
System & Network Engineering

Handling iOS encryption in
a forensic investigation

Research Project 2

Student

Jochem van Kerkwijk
jkerkwijk@os3.nl

#5631394

Supervisors

Coen Steenbeek
CSteenbeek@deloitte.nl

Marco Veen
MVeen@deloitte.nl

Derk Wieringa
DWieringa@deloitte.nl

July 19, 2011
Final version, rev. 2

jkerkwijk@os3.nl
CSteenbeek@deloitte.nl
MVeen@deloitte.nl
DWieringa@deloitte.nl

Abstract

Since the introduction of the iPhone 3GS Apple o↵ers a new form of encryption
scheme called Data Protection. In this research project a relation has been
made on how Data Protection has consequences for a forensic investigation.
The report holds a literature study that elaborates on what has been done in
this field before as well as to what the latest forensic methods are.

A practical attack as presented by Bédrune and Sigwald[4] has been performed
on a first generation iPad equipped with version 4.3.3 of iOS, which currently is
the latest version. Using this implementation it is relatively easy to circumvent
iOS Data Protection using a bootrom exploit.

With these technical abilities forensic possibilities are identified. iOS devices are
hardened against human attack vectors, not against a brute forcing computer.
Data Protection has successfully been broken which allows for full forensic in-
vestigation.

The di�culty is in presenting this data to court, as the operating system on
iDevices is prone to changes which introduce inconsistencies if the audit is per-
formed by a di↵erent party. Traditional forensics simply does not apply to
mobile devices and requires an alternative investigation path.

Acknowledgements

I would like to thank my supervisors Coen Steenbeek, Marco Veen and Derk
Wieringa from Deloitte Risk Services for their time, e↵ort and insight put into
this research project. Additionally I would like to thank the colleagues at Risk
Services for the warm stay, as well as the opportunity to use hardware and

licensed software available at Deloitte.

– Jochem

Combining iOS encryption with forensic research. 1

Contents

1 Introduction 4

1.1 Research question . 5

1.2 Scope . 5

1.3 Report structure . 5

2 Apple iOS 6

2.1 Operating System . 6

2.2 Data Protection . 6

2.2.1 Hardware Encryption . 7

2.2.2 Software Encryption . 7

2.3 Jailbreaking . 7

2.3.1 Bootrom exploits . 8

2.3.2 Legal issues . 8

3 Computer Forensics 10

3.1 Principles . 10

3.2 Types of acquisition . 11

3.3 iOS . 12

4 Approach 15

4.1 Workspace . 15

4.2 Jailbreak . 15

4.3 Custom environment . 16

2

CONTENTS

4.4 USB multiplexing . 17

4.5 Bédrune and Sigwalds implementation 17

4.6 Defence Computer Forensics Laboratory Data Definition 17

4.7 Summary . 18

5 Results 19

5.1 Custom Environment . 19

5.2 Circumventing Data Protection 19

5.3 Hex dump . 20

5.3.1 cat acquisition . 20

5.3.2 dcfldd acquisition . 20

5.4 Image inconsistencies . 20

5.5 Valuable information . 21

6 Conclusion 22

6.1 iOS and Data Protection . 22

6.2 Circumvention of Data Protection 23

6.3 Forensic Aspects . 24

7 Future work 25

Combining iOS encryption with forensic research. 3

Chapter 1

Introduction

Since 2009[2] Apple is building their mobile devices with additional encryption
hardware. Examples of these devices are the iPhone 3GS, iPhone 4 and both
the first and second generation of the iPad[3]. Inside the operating system used
on these devices, namely iOS which was previously known as iPhone OS, data is
encrypted by default if a passcode is set. Apple calls this process Data Protec-
tion. Data Protection is the combination of using hardware based encryption in
combination with a software keychain. This keychain is protected by a passcode
and is also used to unlock the device every time the user wants to make use of
the device.

When Apple presented Data Protection for the first time Zdziarski[28, 27]
showed that it was relatively easy to gain access to confidential user data. With
the introduction of iOS version 4 Apple attempted to tackle some of the pitfalls
of their encryption scheme. However, recently it has become clear[8, 15] that
there are some weaknesses regarding the keychain. This could be used for vari-
ous purposes, as this is indirectly linked to the keys used to encrypt confidential
data.

If this is combined with a “jailbreak”[25], a procedure to gain elevated rights,
it should be possible to create a full disk image of the mobile device. However,
forensic implications are unclear on this front. Elcomsoft[9] seems to have ac-
complished this feature, however due to the proprietary nature of the tool kit,
the actual steps executed to perform the acquisition is unknown. This com-
pany might have built up a trust relationship with its customers but as this
encryption scheme is new it does not automatically make it proven technology,
certainly when it is impossible to peer review their methodology at a technical
level.

4

CHAPTER 1. INTRODUCTION

1.1 Research question

Due to the above reasoning, the research question for this project is as following:

What are the forensic possibilities on an iOS device and what are the
implications of “Data Protection” with respect to a forensic investigation?

To answer this question, the following sub questions are answered throughout
this project:

1. What is Apple’s “Data Protection”?

2. How does “Data Protection” work?

3. Can “Data Protection” be circumvented in order to access confidential
data?

4. What are the possibilities to make forensic guarantees with regards to the
acquisition and data-integrity of the evidence?

5. If it is possible to gain access to confidential data, what kind of information
can be retrieved?

Additionally a reflection will be performed on the possibilities of anti-forensics
for this procedure. Or in other words, what could a user have done to prevent
a successful forensic investigation.

1.2 Scope

In this research the iOS device will be considered as the only source available
for investigation and data extraction. There is a method known as a escrow key
attack where one can use the backups made by iTunes as a source of key leakage
allowing for easy access to the file system. This is a valid alternative route but
will be disregarded.

1.3 Report structure

The report is structured as following. Chapter 2 and 3 will reflect on details
regarding Apple’s iOS and Data Protection, gaining access to iOS and forensic
methods that must be adhered to. Chapter 4 will describe the approach and
the practical steps executed. This includes the execution of the Bédrune and
Sigwald methodology and the acquisition using dcfldd. Chapter 5 will present
the results yielded from the mentioned approach. Finally, chapter 6 will give
a conclusion and will also reflect on the outcome of the results and its forensic
consequences.

Combining iOS encryption with forensic research. 5

Chapter 2

Apple iOS

In order to dive into the internals of the project, a literature study has been
performed to better understand the underlying technologies which prepare the
foundation of the practical approach performed in chapter 4.

This chapter begins with some details on Apple iOS, Data Protection, Jailbreak-
ing and the attached legal issues.

2.1 Operating System

With the first generation of the iPhone, Apple introduced its mobile operating
system iPhone OS. After the appearance of other devices such as the iPod and
the iPad, the operating system is now more commonly abbreviated as iOS. iOS
has evolved[26] from an OS that was just able to read mail, browse the web and
was manageable through multi-touch gestures to an OS that fully provides for
the digital (social) needs of current users. This varies from additional features
like video conferencing and multitasking to user customization which allows for
a di↵erent kind of device based per user.

Through this evolution and especially with topics like bring-your-own-hardware
to work, more and more personal life as well as corporate information found its
way into the device. This has led to an increased risk with respect to losing
such a device and hence losing the user and corporate data available on it. This
data will further collaboratively be called confidential data.

2.2 Data Protection

To protect the confidential data Apple introduced a form of encryption on their
devices which they called Data Protection[3]. Data Protection follows the prin-

6

CHAPTER 2. APPLE IOS

ciples of RFC 3394[13][23] and can be separated in two parts, namely a physical
part and a software part.

2.2.1 Hardware Encryption

Starting from the iPhone 3GS Apple is equipping their devices with encryption
hardware. This hardware actually comes down to a dedicated AES coprocessor
which limits the computational impact of encryption on the OS. In this copro-
cessor two keys are stored; a UID and a GID. The UID is often referred to as key
0x835, which represents a unique AES key per device. The GID is a hardware
key that represents a unique key per model.

2.2.2 Software Encryption

Each file or form of confidential data is encrypted with a unique key. This key
is derived from the UID, GID and the public key of the process (or application)
making the request and is stored in a so called keybag. This is a software
container that on itself is protected by the passcode that is used to screenlock
the device.

Usually this passcode is a four digit number. Besides the fact that this o↵ers
fairly little entropy (104 possibilities) and additionally often shows statistical
distribution regarding probability[1] the passcode itself makes a stronger pro-
tection scheme than initially thought. Most importantly is the fact that data
cannot be analysed (read brute forced) o✏ine because decryption relies on the
UID and GID.

Additionally, in the worst case scenario the user is able to initiate a remote kill
switch. In this case the UID is destroyed. This procedure is e↵ective as well as
e�cient, as with the removal of 256 bits all the encrypted files will be crippled.

2.3 Jailbreaking

Jailbreaking is the act in which the regular execution environment of an iOS
device is granted elevated rights. This is considered useful as home-brew appli-
cation will not run on iOS if they not got authorized to do so. Apple tries to
prohibit this in order to gain control over the applications that are executed on
iDevices and prevent against unwanted behaviour.

In order to execute a jailbreak, exploits are misused that are available in iOS.
This can be through hardware drivers, the kernel itself and even side application
such as the default browser installed.

Combining iOS encryption with forensic research. 7

CHAPTER 2. APPLE IOS

There are three forms of jailbreaks available, namely:

Tethered Elevated rights are of temporarily basis and are lost after a reboot.
Because of this, the device cannot boot on itself and needs to be jailbroken
through a computer again to boot up properly.

Semi-tethered Similar to tethered with the exception that the system is able
to boot up. However, elevated rights are still lost and require re-jailbreaking
to regain.

Untethered Elevated rights are available even after a reboot of the device.

2.3.1 Bootrom exploits

A special form of exploit is the so called bootrom exploit. The bootrom is read-
only-memory (ROM) and is the first stage of booting an iOS device. Apple
secured this by signing each stage of the boot process. This is done once again
to only allow known and trusted systems to be run on an iOS device.

The hacker community has succeeded in finding exploits in the bootrom, al-
lowing for unsigned boot images. Apple is unable to fix these exploits through
software because of the inherent properties of ROM. Through the perspective
of the hacker community this is the most reliable and sustainable hack, as only
hardware revisions from Apple can patch these exploits.

One of the most noteworthy bootrom exploits is limera1n. It is created by
a hacker named George Hotz (aka geohot) and is currently still undisclosed.
Geohot is also known for his legal clashes with Sony because of his successful
attempts to gain elevated rights on the Playstation 3.

Besides geohot’s own release, the exploit has also been incorporated into an open
source project called greenpois0n. This project o↵ers a clear and easy to use
interface for using geohot’s bootrom exploit, as well as an additional injector
module. This module, named Syringe, is able to bootstrap into a jailbroken
recovery mode or ramdisk, allowing the booting of unsigned images.

2.3.2 Legal issues

According to Apple jailbreaking was a violation of their copyright[16] as the
process relied on a modified bootloader that was part of the copyrighted OS.

The Electronic Frontier Foundation (EFF) filed a request of exemption to the
Copyright O�ce on grounds that “the culture of tinkering is an important part
of our innovation economy”. Users should be able to run the applications of
their own choosing, and not let Apple decide such matter for the people. The
exemption was granted, making the act of jailbreaking a legal procedure in the

Combining iOS encryption with forensic research. 8

CHAPTER 2. APPLE IOS

US. Similar rights exists in the Netherlands through the “Auteurswet”[10]. This
obviously does not implicate that any other illicit actions performed with the
elevated rights are also legal.

Combining iOS encryption with forensic research. 9

Chapter 3

Computer Forensics

In order to answer the research question, another topic needs to be highlighted.
As the main goal of this project is to perform the activities of gaining access
to the encrypted confidential data in a forensic fashion topics such as computer
forensics, forensic principles and also the relationship between traditional com-
puter forensics and mobile devices will be elaborated upon.

As the details on the targeted set of devices is clear now, it is possible to put
them into contrast to computer forensics. Forensics is defined as the application
of a broad spectrum of sciences to answer questions that are of interest to the
legal system[24].

3.1 Principles

The answers given to the legal system are through means of facts and proba-
bility and follow the principles seen in the scientific method. When ported to
digital computer forensics similar steps are of interest. Even though computer
evidence is usually used as a support factor it should still be handled appropri-
ately. Main requirements are the rules of evidence, which can be specified as
following[27][5][17]:

Admissible Evidence should be handled by an allowed o�cial, as well as a
technically apt o�cial. This to allow the evidence in court and not to
destroy evidence during acquisition as well as not to break the chain of
custody.

Authentic The evidence needs to be properly connected to an entity or inci-
dent.

10

CHAPTER 3. COMPUTER FORENSICS

Complete The evidence should be delivered wholesome with respect to the
incident in order to give an objective view of the events.

Reliable The method of acquisition should be built upon credible methodolo-
gies and scientific tests that can be reviewed by others.

Understandable and believable The evidence must be fully understood in
order to present it. Also, the evidence should be clearly explainable to the
(less technical) court.

These rules of evidence do not emphasise on any technical requirements. This
is not unexpected, as each scenario has its own approach. However, more[22]
can be said with respect to the imaging tool used for acquisition.

• The tool must create a forensic duplicate or mirror image of the original
storage medium.

• Errors should be handled consistently and gracefully. If errors do occur,
this should properly be logged and documented.

• The tool must not make any changes to the source medium.

• The tool must have the ability to be held up to scientific and peer-review.

The last bullet proves to be di�cult, especially in the world of commerce. Often
this is replaced by a “trust”- or “proven”-factor in order to protect the technical
details of the process.

3.2 Types of acquisition

Besides the general rules that evidence acquisition should adhere to, there are
also di↵erent technical types of acquisition. As not every digital device o↵ers
the same interfaces to communicate and interact with, various methods can be
invoked in order to get data of these devices. This can be distinguished over 5
levels of acquisition methods[6].

Manual extraction Extraction of data is done by hand on the digital device
itself.

Logical analysis The data is extracted through means of tools and interfaces
provided by the device. Examples are Data cable connections, Bluetooth
and Infra-red.

Hex dump Extraction is done at bit level. The result of a hex dump creates
a identical copy of the data-carrier.

Combining iOS encryption with forensic research. 11

CHAPTER 3. COMPUTER FORENSICS

Figure 3.1: Forensic Acquisition Levels.[6]

Chip-o↵ The extraction is performed by removing the data-carrier from the
device and read out by placing it in a similar, but dummy environment.
This is the case when hard drives are analysed o✏ine or when a cellular
devices wont boot due to broken hardware.

Micro-read Similar to chip-o↵, however the chip is not placed in a dummy
environment but read through physically reading the gate status on a
chip.

An overview of these types can be seen in figure 3.1. Going higher up in the
image generally implies that more time, e↵ort and costs are involved.

3.3 iOS

The main goal of this project is to perform computer forensics on a mobile
device. There are however some main di↵erences with relation to “traditional”
computer forensics and mobile forensics. As smart phones are showing more and
more properties similar to regular computers a lot of principles can be ported.
However, new problems arise as well. One of the things mainly noticed[22]
is that in general it is not wise to perform forensics on live systems. This is
however sometimes required as chip-o↵ or micro-read is not always an option
because of its cost and e↵ort.

The reason why this is considered as not wise is because of the fact that it is
impossible to perform forensics on a running system without changing the state

Combining iOS encryption with forensic research. 12

CHAPTER 3. COMPUTER FORENSICS

of the device. This is due to the uncontrollable nature of a running system. As
most phones are also currently running propriety OS’s a lot can happen under
the hood. These changes are then only made visible through trial and error.

Another problem is additional artefacts created in order to perform the acquisition[12].
These changes are however sometimes required in order to gain access to the
data. Implication is that these artefacts should be minimal, explainable and
properly documented.

There are various applications and tool kits available[6] that perform forensics
on iOS. However all of these tools are or not able to cope with Data Protection,
or rely on the so called escrow key attack, which is not part of this research.

Nonetheless there are some successful methodologies, of which three will now
be discussed. The first one is considered outdated (2008) but still proves to be
useful, whereas the last two are fairly recent (2011). All of these methods apply
the hex dump acquisition type.

Zdziarski methodology

Before the introduction of Data Protection Jonathan Zdziarski was already per-
forming forensics on iOS devices. During this process he developed a methodology[27]
to gain access to the file system and retrieve a hex dump from it.

At first, a custom environment is booted through a bootrom exploit. The envi-
ronment itself only lives inside of volatile memory. This procedure is also called
getting a ramdisk booted.

The environment is equipped with some custom tools. In order to communicate
with the device, a SSH daemon is started. In addition, a client/server model
is applied through a program called iRecovery. Through RPCs the forensic
investigator is able to request a copy of the user partition, which is separated
from the system partition.

Elcomsoft iPhone Forensics Toolkit

Recently Elcomsoft[8] succeeded in bypassing Apple’s Data Protection allow-
ing for forensic investigation. Elcomsoft released this product, named iPhone
Forensic Toolkit [9], but is however not free and only available to forensic agen-
cies and governments. Through their product page a video is made available
showing the features o↵ered by this tool kit. Two methods are possible. One
is an attack through the backups created by iTunes. This attack is commonly
known as the escrow key attack and o↵ers the easiest way of gaining access to
the encrypted file system as the UID is stored in the backup. Alternatively,
Elcomsoft gained full access to confidential data through a side-channel attack.
They circumvented the time needed to break the 256 bit AES key by means of
just brute forcing the passcode on the iOS device itself.

Combining iOS encryption with forensic research. 13

CHAPTER 3. COMPUTER FORENSICS

Bédrune and Sigwald

In a similar time frame Bédrune and Sigwald presented their work at Hack in
the Box 2011 in Amsterdam[4]. Their work is built upon a presentation given a
year earlier at the same security conference[13]. In this project, which is open
source and hence accessible to all, the two researchers cracked open Apple’s Data
Protection allowing for a fully decrypted file system and transparent access to
the confidential data available on an iOS device.

Some similarities can be distinguished in the product video of Elcomsoft and
the approach taken by Bédrune and Sigwald. They both make use of a form of
the Zdziarski methodology and the custom ramdisk method. Also, in the video
of Elcomsoft the use of popular jailbreak tool greenpois0n can be recognized1.
greenpois0n is currently able to jailbreak any iOS device with the exception of
the iPad 2. However, it will just be a matter of time before a bootrom exploit
will be available for this device2.

1
“Dear ElcomSoft, since you’re using the GPLd greenpois0n code in your product, where

can I download all your source code? #gplviolations” – Zdziarski, Tweeted 7 Jun 2011

2
As of July 6th 2011 an untethered jailbreak has already been released for the iPad 2[7]

Combining iOS encryption with forensic research. 14

Chapter 4

Approach

In this chapter the practical side of gaining access to confidential data is dis-
cussed.

The research question poses two main di�culties: first a way must be found to
gain full decrypted access to the file system present on a iOS device. Second is
using the available rights in such a way that it can be presented to a judge in
court as evidence.

4.1 Workspace

To gain insight in the two problems a workspace was set up. As victim device
a first generation iPad was used to experiment with. This is a tablet device
that is able to run the latest version of iOS. The specifications of the device are
described in table 4.1.

The hardware used on the attackers side was a regular laptop equipped with
Windows 7. As iOS development is fairly di�cult on non-Mac machines an
virtual machine was set up with Mac OS X v10.6 and the iOS SDK for compiling
application on the iDevice.

4.2 Jailbreak

In order to gain full access over the user space, elevated rights are required. To
get these elevated privileges, a temporary jailbreak is executed on the device.
This is done through the usage of greenpois0n (Section 2.3.1), which uses the
underling limera1n bootrom exploit. This also allows for the booting of unsigned
images.

15

CHAPTER 4. APPROACH

Model MB292ZP
Processor Apple A4 (SoC)1;

1 Ghz ; ARM ar-
chitecture

Memory 256 MB
Storage 16 GB
Radio 802.11a/b/g/n,

Bluetooth
2.1+EDR, GPS,
2G & 3G

Latest iOS version 4.3.3

Table 4.1: Specifications of the victim: an iPad 1G

The full exploit delivers an untethered jailbreak. This is however an excessive
result which is unnecessary as we are only interested in a temporary, tethered
jailbreak. Luckily, the full exploit sequence can be aborted in order to achieve
this.

4.3 Custom environment

With the ability to run elevated unsigned boot images, there is a possibility to
run a so called custom ramdisk[27][20]. This is a temporarily host system that
nests itself into the internal memory of the iOS device. This is especially useful
with respect to forensic consistency, as the original OS is disabled, disabling
unwanted changes that might taint the system.

There is a write-up on this topic[20] that explains the steps to create a minimal
image based upon an original ramdisk. This original ramdisk is extracted from
a Apple restore file which is used for factory resets of iDevices. It is bound to
the version running on the iOS device. The ramdisk image is just a plain HFS+
file system which is native to Macs, making it fairly simple to add files to it.
Supplementary, the write-up describes how to add some basic unix tools as well
as a SSH daemon. This allows for communication with the device through a
shell.

The implementation of the daemon is prone to the virus called iWorm, which
abuses the default SSH root password alpine. As the connection is local this is
not considered a problem with regards to possible tainting of the system. The
reason behind this is that any forensic workspace should have been sanitized
before starting an investigation.

1
System on a Chip. Includes a CPU, GPU and volatile memory.

Combining iOS encryption with forensic research. 16

CHAPTER 4. APPROACH

4.4 USB multiplexing

As networking capabilities are not enabled by default once booted into the
ramdisk, a di↵erent way is chosen to communicate with the iOS device. By
following the approach that Apple took with iTunes, USB multiplexing is used
to communicate with the device. This is accomplished by using the libusb[11]
library as well as python wrapper called usbmuxd[18]. Over this connection it
is possible to establish a SSH connection and get a shell on the iDevice.

4.5 Bédrune and Sigwalds implementation

In order to circumvent the iOS Data Protection the implementation of Bédrune
and Sigwald is used. The work is available through various tools and packages.
The entire project is written in Python with the exception of some required
binaries, of which the source code is also available.

The package includes shell scripts that can create a ramdisk, like earlier specified
but dedicated to this specific project. A brute force application is also made
available, in combination with a keychain dumper. The team has also made
a variation available of the tool HFS Explorer, which is used to navigate and
extract files from an HFS+ file system or image. The adaptation involves the
read out of the keybag file that is extracted through the brute forcing application
to be able to decrypt extracted files from the system.

In order to get a system image, a custom shell script is added to the ramdisk.
This script invokes a tool called netcat, which is able to transfer data over
TCP and UDP connections. The iOS device is set up as a netcat server and
the client can request the file system from the iOS device using the same USB
multiplexing technique as used with setting up the SSH connection.

4.6 Defence Computer Forensics Laboratory Data
Definition

To change the default imaging process by Bédrune and Sigwald, which is just
a cat of the user partition, but also to strengthen the imaging process with
respect to forensics another tool is added to the ramdisk. This is the Defence
Computer Forensics Laboratory Data Definition[14], which is more commonly
known through its acronym dcfldd. This is an enhanced version of GNU dd,
a tool to read and write to block devices in raw format. It adds additional
functionality to dd which is helpful for forensic researchers. The main addition
useful for this project is hashing-on-the-fly, split output as well as piped output.

Combining iOS encryption with forensic research. 17

CHAPTER 4. APPROACH

Coming back to the requirements that an imaging tool should adhere to (section
3.1), dcfldd follows all of the guidelines.

• It creates a forensic duplicate image of the original storage medium by
hashing its output instantly. In this approach MD5 algorithm and SHA1
algorithm was applied.

• In this experiment errors are handled consistently by writing zeroes in
such a case.

• No changes are written to the source medium; (dd property).

• The tool can be held up for audit as it is completely open source.

4.7 Summary

To summarise the approach an overview can be seen in figure 4.1. A custom
jailbroken state will be achieved by using the greenpois0n implementation.
As soon as a custom environment is up and running, two steps are performed.
The first one is brute forcing of the passcode, which will allow for access to the
keybag file. Second is the hash dump of the user partition using cat or dcfldd.
These will then be transferred through netcat in order to store the image on
the investigators host machine. Finally, the file system will be decrypted using
an adapted version of HFS explorer that makes use of the earlier retrieved
keybag file.

Figure 4.1: Overview of the approach.

Combining iOS encryption with forensic research. 18

Chapter 5

Results

In this chapter the results will be presented of the approach given in chapter 4.
In short this includes booting a custom environment by using a bootrom exploit
for quarantine, unwrapping decrypt functions by invoking a low level brute force
attack on the iOS device, using dcfldd to make a forensically accepted hex dump
of the user partition and using an adapted version of HFS Explorer to view the
decrypted contents of the image.

5.1 Custom Environment

Using the available bootrom exploits as well as the custom ramdisk method
passed successfully. A shell was accessible on the iDevice at root level.

5.2 Circumventing Data Protection

Using the implementation of Bédrune and Sigwald it was possible to brute force
the passcode of the iPad. Initially their project was targeting iOS version 4.2.2
but can be confirmed to work successfully on version 4.3.3 as well. The time
taken for this process came down to roughly 6 iterations per second, which
translates to parsing the entire key space of 10000 elements in 30 minutes on an
iPad 1G.

19

CHAPTER 5. RESULTS

5.3 Hex dump

5.3.1 cat acquisition

The initial procedure of using cat in combination with netcat was able to dump
the user partition. However, after a couple of dump attempts it was noticed that
the images were not identical as they were showing hash di↵erences that were
created after dumping the images. Also, the slack space is not sent over so there
is no possibility to carve for deleted files. Hence, this method of acquisition
should be depreciated, as dcfldd does allow for the latter.

5.3.2 dcfldd acquisition

In order to get dcfldd functional on the iPad, recompilation was required. This
was achieved by using the iOS SDK, which contains a dedicated iOS ARM
compiler. Getting the so called toolchain together was a cumbersome and time
consuming sequence of events. This due to the fact that compilation requires
a compiler dedicated for iOS devices which is not freely available unless unsup-
ported routes are taken. Nonetheless a functional binary was created.

dcfldd has a couple of output streams. The user partition is piped to the netcat
like the initial procedure. However, again hashing di↵erences were noted on two
levels.

One was the di↵erence between the hash that was available on the iPad created
by dcfldd and a separate hashing tool on the host laptop. This would imply,
that just like the cat-method, that the transfer method of using netcat leads to
non-identical images. This was confirmed by the fact that the stream was not
closed after the transfer was complete and was writing garbage. This can be
fixed by using a di↵erent transfer method, such as SSH in combination with
remote command execution.

The other level was hashing di↵erences between several dumping attempts. This
would imply that the system does change files. This is explainable through the
methodology used to make the dumps. Between each attempt the system was
booted normally to the point that the passcode was required.

5.4 Image inconsistencies

Using the available HFS explorer it was possible to compare the di↵erent dumps
beyond hash level. By making use a directory compare tool the file di↵erences
were detected at content level. These changes vary from system changes, but
also user land changes. An overview of these changes can be found in table 5.1.

Combining iOS encryption with forensic research. 20

CHAPTER 5. RESULTS

Location Note

System Files

/.journal FS Journal, changed
/db/dhcpclient/leases/en0-1,10 93 e9 56 6 d4 Wifi automatically connected
/log/notifyd.log Additional daemon entry
/logs/keybagd.log Additional daemon entry
/logs/lockdownd.log Additional daemon entry
/preferences/SystemConfiguration/com.apple.AutoWake.plist Log entry; binary
/preferences/SystemConfiguration/com.apple.PowerManagement.plist Log entry ; binary
/preferences/SystemConfiguration/com.apple.wifi.plist Log entry ; binary
/preferences/SystemConfiguration/preferences.plist Computer link access time
/root/Library/Caches/locationd/cache.db SQLite header change
/root/Library/Caches/locationd/cache.plist Log entry ; binary

User Files

/mobile/Library/AddressBook/AddressBook.sqlitedb SQLite 3 Header change + 2 row changes
/mobile/Library/Logs/ADDataStore.sqlitedb SQLite 3 2 line header change
/mobile/Library/Mail/Envelope Index SQLite 3 header change
/mobile/Library/Preferences/com.apple.itunesstored.plist Full change
/mobile/Library/Preferences/com.apple.MobileSMS.plist SQLite 3 2line header change
/mobile/Library/Safari/Bookmarks.db SQLite 3 Header change
/mobile/Library/SMS/sms.db SQLite 3 header change
/mobile/Media/iTunes Control/iTunes/IC-Info.sidf Incremental binary log

Table 5.1: Overview of changed files.

5.5 Valuable information

As it was possible to decrypt the file system entirely, old forensic methodologies
can be reapplied. As stated in the Zdziarski method[27], the list of data sources
include:

• Keyboard caches containing usernames, passwords, and nearly everything
typed on the iPhone.

• Screenshots of the last state of an application before the home button is
pressed to return to the main menu.

• Deleted images, as slack space is available with dcfldd.

• Deleted calendar entries and contacts.

• A record of the last 100 calls made.

• Viewed Google Maps images and directions.

• Browser history and caches, even when deleted.

• Deleted email messages.

• Deleted voicemail.

As the iPad does not have calling functionality not all of these items were found.
However, they are present in iOS even though unused. A good example of this
is the tainted SMS database file after a reboot.

Combining iOS encryption with forensic research. 21

Chapter 6

Conclusion

What are the forensic possibilities on an iOS device and what are the
implications of “Data Protection” with respect to a forensic investigation?

It can be concluded that forensic investigation is possible on iOS devices that
do have Data Protection enabled. However, the acquisition phase of such an
investigation has changed in contrast with previous[27] ones.

Mobile phones, or smart phones to that extend are getting more and more alike
regular computers. Because of this, concepts with regard to computer security
can be projected on mobile devices. Hence, Microsoft’s security laws[19] are
also getting more and more valid for mobile devices.

Law #3: If a bad guy has unrestricted physical access to your computer, it’s not
your computer any more.

6.1 iOS and Data Protection

The statement can be considered in the case for iOS devices as well. Throughout
this research multiple sub questions were answered in order to conclude on
the question if it is possible to do a “by court accepted” forensic investigation
on iOS devices. By going through the concepts of Apple’s Data Protection
scheme and identifying weaknesses it seemed that Apple was missing the point
of encryption, especially by seeing how easy it is to unwrap the decrypt function
by merely brute forcing a four digit passcode. A note must be put in place that
in this research no social investigation has been performed with respect to the
(un)likelihood that users will not take the e↵ort to switch to a more entropy
rich unlock code. Either way, the recommendation is to enable the extended
passcode. The length of this passcode should adhere to local security policies.

22

CHAPTER 6. CONCLUSION

It however does become clear that these are not flaws by Apple, but architectural
design choices between security and usability. Apple made the choice that data
will be considered safe in its own iOS container/device; e.g. a chip-o↵ attack will
will not work, as the AES hardware register containing part of the decryption
scheme is needed for decryption. Combined with a unlock pass code and the
main feature of Apple products, which is simplicity and ease, they made a clear
statement in their trade-o↵ between security and usability.

Another point of interest is theft: Apple made it possible for users to remotely
cripple their data if they lose their iOS device. This is achieved by executing a
kill switch. If the device that is to be wiped is able to connect to internet, the
switch is forwarded to the device which in turn erases the key present in the
hardware register. This is an e↵ective approach for anti-forensics as there is no
need for computational and time intensive algorithms that permanently delete
the confidential data.

In continuation of anti-forensics the user might have picked a custom protection
scheme for encrypting confidential data as alternative to Apple’s Data Protec-
tion. This will however require o↵-device key storage as the file system can fully
be decrypted. But even in that scenario, the key for the custom container needs
to be entered in the device in order to unlock it. As Apple also stores input of
the keyboard, this can potentially also be retrieved from the appropriate cache
file.

6.2 Circumvention of Data Protection

Because of the possibility to gain elevated rights at a bootrom stage it is possible
to start up a custom environment. With this new environment the first level
of Apple’s defence is broken; the user data has not left the device and it was
possible to interact with the hardware. Brute forcing the passcode is possible
at this stage because the actual OS is not loaded. The main countermeasure
by Apple, wiping confidential data after 10 invalid tries, is also circumvented
by invoking function calls a level lower than the iOS API. Implementing this in
the AES coprocessor will not resolve this issue because the keys are present on
the file system, not inside the AES coprocessor. The iphone-dataprotection

suite[4] is a free and open source initiative to technically allow investigators, or
anybody else to that end, to gain access to the file system if only a numerical
passcode is set.

These problems are probably also present in the iPad 2, as this device also runs
iOS v4.3.3. However, due to the lack of a bootrom exploit the device is not
a↵ected by the attack.

Combining iOS encryption with forensic research. 23

CHAPTER 6. CONCLUSION

6.3 Forensic Aspects

With the elevated rights combined with decryption possibilities customization is
possible. Bérune and Sigwald[4] apply the methodology defined by Zdziarski[27],
which in turn makes use of the custom ramdisk method described in [20].

To allow for a proper acquisition of the file system one has to cope with the
di�culties of working on a live system. Luckily, a separation is made between the
user data and system data through means of default partitioning. Even though
imaging is prone to errors as getting into DFU mode requires a sequence of key
combinations things are not as bad is it seems. In the worst case scenario some
of the database files get touched and some header information gets changed.
This does not alter the fact that there is an abundance of data available on iOS
devices.

In order to use this data a proper documentation needs to be kept with regards
to the acquisition process. The documentation, as well as the actual image
should be stored in the case that a DFU boot attempt goes wrong and a manual
inspection is required to see if an audit has been performed properly. In that
stage the granularity has changed, as the hash of the partition changed and is not
usable any more. Hashing each individual file will o↵er the solution here unless
the file in question got changed during booting. In that case an textual/binary
di↵erence should be checked in order sustain forensic guarantees that the data
or file did change, but for example only incremental.

During the execution of the approach, full file changes were discovered though.
As long as these can be explained it should not pose a problem when discussed
in court.

Making this believable and understandable in court will proof to be di�cult.
This is however the price of bleeding edge technology on which “regular” foren-
sic methods simply do not apply. It will pay o↵, as the data that is being stored
on iOS devices is extensive, including location data, conversations (email, voice-
mail, SMS) and searching history, and might just yield that piece of (support)
evidence to make or break a case.

Combining iOS encryption with forensic research. 24

Chapter 7

Future work

As soon as the file system is imaged and decrypted, there are various files of
interest available such as the mail database, the SMS database and also location
history. All of these files are stored in a SQLite database format. In order to
read these files a database viewer can be used, for example SQLite Database
Browser[21].

However, these SQLite files are hard to work through as the user is presented
with the raw layout of the database file (which is exactly the purpose of such
tools). Unfortunately, this is not an e�cient method for forensic investigators
as these people are more interested in correlation between data. Main points
of interest in that case are building time lines and being able to easily grasp
sequences of events.

As the current tools are not meant for forensic investigators there is a need for
improvement. To help the investigators more e�ciently, a logical level needs to
be built on top of the SQLite database files that does incorporate the needs of
forensic investigators.

The architecture of such an application should also be decoupled from the data
level, which is in this case specific to iOS. Following this approach a multifunc-
tional forensic tool can be created which is not only dedicated to a single OS or
mobile brand.

From a visual analytics point of view the application needs to able to easily
explore the available (abundant) data. Hence, limitations of time-spans, specific
contacts or specific forms of data (SMS, email, notes etc.) should form the main
filter function. However, in this filtering process detail should not be lost and
should incorporate elaboration functionality.

The visualisation can be extended with a dimension that identifies di↵erent
types of confidential data through di↵erent nominal colour. With a click or
hoover elaboration can be trigged to select and zoom in on the interested entity.

25

Bibliography

[1] Amitay, D. Most common iPhone passcodes, June 2011. [Online; accessed
14-June-2011]. Cited on page 7.

[2] Apple. iPhone [3GS] in Business: Security Overview, 2009. [Online; ac-
cessed 9-June-2011; Cached by wired.com]. Cited on page 4.

[3] Apple. iOS 4: Understanding data protection (HT4175), December 2010.
[Online; accessed 9-June-2011]. Cited on pages 4 and 6.

[4] Bedrune, J. B., and Sigwald, J. iPhone data protection in depth,
2011. [Presentation; Hack in The Box Security Conference 2011 Amster-
dam. Cited on pages 1, 14, 23, and 24.

[5] Brezinski, D., and Killalea, T. Guidelines for Evidence Collection
and Archiving. RFC 3227 (Best Current Practice), Feb. 2002. Cited on

page 10.

[6] Brothers, S. iPhone Tool Classification, 2007. [Online; accessed 9-June-
2011]. Cited on pages 11, 12, and 13.

[7] Comix. JailbreakMe 3.0, July 2011. [Online; accessed 7-July-2011]. Cited

on page 14.

[8] ElcomSoft Co. Ltd. ElcomSoft Investigates iPhone Hardware Encryp-
tion, Provides Enhanced Forensic Access to Protected User Data, May
2011. Cited on pages 4 and 13.

[9] ElcomSoft Co. Ltd. iPhone Forensic Toolkit, 2011. [Online; accessed
9-June-2011]. Cited on pages 4 and 13.

[10] Engelfriet, A. iPhone jailbreaken, mag dat nou toch, February 2009.
[Online; accessed 3-July-2011]. Cited on page 9.

[11] Erdfelt, J. libusb, May 2010. [Online; accessed 7-July-2011]. Cited on

page 17.

[12] Garner Jr., G. M. DD to Netcat NT Imaging, June 2002. [Online;
accessed 14-June-2011]. Cited on page 13.

26

BIBLIOGRAPHY

[13] Halbronn, C., and Sigwald, J. iPhone security model & vulnera-
bilities, 2010. [Presentation; Hack in The Box Security Conference 2001
Amsterdam. Cited on pages 7 and 14.

[14] Harbour, N. Defense computer forensics laboratory data defenition
(dcfldd), February 2006. [Online; accessed 7-July-2011]. Cited on page

17.

[15] Heider, J., and Boll, M. Practical Consideration of iOS Device En-
cryption Security. Tech. rep., Fraunhofer, February 2011. Cited on page

4.

[16] Keizer, G. Apple: iPhone jailbreak hack violates the law, July 2011.
[Online; accessed 3-July-2011]. Cited on page 8.

[17] Kubasiak, R. R., and Morrissey, S. Mac OS X, iPod, and iPhone
Forensic Analysis DVD Toolkit. Syngress, 2008. Cited on page 10.

[18] Martin, H. usbmuxd, March 2011. [Online; accessed 7-July-2011]. Cited

on page 17.

[19] Microsoft. 10 Immutable Laws of Security, 2011. [Online; accessed 9-
June-2011]. Cited on page 22.

[20] msft guy. Booting SSH ramdisk on new devices, June 2010. [Online;
accessed 22-June-2011]. Cited on pages 16 and 24.

[21] Piacentini, M. SQLite database browser, June 2011. [Online; accessed
4-July-2011]. Cited on page 25.

[22] Prosise, C., Mandia, K., and Pepe, M. Incident Response and Com-
puter Forensics, Second Edition. McGraw-Hill/Osborne, 2003. Cited on

pages 11 and 12.

[23] Schaad, J., and Housley, R. Advanced Encryption Standard (AES)
Key Wrap Algorithm. RFC 3394 (Informational), Sept. 2002. Cited on

page 7.

[24] Wikipedia. Forensic science — wikipedia, the free encyclopedia, 2011.
[Online; accessed 5-July-2011]. Cited on page 10.

[25] Wikipedia. IOS jailbreaking — Wikipedia, The Free Encyclopedia, 2011.
[Online; accessed 6-June-2011]. Cited on page 4.

[26] Wikipedia. IPhone (original) — Wikipedia, The Free Encyclopedia, 2011.
[Online; accessed 9-June-2011]. Cited on page 6.

[27] Zdziarski, J. iPhone Forensics: Recovering Evidence, Personal Data, and
Corporate Assets. O’Reilly Media, 2008. Cited on pages 4, 10, 13, 16, 21, 22,

and 24.

Combining iOS encryption with forensic research. 27

BIBLIOGRAPHY

[28] Zdziarski, J. Bypassing iPhone 3G[s] Encryption, July 2009. [Online;
accessed 9-June-2011]. Cited on page 4.

Combining iOS encryption with forensic research. 28

	Introduction
	Research question
	Scope
	Report structure

	Apple iOS
	Operating System
	Data Protection
	Hardware Encryption
	Software Encryption

	Jailbreaking
	Bootrom exploits
	Legal issues

	Computer Forensics
	Principles
	Types of acquisition
	iOS

	Approach
	Workspace
	Jailbreak
	Custom environment
	USB multiplexing
	Bédrune and Sigwalds implementation
	Defence Computer Forensics Laboratory Data Definition
	Summary

	Results
	Custom Environment
	Circumventing Data Protection
	Hex dump
	cat acquisition
	dcfldd acquisition

	Image inconsistencies
	Valuable information

	Conclusion
	iOS and Data Protection
	Circumvention of Data Protection
	Forensic Aspects

	Future work

