. http://preview.tinyurl.com/5sfajvs.

[9] (crve). Google launches android market on the web. only news post, Febru-
ary 2011. http://preview.tinyurl.com/48wfh8k.

[10] Jesus Freke. smali. online documentation, February 2011. http://

preview.tinyurl.com/mx4y6d.

[11] Google. Android emulator — android developers. appendix, January 2011.
http://preview.tinyurl.com/ahq8pk.

[12] Google. Android sdk — android developers. appendix, January 2011.
http://preview.tinyurl.com/dhcpvy.

[13] Google. Glossary — android developers. appendix, January 2011. http:

//preview.tinyurl.com/6k3ph9o.

[14] Google. Security and permissions — android developers. appendix, January
2011. http://preview.tinyurl.com/y9bwnlj.

[15] Google. Tools overview — android developers. appendix, January 2011.
http://preview.tinyurl.com/ykqfjy2.

[16] Google. What is android? — android developers. online documentation,
February 2011. http://preview.tinyurl.com/d9gzek.

[17] LarsTobiasSkjongBorsting. Importrootcert - cacert wiki, 2010. http://

preview.tinyurl.com/26kv382.

[18] Moxie Marlinspike. Moxie Marlinspike ¿¿ software ¿¿ sslsniff, 2009. http:
//preview.tinyurl.com/nhfjw3.

[19] Varunkumar Nagarajan. Varun’s scratchpad: [how to] install android mar-
ket on emulator. blogpost, November 2010. http://preview.tinyurl.

com/23m42n5.

18

http://preview.tinyurl.com/6ozvel
http://preview.tinyurl.com/2f3vpo
http://preview.tinyurl.com/6kqp55h
http://preview.tinyurl.com/377v7jh
http://preview.tinyurl.com/yfs27jl
http://preview.tinyurl.com/yfs27jl
http://preview.tinyurl.com/2dofgzs
http://preview.tinyurl.com/5top56a
http://preview.tinyurl.com/5top56a
http://preview.tinyurl.com/5sfajvs
http://preview.tinyurl.com/48wfh8k
http://preview.tinyurl.com/mx4y6d
http://preview.tinyurl.com/mx4y6d
http://preview.tinyurl.com/ahq8pk
http://preview.tinyurl.com/dhcpvy
http://preview.tinyurl.com/6k3ph9o
http://preview.tinyurl.com/6k3ph9o
http://preview.tinyurl.com/y9bwnlj
http://preview.tinyurl.com/ykqfjy2
http://preview.tinyurl.com/d9gzek
http://preview.tinyurl.com/26kv382
http://preview.tinyurl.com/26kv382
http://preview.tinyurl.com/nhfjw3
http://preview.tinyurl.com/nhfjw3
http://preview.tinyurl.com/23m42n5
http://preview.tinyurl.com/23m42n5

[20] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extending
android permission model and enforcement with user-defined runtime con-
straints. In Proceedings of the 5th ACM Symposium on Information, Com-
puter and Communications Security, ASIACCS ’10, pages 328–332, New
York, NY, USA, 2010. ACM. http://preview.tinyurl.com/65ysctn.

[21] Jon Oberheide. A peek inside the gtalkservice connection. blog post, June
2010. http://preview.tinyurl.com/2dg588o.

[22] The Android Open Source Project. Packagemanager.java. source code, /
2006. http://preview.tinyurl.com/5w8stt5.

[23] The Android Open Source Project. Packageinstalleractivity.java. source
code, / 2007. http://preview.tinyurl.com/6en5hjk.

[24] Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, and Shlomi Dolev.
Google android: A state-of-the-art review of security mechanisms. paper,
/ 2009. http://preview.tinyurl.com/6adnxrp.

[25] Wikipedia. Extensible messaging and presence protocol - wikipedia, the
free encyclopedia, 2011. http://preview.tinyurl.com/yr5zah.

19

http://preview.tinyurl.com/65ysctn
http://preview.tinyurl.com/2dg588o
http://preview.tinyurl.com/5w8stt5
http://preview.tinyurl.com/6en5hjk
http://preview.tinyurl.com/6adnxrp
http://preview.tinyurl.com/yr5zah

	Introduction and Motivation
	Background Research
	Android Market: Informal Definition
	Android Market: Functionality
	The Installation Procedure
	The Remove Procedure
	Cloud to Device Messaging service (C2DM)

	Methodology
	The Android Emulator
	Traffic captures
	APK Disassembly
	The Reverse Engineering Process

	Results
	How does the Android Market work
	The installation procedure in depth
	The remove procedure in depth

	Security Implications
	AppBrain

	Mitigation Proposal
	Findings Beyond Scope
	Android Permission System

	Conclusion
	Division of Workload

