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Abstract

When operating OpenVPN at Gigabit speed a bottleneck is seen in the
throughput of data. This research is concentrated on finding the cause(s)
of the bottlenecks that is shown when OpenVPN is operated at Giga-
bit speed. To pinpoint possible bottlenecks, a lab setup was created to
perform test procedures. Different cryptographic algorithms were used in
combination with different parameters. Test results show that a combina-
tion of factors determine the network throughput of data between nodes
through OpenVPN. It seems that OpenVPN suffers from a fundamental
problem. OpenVPN delivers data in small data packets to be encrypted
using OpenSSL EVP function calls. The overhead of encrypting small
data packets instead of one big data packet seems to matter in the per-
formance of encrypting data. This study shows the impact in network
performance of using different parameters of OpenVPN, OpenSSL EVP
function calls, the TUN/TAP driver, operating system and network in-
frastructure.
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1 Introduction

The emergence of high speed Internet connectivity enables one to connect mul-
tiple endpoints over the Internet without limitations such as slow network con-
nectivity or high latency. This opens up the possibility for corporations to
introduce secure high speed tunnels between office branches. Proprietary VPN
solutions based on the IPsec protocol exist that are able to do this [1] [2] ,
but often introduce high costs, a required level of knowledge and administrative
overhead. However, a widely used open source solution is available. OpenVPN
[3] provides an open source community edition that enables secure connectivity
between two or more hosts. While OpenVPN is capable of saturating a 100
Mbps connection, performance problems still exist on faster links. This might
become a problem as Internet connections of 1 Gigabit per second (Gbps) be-
come generally available [4]. Available bandwidth capabilities can not be fully
utilized when using OpenVPN as a VPN solution. The lack of documentation
on this specific topic encourages this study.

1.1 Research

In this work we study the causes of the decrease in network performance when
using OpenVPN on a 1 Gigabit connection. This approach may provide a solu-
tion to achieve higher network throughput and point out possible bottlenecks.
The results may provide detailed insights in the impact in network performance
when using OpenVPN with different parameters.

In this research, we will answer the following research question:

What are the causes of the network performance loss when using
OpenVPN at Gigabit speed?

The following sub-questions will help to answer the main research question.

• What is the effect of using different encryption and authentication meth-
ods or parameters in OpenVPN?

• Is the same performance hit found on other OpenSSL-based tunnel solu-
tions?

• Is the same performance hit found on other operating systems (e.g. FreeBSD)?

• What are the possibilities to mitigate slow OpenVPN network perfor-
mance?
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2 Virtual Private Networks (VPN)

2.1 VPN characteristics

A Virtual Private Network (VPN) enables a secure point-to-point connection
between two or more points over an otherwise insecure network. The VPN
connection is established by creating a tunnel between the connected nodes. The
tunneling technique enables one to securely transfer data between the endpoints
over the network. The payload data is encrypted and encapsulated into the layer
below it. This is done by adding additional header information to the packets
that are destined for the remote endpoint [5].

To secure a VPN connection, the following security measures are taken:

Encryption is the process of using an encryption algorithm to transform plain-
text data into information that is unreadable for anyone but the one with
the decryption key.

Authentication is when both sides provide information that can prove their
identity to both ends. This is mostly done by using a Message Authenti-
cation Code (MAC) [6].

Integrity of data is done by digitally signing the data. A checksum of the data
is generated that is a unique value of the contents of a packet. Integrity
checking can be done by using an encryption algorithm such as MD5 or
SHA-1.

Non-repudiation is a method in cryptography, which provides the sender of
the data with a proof that the data is delivered to the other endpoint,
while ensuring the senders identity to the receiver. Such a method can
avoid the denial of a transaction at a later time.

In general, VPNs are used to securely access a private network from a remote
location. When creating a VPN, the two networks at both ends are connected
using a communication channel, which is secured using encryption. Integrity
and authentication can be enforced by using hashing algorithms such as MD5
or SHA-1 and key exchange mechanisms such as a certificate or a pre-shared
key. The connection is characterized by the fact that the connected points in
the VPN are virtually connected in a private network. Hence, the technique is
called Virtual Private Network.
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2 VIRTUAL PRIVATE NETWORKS (VPN) 5

2.1.1 VPN technologies

Generally, the four types of VPN technologies that are most popular are listed
below.

Secure Socket Layer/Transport Layer Security (SSL/TLS) is a standard
to encrypt communication channels between a client and a server at the
Transport Layer (Layer 4, TCP/UDP). When implemented in a VPN
tunnel, all communication on the tunnel is encrypted end-to-end, while
authentication and integrity is supplied by SSL/TLS.

Internet Protocol Security (IPsec) is a security extension of the Internet
Protocol developed by the Internet Engineering Task Force (IETF). IPsec
enables encrypted end-to-end tunneling (tunnel mode) or packet encryp-
tion (transport mode). It authenticates and encrypts each IP packet de-
pending on the implementation. In contrast to SSL-based VPN, encryp-
tion is done at the Network Layer (Layer 3, IP), instead of the Application
Layer (Layer 7, e.g. SSL/TLS).

Point-to-Point Tunneling Protocol (PPTP) is a VPN technique running
at the Data Link Layer (Layer 2) and is mostly used in Microsoft’s Win-
dows operating systems. It was introduced by the PPTP Forum, which
consists of Microsoft, 3Com, US Robotics and other companies. Point-
to-Point Protocol (PPP) packets are used to encapsulate data into IP
datagrams for transmission [7]. Although there are multiple implementa-
tions of PPTP, the security model is based on tunneling the PPP packets.
The most widely used implementation is Microsoft’s version, which imple-
ments a security model based on PPP-based protocols for authentication
and encryption. Packet filtering is used to enhance network security.

Layer 2 Tunneling Protocol (L2TP) is a combination of the best features
in PPTP and the Layer 2 Forwarding Protocol (L2F) developed by Cisco
[8]. Encryption and authentication is often implemented in combination
with IPsec (L2TP/IPsec) [9], while sessions are maintained by the PPP
protocol [10].

2.1.2 VPN packet transport

In the previous section, we covered some of the most used VPN implementations.
Although different methods are used to secure the data, the way the encrypted
data is transferred is similar. The basic principle for securely transferring data
across is by using a tunneled connection between endpoints. In Figure 1 a
visualization of the packet flow inside a VPN tunnel is shown.
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2 VIRTUAL PRIVATE NETWORKS (VPN) 6

Figure 1: Packet flow inside a VPN tunnel.

The general idea is that the data is encrypted and encapsulated within another
packet on a lower layer. The encapsulated data travels over the tunnel and is
decapsulated at the other end, where the decapsulated packet is given to the
kernel for further processing. In the Figure above, the encrypted packets are
marked red, the encapsulation headers of the encapsulated packets in the tunnel
are marked white.

2.2 OpenVPN

In this research we focus on OpenVPN [3], which is an open source software
solution that implements VPN (Virtual Private Network) methods based on
SSLv3/TLSv1 [11]. Unlike the SSL/TLS VPN techniques discussed above in
Section 2.1.1 , OpenVPN applies encryption, authentication and integrity us-
ing the OpenSSL library [12] in conjunction with a virtual network interface,
the TUN/TAP device [13] which is used for injecting network packets into the
operating system.

OpenVPN is developed by James Yonan and is able to create encrypted tunnels
over the Internet or other network. Unlike many other VPN implementations,
OpenVPN does not use the IPsec protocol to secure the data transfers. More-
over, the application distinguishes itself with other VPN solutions with the fact
it is a user space implementation of a VPN.

2.2.1 Application structure

OpenVPN consists of a single binary that can be used for both client and server
modes of the application. It is currently available for the following platforms:

• Linux

• Windows 2000/XP/Vista/7

• {Open,Free,Net}BSD
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• Solaris

• QNX

• Mac OS X

• Mobile OSs

User space The fact that OpenVPN is a user space VPN provides the advan-
tage that the application is more easily developed and ported to other
operating systems, as the kernel code does not need to be altered with
every release. Running in user space also provides more security, as user
space applications are more restricted in system calls and provides memory
protection, as the application is isolated in memory [14].

Packet transport Figure 2 shows the flow of a packet destined for the other
side of the tunnel.

Figure 2: OpenVPN packet flow.

In this case, Iperf pushes a packet to the kernel via a TCP socket. Here,
the kernel picks up the supplied destination address and routes it to the
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over the virtual TUN interface to user space, according to the routing
rules, and adds a source IP address. Here, OpenVPN reads the data that
is sent by the kernel, encrypts and signs it by making use of the OpenSSL
library. Then, the encrypted data is encapsulated inside a UDP packet
and put on the outgoing buffer of the tunnel driver. Back in kernel space
it travels over the physical network interface onto the network. The other
side reverses the same process to be able to receive the data.

TUN/TAP driver To be able to create a tunnel, OpenVPN makes use of the
tunnel driver that is provided as a module for the Linux kernel since 1999
[13]. The tunnel driver enables the creation of a virtual network interface,
the so-called TUN/TAP device. The virtual network interface can be con-
figured as a Layer 2 device (TAP) or as a Layer 3 device (TUN), which
enables user space applications to create network bridges or perform rout-
ing, without the administrative burden of adjusting kernel configurations
and parameters. In practice the difference means that with a TAP device
a program is able to send out Ethernet frames, these Ethernet frames are
capable to be send to computers in the same network segment, but can
not be send to computers in other network segments, because segment
then need to be routed, routing is done at layer 3 of the OSI model, thus
a TUN device is needed to create packets that can be routed to other net-
work segments. In the research we focus on TUN devices because VPN
applications are mostly used to create a point-to-point connection between
different networks segments.

When creating a point-to-point VPN with OpenVPN, a virtual TUN inter-
face is created when initializing the VPN connection. The TUN interface
is configured on both sides using the given IP addresses to create the
point-to-point connection. Then, the required route to the other point of
the tunnel is added to the routing table. On Linux, this is all achieved by
calling the ifconfig and ip route tools from within OpenVPN.

Once the tunnel is set up, all packets destined for the other point of the
tunnel will be forwarded by OpenVPN to the TUN device that will inject
the packets into kernel space, which in turn sends the packets over the
tunnel across to the other side. By making use of the tunnel driver to
send packets to a other point of the tunnel, OpenVPN does not need to
take care of the transmission of the data to the other point of the tunnel.

Switching between the kernel space and user space causes context switch-
ing. This is the process of “parking” the state of a process in the CPUs
register for the CPU scheduler to be able to execute another process [15]
. After this process is completed, an interrupt is generated to inform the
action is completed. These cause for overhead, as the CPU is occupied
with storing the states during context switching, and has to process the
interrupts every time.

OpenSSL OpenVPN can be viewed as a layer on top of the Linux TUN/TAP
driver and the OpenSSL library. All encryption and hashing algorithms
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are performed by OpenSSL. Data that is not encrypted and put on a tunnel
is traveling the tunnel in clear text. To solve this, OpenVPN payloads and
control channels are encrypted and authenticated using a HMAC digest
by using the OpenSSL EVP function calls.

Security modes As discussed in Section 2.2, the OpenSSL library can be
used to apply encryption, authentication and integrity. A VPN tunnel
can be instantiated in two different modes. Both modes have different
(dis)advantages. The following table gives an overview of both security
modes.

OpenVPN mode Pre-shared keys SSL

Cryptography mode Symmetric Asymmetric/Symmetric
Implementation Easier Harder
Speed Faster Slower
CPU usage Lower Higher
Key exchange Yes No
Encryption keys renewal No Yes
Peers authentication No Yes
Perfect Forward Secrecy No Yes

Table 1: OpenVPN security mode comparison [16]

Hardware acceleration The cryptographic functionality provided to Open-
VPN by the OpenSSL library are CPU intensive operations. By offloading
these CPU intensive operations to a piece of hardware that is designed to
perform cryptographic functions, the CPU is relieved of these tasks. Be-
cause the hardware is specialized in performing cryptographic algorithms,
it performs them much faster than a software based solution. Hardware ac-
celeration is done using special engines that can be plugged into OpenSSL.
Available engines can be viewed using the openssl engine command. In
most cases, acceleration is done using special cryptographic cards, which
can be addressed by OpenSSL from version 0.9.6 [17]. However, a recent
interesting development in this field has been done by Intel. The AES-NI
[18] instruction set is used to improve encryption and decryption perfor-
mance using the AES encryption standard. This is a special instruction
set proposed by Intel and AMD in 2008, which enables hardware acceler-
ation of the AES standard. It plugs into OpenSSL as a separate engine
module. A patch [19] has to be applied in order to use the new instruction
set. In turn, VIA developed the PadLock engine [20] for improving AES
performance. In this research, hardware acceleration will not be used, as
there is no hardware available for this at the time of writing.

Berry Hoekstra
Damir Musulin

August 24, 2011



3 RELATED RESEARCH 10

3 Related research

In this section, existing studies are reviewed and existing tools are discussed.

3.1 Literature review

There are some studies done that are related to this research. Some studies
provided information and insights that were useful in this study. They are
discussed in this section.

A study by the SANS Institute [21] discusses the concepts of SSL VPNs in gen-
eral, but mainly focuses on OpenVPN [22]. The paper gives a short introduction
to cryptography in general and explains the features, workings and internals of
OpenVPN. A more practical and detailed guide to OpenVPN is the OpenVPN
Cookbook written by Jan Just Keijser [23]. The Cookbook provides practical
information on the usage of OpenVPN and also briefly describes performance
on 1 Gbps connections. On page 238, the author suggests there is a performance
bottleneck in the TUN/TAP driver in Linux.

The United States based National Institute of Standards and Technology (NIST)
provides a “Guide to SSL VPNs” [5], which is a paper about the fundamentals
of SSL VPNs and also describes the general workings of SSL VPNs. It provides
detailed insight in all aspects of implementing a SSL VPN.

When comparing network performance while applying encryption and decryp-
tion operations to the traffic, the performance of the encryption algorithms
must be taken into account. A performance evaluation of symmetric encryp-
tion algorithms is shown in a journal called Communications of the IBIMA [24].
The research includes the performance of the Blowfish and AES encryption
algorithms and looks into the performance for different packet and key sizes.
In another research, authors Nadeem, A. and Javed, M.Y. conclude that the
Blowfish algorithm is the best performing algorithm based on their test setup
[25]

Research by Kshirasagar Naik and David S. L. Wei states that there are more
resources used for the transmission of the data than for the computation [26].
This will also be taken into account in this research.

Performance measurements of OpenVPN itself was also performed in a research
that looked into OpenVPN performance on a consumer router running custom
firmware [27]. The paper provided insight into possible research methodologies
used in this research.
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3.2 Existing tools

The following tools have been used in the research.

3.2.1 Tunneling

Simpletun is a program that allows one to create a tunnel between two points
over a given network. The tunnel is created with the help of the Linux
tunnel driver. The created tunnel is a TCP based plaintext tunnel [28].

Vtun is a program that allows one to create a tunnel between two point over a
given network. Vtun differs from Simpletun in the amount of options that
Vtun provides. For example, it is possible to create a UDP or TCP based
tunnel and apply compression of the data that travels over the tunnel [29].

OpenVPN is used as the main VPN research tool in this project. Network
performance issues occur on 1 Gbps connections as described in Section
1.

tinc is another VPN daemon that also uses the OpenSSL library to provide
encryption and authentication [30].

3.2.2 Network measurement

Iperf can be used to measure TCP and UDP bandwidth performance [31]. It
was developed by NLAND/DAST. A client-server setup is used to generate
a traffic stream between two nodes. After a test is completed, the server
sends back a report to the client. An interesting feature is the ability
to save results to CSV format, which enables easy plot creation of the
network throughput. An example research of Iperf [32] shows how useful
Iperf can be in the testing of network throughput.

nuttcp is a benchmark tool to network performance. nuttcp is based on nttcp,
which is an enhancement of ttcp [33]. Compared to Iperf, the reporting
capabilities are not as advanced, as Iperf uses more CPU cycles to be able
to present the right throughput. This is also mentioned in research done
by Wu et al. [34].

netperf is able to measure network performance on many different types of
networking [35]. It uses a similar client-server setup as Iperf. After some
initial testing, we found netperf to be not as reliable compared to Iperf, as
the measured throughput did not compare to manual throughput tests.

From the tools described above, Iperf was used as a traffic generator. The
reason for this is that Iperf provides all the necessary functions needed for the
measurements, while also providing reliable reporting capabilities.
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4 Methodology

In this section the methodology that is used for the research is discussed. As
stated in Section 1 , OpenVPN, or one of its components, introduces a possible
bottleneck that causes the inability to saturate a 1 Gbps connection. It is not
clear where the actual bottleneck occurs.

4.1 Lab setup

Two lab setup were created to be able to perform measurements using Open-
VPN.

4.1.1 Endpoint to endpoint

The initial setup consists of two machines acting as the VPN endpoints. As
shown in Figure 3 , the machines are connected back-to-back using 1 Gigabit
Ethernet to eliminate possible overhead that might be caused when using a
switch to connect both machines. This lab setup consists of two machines that
are identical, apart from the hard drives. This difference does not influence
test results, as the hard drive performance is similar and all operations that are
related with the measurements are done in memory.

Figure 3: Lab setup 1: VPN with two endpoints.
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4.1.2 Client to client

The second setup, as shown in Figure 4 , extends the initial one discussed above.
Two additional machines with identical hardware specifications are added to the
setup. These machine will act as regular client machines on a LAN, which use
the VPN endpoints as a gateway to be able to reach each other. Routing is
applied on all machines using default Linux kernel routing. The clients that
are connected to the machines acting as VPN endpoints are used to simulate
an actual real-live scenario where two office branches are interconnected using a
VPN tunnel, delivered by OpenVPN. Although Figure 4 only shows two clients,
multiple clients can be attached. The lab setup only has one client attached to
each VPN endpoint for simulation purposes.

Figure 4: Lab setup 2: VPN with two endpoints and two clients.

The complete hardware specifications of both lab setups can be viewed in the
Appendix A.

4.2 Test procedures

To get consistent test results, test procedures were created. The defined test
procedures were applied on the different lab setups using different configuration
parameters. This method of consistent testing results in comparable measure-
ments.

4.2.1 Test plan

By performing measurements and compare them accordingly, we are able to
observe possible bottlenecks in the functioning of OpenVPN and its components.

Raw speed of the network can be determined by performing an Iperf through-
put test over the link without establishing a VPN connection.
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Parameters A set of parameters were defined that can have an influence on
the network performance of OpenVPN. The measurements differ from each
other by the different values that are filled in for the test parameters.

Once the results of the different test procedures are known, it is possible to
determine what options have a effect on the packet flow. Besides knowing
what options have a effect on the packet flow of OpenVPN, it will enable us
to analyze the effects of using certain options. This will specify a possible
cause of the cause of in the decrease of network performance.

OpenSSL OpenVPN uses OpenSSL to encrypt and sign the packets that travel
through the VPN tunnel. For the research it is interesting to study the
influence of different versions of OpenSSL. Furthermore it would be inter-
esting to see what the maximum performance is of OpenSSL encryption
on a given system. The maximum encryption rate of OpenSSL can be
compared with the maximum throughput of data that travels through a
tunnel that is encrypted with OpenVPN.

Infrastructure Measurements will be performed on a second infrastructure as
shown in Section 4.1 to eliminate possible routing issues with the Linux
kernel.

Operating system As OpenVPN runs in user space, it can be easily ported to
other operating systems. It is not known what the performance influence
of a operation system is. To see the impact of using a different operating
system, measurements will also be performed on FreeBSD.

4.2.2 Measuring network performance

As stated in Section 1.1 the research is focused on finding the cause of the
inability of OpenVPN to saturate a 1 Gbps network link. The delay on the
network is measured and different parameters are applied on both lab setups to
determine the influence in network performance. The network throughput will
indicate what the influence of a given parameter is.

Delay on the network causes a decrease in traffic throughput. The Round Trip
Time (RTT) of the network links shows the latency on the link. The RTT
is measured on both lab setups for a duration of one hour. This should
be sufficient to be able to calculate the average RTT of the links. The
measurements are done on both lab setups, over both non-VPN and VPN
connections. The RTT values are gathered by using the standard ping

command. Using the results of the ping command, the RTT values are
extracted by using the following command:

Extracting the RTT data from the ping data.

$ cat pingdata.txt | grep icmp_seq | \

cut -d’=’ -f4 | cut -d’ ’ -f1 > rttdata.txt
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These values will be used to calculate the average RTT is using the
“stats” utility, which is part of the iproute2 package. The tool can
be used to view information on the average RTT, the variation of the
RTT, and the distribution of the RTT overtime. This information can be
viewed by doing the following:

Extracting characteristics using stats.

$ ./stats rttdata.txt

mu = 0.249299

sigma = 0.025419

rho = 0.440400

This shows that the average delay on the link is 0.249 milliseconds. When
this measurement is done on a VPN link, the following results apply:

Extracting characteristics using stats.

$ ./stats rttdata-vpn.txt

mu = 0.464440

sigma = 0.051739

rho = 0.293843

We immediately observe an increase in latency of 86,30%, from 0.249 to
0.464 milliseconds. This means that TCP traffic over the UDP-based VPN
tunnel will decrease as a higher round trip time results in lower throughput
of TCP traffic. However, this is mitigated by the dynamic TCP window
scaling of the Linux kernel. UDP is not affected, as no packet loss is
measured.

Traffic generation In Section 3.2.2 , we stated that we chose Iperf to generate
the network traffic. Iperf is able to generate network traffic between two
nodes. One node will act as the server, while a second node generates
traffic to the server. Iperf can operate in UDP and TCP mode. OpenVPN
operates in UDP mode by default to prevent TCP stacking problems [36] ,
as the TCP protocol is a more widely used protocol than UDP. As our lab
setup uses OpenVPN in UDP mode, we chose to run Iperf in TCP mode.
Each measurement will be done a total of three times for a duration of five
minutes. This provides us with more reliable test results as the average
throughput of each test can be calculated. Iperf v2.0.5 was built from
the source tarball using default configuration options. On the server side,
Iperf is started in server mode:

$ iperf -s
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4 METHODOLOGY 16

On the client side, Iperf has to connect to the server side, over the VPN
tunnel at IP address 10.0.1.1 for a duration of five minutes (300 seconds).
This is done using the following command:

$ iperf -c 10.0.1.1 -t 300

Using the above commands a traffic generation test is started. Iperf will
generate data that will be sent to the other side of the VPN tunnel. After
five minutes, the measured throughput will be reported on both client
and server side. The report of the client side was used as the measured
throughput, as it seemed to most accurate. The average of the measured
results of all three tests were used as the measured throughput.

4.2.3 Source code analysis

An analysis of the source code may provide detailed insights into the workings of
OpenVPN and the used OpenSSL function calls. We choose to do this analysis,
as it may enable us to pinpoint the exact causes of the performance issues. The
source code analysis is done in Section 6.

4.3 Control script

All the parameters were supplied by a control script, which is located in the
Appendix B. The script is executed from a separate node located in the same
network. Different commands are executed on the machines in the lab setup to
be able to automate the tests. Using public key authentication, together with
SSH, commands are executed on all machines to setup VPN connections and
Iperf throughput tests. After a timeout, the script will perform the same tests
again, but with different parameters. The following sections describe the details
of these parameters.

4.4 OpenVPN parameters

The different parameters that are available in conjunction with OpenVPN are
discussed in this section. The measurements are done using these parameters
to observe the influences in network performance. Configuration files are used
with OpenVPN to create consistent tests using the same settings. A distinction
is made between server (VPN1) and client (VPN2).
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The configuration file of the server is shown below:

VPN1 OpenVPN configuration file.

$ cat /etc/openvpn/config/default-static-server.cfg

dev tun

proto udp

local 10.0.0.1

remote 10.0.0.2

port 11000

secret /etc/openvpn/secret.key

ifconfig 10.0.1.1 10.0.1.2

The configuration file of the client that will connect to the server is shown below:

VPN2 OpenVPN configuration file.

$ cat /etc/openvpn/config/default-static-client.cfg

dev tun

proto udp

local 10.0.0.2

remote 10.0.0.1

port 11000

secret /etc/openvpn/secret.key

ifconfig 10.0.1.2 10.0.1.1

This method enables us to create a basic OpenVPN tunnel. Additional param-
eters can be passed to the application using the command line. An example of
this is shown below:

$ openvpn --daemon --config /etc/openvpn/config/default-static-server.cfg \

--cipher aes-256-cbc --auth sha1 --fragment 0 --mssfix 0 --tun-mtu 60000

This command will start OpenVPN using the parameters in the configuration
file, and uses the AES-256-CBC cipher for encryption, the SHA-1 algorithm for
HMAC signing (default), disables all OpenVPN packet fragmentation options
and configures the MTU of the TUN device to be 60000 bytes. In return, the
client issues the following command to connect to the server:

$ openvpn --daemon --config /etc/openvpn/config/default-static-client.cfg \

--cipher aes-256-cbc --auth sha1 --fragment 0 --mssfix 0 --tun-mtu 60000
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4.4.1 Encryption algorithms

To secure the data that travels over the VPN connection, OpenVPN applies
encryption before encapsulating the data inside packets on a lower layer. The
encryption is applied by using the open source OpenSSL library. Although
OpenSSL supports a lot of different encryption and signing algorithms, Open-
VPN currently only supports the following encryption modes [37]:

• Cipher Block Chaining (CBC)

• Cipher FeedBack (CFB)

• Output FeedBack (OFB)

Out of the encryption algorithms and security modes supported by the OpenSSL
library, the ones that are most used with OpenVPN are the Blowfish and AES
ciphers in CBC mode, which is an encryption method for encrypting blocks of
plaintext. If needed, padding is applied to form a complete block of data.

Blowfish is a symmetric block cipher consisting of 64 byte blocks. It uses keys
lengths varying from 32 bits to 448 bits used in 16 rounds for encryption.
This cipher is used in CBC mode by default by OpenVPN.

Advanced Encryption Standard (AES) is a standard for symmetric-key en-
cryption, which provides three different block ciphers. Each block cipher
is 128 bits in size, and has different key sizes of 128, 192 and 256 bits
that are used in 10, 12 or 14 rounds respectively. AES has been through
extensive research by security experts, and is considered secure enough
by the National Security Agency (NSA) to protect classified information.
When the AES-256 cipher is used, the --cipher aes-256-cbc parameter
has to be passed to OpenVPN.

The reason only these algorithms are used most is mainly because the per-
formance is excellent compared to the alternative standards. Another reason is
that OpenVPN uses the Blowfish cipher by default, while AES is the encryption
standard approved by NIST.

Static key To simplify the measurements, we chose the static key method to-
gether with the Blowfish, AES-128 and AES-256 encryption algorithms in
CBC mode. Static key encryption is used for the ease of setting up an
encrypted tunnel. The alternative method would be using private keys
together with certificates. There is no difference in performance between
the two methods, only in the ease of configuration as there is no key distri-
bution needed when using a static key (public key encryption/asymmetric
encryption).

Berry Hoekstra
Damir Musulin

August 24, 2011



4 METHODOLOGY 19

The OpenVPN static key is generated by using the following openvpn

command:

$ openvpn -genkey -secret secret.key

From OpenVPN version 1.5-beta13, this command will generate a static
key that consists of 512 hexadecimal characters, which results in a 2048-
bit static key. Parts of the key are used in OpenVPN for encryption and
authentication. As there is only one static key to maintain between two
connected points, administration is relatively easy. However, the key must
be present on both sides of connected tunnel. To prevent the key from
being sniffed/leaked during the transfer to the other endpoint, a secure
transfer method such as the scp secure copy command should be used. In
Figure 5 , a visual view of the static key is presented, together with the
parts that are used.

Figure 5: OpenVPN static key layout.

By default, OpenVPN uses the Blowfish algorithm. As shown in Figure
5 , the first part of the key that is marked red is used for encrypting the
data (128 bits). The second part, also marked red, is the part used for the
hash algorithm (160 bits). By default, both connected endpoints use the
same parts of the static key. However, it is possible to use different keys
for encryption and decryption on both sides, so more bits of the static key
can be used.
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The key file that was generated using the openvpn command above is used
by using the --secret command with OpenVPN on both endpoints. The
key can be tested by using the following command:

$ openvpn --test-crypto --secret secret.key

If the test is successful, OpenVPN is able to execute the OpenSSL function
calls.

4.4.2 Authentication and signing algorithms

A Hash-based Message Authentication Code (HMAC) is used to provide packet
“authentication”. In essence, an HMAC is a specific cryptographic hashing
algorithm that is able to calculate a Message Authentication Code (MAC) using
a secret key. In this case the secret key is the OpenVPN static key described
in Section 4.4.1. OpenVPN uses the OpenSSL function calls to sign all packets
using the hashing algorithm to enable packet integrity. The use of a HMAC
provides additional security feature for the VPN traffic. In the case where
tampering of the VPN packets occurs, for example by a Man in the Middle
attack [38], the HMAC signature will not be as expected, and OpenVPN will
not trust the packet in question and a retransmission of the mismatched packets
is needed.

SHA-1 By default OpenVPN uses SHA-1 algorithm (Secure Hash Algorithm)
to sign the packets travelling across the VPN tunnel. The SHA-1 algo-
rithm is a cryptographic hash function developed by the NSA. Although
there are weaknesses in the algorithm [39] , it is considered secure enough
for data transmission. The algorithm can be used on 512 bit data blocks
to calculate a HMAC-MD5 HMAC of 160 bits.

MD5 Besides SHA-1, another algorithm that available is MD5 (Message Di-
gest 5), which is a 128-bit cryptographic hash function that is less CPU
intensive than SHA-1, but also vulnerable for collision attacks [40]. MD5
is commonly used to check the integrity of files, but can also be used on
512 bit data blocks to calculate a HMAC-MD5 HMAC of 128 bits. As
discussed in subsection 2.1 , data signing is used to provide both integrity
and authentication. To measure the difference in network performance,
the MD5 algorithm is also used to perform HMAC authentication between
the VPN endpoints.
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4.4.3 Fragmentation options

The OpenVPN fragmentation options enable the encapsulation of TCP packets
within a UDP datagram without the need for fragmentation.

Maximum Transmission Unit The MTU is the amount of bytes a protocol
can send in one protocol data unit (PDU) [41]. In the case of Ethernet,
increasing the size of the MTU enables more bytes to be sent to the target
destination in every Ethernet frame. This will reduce the amount of frames
that have to be sent. By increasing the Ethernet MTU from the default
1500 to 9000 bytes throughout an entire network path, fragmentation of
the frames will not occur. A MTU of 9000 bytes is commonly known as
Jumbo Frames [42]. In our measurements, we assume that most network
interfaces don’t use a MTU of 9000, which means that there is no available
path MTU of 9000. The MTU value of the physical network interface will
not be altered when doing throughput measurements.

As OpenVPN uses a virtual network interface, we can configure a different
MTU value. This enables us to increase the amount of bytes sent through
the virtual interface at once. As OpenVPN uses OpenSSL calls to encrypt
the data coming through the virtual interface, we are able to increase the
amount of bytes that is encrypted at once, which will theoretically increase
performance. Measurements will be done using increasing MTU values of
1500, 6000, 9000, 12000, 24000, 36000, 48000 and 60000 bytes. This will
show us the best value to use with certain cryptographic algorithms. This
approach might also point out a possible bottleneck in the TUN/TAP
driver or a limitation in the OS context switching between kernel space
and user space.

Packet fragmentation The fragmentation option in OpenVPN (--fragment)
configures OpenVPN in such a way that it never tries to send a UDP
datagram that is larger than the given amount of bytes. The fragment
option would be useful in cases with packets that require fragmentation,
such as non-TCP protocol, or when path MTU discovery is broken. With
a broken MTU it is not possible to set the correct MTU for a path, which
can result in packet errors due to the fact that packets that are sent are
to big for the other side. If packets larger than the specified amount come
through, internal fragmentation is applied, which fragments the packets
for the network interface before sending the data over the network. As a
result, 4 bytes are added to the UDP datagram to be able to reassemble
the datagram on the receiving side.
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Maximum Segment Size (MSS) is the amount of bytes that can be sent or
received unfragmented [43]. An option is provided to be able to config-
ure OpenVPN to use a certain MSS value for the payload data, which
is useful to solve MTU fragmentation problems. Using the --mssfix op-
tion, OpenVPN will calculate the overhead that is generated during the
encapsulation process, and configures the TCP protocol to not use a MSS
larger than the given value in bytes. This value is used during the TCP
negotiations to prevent the fragmentation. This option is mostly used in
conjunction with the --fragment option, as the --mssfix option prevents
TCP from needing fragmentation and let --fragment fragments non-TCP
packets internally if needed.

Even when there is no encryption applied to the tunnel, overhead is still present
as the packets are encapsulated. Context switches between the user space and
kernel space cause a slight hit in performance, which in turn will decrease net-
work performance as less CPU cycles are available.

4.5 OpenSSL performance measurements

To test the hardware capabilities of our test setup, we measure the encryption
speed of OpenSSL. All three encryption algorithms will be tested on a large
file. The encryption test will be performed a total of three times to be able
to calculate the average time of the algorithm. Different buffer sizes of 1024,
8192 and 60000 bytes respectively will be used to be able to measure differences
in encryption speed when supplying OpenSSL with different sizes of plaintext
blocks to encrypt. This can be done by using the -bufsize switch. The time

command shows the amount of time a test takes. A file of 4.689.108.992 bytes
is supplied to OpenSSL using the -in switch, together with a password used for
encryption. To start the test, the following OpenSSL command is executed:

$ time openssl bf-cbc -in ~/large.iso -bufsize 60000 \

-pass pass:testing123 > /dev/null

The following formula is used together with the average encryption time to
measure the theoretical throughput:

Throughput(Mbps) =
Filesize(Bytes)/Encryptiontime(Seconds)

(1024× 1024)
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4.6 Improving network throughput

Packet fragmentation options Using the --fragment and --mssfix options
discussed in Section 4.4.3, network throughput might be optimized. For
example, on high speeds, fragmentation of packets will cause overhead, as
more 4 bytes are added to each fragment. Another factor is that more
CPU cycles are needed for fragmentation and interrupt processing.

MTU options Increasing the MTU of the TUN/TAP device causes that more
bytes can be sent to OpenVPN at once. When more bytes are delivered
for encryption and signing, OpenVPN can optimally process the packets
and send them over the line. No time is spent waiting for buffers to fill
up.

Cryptographic options Another factor that might improve network through-
put is by using different cryptographic algorithms used for the encryption
and authentication of the packets. In contrast to the Blowfish algorithm,
the AES algorithms are much more CPU intensive, and causes the CPU
to be more occupied with cryptographic tasks than with the processing of
the network packets.

Processor affinity OpenVPN is a CPU intensive program. Research by Intel
[44] shows that the performance of CPU intensive program can be in-
creased when assigning the process to a core that is close to memory or
the network bus. As we are interested in gaining the maximum network
performance using OpenVPN, processor affinity is researched in conjunc-
tion with OpenVPN. To test the processor affinity, the taskset command
is used to lock a running process to a specified core. The example com-
mand below is used to assign a process with process ID 30431 to core
0:

$ taskset -pc 0 30431

The taskset command is part of the Linux scheduler utilities.
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5 Measurements

In this Section, we will discuss the results of the tests that are described in the
test plan in Section 4.2.1.

5.1 Executing test procedures

As described in Section 4.4, measurements are done by generating traffic using
Iperf. Each measurement differs with the MTU of the virtual TUN network
device. The MTU parameter is used with increasing values. This is done to
see what the performance impact of the MTU size is on the throughput of data
for the given static parameters. The fragmentation and MSS options with each
test enabled and disabled and different encryption algorithm are used. The
MD5 algorithm will be tested against the default SHA-1 algorithm used for the
HMAC authentication to measure the difference in network performance. The
tests will be done on both lab setups and another OS in the form of FreeBSD 8.2
will be used to eliminate OS restrictions. Note that a “default” measurement is
done with encryption and SHA-1 signing enabled.

5.2 OpenSSL performance measurements

OpenSSL encryption speed is measured as discussed in Section 4.5. The graph
in Figure 6 shows the differences in encryption speed offering different blocks of
plaintext, the OpenSSL speed test shown are executed on CentOS 5.6.

Figure 6: OpenSSL speed comparison.

Berry Hoekstra
Damir Musulin

August 24, 2011



5 MEASUREMENTS 25

5.3 Network performance measurements

In Section 4.2.2, the network latency was measured on both the normal links
and VPN enabled links. Measurements over the VPN connection already shows
us a slight increase in latency. An increase of 86,30%, from 0.249 to 0.464
milliseconds is measured when using the ping command over the VPN link.

The graphs generated out of the measurement results are separated per encryp-
tion cipher. This is done to avoid clutter when combining too many results in
the graphs.

5.3.1 Generating traffic

As discussed in Section 4.2.2, traffic streams were generated between the two
nodes using Iperf. This enabled us to determine network throughput of the
network connection.

5.3.2 Raw throughput

To be able to rule out problems on the physical link, a raw throughput test
was performed using Iperf. Measurements done on the first lab setup showed
a raw network throughput of 942 Mbps with a configured MTU value of 1500
bytes. When using a MTU of 9000 bytes, the throughput increased to 990 Mbps.
This shows that using a higher MTU results in a higher throughput. However,
the physical network device will be configured with 1500 MTU, as this is the
standard MTU value on the Internet at the moment.
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5.3.3 Transparent VPN tunnel

A transparent tunnel is a VPN tunnel where no encryption and signing is applied
to the traffic. When configuring a transparent VPN tunnel, OpenVPN uses a
shortcut as there is no need to request an OpenSSL action. The graph in
Figure 7 shows the results of the throughput measurements done on the raw link
compared against the results of the transparent VPN tunnel with and without
the OpenVPN fragmentation options enabled. The graphs shows that near-
line-speed can be reached on the transparent tunnel when configuring the TUN
device with a MTU size of 6000 bytes and higher. The fragmentation options
limit the throughput to around 50% of the raw line speed.

Figure 7: Network throughput measurement of raw versus transparent tunnel.
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5.3.4 Blowfish-CBC

The throughput measured during the OpenSSL speed-test was around 500
Mbps. The throughput measured on the network is shown in Figure 8. The
graph shows us that with the fragmentation options disabled, the network
throughput does not greatly exceed 500 Mbps, with the exception of the test
with a TUN MTU value of 48000 bytes. HMAC signing using the SHA-1 algo-
rithm shows a performance hit of around 29% on the 48000 MTU test.

Figure 8: Network throughput measurement of BF-CBC tunnel.

The figure also shows us that using a larger MTU value of the TUN device
increases throughput. The optimal throughput is reached on MTUs from 12000
bytes and larger. We clearly see that there is no difference in the OpenSSL
speed and network throughput when using OpenVPN. This observation can
be led back to the processor limitations present in the Blowfish CBC cipher.
Multiple studies show that Blowfish outperforms the AES algorithm [24] [45].
However, when testing the encryption speed on our test setups using OpenSSL,
we see that AES performs much better. The encryption of the Blowfish-CBC
algorithm is limited to the clock speed of the CPU.
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5.3.5 AES-128-CBC

The AES-128-CBC cipher reaches a theoretical OpenSSL throughput of 389
to 442 Mbps. Figure 9 shows that the measured throughput does not reach
far beyond 300 Mbps when only encryption is used and disabled fragmentation
options. This is a performance hit of around 44%.

Again, the optimal speed is reached on a MTU of 12000 bytes. When we
look at the measurement that reached the highest throughput, with a TUN
MTU value of 12000 bytes, the performance hit caused by the SHA-1 HMAC
signing is around 14%. Again, the gain in throughput is seen when disabling
the fragmentation options. This is observed on all TUN MTU sizes.

Figure 9: Network throughput measurement of AES-128-CBC tunnel.
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5.3.6 AES-256-CBC

The OpenSSL test resulted in a theoretical throughput of 296 to 317 Mbps
using the AES-256-CBC cipher. When we look at the network measurement
results in Figure 10, we see that this throughput is not reached. The optimal
throughput is measured on a TUN MTU of 12000 bytes, but this is only 230
Mbps, against the 317 Mbps of the maximum measured OpenSSL speed. This
is a performance loss of around 38%.

Figure 10: Network throughput measurement of AES-256-CBC tunnel.
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5.4 Comparing to the HMAC-MD5 algorithm

To measure the impact of using different hashing algorithms for the HMAC
signing, we have ran tests on a VPN tunnel where only HMAC signing was
configured. Throughput results of a transparent tunnel versus using SHA-1 or
MD5 for HMAC signing were compared. Figure 11 shows this comparison. The
graph shows the performance hit of both algorithms against using a transparent
tunnel.

Figure 11: Network throughput measurement different HMACs.

When the OpenVPN fragmentation options are enabled, throughput does not
go beyond 500 Mbps, but instead reaches an average throughput of 444 Mbps.
However, we see that tests done on the transparent tunnel reach a maximum
throughput of near-line-speed when disabling the fragmentation options.

When only applying the SHA-1 algorithm on a VPN tunnel, a performance
hit with a maximum of 26,6% is seen on a TUN MTU of 1500 bytes. The
performance hit gradually decreases when the amount of bytes the TUN MTU
is configured with increases. For example, when configuring the TUN MTU
with 60000 bytes the measured performance hit is only 3.95%.
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Comparing this to the MD5 algorithm, which is less CPU intensive, a maximum
hit of 22,97% on a TUN MTU of 1500 bytes to 0% on 60000 bytes is seen. The
following table shows a comparison of the differences:

SHA-1 hit MD5 hit Difference

-26,6% -22,97% +3,63%
-19,06% -12,28% +6,78%
-15,12% -5,9% +9,22%
-12,46% -2,22% +10,24%
-7,37% -0,1% +7,27%
-5,83% -0,1% +5,73%
-4,48% 0% +4,48%
-3,95% 0% +3,95%

Table 2: HMAC algorithm performance hit comparison.

The difference of using SHA-1 versus the MD5 algorithm is negligible. From a
TUN MTU with 12000 bytes configured, applying MD5 signing does not affect
throughput much. Similar behaviour is seen for SHA-1 from a TUN MTU
with 24000 bytes configured. MD5 even reaches same throughput levels as a
transparent tunnel, which is the connection limit in this case.
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5.5 Comparing to other SSL VPN solutions

Vtun and a modified version of the Simpletun code were used to be able to com-
pare OpenVPN with other VPN solutions that use OpenSSL. Both applications
are discussed in Section 3.2. The modifications to Simpletun are discussed in
Section 6.

The idea behind the comparison is that a simple program like Simpletun with
encryption added will show a performance overhead by encrypting the data that
is going through the tunnel.

Figure 12: OpenVPN vs Vtun

The result for the modified Simpletun are omitted. This was done as it was not
possible to get reliable measurements because of segmentation faults occurring
at at random intervals. We expect the more error handling needs to be imple-
mented in the Simpletun code, which was not feasible in the limited time frame
for this project.

Figure 12 shows that the throughput with OpenVPN is slower on a transparent
tunnel compared with Vtun. However, when encryption is applied, OpenVPN
outperforms Vtun. From this result an unclear picture emerges about the rela-
tive performance of both products.
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5.6 Comparing with FreeBSD

As OpenVPN is available for multiple operating systems, a comparison with
FreeBSD may provide more insight. It presents an opportunity to measure if
there is a performance difference between CentOS 5.6 and FreeBSD 8.2.

Figure 13 shows the results of the measurements done.

Figure 13: Network throughput measurement of CentOS vs. FreeBSD.

We notice similar results on both operating systems using the Blowfish-CBC
cipher. This can again be led back to the relation with the CPU frequency.
However, when using AES-CBC ciphers, we notice a 50% drop in performance
on the CentOS installation. Analysis shows this behavior is caused by the
default OpenSSL installation on this machine, which is FIPS compliant [46]. For
example, when performing tests using the AES-256-CBC cipher, with a version
of OpenSSL that is not FIPS enabled, a 60% increase in network throughput is
measured when using the same source on FreeBSD 8.2.
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5.6.1 FIPS vs. non-FIPS

FIPS is the Federal Information Processing Standard 140-2, which is a data
processing standard by the US government. To test the impact of the FIPS
version of OpenSSL against the non-FIPS version, OpenSSL had to be rebuild
on the original test operating system (CentOS). OpenVPN had to be compiled
again using the new OpenSSL libraries. A comparison is shown in Figure 14
below.

Figure 14: Network throughput measurement of AES-256-CBC tunnel (FIPS
vs. non-FIPS).

We observe a large increase in throughput on a TUN MTU of 60000 bytes
where only encryption is used. This test shows an increase of 126 Mbps, which
is 68,48% higher than the FIPS version. This shows the difference between this
FIPS version is substantial. We have learned that this loss in performance is
not seen in the FIPS version 1.0.0 of OpenSSL. This points to a bug in the
implementation of the FIPS module in the default version of OpenSSL shipped
with CentOS, which is version 0.9.8e-fips-rhel5
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5.7 Comparing with a routed setup

The second lab setup, described in Section 4.1, is a routed setup.

Figure 15: OpenVPN in conjunction with clients.

Figure 15 shows the results of the routed setup with different TUN MTU sizes.
The graph shows that increasing the MTU of the tunnel does not lead to a better
performance in throughput of data. The reason for the constant numbers is due
to the fact that the the physical interface that receives the data packets from
the clients has a MTU of 1500, thus increasing the MTU of the tunnel device
of an endpoint will not lead to a better performance of throughput.
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5.8 Processor affinity

Research by Intel [44] shows an increase in TCP network performance in Sym-
metric Multi Processor systems. To test the influence on OpenVPN throughput,
we measured the throughput by assigning the most CPU intensive process to
the core that is the closest to the system bus, so that transport to memory and
network card is optimal.

Figure 16: Throughput of OpenVPN on different cores.

Figure 16 shows the throughput of the OpenVPN process running on different
cores of a processor. After the OpenVPN process is started, the process ID
is allocated to a specific CPU core to measure the effectiveness in throughput
performance. This is done as discussed in Section 4.6.

When configuring the TUN interface with a large MTU, a big block of data is
given to OpenVPN and in turn to OpenSSL. A big performance differences is
seen among the cores. Core 0 and core 3 of the used CPU show a performance
that is significantly better when compared with core 1 and core 2. A maximum
increase of around 40% is seen. Core 3 shows an increase of 10% when no affinity
is used.
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6 Source code analysis

To gain a better understanding of OpenVPN a source code analysis has been
done.

6.1 OpenVPN encrypted packet flow

As described in Section 2.1.2 packets that flow through the tunnel to the other
endpoint of a tunnel have a specific packet flow through an endpoint system.
In this section the packet flow is of packets that are put on a VPN tunnel are
shown in combination with source code from OpenVPN.

As described in Section 2.2.1, OpenVPN uses the TUN/TAP driver to setup
a point-to-point connection between two endpoints. The piece of code that is
shown below is the starting point of reading the data from the TUN virtual
network interface. First, the function read_incoming_tun is called. Then, the
code checks if a signal such as a SIGHUP is received. If this is not the case, the
packet is processed by the process_incoming_tun function.

OpenVPN process io function. (forward.c)

1494 void

1495 process_io (struct context *c)

1496 {

1497 const unsigned int status = c->c2.event_set_status;

...

/* Incoming data on TUN device */

1525 else if (status & TUN_READ)

1526 {

1527 read_incoming_tun (c);

1528 if (!IS_SIG (c))

1529 process_incoming_tun (c);

1530 }

...

The code below shows the entry point of a data packet that flow into OpenVPN.
The function called read_tun_buffered takes three parameters:

1. The file descriptor of the TUN/TAP interface.

2. The data buffer that contains the data for the destination endpoint.

3. The frame length.

If IS_SIG is false the packet can be processed by the process_incoming_tun

function.
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OpenVPN read incoming tun function. (forward.c)

910 void

911 read_incoming_tun (struct context *c)

912 {

913 /*

914 * Setup for read() call on TUN/TAP device.

915 */

916 /*ASSERT (!c->c2.to_link.len);*/

917

918 perf_push (PERF_READ_IN_TUN);

919

920 c->c2.buf = c->c2.buffers->read_tun_buf;

921 #ifdef TUN_PASS_BUFFER

922 read_tun_buffered (c->c1.tuntap, &c->c2.buf, MAX_RW_SIZE_TUN (&c->c2.frame));

923 #else

924 ASSERT (buf_init (&c->c2.buf, FRAME_HEADROOM (&c->c2.frame)));

925 ASSERT (buf_safe (&c->c2.buf, MAX_RW_SIZE_TUN (&c->c2.frame)));

926 c->c2.buf.len = read_tun (c->c1.tuntap, BPTR (&c->c2.buf), \

MAX_RW_SIZE_TUN (&c->c2.frame));

927 #endif

The process_incoming_tun that is shown below is shown in the bare essentials
that we need to explain. The code shows that the buffer length of c is checked, if
it is bigger than zero it is than c is passed along to the encrypt_sign function,
else the buffer is reset.

OpenVPN process incoming tun function. (forward.c)

958 void

959 process_incoming_tun (struct context *c)

960 {

...

965 if (c->c2.buf.len > 0)

966 c->c2.tun_read_bytes += c->c2.buf.len;

...

976 if (c->c2.buf.len > 0)

977 {

...

993 encrypt_sign (c, true);

994 }

995 else

996 {

997 buf_reset (&c->c2.to_link);

998 }
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...

1001 }

Two things that can be seen in the code below is that the function openvpn_encrypt

is called. After the openvpn_encrypt call, the encrypted packet receives the
address where it needs to go to. First, we will explain the openvpn_encrypt

function, then the link_socket_get_outgoing_addr function.

The openvpn_encrypt functions are shown below:

OpenVPN encrypt signing function. (forward.c)

421 void

422 encrypt_sign (struct context *c, bool comp_frag)

423 {

...

449 #ifdef USE_CRYPTO

...

461 /*

462 * Encrypt the packet and write an optional

463 * HMAC signature.

464 */

465 openvpn_encrypt (&c->c2.buf, b->encrypt_buf, &c->c2.crypto_options, &c->c2.frame);

466 #endif

467 /*

468 * Get the address we will be sending the packet to.

469 */

470 link_socket_get_outgoing_addr (&c->c2.buf, get_link_socket_info (c),

471 &c->c2.to_link_addr);

472 #ifdef USE_CRYPTO

OpenVPN openvpn encrypt function. (crypto.c)

73 void

74 openvpn_encrypt (struct buffer *buf, struct buffer work,

75 const struct crypto_options *opt,

76 const struct frame* frame)

77 {

...

81 if (buf->len > 0 && opt->key_ctx_bi)

82 {

83 struct key_ctx *ctx = &opt->key_ctx_bi->encrypt;

84

85 /* Do Encrypt from buf -> work */

86 if (ctx->cipher)
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87 {

88 uint8_t iv_buf[EVP_MAX_IV_LENGTH];

89 const int iv_size = EVP_CIPHER_CTX_iv_length (ctx->cipher);

90 const unsigned int mode = EVP_CIPHER_CTX_mode (ctx->cipher);

91 int outlen;

...

127 /* initialize work buffer with FRAME_HEADROOM bytes of prepend capacity */

128 ASSERT (buf_init (&work, FRAME_HEADROOM (frame)));

...

137 /* cipher_ctx was already initialized with key & keylen */

138 ASSERT (EVP_CipherInit_ov (ctx->cipher, NULL, NULL, iv_buf, DO_ENCRYPT));

...

154 /* Encrypt packet ID, payload */

155 ASSERT (EVP_CipherUpdate_ov (ctx->cipher, BPTR (&work), &outlen, \

BPTR (buf), BLEN (buf)));

156 work.len += outlen;

157

158 /* Flush the encryption buffer */

159 ASSERT (EVP_CipherFinal (ctx->cipher, BPTR (&work) + outlen, &outlen));

160 work.len += outlen;

161 ASSERT (outlen == iv_size);

162

163 /* prepend the IV to the ciphertext */

164 if (opt->flags & CO_USE_IV)

165 {

166 uint8_t *output = buf_prepend (&work, iv_size);

167 ASSERT (output);

168 memcpy (output, iv_buf, iv_size);

169 }

...

182 work = *buf;

Out of the code above, we see what happens with the interaction between Open-
VPN and OpenSSL. The EVP (EnVeloPe) functions that are shown are part
of the high level API interface of OpenSSL [47]. On line 138, the ctx (cipher
context) structure is initialized. As the comment on line 137 states, the key and
key length are already set for the cipher context structure. The initialization
of the key and the key length is done at line line 89 and line 90. Once the ctx

structure is initialized, the encryption can start. This can be seen on line 155.

The data that is located in the buffer called buf is passed to OpenSSL to encrypt.
The desired encryption is set in the ctx structure. The encrypted data is put into
the work buffer that is initialized at line 128. After the EVP_CipherUpdate_ov

is done, it can happen that there is data left that is too small to fit in a given
encryption block. This is data that is placed in a partial block. To solve the
encryption with a partial block, the EVP_CipherFinal function is called. This
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function adds additional padding to the partial block to be able to encrypt it
as an entire block of plaintext data.

On line 182 the most interesting part happens. The plaintext buffer called buf

is pointed to the memory address of the encrypted buffer called work. This
means that functions that call the buffer pointer will get the memory address of
the encrypted buffer work. The code at line 182 effectively swaps the plaintext
buffer with a encrypted buffer.

After the buffer is encrypted by the openvpn_encrypt function, the link_socket_get_outgoing_addr
function is called by the encrypt_sign function. The link_socket_get_outgoing_addr
is used as is defined in the name, to get the outgoing address for the encrypted
buffer. After this part, there is no code left to be executed. This seems to be
strange as the packet is encrypted and the outgoing address is also known, so all
that needs to be done is to send the packet to the other endpoint of the tunnel.

OpenVPN link socket get outgoing addr function. (socket.h)

642 static inline void

643 link_socket_get_outgoing_addr (struct buffer *buf,

644 const struct link_socket_info *info,

645 struct link_socket_actual **act)

646 {

647 if (buf->len > 0)

648 {

649 struct link_socket_addr *lsa = info->lsa;

650 if (link_socket_actual_defined (&lsa->actual))

651 *act = &lsa->actual;

652 else

653 {

654 link_socket_bad_outgoing_addr ();

655 buf->len = 0;

656 *act = NULL;

657 }

658 }

659 }

The code that is shown below shows a while loop that continues until interrupted
by a signal, which are caught by P2P_CHECK_SIG();. As long as the while loop
runs, the function process_io (c); is executed. This function processes the
input and output of the TUN/TAP device and the network device. This function
was already discussed in Section 6.1 for the TUN device. However, now we need
to send the encrypted data with its address on a socket for the device that is
connected with the network.

OpenVPN tunnel point-to-point function (openvpn.c)
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45 static void

46 tunnel_point_to_point (struct context *c)

47 {

48 context_clear_2 (c);

49

50 /* set point-to-point mode */

51 c->mode = CM_P2P;

52

53 /* initialize tunnel instance */

54 init_instance_handle_signals (c, c->es, CC_HARD_USR1_TO_HUP);

55 if (IS_SIG (c))

56 return;

57

58 /* main event loop */

59 while (true)

60 {

...

78 /* process the I/O which triggered select */

79 process_io (c);

80 P2P_CHECK_SIG();

...

83 }

84

85 uninit_management_callback ();

86

87 /* tear down tunnel instance (unless --persist-tun) */

88 close_instance (c);

89 }

The next example below shows the first part of the process_io function where
the encrypted buffer with the remote address included is sent to the other side
of the endpoint by using the process_outgoing_link function.

OpenVPN process io function. (forward.c)
1494 void

1495 process_io (struct context *c)

1496 {

1497 const unsigned int status = c->c2.event_set_status;

1498

1499 #ifdef ENABLE_MANAGEMENT

1500 if (status & (MANAGEMENT_READ|MANAGEMENT_WRITE))

1501 {

1502 ASSERT (management);

1503 management_io (management);
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1504 }

1505 #endif

1506

1507 /* TCP/UDP port ready to accept write */

1508 if (status & SOCKET_WRITE)

1509 {

1510 process_outgoing_link (c);

1511 }

Next, the first the packet is checked for total length. If the total length is larger
than zero and bigger than the expanded size, the code is allowed to continue.
After the packet is checked for the correct sizes, the link address is checked. If
this is defined as true, then we are able to send the code to the other side of the
tunnel. In the code at line 1070 another function called link_socket_write

is called. This function is responsible for sending the packets with the correct
protocol to the other side.

OpenVPN process outgoing link function. (forward.c)

1056 void

1057 process_outgoing_link (struct context *c)

1058 {

1059 struct gc_arena gc = gc_new ();

1060

1061 perf_push (PERF_PROC_OUT_LINK);

1062

1063 if (c->c2.to_link.len > 0 && c->c2.to_link.len <= EXPANDED_SIZE (&c->c2.frame))

1064 {

1065 /*

1066 * Setup for call to send/sendto which will send

1067 * packet to remote over the TCP/UDP port.

1068 */

1069 int size = 0;

1070 ASSERT (link_socket_actual_defined (c->c2.to_link_addr));

...

1119 /* Send packet */

1120 size = link_socket_write (c->c2.link_socket,

1121 &c->c2.to_link,

1122 to_addr);

...

1174 buf_reset (&c->c2.to_link);

The function link_socket_write below, only determines if the protocol to send
the packet needs to be UDP or TCP. Once this is determined, the link_socket_write
function hand of the sending of data to the determined function.
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OpenVPN link socket write function. (socket.h)

843 /* write a TCP or UDP packet to link */

844 static inline int

845 link_socket_write (struct link_socket *sock,

846 struct buffer *buf,

847 struct link_socket_actual *to)

848 {

849 if (sock->info.proto == PROTO_UDPv4)

850 {

851 return link_socket_write_udp (sock, buf, to);

852 }

853 else if (sock->info.proto == PROTO_TCPv4_SERVER || sock->info.proto \

== PROTO_TCPv4_CLIENT)

854 {

855 return link_socket_write_tcp (sock, buf, to);

856 }

857 else

858 {

859 ASSERT (0);

860 return -1; /* NOTREACHED */

861 }

862 }

As OpenVPN tunnels are based on UDP encapsulation methods to prevent the
TCP stacking problem [36] , we will take a look at the link_socket_write_udp
function. The link_socket_write has two options to send out data on a
UDP socket. If the system is running of a Windows system, if will use the
link_socket_write_win32. If it is a POSIX [48] capable system like Linux it
will use the link_socket_write_udp_posix function. Because the research was
done on a POSIX capable system (Linux) we will look at the link_socket_write_udp_posix
function.

OpenVPN link socket write udp function. (socket.h)

831 static inline int

832 link_socket_write_udp (struct link_socket *sock,

833 struct buffer *buf,

834 struct link_socket_actual *to)

835 {

836 #ifdef WIN32

837 return link_socket_write_win32 (sock, buf, to);

838 #else

839 return link_socket_write_udp_posix (sock, buf, to);

840 #endif

841 }
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The code snippet below shows the UDP sendto function [49] is used to send out
the UDP packet with the encrypted data to the other endpoint of the tunnel.

OpenVPN link socket write udp posix function. (socket.h)

802 static inline int

803 link_socket_write_udp_posix (struct link_socket *sock,

804 struct buffer *buf,

805 struct link_socket_actual *to)

806 {

...

816 return sendto (sock->sd, BPTR (buf), BLEN (buf), 0,

817 (struct sockaddr *) &to->dest.sa,

818 (socklen_t) sizeof (to->dest.sa));

819 }

6.2 OpenVPN plaintext packet flow

Besides the encrypted flow as discussed in in the previous section, OpenVPN is
also capable to setup a plaintext tunnel. If this is the case, OpenVPN makes
use of a shortcut through the code and not call OpenSSL to encrypt packets.

The code shown below is part of the encrypt_sign function that is discussed
in Section 6.1. The encrypt_sign function is also called if no encryption is
used. The code shown consists of the function called buffer_turnover where
the buffer is not encrypted but just turned over to the buffer that is written out.
This is a shortcut to increase performance by not calling OpenSSL to provide
null encryption.

OpenVPN encrypt sign(forward.c)

421 void

422 encrypt_sign (struct context *c, bool comp_frag)

423 {

424 struct context_buffers *b = c->c2.buffers;

425 const uint8_t *orig_buf = c->c2.buf.data;

426

...

488 /* if null encryption, copy result to read_tun_buf */

489 buffer_turnover (orig_buf, &c->c2.to_link, &c->c2.buf, &b->read_tun_buf);

490 }

The function buffer_turnover turns over the source stub of a packet to the
destination stub so that the packet is ready to be sent over the VPN tunnel.
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OpenVPN buffer turnover (forward.c)

399 /*

400 * Buffer reallocation, for use with null encryption.

401 */

402 static inline void

403 buffer_turnover \

(const uint8_t *orig_buf, struct buffer *dest_stub, \

struct buffer *src_stub, struct buffer *storage)

404 {

405 if (orig_buf == src_stub->data && src_stub->data != storage->data)

406 {

407 buf_assign (storage, src_stub);

408 *dest_stub = *storage;

409 }

410 else

411 {

412 *dest_stub = *src_stub;

413 }

414 }

6.3 Simpletun UDP

As described is Section 3.2, Simpletun is a simple tunnel implementation to cre-
ate a plaintext TCP tunnel. No signing or encryption is performed on packets
traveling over the tunnel. The problem with the original Simpletun program is
that it uses TCP to initiate a tunnel between two point over a given network.
This can create a problem when a TCP connection is used over a TCP connec-
tion. This is known as the TCP stacking problem [36]. To solve the problem,
Simpletun was modified to be capable of creating a UDP-based tunnel. As Sim-
pletun (UDP) is a very basic tunnel one can set up between two endpoints, it
is interesting to see the performance differences of Simpletun UDP versus other
tunnel programs like Vtun and OpenVPN.

What can be seen in the code below are two functions. The first function reads
data from the TAP device and writes it to the network device. The second
function reads data from the network device and writes is to the TAP device.
This is how Simpletun works for both the TCP and the UDP version that was
written for this research. The difference between the UDP and TCP version is
made in the setup of the connection between the two version.

Simpletun UDP while loop

327 while(1) {

328 int ret;

329 fd_set rd_set;
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330

331 FD_ZERO(&rd_set);

332 FD_SET(tap_fd, &rd_set); FD_SET(net_fd, &rd_set);

333

334 ret = select(maxfd + 1, &rd_set, NULL, NULL, NULL);

335

336 if (ret < 0 && errno == EINTR){

337 continue;

338 }

339

340 if (ret < 0) {

341 perror("select()");

342 exit(1);

343 }

344

345 if(FD_ISSET(tap_fd, &rd_set)) {

346 /* data from tun/tap: just read it and write it to the network */

347

348 nread = cread(tap_fd, buffer, BUFSIZE);

349

350 /* write length + packet */

351 plength = htons(nread);

352 nwrite = cwrite(net_fd, (char *)&plength, sizeof(plength));

353 nwrite = cwrite(net_fd, buffer, nread);

354

355

356 }

357

358 if(FD_ISSET(net_fd, &rd_set)) {

359 /* data from the network: read it, and write it to the tun/tap interface.

360 * We need to read the length first, and then the packet */

361

362 /* Read length */

363 nread = read_n(net_fd, (char *)&plength, sizeof(plength));

364

365

366 /* read packet */

367 nread = read_n(net_fd, buffer, ntohs(plength));

368

369

370 /* now buffer[] contains a full packet

or frame, write it into the tun/tap interface */

371 nwrite = cwrite(tap_fd, buffer, nread);

372

373 }

374 }
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This part of the code is relatively simple. The SOCK_DGRAM states that DGRAM
style packets need to be used. The option that states 0 is the option to specify
that the socket needs to use UDP style sockets. This can be set to zero because
the operating system checks the SOCK_DGRAM option to use UDP style sockets.

Because UDP does not keep a session, the source and destination address are
statically set, so communication destination port and source port do not need
to be negotiated. This has been done for simplicity.

Simpletun UDP socket setup

262 if ( (sock_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

263 perror("socket()");

264 exit(1);

265 }

Finally, the code below shows the setup of the details required for the source
address and the destination address. This includes the ports that are filled in
when a packet is sent over the tunnel interface or the physical network card.

Simpletun UDP socket variable setup

289 /* avoid EADDRINUSE error on bind() */

290 if(setsockopt(sock_fd, SOL_SOCKET, \

SO_REUSEADDR, (char *)&optval, sizeof(optval)) < 0) {

291 perror("setsockopt()");

292 exit(1);

293 }

294

295 memset(&local, 0, sizeof(local));

296 local.sin_family = AF_INET;

297 local.sin_addr.s_addr = htonl(INADDR_ANY);

298 local.sin_port = htons(port);

299 if (bind(sock_fd, (struct sockaddr*) &local, sizeof(local)) < 0) {

300 perror("bind()");

301 exit(1);

302 }

303

304 net_fd = sock_fd;

305

306 memset(&remote, 0, sizeof(remote));

307 remote.sin_family = AF_INET;

308 inet_aton(CLT_IP, &remote.sin_addr);

309 remote.sin_port = htons(port);
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310 if (connect(sock_fd, (struct sockaddr*) &remote, sizeof(remote)) < 0) {

311 perror("connect()");

312 exit(1);

313 }

314

315

316 do_debug("\n(%s , %d) said : ",inet_ntoa(remote.sin_addr),

317 ntohs(remote.sin_port));

318

319

320 do_debug("SERVER: Client connected from %s \n",

321 inet_ntoa(remote.sin_addr));

322 }
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7 Conclusion

In this section we state our conclusions of the results that were discussed in the
previous sections.

When starting this project, the encryption algorithms were suspected to be the
initial cause of the loss in network performance. However, by calculating the
theoretical network throughput by means of OpenSSL file-based encryption, we
were able to calculate the theoretical throughput of the machine. To be able
to compare these to the practical network throughput, many Iperf throughput
tests were performed. Results show that OpenVPN is unable to reach the same
throughput as expected from the OpenSSL speed tests. The percentage of
overhead we measured is around 75%.

To rule out the possibility of inefficient encryption routines within OpenVPN,
different tests were performed using three different encryption ciphers, together
with HMAC signing enabled or disabled. As the internal fragmentation options
of OpenVPN are not needed on stable links, we disabled them on each test. This
way, the Linux kernel provides the packet fragmentation. Using these different
parameters, the impact of each could be determined.

A large increase in network throughput can be achieved by increasing the TUN
MTU value together with disabling the internal fragmentation options of Open-
VPN. The virtual TUN device is able to supply more bytes to OpenVPN, which
in return passes more plaintext data to encrypt by OpenSSL. When configuring
the TUN MTU with more than 9000 bytes, the internal OpenVPN fragmenta-
tion options cause a huge bottleneck. Our advise is to disable them if possible.
The maximum gain in performance we measured on the lab setup was around
150% for the Blowfish-128-CBC cipher and around 30% to 80% for the AES
ciphers.

OpenVPN forms a bottleneck by providing a user space VPN implementation.
Analysis of the source code of OpenVPN provided insight in the internal work-
ings. Calls to the EVP interface of OpenSSL are not the main cause the prob-
lem. However, a small overhead is caused by using the OpenSSL EVP calls to
encrypt blocks of plaintext originating from the virtual TUN device. The en-
cryption calls are most effective when supplying larger blocks to encrypt, which
can be achieved by configuring the TUN MTU with a higher MTU value. The
larger the block size, the less EVP calls have to be performed. An educated
guess we make is that on even higher network speeds, the CPU will be occupied
even more with processing the context switching and kernel interrupts caused
by the physical network interface. The Future work section describes possible
future points to study on this matter. Due to specific hardware being unavail-
able to us, not all tests could be performed. However, these are described as
future research so in the case such hardware becomes available, the impact can
be measured.

Many different parameters can be used on the first lab setup. In particular the
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OpenVPN fragmentation options and TUN MTU size. However, on the second
lab setup it is very hard to improve performance as it is not desired to tweak
all separate client configurations. We found that the performance of OpenVPN
relies on the version of the underlying OpenSSL library. Especially the default
OpenSSL version in CentOS 5.6 causes a performance decrease because of an
unoptimized FIPS implementation. Fine tuning can be performed by assigning
the OpenVPN process to the CPU core that is the closest to the system bus.
On our lab setup, we have seen throughput increasing with a maximum of 10%.
A maximum difference in throughput of 40% was measured when comparing
different cores.

In a limited time frame of three weeks of measurements we gained insight in
the impact in network performance with each parameter by studying the Open-
VPN network throughput using different parameters, such as encryption ciphers,
signing algorithms, TUN MTU values, fragmentation options and OpenSSL ver-
sions. Even though we were unable to exactly pinpoint the exact cause of the
performance loss, we came to interesting results showing differences in perfor-
mance loss using different encryption and hashing algorithms. The proposed
future work supplies for enough interesting studies
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8 Future work

Due to time limitations, not every aspect was feasible to study extensively. They
are discussed in this Section.

Hardware acceleration can be used to speedup encryption performance. As
discussed in the paper, hardware acceleration is supported by OpenSSL.

GPUs (General Processing Unit) are opted as hardware acceleration for
encryption. There are studies that implement cryptographic algorithms
with a GPU [50]. There is a fundamental problem of using GPUs with
cryptographic algorithms, GPUs are best used for calculating tasks that
can be done in parallel, as they have many cores (shader units) available.
A GPU might not be useful to boost performance for few users, as a part
of the cryptographic ciphers can not be executed in parallel. However, it
might boost performance for commercial VPN suppliers processing high
volumes of users. A side project that stress-tests OpenVPN with GPU
hardware acceleration can provide interesting results.

Related research [51] stated that using the AES-NI patch together with
OpenSSL speeds up AES operations, even if the CPU does not have the
instruction set build in. As the CPUs in our test machines do not have this
instruction set, we were interested in the results. After patching OpenSSL
using the AES-NI patch, and comparing performance, we found that there
is no gain in performance. However, future research will be able to show
the impact of using such extensions on AES-NI capable hardware.

Another more common method is to use cryptographic acceleration cards
as a method of hardware acceleration.

Kernel mode As OpenVPN is a VPN solution that runs in user space, many
operations are needed to switch between kernel space and user space to
process packets. An additional side study we encountered is to study
the influence of using OpenVPN in Kernel Mode Linux [52]. Kernel Mode
Linux is an implementation of Linux which enables user space applications
to run in kernel space. The advantage of this is that the overhead of
context switching can be avoided. According to the author of OpenVPN,
James Yonan, this will not speed up performance [53] , but it might on
1 Gbps connections. A trade-off between stability and performance will
have to be made, but it might be interesting to measure the difference in
performance here.

TAP-Win32 driver In case of the Windows operating system a special TAP-
Win32 driver needs to be installed, which is also developed and supplied
by OpenVPN. However, development of this driver is not very popular.
Future research is needed to measure which possible bottlenecks are in-
troduced by the Windows drivers.
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10 Gbps performance measurements The maximum speed of network in-
terfaces is increasing when using optical technologies. On these speeds,
TCP tuning is already required to reach near-line-speed. It will be in-
teresting to see what the performance of OpenVPN is on 10 Gbps links.
Initial research has already been done on this [51] and shows a 60% drop
in performance on a transparent tunnel without special tuning done.

Profiler is a tool that is able to perform low-level performance measurements.
Low-level Linux performance counters provide insight in the bottlenecks
of certain applications, (kernel) modules and data flows. It even is able to
observe slowdowns in pieces of code. Due to the limited time frame of this
project, we only looked into this method of performance measurements
briefly, as the resulting output of the measurements have a steep learning
curve to understand.

IPsec Comparing measurements done on IPsec to OpenVPN performance mea-
surements would provide insight in the differences in implementation (ker-
nel space versus user space).
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A Server hardware

In the lab setups described in Section 4.1 , four machines were used that all
have equal hardware specifications.

Brand Dell

Model PowerEdge R210

CPU Intel(R) Xeon(R) CPU L3426 @ 1.87GHz

Memory 8GB

NIC Embedded Broadcom 5716 (x2)

Brand Broadcom Corporation

Model NetXtreme II BCM5716

Revision Revision 20

Standard Gigabit Ethernet

Linux kernel 2.6.18-238.el5 #1 SMP Thu Jun 23 15:51:15 EST 2011 x86 64
x86 64 x86 64 GNU/Linux

B Measurement script

All measurements described in Section 5 were done by using a BASH script. The
basic principle of this script is that it runs from an external host controlling all
machines in the lab setup. The script enables automation of the tests, and
writes the Iperf measurement results to a file on one of the machines in the lab
setup. Altering of the script was done to be able to operate on the second lab
setup, which consisted of four machines instead of two. Both scripts are in the
following sections below.

B.1 Lab setup 1

Measurement script for lab setup 1.

#!/bin/bash

# Kill OpenVPN and Iperf on both VPN machines.

ssh root@paris.studlab.os3.nl ’kill -9 ‘pidof openvpn‘ &> /dev/null’

ssh root@paris.studlab.os3.nl ’kill -9 ‘pidof iperf‘ &> /dev/null’

ssh root@vpn.studlab.os3.nl ’kill -9 ‘pidof openvpn‘ &> /dev/null’

ssh root@vpn.studlab.os3.nl ’kill -9 ‘pidof iperf‘ &> /dev/null’
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# Start the VPN server connection.

ssh root@paris.studlab.os3.nl ’openvpn --daemon \

--config /etc/openvpn/config/default-static-server.cfg’

# Sleep for 2 seconds for the OpenVPN server to start up.

sleep 2

# Start the VPN client connection.

ssh root@vpn.studlab.os3.nl ’openvpn --daemon \

--config /etc/openvpn/config/default-static-client.cfg’

# Sleep for 5 seconds for the OpenVPN client to

# start up and tunnel establishment.

sleep 5

# Start Iperf in server mode.

ssh root@paris.studlab.os3.nl ’nohup iperf -s \

> foo.out 2> foo.err < /dev/null &’

# Start Iperf in client mode, connect it to the Iperf

# server over the VPN tunnel, test for 5 minutes (3 times)

ssh root@vpn.studlab.os3.nl ’nohup iperf -c 10.0.1.1 -t 300 \

>> ~/results.txt 2> foo.err < /dev/null &’

# Sleep for 6 minutes to let Iperf finish and the network

# to get clean.

sleep 360

ssh root@vpn.studlab.os3.nl ’nohup iperf -c 10.0.1.1 -t 300 \

>> ~/results.txt 2> foo.err < /dev/null &’

sleep 360

ssh root@vpn.studlab.os3.nl ’nohup iperf -c 10.0.1.1 -t 300 \

>> ~/results.txt 2> foo.err < /dev/null &’

sleep 360

B.2 Lab setup 2

Measurement script for lab setup 2.

#!/bin/bash

# Kill OpenVPN and Iperf on both VPN machines.

ssh root@paris.studlab.os3.nl ’kill -9 ‘pidof openvpn‘ &> /dev/null’

ssh root@paris.studlab.os3.nl ’kill -9 ‘pidof iperf‘ &> /dev/null’

ssh root@vpn.studlab.os3.nl ’kill -9 ‘pidof openvpn‘ &> /dev/null’

ssh root@vpn.studlab.os3.nl ’kill -9 ‘pidof iperf‘ &> /dev/null’

# Set static route to brussels via vpn1.

ssh root@bern.studlab.os3.nl ’ip route add 145.100.104.43/32 \

via 145.100.104.56’

# Set static route to bern via vpn2.
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ssh root@brussels.studlab.os3.nl ’ip route add 145.100.104.42/32 \

via 145.100.104.36’

# Start the VPN server connection.

ssh root@paris.studlab.os3.nl ’openvpn --daemon --config \

/etc/openvpn/config/no-cipher-no-hmac-static-server.cfg’

# Sleep for 2 seconds for the OpenVPN server to start up.

sleep 2

# Start the VPN client connection.

ssh root@vpn.studlab.os3.nl ’openvpn --daemon --config \

/etc/openvpn/config/no-cipher-no-hmac-static-client.cfg’

# Sleep for 5 seconds for the OpenVPN client to start up

# and tunnel establishment.

sleep 5

# Set static route to brussels via the tun0 virtual interface.

ssh root@paris.studlab.os3.nl ’ip route add 145.100.104.43/32 \

via 10.0.1.1’

# Set static route to bern via the tun0 virtual interface.

ssh root@vpn.studlab.os3.nl ’ip route add 145.100.104.42/32 \

via 10.0.1.2’

# Start Iperf in server mode.

ssh root@brussels.studlab.os3.nl ’nohup iperf -s > foo.out 2> foo.err < /dev/null &’

# Start Iperf in client mode, connect it to the Iperf server over

# the VPN tunnel, test for 5 minutes (3 times).

ssh root@bern.studlab.os3.nl ’nohup iperf -c 145.100.104.43 -t 300 \

>> /root/test-results/bf-transparant.txt 2> foo.err < /dev/null &’

sleep 360

ssh root@bern.studlab.os3.nl ’nohup iperf -c 145.100.104.43 -t 300 \

>> /root/test-results/bf-transparant.txt 2> foo.err < /dev/null &’

sleep 360

ssh root@bern.studlab.os3.nl ’nohup iperf -c 145.100.104.43 -t 300 \

>> /root/test-results/bf-transparant.txt 2> foo.err < /dev/null &’

sleep 360

C Simpletun UDP code

The code for the Simpletun UDP modifications is located at: https://www.

os3.nl/_media/2010-2011/students/simpletun_udp.txt
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