
Comparing TCP performance
of tunneled and non-tunneled 

traffic using OpenVPN

Berry Hoekstra | Damir Musulin
OS3

Supervisor: Jan Just Keijser
Nikhef



Outline

● Introduction

● Approach

● Research

● Results

● Conclusion

● Questions?



Introduction

● Virtual Private Networks
○ Secure connection over an insecure network
○ SSL, IPsec, PPTP and L2TP are the most popular VPN 

solutions
○ Packets are encapsulated into packets on a lower layer 

 
● OpenVPN

○ SSLv3/TLSv1 based VPN solution
○ Able to saturate 100 Mbps
○ Performance issues with 1 Gbps

■ Not much documented research available 
○ OpenSSL for encryption
○ TUN/TAP driver for tunneling



Research Question

● "What are the causes of the network performance loss 
when using OpenVPN at Gigabit speed?"

 
Sub-questions:
 

● What is the effect of using different encryption and 
authentication methods or parameters in OpenVPN?

● Is the same performance hit found on other OpenSSL-
based tunnel solutions?

● Is the same performance hit found on other operating 
systems (e.g. FreeBSD)?

● What are the possibilities to mitigate slow OpenVPN 
network performance?



Problem definition
● Unable to saturate 1 Gbps over a VPN tunnel

○ Even with no encryption and signing with default settings
 

● Suspected culprits:
○ Inefficient cryptographic functions
○ OS context switching
○ TUN/TAP driver overhead
○ Context switching



OpenVPN packet flow
 



Methodology (1)

● Perform throughput measurements using Iperf
○ Using a control script
○ On different infrastructures
○ Perform OpenSSL speed tests

● What are the effects in throughput when:
○ Using different parameters
○ Using a different OpenSSL version 
○ On a different infrastructure
○ On a different operating system

● Compare against similar VPN solutions
○ Vtun

● Source code analysis
○ OpenVPN / OpenSSL functionality
○ TUN/TAP driver



Lab setup

Setup 1: Endpoint to endpoint

Setup 2: Client to client

● Dell R210
● Intel Xeon L3426

○ 4/8 cores @ 1.87 GHz
● 8GB memory
● 2x Broadcom NIC 



Methodology (2)

● Ciphers
○ Blowfish-128-CBC (default)
○ AES-128-CBC
○ AES-256-CBC

● HMAC signing
○ SHA-1 vs. MD5 

● Increasing TUN MTU sizes
○ Increases the block size towards OpenSSL
○ Encryption is done more efficient 

● OpenVPN fragmentation options
○ Disabled, fragmentation is done at kernel level
○ Increases throughput! (between endpoints)



Results (1)

Different ciphers: BF +150%, AES +30%-80%



Results (2)
HMAC disabled +10%-20%
Fragmentation disabled + ~40%



Results (3)
Crypto impact on AES-256-CBC



Results (4)
CentOS vs. FreeBSD: +50%-60%!
 



Results (5)
OpenVPN vs. other OpenSSL solution: Vtun



Conclusions (1)

● OpenSSL is not capable to encrypt at 1 Gbps
○ BF-128 ~500, AES-128 ~800, AES-256 ~700 Mbps

 
● OpenVPN results show inefficient handling

○ Even with the internal fragmentation disabled
○ BF-128 ~400, AES-128 ~200, AES-256 ~155 Mbps

 
● OpenVPN needs high TUN MTU values for most efficient 

handling
 

● TUN/TAP driver plays a role in causing more overhead
○ Context switching
○ Mitigated by running in kernel space like IPsec



Conclusions (2)

● Tunnel performance can be optimized
○ Only on endpoint to endpoint setups
○ Hard to improve performance on routed setup 

■ Clients deliver packets with a small MTU to endpoints
 

● Fragmentation options matters
○ Only for endpoint to endpoint setups

 
● FreeBSD shows a throughput increase of ~80%

○ Due to inefficient FIPS version of OpenSSL on CentOS
■ Fixed in OpenSSL 1.0.0 (default in Fedora)

○ Against CentOS, FreeBSD still outperforms with 50% to 60%
■ Using the same OpenSSL version



Conclusions (3)

"What are the causes of the network performance loss when 
using OpenVPN at Gigabit speed?"

 
● There is a relation between the OpenSSL version and 

OpenVPN throughput
● Encryption routines of OpenVPN are inefficient
● OpenVPN fragmentation options cause a lot of overhead

○ Calculation, reassemble, and sequence no. administration
● Different performance measured on different operating 

systems
● OpenVPN source code contains a lot of branching 

○ if {..} else {..} if {..} else {..} if {..} else {..} if {..} else {..} 
○ Performance hit on CPU



Future work

● Hardware acceleration
○ AES-NI instruction set
○ Graphics cards
○ Cryptographic cards

● Kernel Mode Linux
○ Eliminate context switching

● TAP-Win32 driver 
● Profiler

○ Low level Linux performance counters
○ Steap learning curve

● CPU affinity
○ No multi-socket hardware available

● 10 Gbps performance measurements
○ TCP Tuning is needed to get near-linespeed
○ Look into UDP offloading



Questions?

 


