
System & Network Engineering

Emulating network latency
on high performance networks

Authors:
Berry Hoekstra
bhoekstra@os3.nl

Niels Monen
nmonen@os3.nl

Supervisors:
Cosmin Dumitru
c.dumitru@uva.nl

Ralph Koning
r.koning@uva.nl

February 6, 2011
Version 1.0 — Revision 127

This page is left blank intentionally

Abstract

Testing the behaviour of applications and protocols on various network
setups can be a difficult task to realise. With the emergence of high-
speed connectivity, new research is needed to evaluate the behaviour of
(existing) applications and protocols. In this research, the netem software
was evaluated as a tool to emulate network characteristics on 10 GigE and
40 GigE setups. Throughput was measured using kernels with different
tick speeds. However, expected throughput could not be achieved when
emulating characteristics on egress traffic. Using different kernel time
resolutions does not mitigate this problem. We suspect that netem is
not optimised for such a high throughput link and can not cope with the
large amount of packets coming in, even though the network parameters
are optimally configured. We advise to only use netem when a maximum
speed of 4 to 5 Gigabit per second is expected.

CONTENTS 1

Contents

1 Introduction 2

1.1 Research . 2

1.2 Network delay . 2

1.3 Improving network throughput 5

2 Related research 9

2.1 Literature review . 9

2.2 Existing tools . 10

3 Methodology 12

3.1 International link . 12

3.2 Test procedures . 17

3.3 Test plan . 18

4 Measurements 22

4.1 10 Gigabit Ethernet . 22

4.2 40 Gigabit Ethernet . 25

5 Conclusion and recommendations 30

6 Future work 31

A DelayBox setup script 32

B Server hardware 32

C Network Interface Cards 34

Berry Hoekstra
Niels Monen

February 6, 2011

1 INTRODUCTION 2

1 Introduction

Testing the behaviour of applications and protocols on various network setups
can be a difficult task to realise. With the emergence of high-speed connectivity,
new research is needed to evaluate the behaviour of (existing) applications and
protocols. To recreate different network characteristics, a real-world environ-
ment can be used. However, this can bring along the burden of communicating
with the many parties that are involved to create a testbed with similar, state-
of-the-art equipment. Another approach is to recreate the setup in the lab using
network resources such as cases containing kilometers of fiber interlinked using
amplifiers. Although this approach will probably have the exact characteris-
tics of the real-world environment, resources like these are not always available.
Other solutions, like the emulation of network properties like delay and jitter,
might provide a much easier approach. Expensive hardware solutions are avail-
able for this, like the proprietary solutions that Ixia provides [1].

1.1 Research

In this work we study the possibility to use a generic server as a “delay box”
between nodes to emulate the different network properties of high-performance
links using software. This approach enables the use of off-the-shelf hardware,
while eliminating high costs and effort. By doing this research, we will answer
the following question:

What are the characteristics of long distance high-speed links and to
what extent can they be emulated with off-the-shelf hardware?

The following sub-questions will help to answer the main research question.

• What solutions are available for this purpose?

• What is the effect of using different network parameters?

• Does it matter if a real-time or regular kernel is used?

1.2 Network delay

1.2.1 Definition of network delay

In a real-world environment, different factors may cause delay. In general, the
delay on a computer network is called “network latency”. Some define latency
as the amount of time for a data packet to reach its destination [2]. In our case,
we measure the network latency by the amount of time it takes for it to travel
from the sender to its destination and back. This is called the Round Trip Time

Berry Hoekstra
Niels Monen

February 6, 2011

1 INTRODUCTION 3

(RTT) [3]. Delay is not only specified by the Round Trip Time, though. We
identify the total delay of a link using three characteristics; RTT, jitter and
jitter distribution. The jitter is the variation in the RTT, which is not always
steady over time. The time when jitter occurs is the jitter distribution.

1.2.2 Causes of network delay

Multiple factors may cause a packet to be delayed on a network link, which will
have effect on the data throughput between nodes that are connected through
this link. The data throughput can be calculated with the following formula,
wherein RWIN is the receive window in MB, and RTT the Round Trip Time:

Throughput ≤ RWIN

RTT

Among other factors, the total amount of delay depends on the distance of a
link, the state of intermediate routers and the amount of jitter. The capabilities
and configuration of network parameters also have a role in the delay.

Figure 1: Link with multiple (unknown) factors.

If the variation in RTT is very high, the throughput of a link can’t be consid-
ered reliable. The delay in packet delivery may differ for every period of time,
depending on the situation on the link. For example, the jitter can be led back
to the congestion state of the queue in an intermediate router or to connections
that go down and have to converge again (using the BGP routing protocol).

The amount of jitter on a LAN isn’t very high, though. This is because in
most cases, LANs are not very large networks. A network like a LAN can be
considered reliable if the jitter is in the order of ten percent of the average RTT
[2].

The causes of delay are discussed below.

Light limitations In high-speed networks, connectivity is provided using op-
tical connectors and fibers. Data transfer is possible by transmitting light
across the fiber. It is known that the speed of light in a vacuum is limited
to 299,792,458 meters per second [4], which will enable us to calculate the

Berry Hoekstra
Niels Monen

February 6, 2011

1 INTRODUCTION 4

theoretical minimum time of a signal to reach its destination. To give an
example, a fiber with the literal distance from Amsterdam to San Diego
has a length of 9028 kilometers [5]. To calculate the maximum theoretical
speed, the following formula applies, where C is the speed of light:

C(m/s) = 299, 792, 458

Delay(s) =
Distance(m)

C(m/s)

9028000

299, 792, 458
= 0, 030114s = 30, 114ms

Among this theoretical limit, other factors like the fracturing of light has
a negative effect on the strength of the light, but the calculation above
shows the theoretical maximum of the speed of light in a vacuum. In op-
tical connections, the light travels through glass, which makes the propa-
gation medium air. This also further degrades the speed to a theoretical
maximum speed of the light, and thus the signal.

Fairness (QoS) On a busy (shared) link, routers have to process all packets
with a certain amount of fairness. Therefore, packet delay occurs on one
traffic stream when packets of another packet stream are processed by
the router. This approach will grant both streams an even amount of
bandwidth. This is also called Quality of Service, or QoS [6].

TCP configuration A data stream follows a certain path towards its desti-
nation target. In a situation where TCP parameters are not optimally
adapted on the sending and receiving node, the throughput is not opti-
mal. Later in this report, we will discuss what parameters can be changed
in order to achieve the optimal data throughput.

Maximum Transmission Unit The Maximum Transmission Unit (MTU),
specifies the size in bytes of a packet that the Ethernet layer can send
in one frame. When dealing with a fast data throughput, the MTU value
can be optimised to achieve higher speeds [7].

Transmission delay is the time that is required for a network device to send
all the bits of a packet onto the network.

Queueing delay is the amount of time a packet is spending in the packet
queues of an intermediate routing device.

Processing delay is the amount of time a router needs to read and process a
packets header before it decides what to do with it.

Berry Hoekstra
Niels Monen

February 6, 2011

1 INTRODUCTION 5

1.2.3 Measuring network delay

To emulate a real-world link in a controlled lab environment, we acquired delay
statistics of the link to emulate. An easy method to measure the network delay
is by using the “ping” tool [8]. Ping uses the Echo feature of the ICMP [9] pro-
tocol. An originating machine sends an ICMP Echo Request. The destination
address will reply to this request with an ICMP Echo Reply message, which
will reach the originator again. The amount of time between the ICMP Echo
Request and the ICMP Echo Reply can be considered the RTT [3]. An example
can be seen below:

Ping to info4u.os3.nl

root@box$ ping -c 2 info4u.os3.nl

PING info4u.os3.nl (145.100.96.70) 56(84) bytes of data.

64 bytes from info4u.os3.nl (145.100.96.70): icmp_seq=1 ttl=63 time=0.147 ms

64 bytes from info4u.os3.nl (145.100.96.70): icmp_seq=2 ttl=63 time=0.237 ms

--- info4u.os3.nl ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1000ms

rtt min/avg/max/mdev = 0.147/0.192/0.237/0.045 ms

In the example above, the value after the “time” parameter is the RTT value,
which is the amount of time it takes for packet to travel from the sender to
the destination target and back. Although there are other tools available to
measure network delay, we decided to use ping, as it is the most convenient way
to measure the RTT to use together with netem.

1.3 Improving network throughput

As we discussed in Section 1.2.2 , many factors can influence the delay on a
network. While most of them are uncontrollable, there are some parameters
that can be tweaked to optimise the throughput of a network. We will discuss
these parameters below.

Increase the MTU By increasing the size of the MTU, more bytes can be
sent to the target destination in every Ethernet frame. This will reduce
the amount of frames that have to be sent. By setting the Ethernet MTU
to 9000 bytes throughout an entire network path, fragmentation of the
frames won’t occur. A MTU of 9000 bytes is commonly known as Jumbo
Frames. We can assume Jumbo Frames along the complete path, as most
National Research and Education Networks (NREN) currently support
Jumbo Frames in their entire path [10].

Berry Hoekstra
Niels Monen

February 6, 2011

1 INTRODUCTION 6

Bandwidth Delay Product The maximum amount of bytes that can be on
a link in transfer at any given time is called the Bandwidth Delay Product
(BDP). This value is the product of the bandwidth in bits per second and
the end-to-end delay of the connection in seconds. The size of the BDP
can be used as the size of the TCP window size. By optimally configuring
the TCP window size, one can achieve the maximum throughput of the
line. For example, the following formula applies for a 1 Gigabit Ethernet
connection on a link with 154 milliseconds delay. Bandwidth (B) is in bits
per second and delay (D) is in seconds.

BDP = B ×D

1000000000 × 0.100 = 100000000bits

100000000

8
= 12500000Bytes ≈ 12.50MB

TCP window size In the example above, the maximum amount of in-flight
data at any given time is about 12.50 MB. This is much larger than the
64 KB that was originally configured in the TCP stack. This problem is
solved with TCP window scaling [11]. TCP window scaling is an extension
to TCP for high performance links. It allows the TCP protocol to send
data when it had not yet received TCP acknowledgements of previously
sent data. The sender has to keep sending data during the time that is
equal to the RTT of the link to achieve the maximum throughput. The
receiver has to advertise a window size that is sufficient enough.

To enable a larger TCP window size in Linux, TCP window scaling has
to be enabled in /proc/sys/net/ipv4/tcp_window_scaling. On Linux,
TCP window scaling is enabled by default from kernel 2.6.8 (August 2004)
[12], so in most cases it won’t be necessary to enable it manually.

If the maximum window size would still have been limited to 64 KB,
the maximum BDP would be only 0.5% of the maximum throughput (5
Megabit per second). To get optimal throughput on the 1 Gigabit link
with 100 milliseconds delay, a window size equal, or higher than the BDP
would be needed.

Buffers On a high performance link, throughput can be very high. Nodes on
both ends need to process the large amount of incoming data while still
receiving even more incoming traffic. To keep up with the ongoing data
stream, a buffer is needed that is large enough to temporarily store the
ongoing data stream. Increasing buffer size will use more memory in the
system, so it is critical that enough memory is present to prevent swapping
and decreasing performance.

Berry Hoekstra
Niels Monen

February 6, 2011

1 INTRODUCTION 7

Description Location

Default size of the TCP receive window /proc/sys/net/core/rmem_default

Maximum size of the TCP receive window /proc/sys/net/core/rmem_max

Default size of the TCP transmit window /proc/sys/net/core/wmem_default

Maximum size of the TCP transmit window /proc/sys/net/core/wmem_max

Table 1: File locations containing the socket buffer parameters.

On a Linux system, the receiving and sending socket are meant for this.
The socket buffers can be configured in the following parameters:

The maximum size of the buffer per socket is specified in /proc/sys/net/core/optmem_max.
Apart from the socket buffers, the TCP protocol also has some dedicated
buffers. These buffers are used for the TCP autotuning feature, which is
enabled in /proc/sys/net/ipv4/tcp_moderate_rcvbuf. Machines with
a Linux distribution with kernel 2.6.17 or later installed have autotun-
ing enabled by default. This enables the TCP window scaling feature as
discussed in Section 1.3.

The TCP buffers that are used for the autotuning feature can be configured
in the following parameters:

Description Location

Maximum size of TCP buffer space /proc/sys/net/ipv4/tcp_mem

Minimum, default and maximum receive window size /proc/sys/net/ipv4/tcp_rmem

Minimum, default and maximum transmit window size /proc/sys/net/ipv4/tcp_wmem

Table 2: File locations containing the TCP buffer parameters.

Packet queue length Every node has a queue different from the buffer in
which the packets are “stored” temporarily before they will be sent on the
line. This is the transfer queue length, which is specified as “txqueuelen”
on Linux. The txqueuelen specifies how many packets the TCP packet
queue can contain and can be set using the ifconfig tool: ifconfig <NIC> txqueuelen 10000.

The receiving packet queue length is specified in /proc/sys/net/core/netdev_max_backlog.

Disable unnecessary TCP parameters On dedicated links and controlled
lab environments, the throughput can be optimised by disabling some
TCP parameters.

Overhead can be reduced by disabling the TCP Segment Acknowledge-
ments (SACK), which will normally reduce the overhead that is generated
by the default TCP Acknowledgements by only acknowledging complete
segments of TCP packets [13], which allows for more packet loss per frame.
For testing purposes, to reach optimal throughput, it can be disabled in
/proc/sys/net/ipv4/tcp_sack.

Berry Hoekstra
Niels Monen

February 6, 2011

1 INTRODUCTION 8

Another TCP parameter that can be disabled is the timestamp feature,
which makes the TCP headers 12 bytes smaller. This option is controlled
in the /proc/sys/net/ipv4/tcp_timestamps file.

It must be noted that this is not desired on (shared) Internet links, as
uncontrollable events might occur.

Berry Hoekstra
Niels Monen

February 6, 2011

2 RELATED RESEARCH 9

2 Related research

In this section, existing studies are reviewed and existing tools are discussed.

2.1 Literature review

Many papers that discuss high performance networking already exist.

A study by Yee-Ting Li et al. evaluates the TCP protocol by comparing different
TCP congestion algorithms [14]. The links we try to emulate use the H-TCP
congestion algorithm. H-TCP originates from the Hamilton Institute, and is
used on high speed networks with high latency, also known as Long Fat Networks
(LFN). This paper concludes that H-TCP stands out in fairness and is also
backwards compatible to low links that have a low BDP [15].

Previous OS3 students have researched how to achieve optimal throughput
through two end-to-end connected nodes over 10 Gigabit Ethernet network in-
terfaces [16] , which was useful in our research as some of the network parameters
were already pointed out.

Other studies specifically focus on the best tool to use for network emulation
[17]. This study points out that some of the research is done using netem as an
emulation tool, while some use NIST Net. We have seen other researchers use
DummyNet [18] , which will be discussed in short later in this paper.

The research of Stephen Hemminger [19] [20] shows that netem can be used
to emulate certain paths, but is unable to completely emulate the Internet,
or emulate large parts of it. The study shows that this is caused by the many
factors that are involved in real-world networks, such as asymmetrical routes and
constantly changing congestion states, which is very hard to emulate. Although
the study only focuses on 1 GigE links, it discusses the netem workings in great
detail, which we found useful during our study.

While Hemminger used 1 Gigabit Ethernet connections to evaluate netem, Wu
et al. have done research on connections of 10 Gigabit Ethernet [21]. Research
was done on the usability of network emulation and measurement tools, but also
on the optimal network parameters to use on 10 Gigabit Ethernet connections.

None of these provide insight into the emulation on high performance links.
However, we can use the results of those studies in this research for the purpose
of comparing test results.

Berry Hoekstra
Niels Monen

February 6, 2011

2 RELATED RESEARCH 10

2.2 Existing tools

The research discussed above is done by using the following tools:

2.2.1 Network emulation tools

There are multiple solutions available for simulating or emulating the char-
acteristics of a network. The simulating of network characteristics consists of
building a model of the environment that needs to be simulated. This model has
to contain similar components of the network to be simulated. So in this case
where we want to simulate a long distance high-speed link, we would have to
create the delay, by adding factors to the network that would generate identical
characteristics.

With emulation, software is used that can exactly reproduce the behaviour of
the emulated network in such a way that it appears to be the same link. We will
focus on emulating the network characteristics, because this approach is more
feasible for testing the behaviour of applications, without any additional costs
to actually build the underlying model of the network or link. This can be done
using different network emulation tools. Tools such as netem [22], NIST Net
[23] and DummyNet [24] can set parameters like the delay, packet loss and jitter
on a link. They are all designed very similarly, but there are some differences.

netem is a kernel module that is included in the kernel by default since ver-
sion 2.6.7, when it was still named “delay”. It was renamed to “netem”
since kernel version 2.6.8 and since 2.4.28 in the 2.4 branch. netem is an
enhancement of the Quality of Service (QoS) and Differentiated services
(diffserv) features that are available in the Linux kernel. These services
are used to add the properties to the egress traffic flow.

Initially, the netem functionality had to be compiled into the Linux kernel,
but is compiled by default on modern kernels. For example, a default
installation of a CentOS 5.5 [25] distribution has a kernel with built-in
netem functionality.

In addition to netem, there are other tools available that provide similar
functionality.

NIST Net is very similar to netem. NIST Net is available in a loadable kernel
module. After examining the netem source code we see that there are
functions in netem that originate from the NIST Net source code. How-
ever, netem does emulation on egress traffic, while NIST Net emulates on
the ingress traffic.

DummyNet was originally developed for FreeBSD. However, there is a Linux
version available.

Berry Hoekstra
Niels Monen

February 6, 2011

2 RELATED RESEARCH 11

web100 is a Kernel Instrument Set (SET). It is an advanced management
interface for TCP, so statistics on all significant protocol events can be
captured. Besides this it can also change characteristics of an TCP trans-
mission through an API. [26]

EmuLab is a network testbed, which is maintained by the “Flux Group, Uni-
versity of Utah”, on which you can test several network characteristics
through a web-interface for free. [27]

NIST Net and netem are kernel modules. In this research the focus lies on
netem, because netem widely used and located in the kernel by default. It also
uses parts of the NIST Net and DummyNet code.

2.2.2 Network measurement tools

Iperf was developed by NLAND/DAST for measuring the maximum TCP and
UDP bandwidth performance [28]. Iperf works with a client-server setup
and generates a traffic stream from the client to the server. After testing
is done a report is sent back to the client. Reports can be shown per given
time interval and can be saved to CSV format. This feature helps to easily
create plots of the network throughput. An example research of Iperf [29]
shows how useful Iperf can be in the testing of network throughput in a
web100 emulated setup.

netperf is a benchmark tool to measure the performance of many different
types of networking [30]. The same client-server method as Iperf uses
is used. However, we found it not as reliable as Iperf, as the reported
throughput seemed strange.

nuttcp is also a network performance benchmark tool. It is based on nttcp,
which was an enhancement of ttcp.[31]. The reporting capabilities are
not as advanced as they are in Iperf. This might be because Iperf spends
more CPU cycles than nuttcp to show the right throughput. This was
also pointed out in the research by Wu et al. [21].

We found that Iperf was the appropriate tool to use as a traffic generator.
The choice was mainly based on the (reliable) reporting capabilities that Iperf
provides.

Berry Hoekstra
Niels Monen

February 6, 2011

3 METHODOLOGY 12

3 Methodology

As discussed in Section 2.2.1 and 2.2.2 , we chose netem to emulate network
properties and Iperf to generate network traffic. Due to the time limitations
of this project (4 to 5 weeks), we postponed the extensive testing of the other
tools as future research.

3.1 International link

In the introduction in Section 1 , we discussed how to obtain network character-
istics. We were provided with access to two nodes on a international lightpath
link. One node was located at the University of Amsterdam, the second node
was located in San Diego. The nodes were interconnected using an optical light-
path connection that was supplied by SURFnet, the Dutch NREN [32]. 10 GigE
optical network interfaces supplied the network connectivity.

3.1.1 Obtaining the characteristics

With access to both nodes on the link we could obtain the characteristics of the
network. Depending on the amount of captured RTT data, we can consider the
results more reliable, because of varying network conditions like congestion on
the link. The following is a traceroute of the node in Amsterdam to the node
in San Diego:

Traceroute from Amsterdam to San Diego over lightpath.

[rp32@amsterdam ~]$ mtr 67.58.46.160

1. 67.58.61.233 104.8

2. 3703calit2.calit2.optiputer.net 185.1

3. 1201e1200-12016509.calit2.optiputer.net 190.8

4. 67.58.46.160 186.0

As the traceroute shows, there are only 3 intermediate hops to the end node.

Berry Hoekstra
Niels Monen

February 6, 2011

3 METHODOLOGY 13

To measure the RTT, ping is used for a time span of 24 hours.

Ping from Amsterdam to San Diego over lightpath.

[rp32@amsterdam ~]$ ping 67.58.46.160

PING 67.58.46.160 (67.58.46.160) 56(84) bytes of data.

64 bytes from 67.58.46.160: icmp_seq=1 ttl=61 time=184 ms

64 bytes from 67.58.46.160: icmp_seq=2 ttl=61 time=184 ms

...

64 bytes from 67.58.46.160: icmp_seq=4478 ttl=61 time=184 ms

64 bytes from 67.58.46.160: icmp_seq=4479 ttl=61 time=184 ms

--- 67.58.46.160 ping statistics ---

70016 packets transmitted, 70015 received, 0% packet loss, time 70018061ms

rtt min/avg/max/mdev = 184.871/184.914/185.014/0.100 ms

As discussed in the introduction in Section 1 , the complete characteristics
are the RTT, the jitter, and the jitter distribution are needed to fully emulate
the characteristics. With netem, this can be done by using custom distribu-
tion tables which are located in /usr/lib/tc/ on a 32-bit installation or in
/usr/lib64/tc/ on a 64-bit installation. The distribution table can be derived
from the collected ping data. This is done with the following command:

Extracting the RTT data from the ping data.

[rp32@amsterdam ~]$ cat pingdata.txt | grep icmp_seq | \

cut -d’=’ -f4 | cut -d’ ’ -f1 > rttdata.txt

Next, we generate the actual distribution table that is compatible with netem.
This is done using the “maketable” tool from the iproute2 package. The
custom distribution table is copied into the appropriate directory to use with
netem.

Extracting the distribution table from the RTT data.

[rp32@amsterdam ~]$./maketable rttdata.txt > distdata.dist

[rp32@amsterdam ~]$ cp distdata.dist /usr/lib64/tc/

Berry Hoekstra
Niels Monen

February 6, 2011

3 METHODOLOGY 14

The “stats” utility, also part of the iproute2 package, can be used to view
information on the average RTT, the variation of the RTT, and the distribution
of the RTT overtime. This information can be viewed by doing the following:

Extracting characteristics using stats.

[rp3@amsterdam ~]$./stats sdiego.rtt

mu = 184.000071

sigma = 0.008450

rho = -0.000071

3.1.2 Testing the throughput

Now the characteristics of the link were known, we measured the throughput of
the lightpath using both the UDP and the TCP protocol. On both nodes, nuttcp
and Iperf was installed. We used Iperf to do the measuring of the throughput.

UDP As UDP is a connectionless protocol, we measured the throughput of
a packet stream in a best effort test. Using Iperf, we gained a network
throughput of approximately 5 Gigabit per second. In the following ex-
ample, the node in San Diego acted as the server, while the node in Am-
sterdam was acting as the traffic generator for sending UDP packets.

UDP throughput test.

[uva@sandiego ~]$ iperf -s -u -l63K -w <window size>

[rp32@amsterdam ~]$ iperf -c <server IP> -u -l63K -w <window size>

TCP As TCP is a connection oriented protocol, sessions must be maintained.
The packets that are required to do this can cause a lot of overhead because
of the acknowledging of packets. Unfortunately, no root access was allowed
on the box, which limited us to optimise the network parameters to achieve
the maximum throughput. In Table 3, an overview of TCP parameters
on both machines can be seen.

Berry Hoekstra
Niels Monen

February 6, 2011

3 METHODOLOGY 15

Parameter Value Amsterdam Value San Diego

/proc/sys/net/core/rmem_default 65536 129024
/proc/sys/net/core/rmem_max 167108864 16777216
/proc/sys/net/core/wmem_default 65536 129024
/proc/sys/net/core/wmem_max 167108864 16777216
/proc/sys/net/ipv4/tcp_mem 88080384 88080384 88080384 196608 262144 393216
/proc/sys/net/ipv4/tcp_rmem 4096 33554432 63554432 4096 87380 16777216
/proc/sys/net/ipv4/tcp_wmem 4096 33554432 63554432 4096 16384 16777216
/proc/sys/net/core/optmem_max 524288 20480
/proc/sys/net/ipv4/tcp_moderate_rcvbuf 1 1
/proc/sys/net/core/netdev_max_backlog 1000 1000
/proc/sys/net/ipv4/tcp_sack 1 1
/proc/sys/net/ipv4/tcp_timestamps 1 1
/proc/sys/net/ipv4/tcp_congestion_control reno bic
txqueuelen 1000 1000
MTU 9000 9000

Table 3: TCP parameters of Amsterdam and San Diego nodes.

In the following example, the node in San Diego acted as the server, while
the node in Amsterdam was acting as the traffic generator for sending
TCP packets.

TCP throughput test.

[uva@sandiego ~]$ iperf -s -w <window size>

[rp32@amsterdam ~]$ iperf -c <server IP> -w <window size>

This test only showed us a throughput of around 1 Gigabit per second.
This is possibly due to the TCP parameters that are not optimally con-
figured. The sending node in Amsterdam has a maximum sending TCP
window size of approximately 160 MB, while the receiving side in San
Diego only has a receiving TCP window of 16 MB. Iperf can use the dou-
ble amount of this, to guarantee higher throughput. We calculated the
maximum throughput of the link to be around 1400 Megabit per second,
which should be limited to the receiving side in this case. We expect
the TCP autotuning algorithm and TCP overhead to cause the average
throughput to be around 1 Gigabit per second.

The limitation in UDP throughput might be caused due to hardware
limitations on an intermediate lightpath switch, which divides the total
amount of capacity of the switch over multiple optical ports. This problem
also limits the maximum TCP throughput if optimal network parameters
were applied.

Berry Hoekstra
Niels Monen

February 6, 2011

3 METHODOLOGY 16

3.1.3 Lab setup

The lab setup consisted of three machines with identical specifications. The
initial setup was a setup of two generic end nodes and a machine that emulated
the characteristics by adding properties to the egress traffic. In this setup, the
two end nodes were connected to each other through the delay box that was
configured as a bridge (daisy chaining). The details on the configuration of all
three machines can be found in Appendix B. More information on the network
interface cards (NICs) is specified in Appendix C.

We took the approach to perform tests on interfaces of 10 Gigabit Ethernet and
40 Gigabit Ethernet to emulate the characteristics of the international link to
San Diego.

Figure 2 is a visualisation of the first lab setup. The setup consisted of three
nodes equipped with dual port 10 GigE PCI-Express network interface cards.
Fiber optic cables provided the connectivity between the nodes. Specifications
on the used NICs can be found in Appendix C.

Figure 2: 10GigE Lab setup visualisation.

Figure 3 shows the second setup, which is are two nodes in a 2U enclosure.
Because of the lack of 40 GigE network interfaces, we had to connect the setup
back-to-back. This limited us to applying the emulation on the same node that
sent the traffic to the receiver node.

Figure 3: 40GigE Lab setup visualisation.

Berry Hoekstra
Niels Monen

February 6, 2011

3 METHODOLOGY 17

3.2 Test procedures

The properties of the example destination is then emulated on the lab setup
using 10 GigE and 40 GigE links.

We emulated those characteristics on the lab setup on 10 GigE interfaces, and
investigate if netem can reliably emulate the characteristics. The influence of
the resolution of the kernel is also studied as on some high-speed links very low
delay times are present, which will result in very fine-grained differences in the
RTTs. Because netem greatly depends on the resolution of the Linux kernel
[19] to emulate, delay emulation can only be done on high resolution kernels
(>1000HZ) to emulate delays smaller than 1ms.

At last, we moved to a lab setup with 40GigE connectivity to see if netem is
suitable on very high-speed links by using the same variation of settings.

3.2.1 Emulating network characteristics

As said in section 2.2.1, we choose netem to emulate the characteristics of the
real-world link. Netem is depending on the resolution of the kernel to apply
fine-grained emulation on outgoing packets [22].

The resolution of the kernel determines when a process is allowed to run. If a
kernel is running at a resolution of 1000 Hz (1000 ticks per second), a process
is allowed a time slice of 1 millisecond to run. This is also known as a kernel
tick rate of 1 millisecond.

When processing very high speed traffic and applying emulation at the same
time, the kernel needs to run at a very high tick rate. The next step after 1000
Hz is the Real-Time kernel. This kernel has a guaranteed system response time
[33], which means it will achieve the lowest possible latency at any cost.

Another kernel we tested is the Tickless kernel. This kernel has been developed
to save energy when idle, but also ticks “on demand”, which we thought to be
interesting to look at.

As discussed in Section 2.2.1, netem only provides the possibility to emulate
network properties on egress traffic. This can be done by using the “tc” Traffic
Control command, which is also part of the iproute2 package.

Berry Hoekstra
Niels Monen

February 6, 2011

3 METHODOLOGY 18

By giving the following parameters, characteristics that were previously acquired
are emulated.

Adding delay with tc.

[root@box ~]$ tc qdisc add dev <NIC> root netem \

delay <delay in ms>ms

Adding delay and jitter with tc.

[root@box ~]$ tc qdisc add dev <NIC> root netem \

delay <ms delay>ms <ms jitter>ms

Adding delay jitter and distribution with tc.

[root@box ~]$ tc qdisc add dev <NIC> root netem \

delay <ms delay>ms <ms jitter>ms distribution <table>

In this case, we emulate a delay of 184.000071 milliseconds, in combination with
0.008450 milliseconds of jitter. The jitter is varying over time, this is specified
in the distribution table that was calculated using the maketable tool. In this
case, the distribution table is saved in /usr/lib64/tc/distdata.dist.

3.2.2 Generating traffic

At this stage, the emulated characteristics are applied to all egress traffic on the
specified interface. To measure the network speed, we need to send data over
the path. These data streams have to be generated to move data from one node
to the other node via the delaybox.

On the receiving node, Iperf is started in server mode, while on the sending
node, Iperf connects to the server and can start sending data. Throughput
reports are written to CSV format every two seconds, so the resulting traffic
could be analysed.

3.3 Test plan

Before we start the actual testing, we made sure that the connectivity from
both nodes to the delay box were working correctly. This was done by testing
the maximum throughput back-to-back. We started Iperf as a server on the
delaybox, and tested the links with Iperf as clients on the nodes. As Wu et al.
already stated in its paper [21] , a default MTU of 1500 bytes is inadequate for
10 Gigabit/s links. After testing the throughput with both values, we came to

Berry Hoekstra
Niels Monen

February 6, 2011

3 METHODOLOGY 19

Figure 4: Test the link between Node1 and Delaybox.

Figure 5: Test the link between Node2 and Delaybox.

the same conclusion and used a MTU of 9000 bytes for the full path for all the
following tests.

After the initial tests to confirm the links are working as expected, we tested if
the delaybox could bridge the amount of traffic. This we did with every kernel
to confirm that not any other part of the kernel is delaying or slowing down the
throughput.

Figure 6: Test the bridging capabilities of the Delaybox.

As discussed in Section 3.2.1, we will be using the following kernels to test which
one can achieve the best emulation:

• 100HZ

• 1000HZ

• Tickless

• Real Time

All these kernels will be tested using optimal TCP kernel parameters, which we
configured with the values shown in Table 4.

Berry Hoekstra
Niels Monen

February 6, 2011

3 METHODOLOGY 20

Parameter Value

/proc/sys/net/core/rmem_default 524288000
/proc/sys/net/core/rmem_max 524288000
/proc/sys/net/core/wmem_default 524288000
/proc/sys/net/core/wmem_max 524288000
/proc/sys/net/ipv4/tcp_mem 524288000 524288000 524288000
/proc/sys/net/ipv4/tcp_rmem 4096 104857600 524288000
/proc/sys/net/ipv4/tcp_wmem 4096 104857600 524288000
/proc/sys/net/core/optmem_max 524288000
/proc/sys/net/core/netdev_max_backlog 250000
/proc/sys/net/ipv4/tcp_sack 0
/proc/sys/net/ipv4/tcp_timestamps 0
/proc/sys/net/ipv4/tcp_congestion_control htcp
txqueuelen 10000
MTU 9000

Table 4: TCP parameters of the lab setup.

Per kernel we tested the throughput with different characteristics applied. These
tests are:

• Baseline of local link (no delay)

• added delay

• added delay + jitter

• added delay + jitter + distribution

We also tested what the impact was of using different TCP window sizes. The
BDP of a link with almost no delay (local link) is different from the BDP of a
link with high delays. For the tests we used the window sizes shown in table 5.

10 GigE 40 GigE

16KB 16KB
512KB 512KB
50MB 50MB
100MB 100MB
200MB 500MB
233MB (optimal) 950MB (optimal)
500MB 1000MB

Table 5: TCP window sizes.

Berry Hoekstra
Niels Monen

February 6, 2011

3 METHODOLOGY 21

Per window size we tested the throughput for 5 minutes, and plotted these tests
into graphs, which can be seen in Section 4. To get these detailed results, we
used the CSV output functionality of Iperf.

Berry Hoekstra
Niels Monen

February 6, 2011

4 MEASUREMENTS 22

4 Measurements

In this Section, we will discuss the results of the tests that are described in the
test plan in Section 3.3. We will not discuss the results on the 1GigE setup,
as there are many other researches done on this speed [19],[34]. The different
kernels and window sizes that are used will be discussed for both 10 GigE and
40 GigE connections.

4.1 10 Gigabit Ethernet

This paragraph shows the results of the tests done on the 10 GigE setup.

4.1.1 100 Hz kernel

Figure 7 shows the test results while running a kernel with a 100 Hz resolution
on the delaybox.

Figure 7: 10GigE 100Hz Kernel.

The optimal TCP window size that we calculated is about 650 KB. When we
configured this window size on both sending and receiving nodes, with no delay
applied on the delaybox, we measured a total throughput of 9.9 Gigabit per
second, which can be considered a fully utilised connection.

However, when only delay is applied on the traffic, the expected throughput of
the TCP stream is not achieved. With the optimal TCP window size configured,
which is 233MB for a 184ms delay, our measurements only reached 5.3 Gigabit

Berry Hoekstra
Niels Monen

February 6, 2011

4 MEASUREMENTS 23

per second. This is only 53.54% of the expected throughput. The cause of this
drop can be traced back to netem. We suspect netem isn’t multi-threaded as
we only see 1 core that is dedicated to the kernel and is fully utilised when the
emulation is being applied. This can be led back to the low results.

When adding the jitter and distribution table in addition to the delay, results
are similar as before. In addition to the single threaded netem kernel module,
another downside of using a 100 Hz kernel is that it seems unable to maintain
the proper amount of delay on the link. When the characteristics are emulated,
we noticed a difference of 10ms in the RTT. Instead of a fairly stable RTT of
184 milliseconds, we have seen spikes to 194 milliseconds. This basically reflects
as a link with a high amount of jitter, which makes it an “unreliable” link.

4.1.2 1000 Hz kernel

Figure 8 shows the test results using a 1000 Hz kernel on the delaybox. The
measurements show different results as the tests done using a 100 Hz kernel ,
with the exception of test using a TCP window size of 500 MB. At this time, we
can’t explain why or how this happened. We expect it to be around the same
throughput of the optimal window size, like the delay with jitter result.

Figure 8: 10GigE 1000Hz Kernel.

When focusing on the test with the optimal TCP window size of 233 MB, we see
that when using a 1000 Hz kernel, the different tests show more steady results
than when a 100 Hz kernel is used. This can be led back to the resolution of the
kernel, which can apply delay more carefully due to it’s faster tick rate. The
test with delay, jitter and jitter distribution applied seem similar though, but

Berry Hoekstra
Niels Monen

February 6, 2011

4 MEASUREMENTS 24

the tests done using 1000 Hz look more steady. This does not mean that emu-
lation is completely successful. Only around 40% of the expected throughput is
measured.

4.1.3 Real-Time kernel

In figure 9, the measurements of the Real-Time kernel are shown. The graph
shows that netem can not emulate properties on a 10 GigE link using this
(default) Real-Time kernel. When there is no delay applied, the throughput is
as expected. However, when only adding delay and using an optimal window
size, throughput drops to only 166 Megabits per second. When adding the jitter
and distribution table, throughput drops to around 12 Megabits per second.
This can be explained by the huge amount of interrupts the CPU has to handle
to be real-time. The consequence of this is that the kernel can’t process the
packets fast enough.

Figure 9: 10GigE Real-Time Kernel.

4.1.4 Tickless kernel

Figure 10 are the measurements from the Tickless kernel. We expected it to
perform about the same as the 1000 Hz kernel, because it was configured with
a maximum resolution of 1000 Hz. This figure doesn’t come close to the 1000
Hz measurements, and we suspect netem can’t get ticks. This results in only
a maximum throughput of 95Mb/s with only delay applied, and a maximum
throughput of 15Mb/s when the jitter and distribution are applied.

Berry Hoekstra
Niels Monen

February 6, 2011

4 MEASUREMENTS 25

Figure 10: 10GigE Tickless Kernel.

4.1.5 Kernel comparison

In Figure 11, the results of the optimal window size tests are plotted for each
kernel. These plots are each averages of two tests done. The plot clearly shows
that the 1000 Hz kernel is the best choice when trying to add emulation on a
10 GigE link. The spikes in the 100 Hz plot can be explained by the H-TCP
congestion control algorithm. This is because H-TCP initially increases the
window size very fast to achieve best performance and ties its window reduction
to the estimated buffers of the network and the time since the last congestion
event [14] [35].

4.2 40 Gigabit Ethernet

This paragraph shows the results of our tests on the 40 GigE setup. After
the tests done on 10GigE, we didn’t expect the throughput to be very high.
Also because this setup didn’t consist of two nodes and a separate delaybox,
the traffic generator also had to act as a delaybox(see section 3.1.3). Also, we
expected the full theoretical limit of 40 Gigabit per second could not be reached
because of the “limited” speed of the PCI Express bus [36].

The 100 Hz results can be seen in figure 12. We expected to see around 20
Gigabit per second, which is achieved without any emulation applied. When
only applying delay, we see a throughput of 2 Gigabit per second, which is what
netem can emulate in this case. When jitter and distribution is added, the
throughput reach beyond 360 Megabit per second.

Berry Hoekstra
Niels Monen

February 6, 2011

4 MEASUREMENTS 26

Figure 11: 10GigE all kernels.

The 1000 Hz, Real-Time and Tickless kernel achieve the same results, as can
be seen in figures 13,14 and 15. We suspect the huge amount of packets netem
has to process is just too much. Also because netem is working on the sending
node, we suspect the CPU is too busy sending packets so it is unable to reach
the 4 Gigabit throughput which is reached on the 10 GigE setup. We suspect
the faster CPUs in these 40 GigE nodes to be the reason why the results on the
Real-Time and Tickless can still be 2Gb/s with only delay added.

Figure 16 shows the throughput of all the kernels with the optimal TCP window
size set. It is reasonable to say the performance isn’t good, as discussed above.

Berry Hoekstra
Niels Monen

February 6, 2011

4 MEASUREMENTS 27

Figure 12: 40GigE 100Hz Kernel.

Figure 13: 40GigE 1000Hz Kernel.

Berry Hoekstra
Niels Monen

February 6, 2011

4 MEASUREMENTS 28

Figure 14: 40GigE Real-Time Kernel.

Figure 15: 40GigE Tickless Kernel.

Berry Hoekstra
Niels Monen

February 6, 2011

4 MEASUREMENTS 29

Figure 16: 40GigE all kernels.

Berry Hoekstra
Niels Monen

February 6, 2011

5 CONCLUSION AND RECOMMENDATIONS 30

5 Conclusion and recommendations

In this section we state our conclusions of the results that were discussed in the
previous sections.

Even though this research was not about achieving maximum throughput on
certain network situations, we have gained much knowledge about the different
parameters that can be tweaked to achieve optimal network performance. The
lab setup was first tweaked to achieve maximum throughput when no delay was
applied. Studying the throughput while emulating network characteristics with
netem show some interesting results when this delay is applied.

It was already proved that netem can be used reliably on 1 GigE links and lower.
However, on interfaces with 10 GigE and 40 GigE optical connectivity, expected
throughput cannot be achieved when emulating characteristics on egress traffic.
Using different kernel resolutions does not mitigate this problem. Even using
a (default) Real-Time kernel does not mitigate this problem. Too many CPU
cycles are needed to process the network interrupts caused by the large amount
of incoming traffic, which causes the drop in throughput. On the 40 GigE setup,
a huge drop in performance is measured on all the different kernels.

We suspect that netem is not optimised for such a high throughput link and can
not cope with the large amount of packets coming in, even though the network
parameters are optimally configured. If you have a maximum link speed of 4
to 5 Gigabit per second, we advise to only use netem on a delaybox running a
kernel at a resolution of 1000 Hz. The 100 Hz kernel causes more delay than
initially configured, which causes unreliable jitter on the link.

Berry Hoekstra
Niels Monen

February 6, 2011

6 FUTURE WORK 31

6 Future work

Due to time limitationsit was not feasible to study every aspect extensively.
They are discussed in this Section.

Interrupt Coalescence More tweaking can be done to ultimately tweak all
possible parameters. During this research, we only tweaked the parameters
that seemed the most obvious to us. One additional parameter we came
to is by tweaking the Interrupt Coalescence of the links. This feature
is available in some network drivers, and can mitigate the fact that an
interrupt is generated for every frame that is received on the network
card. Interrupt Coalescence will “buffer” the incoming frames to generate
only one interrupt for multiple frames [37]. Because buffering is needed,
additional delay can occur. It might be interesting to see what effects this
can cause to the throughput.

The ideal configuration can also be a high burden to achieve in the real
world. However, we think it is interesting to see what different parameters
mean to the behaviour of a network. Although it is not always possible
to configure a NIC with a different Interrupt Coalescence value (driver
limitations), it might be interesting to include it in tests.

Tweaking Real-Time kernel The Real-Time kernel used the measurements
was the default kernel. Kernel parameters can be tweaked to allocate
more CPU cycles to the network card, which can optimise the processing
of interrupts caused by the network card.

Tweaking international link Performing tweaking on the international link
might provide better insight into the real-world link. To prevent overhead
in the communication to the administrators in San Diego, root access
needs to be acquired on both machines.

40 GigE re-test The measurements done on the 40 GigE setup were done
using only two 40 GigE network interfaces. We think it is interesting to
see the results when 40 GigE can be considered “production ready”, when
there are three dual-port cards, or 4 single-port cards available. This way,
a bridged setup can be realised, and tests can be re-done.

Emulation tool comparison This research only provides insight when using
netem. It might be interesting to compare different network emulation
tools using the 10 GigE and 40 GigE setup. Once again, due to time
limitations, it was only feasible to do measurements on the throughput
while using netem.

Berry Hoekstra
Niels Monen

February 6, 2011

B SERVER HARDWARE 32

A DelayBox setup script

To easily recreate the delaybox we setup in the lab setup 3.1.3, we created a
simple bash script that sets the optimal TCP kernel parameters at boot time.

DelayBox setup script
ifconfig eth2 down

ifconfig eth3 down

ifconfig eth2 0.0.0.0

ifconfig eth3 0.0.0.0

brctl addbr br0

brctl addif br0 eth2

brctl addif br0 eth3

ifconfig eth2 promisc

ifconfig eth3 promisc

ifconfig br0 up

ifconfig eth2 up

ifconfig eth3 up

ifconfig eth2 mtu 9000

ifconfig eth3 mtu 9000

ifconfig br0 mtu 9000

ifconfig eth2 txqueuelen 10000

ifconfig eth3 txqueuelen 10000

ifconfig br0 txqueuelen 10000

sysctl -w net.ipv4.tcp_timestamps=0

sysctl -w net.ipv4.tcp_sack=0

sysctl -w net.core.netdev_max_backlog=250000

sysctl -w net.core.rmem_max=524288000

sysctl -w net.core.wmem_max=524288000

sysctl -w net.core.rmem_default=524288000

sysctl -w net.core.wmem_default=524288000

sysctl -w net.core.optmem_max=524288000

sysctl -w net.ipv4.tcp_mem="524288000 524288000 524288000"

sysctl -w net.ipv4.tcp_rmem="4096 104857600 524288000"

sysctl -w net.ipv4.tcp_wmem="4096 104857600 524288000"

sysctl -w net.ipv4.tcp_congestion_control="htcp"

B Server hardware

In this section, we will describe the specifications of the used machines.

• Node 1

Berry Hoekstra
Niels Monen

February 6, 2011

B SERVER HARDWARE 33

Brand Dell

Model PowerEdge R210

CPU Intel(R) Xeon(R) CPU L3426 @ 1.87GHz

Memory 8GB

NIC Embedded Broadcom 5716 (x2)

Default kernel 2.6.18-194.32.1.el5 #1 SMP Wed Jan 5 17:52:25 EST
2011 x86 64 x86 64 x86 64 GNU/Linux

• Node 2

Brand Dell

Model PowerEdge R210

CPU Intel(R) Xeon(R) CPU L3426 @ 1.87GHz

Memory 8GB

NIC Embedded Broadcom 5716 (x2)

Default kernel 2.6.18-194.32.1.el5 #1 SMP Wed Jan 5 17:52:25 EST
2011 x86 64 x86 64 x86 64 GNU/Linux

• Delay Box

Brand Dell

Model PowerEdge R210

CPU Intel(R) Xeon(R) CPU L3426 @ 1.87GHz

Memory 8GB

NIC Embedded Broadcom 5716 (x2)

Default kernel 2.6.18-194.32.1.el5 #1 SMP Wed Jan 5 17:52:25 EST
2011 x86 64 x86 64 x86 64 GNU/Linux

RT kernel 2.6.33.7.2-rt30 #10 SMP PREEMPT RT Mon Jan 31 11:10:14
CET 2011 x86 64 x86 64 x86 64 GNU/Linux

TL kernel 2.6.33.7.2 #10 SMP Mon Jan 31 11:10:14 CET 2011 x86 64
x86 64 x86 64 GNU/Linux

• Delay Box and Node 2 - 40GigE

Brand Supermicro

Model X8DTT-H

CPU Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

Memory 24GB

NIC Embedded Intel Corporation 82574L (2x)

Default kernel 2.6.18-194.11.4.el5 #1 SMP Tue Sep 21 05:04:09 EDT
2010 x86 64 x86 64 x86 64 GNU/Linux

Berry Hoekstra
Niels Monen

February 6, 2011

C NETWORK INTERFACE CARDS 34

RT kernel 2.6.33.7.2-rt30 #10 SMP PREEMPT RT Mon Jan 31 11:10:14
CET 2011 x86 64 x86 64 x86 64 GNU/Linux

TL kernel 2.6.33.7.2 #10 SMP Mon Jan 31 11:10:14 CET 2011 x86 64
x86 64 x86 64 GNU/Linux

C Network Interface Cards

In this section the network hardware is specified.

• 1GigE

Brand Broadcom Corporation

Model NetXtreme II BCM5716

Revision Revision 20

Standard Gigabit Ethernet

• 10GigE

– End nodes

Brand Mellanox Technologies

Model MT26448 (ConnectX EN 10GigE PCIe 5.0GT/s ()

Revision Revision b0

Standard 10 Gigabit Ethernet

– Delay Box

Brand Chelsio Communications

Model T320 10GbE Dual Port Adapter

Revision N/A

Standard 10 Gigabit Ethernet

• 40GigE

Brand Mellanox Technologies

Model MT26478

Revision Revision b0

Standard 40 Gigabit Ethernet

Berry Hoekstra
Niels Monen

February 6, 2011

REFERENCES 35

References

[1] Ixia. Leader in converged ip testing. http://ixiacom.com/, January 2011.
[Online; Consulted on January 3, 2011].

[2] Measuring network delay. Website, http://etd.adm.unipi.

it/theses/available/etd-06242004-163624/unrestricted/

4MeasuringNetworkDelay.doc. [Online; consulted on January 21st,
2011].

[3] Wikipedia: Round-trip delay time. Website, http://en.wikipedia.org/
wiki/Round-trip_delay_time. [Online; consulted on January 13th, 2011].

[4] Wikipedia: Speed of light. Website, http://en.wikipedia.org/wiki/

Speed_of_light. [Online; consulted on January 27th, 2011].

[5] Wolframalpha: Distance from amsterdam to san diego. Website,
http://www.wolframalpha.com/input/?i=distance+from+amsterdam+

to+san+diego. [Online; consulted on January 27th, 2011].

[6] G. Huston. Next Steps for the IP QoS Architecture. RFC 2990 (Informa-
tional), November 2000.

[7] Wikipedia: Maximum transmission unit. Website, http://en.wikipedia.
org/wiki/Maximum_transmission_unit. [Online; consulted on January
20th, 2011].

[8] Ping man page. Shipped with most Linux distributions, http://linux.
die.net/man/8/ping.

[9] J. Postel. Internet control message protocol. RFC 792, September 1981.

[10] Wikipedia: Jumbo frames. Website, http://en.wikipedia.org/wiki/

Jumbo_frames. [Online; consulted on January 19th, 2011].

[11] V. Jacobson, R. Braden, and D. Borman. Tcp extensions for high perfor-
mance, 1992.

[12] Wikipedia: Tcp window scale option. Website, http://en.wikipedia.

org/wiki/TCP_window_scale_option. [Online; consulted on January
27th, 2011].

[13] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Ac-
knowledgment Options. RFC 2018 (Proposed Standard), October 1996.

[14] Yee-Ting Li Douglas Leith Robert N. Shorten. Experimental evaluation
of tcp protocols for high-speed networks. http://www.hamilton.ie/net/
eval/ToNfinal.pdf.

[15] Hamilton h-tcp presentation. Website, http://www.hamilton.ie/net/

htcp-ietf63.pdf. [Online; consulted on January 7th, 2011].

Berry Hoekstra
Niels Monen

February 6, 2011

http://ixiacom.com/
http://etd.adm.unipi.it/theses/available/etd-06242004-163624/unrestricted/4MeasuringNetworkDelay.doc
http://etd.adm.unipi.it/theses/available/etd-06242004-163624/unrestricted/4MeasuringNetworkDelay.doc
http://etd.adm.unipi.it/theses/available/etd-06242004-163624/unrestricted/4MeasuringNetworkDelay.doc
http://en.wikipedia.org/wiki/Round-trip_delay_time
http://en.wikipedia.org/wiki/Round-trip_delay_time
http://en.wikipedia.org/wiki/Speed_of_light
http://en.wikipedia.org/wiki/Speed_of_light
http://www.wolframalpha.com/input/?i=distance+from+amsterdam+to+san+diego
http://www.wolframalpha.com/input/?i=distance+from+amsterdam+to+san+diego
http://en.wikipedia.org/wiki/Maximum_transmission_unit
http://en.wikipedia.org/wiki/Maximum_transmission_unit
http://linux.die.net/man/8/ping
http://linux.die.net/man/8/ping
http://en.wikipedia.org/wiki/Jumbo_frames
http://en.wikipedia.org/wiki/Jumbo_frames
http://en.wikipedia.org/wiki/TCP_window_scale_option
http://en.wikipedia.org/wiki/TCP_window_scale_option
http://www.hamilton.ie/net/eval/ToNfinal.pdf
http://www.hamilton.ie/net/eval/ToNfinal.pdf
http://www.hamilton.ie/net/htcp-ietf63.pdf
http://www.hamilton.ie/net/htcp-ietf63.pdf

REFERENCES 36

[16] Alexandru Giurgiu Jeroen Vanderauwera. Communication channel perfor-
mance measurement, August 2010.

[17] Esma Yildirim, Ibrahim H. Suslu, and Tevfik Kosar. Which network mea-
surement tool is right for you? a multidimensional comparison study.

[18] Grenville Armitage and Lawrence Stewart. Some thoughts on emulating
jitter for user experience trials. In Proceedings of 3rd ACM SIGCOMM
workshop on Network and system support for games, NetGames ’04, pages
157–160, New York, NY, USA, 2004. ACM.

[19] Stephen Hemminger. Network emulation with netem. http:

//devresources.linuxfoundation.org/shemminger/netem/LCA2005_

paper.pdf, April 2005. [Open Source Development Lab research].

[20] Stephen Hemminger. Netem - emulating real networks in the lab. http://
devresources.linuxfoundation.org/shemminger/LCA2005_netem.pdf,
April 2005.

[21] Yixin Wu, Suman Kumar, and Seung-Jong Park. Measurement and per-
formance issues of transport protocols over 10gbps high-speed optical net-
works. Computer Networks, 54(3):475 – 488, 2010.

[22] netem homepage. http://www.linuxfoundation.org/collaborate/

workgroups/networking/netem. [Online; consulted on January 5th, 2011].

[23] Nist net home page. Website, http://snad.ncsl.nist.gov/nistnet/.
[Online; consulted on January 12th, 2011].

[24] Dummynet home page. Website, http://info.iet.unipi.it/~luigi/

ip_dummynet/. [Online; consulted on January 12th, 2011].

[25] Centos, the community enterprise operating system. Website, http://www.
centos.org. [Online; consulted on January 28th, 2011].

[26] Matt Mathis John Heffner Raghu Reddy. Web100: Extended tcp instru-
mentation. http://www.web100.org/docs/mathis03web100.pdf.

[27] Emulab testbed. Website, http://www.emulab.net. [Online; consulted on
January 13th, 2011].

[28] Iperf website. Website, http://sourceforge.net/projects/iperf/.
[Online; consulted on Februari 3th, 2011].

[29] Ajay Tirumala, Les Cottrell, and Tom Dunigan. Measuring end-to-end
bandwidth with iperf using web100. In Web100, Proc. of Passive and Active
Measurement Workshop, page 2003, 2003.

[30] Netperf website. Website, http://www.netperf.org/netperf/. [Online;
consulted on Februari 3th, 2011].

Berry Hoekstra
Niels Monen

February 6, 2011

http://devresources.linuxfoundation.org/shemminger/netem/LCA2005_paper.pdf
http://devresources.linuxfoundation.org/shemminger/netem/LCA2005_paper.pdf
http://devresources.linuxfoundation.org/shemminger/netem/LCA2005_paper.pdf
http://devresources.linuxfoundation.org/shemminger/LCA2005_netem.pdf
http://devresources.linuxfoundation.org/shemminger/LCA2005_netem.pdf
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://snad.ncsl.nist.gov/nistnet/
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://www.centos.org
http://www.centos.org
http://www.web100.org/docs/mathis03web100.pdf
http://www.emulab.net
http://sourceforge.net/projects/iperf/
http://www.netperf.org/netperf/

REFERENCES 37

[31] nuttcp website. Website, http://nuttcp.org. [Online; consulted on Febru-
ari 3th, 2011].

[32] Surfnet - dutch nren. Website, http://www.surfnet.nl. [Online; con-
sulted on February 4th, 2011].

[33] Rt preemt howto. https://rt.wiki.kernel.org/index.php/RT_

PREEMPT_HOWTO.

[34] P. Vicat-Blanc Primet R. Takano Y. Kodama T. Kudoh O. Gluck C.
Otal. Large scale gigabit emulated testbed for grid transport evalua-
tion. http://www.ens-lyon.fr/LIP/RESO/Software/EWAN.sov/primet_

pascale.pdf. [National Institute of Advanced Industrial Science and Tech-
nology (AIST). AXE, Inc, Japan].

[35] Long Le Injong Rhee Sangtae Ha, Yusung Kim and Lisong Xu. A step
toward realistic evaluation of high-speed tcp protocols. Website, http:

//www4.ncsu.edu/~rhee/export/bitcp/asteppaper.htm. [Online; con-
sulted on February 4th, 2011].

[36] Server performance tuning, pci express. Website, https://noc.sara.nl/
wiki/Server_Performance_Tuning#PCI_Express. [Online; consulted on
February 4th, 2011].

[37] Interrupt coalescence. http://kb.pert.geant.net/PERTKB/

InterruptCoalescence.

Berry Hoekstra
Niels Monen

February 6, 2011

http://nuttcp.org
http://www.surfnet.nl
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://www.ens-lyon.fr/LIP/RESO/Software/EWAN.sov/primet_pascale.pdf
http://www.ens-lyon.fr/LIP/RESO/Software/EWAN.sov/primet_pascale.pdf
http://www4.ncsu.edu/~rhee/export/bitcp/asteppaper.htm
http://www4.ncsu.edu/~rhee/export/bitcp/asteppaper.htm
https://noc.sara.nl/wiki/Server_Performance_Tuning#PCI_Express
https://noc.sara.nl/wiki/Server_Performance_Tuning#PCI_Express
http://kb.pert.geant.net/PERTKB/InterruptCoalescence
http://kb.pert.geant.net/PERTKB/InterruptCoalescence

	Introduction
	Research
	Network delay
	Improving network throughput

	Related research
	Literature review
	Existing tools

	Methodology
	International link
	Test procedures
	Test plan

	Measurements
	10 Gigabit Ethernet
	40 Gigabit Ethernet

	Conclusion and recommendations
	Future work
	DelayBox setup script
	Server hardware
	Network Interface Cards

