
University of Amsterdam
System & Network Engineering

Research Project

DNSSEC Troubleshooting

Author:
Niels Monen
nmonen@os3.nl

Coördinator:
Roland van Rijswijk

SURFnet

July 8, 2011
Version 1.0

This page is left blank intentionally

Abstract

SURFnet has seen a problem which involve large DNSSEC packets,
and packet filters blocking fragments. Since the root zone has been
signed in 2010, there is an increasing amount of validation requests on
the SURFnet infrastructure. More and more administrators are enabling
DNSSEC, but are not aware that the packet filters are blocking all but
the first fragment. DNSSEC is using big keys to validate and authenti-
cate the resource records, which are the cause of the fragmented packets.
This problem can be detected by monitoring for ICMP Type 11 Code 1
packets. In five hours time, I monitored the SURFnet infrastructure, and
found 3160 unique IP addresses with this problem. However, there are no
reasons to block these fragments nowadays.

CONTENTS 1

Contents

1 Introduction 2

1.1 Research . 3

2 Theory research 4

2.1 DNS . 4

2.2 Fragmentation . 7

2.3 ICMP . 8

3 Methodology 10

3.1 Lab setup . 10

3.2 Test procedures . 13

4 Measurements 16

4.1 Reproducibility . 16

4.2 SURFnet DNS . 18

5 Conclusion and recommendations 19

6 Future work 20

A Server details 21

B Firewall setup 22

C Unbound configuration 22

D SURFnet DNS Answers 23

D.1 SURFnet normal DNS . 23

D.2 SURFnet DNSSEC answer . 24

E Probe 27

Niels Monen July 8, 2011

1 INTRODUCTION 2

1 Introduction

In July 2010 the root zone of the DNS was signed using DNSSEC. Since then,
DNSSEC deployment has taken off on a larger scale with many top-level domains
signing their zones and making secure delegations available to their registrars
and registrants. Many people are signing their zones and measurements on the
SURFnet resolver infrastructure shows a steady climb in the validation rate [1].
However, there are some unforeseen problems [2] [3] that have to be researched.
These problems are related to firewalls blocking fragmented IP packets. The
problem is explained in Figure 1.

Figure 1: Problem definition

1. The DNS resolver of a client is behind a firewall of the client, and queries
the SURFNET authoritative DNS server for a DNSSEC or EDNS0 re-
sponse.

2. The authoritative DNS server sends a packet which is bigger than the
Path MTU back to the resolver.

3. When the packet reaches a router or switch with a small (1500 bytes or
less) MTU, the packet gets fragmented.

4. The firewall is configured in such a way that it will allow the first fragment,
but drops the next fragments.

5. The IP stack receives the first fragment, and waits a x amount of time.

6. The IP stack drops the fragment, and sends an ICMP type 11 packet back.

Niels Monen July 8, 2011

1 INTRODUCTION 3

1.1 Research

In this project, I will research how the problem shown in Figure 1 is detectable,
and can be reproduced in a lab setup. This enables me to detect if the ICMP
packet is always send, and by which machine. The results and tests will be in
this paper.

By doing this research, I will answer the following question:

Is it possible to detect if authoritative DNSSEC responses are blocked
at the client side, and in particular when fragmentation occurred?

The following sub-questions will help to answer the main research question.

• When and where are the ICMP packets send?

• How many of SURFnet clients have this problem?

Niels Monen July 8, 2011

2 THEORY RESEARCH 4

2 Theory research

In this section, the theory, protocols and mechanisms behind the main problem
are described.

2.1 DNS

DNS (Domain Name System) [4] is a hierarchical naming system, which allows
computers to find the right IP [5] address for a domain name. In RFC 1035
[4], the maximum size of a DNS packet is defined to be 512 bytes. This is the
maximum size of a “safe” UDP [6] packet. Such a packet consist of an header,
as can be seen below, and several message formats, which I won’t specify.

DNS Header format
1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ID |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

|QR| Opcode |AA|TC|RD|RA| Z | RCODE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QDCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ANCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| NSCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ARCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

These days, 512 bytes is not enough for all the information anymore, because of
all the “additional” information, or because of DNSSEC. That’s why they need
to be expanded.

Niels Monen July 8, 2011

2 THEORY RESEARCH 5

There are two options to enlarge the size of a DNS packet:

Use the TCP protocol DNS can use TCP. However, there is a lot of over-
head. The servers first have to establish a connection, and then maintain
the state of the connection.

Use the Extension Mechanism for DNS (EDNS0) As the name says, it
is an extension mechanism which allows more data into the DNS packets.
This is done by using reserved bits in the original DNS protocol.

2.1.1 EDNS0

EDNS0 is defined in RFC 2671 [7], which is created in 1999. This extension is
developed to extend some fields in the original DNS protocol. The DNS protocol
has a limit of 512 bytes, which isn’t enough for DNSSEC. DNSSEC needs more
space for all the keys involved when the “DO” bit is set. The effected elements
of DNS are:

The DNS Message Header’s second full 16-bit This is divided into a 4-
bit OPCODE, a 4-bit RCODE, and a number of 1-bit flags. All the original
reserved bits have now been allocated for various purposes.

The first two bits of a wire format domain label These are used to de-
note the type of the label. “0 1” now indicates an extended label type.
“1 1 1 1 1 1” is reserved for future expansion.

The limit of 512 octets in size when sent over UDP The maximum re-
assembly buffer size is still limited to 512 octets of UDP payload, but
most of the hosts connected to the Internet are able to reassemble larger
datagrams.

There is also an added OPT, namely the pseudo-RR (Resource Record). This
record can only be added once, and has a fixed part and a variable set op options.
I won’t go into detail what the options are how they work. Detailed information
about this can be found in RFC 2671 [7].

2.1.2 DNSSEC

DNSSEC is an abbreviations for “Domain Name System Security Extensions”,
which is first described in RFC 2065 [8]. After this initial RFC, it has been
updated several times. The revised specifications are in RFC 2535 [9], and the
“Final” specifications are in RFC 4033[10],4034[11],4035[12].

This extension is developed to provides data integrity and authentication. This
is done by cryptographic digital signatures, which are included in the zone as
resource records. These records are needed to complete the “Authentication

Niels Monen July 8, 2011

2 THEORY RESEARCH 6

Chain” or “Chain of Trust” as can be seen in Figure 2. The signatures use the
public-key cryptography, which in short means: You create two linked keys with
which you can encrypt/decrypt/sign a message. One of the keys is private, and
secret to anyone except you. And the other key is public, which can be used by
everyone. More information about the public-key cryptography can be found
on [13].

Figure 2: DNSSEC: Chain of Trust. NLnet Labs c©.

The records which are needed to setup a chain of trust are:

• DNSKEY

• RRSIG

• NSEC

• DS

These extra resource records create a bigger DNS answer to the client resolver.
A normal DNS answer packet from the SURFnet name server can be seen in
Appendix D.1. This packet is only 288 bytes big. The DNSSEC answer packet
from the same SURFnet name server can be found in Appendix D.2. This
packet grew to 1659 bytes, which is bigger than the default MTU(Maximum
transmission unit) [14] of Ethernet of 1500 bytes. Because this is the default

Niels Monen July 8, 2011

2 THEORY RESEARCH 7

size, it has become the de-facto standard on the Internet. Because of the MTU,
the packet will be fragmented by the first router which has a link with the MTU
set to 1500 bytes.

A client can enable DNSSEC by setting the “DO” bit to 1 in a query. This
means the client accepts the DNSSEC resource records, and will check if the
chain of trust is right for the requested domain.

2.2 Fragmentation

When a router receives a packet with a bigger PDU (Protocol Data Unit)[15]
than the MTU of the next hop, it has two options. The first one is to drop the
packet, and send a ICMP type 3 code 4 (Destination Unreachable, fragmentation
needed) [16]. The other option is to fragment the packet so it can be send over
the link with the smaller MTU. This is done in a standardized way, which is
described in RFC 791 [5].

• The Internet Protocol module creates two new Internet datagrams.

• Copy the contents of the Internet header from the original packet to the
newly created datagrams.

• Divide the data of the original packet into portion on a 64 bit boundary.

• The “More-Fragments” flag is set to one in all but last fragment.

• The “More-Fragments” flag is set to zero in the last fragment to indicate
it is the last fragment.

• The “Fragment Offset” of the fragments is set.

The host will then reassemble the fragments into one normal IP packet using the
algorithm described in RFC 815 [17]. While this is absolutely normal behavior
on the Internet, some administrators choose to block these fragments.

2.2.1 Why should one block fragments?

Around 1995, there where some fragment attacks which gave attackers the abil-
ity to crash or gain access to a host. RFC 1858 [18] is dedicated to these attacks.
It describes some attacks and how they work:

Tiny fragment attack This attack is based on the minimum allowed fragment
size of a packet, which is defined in RFC 791 [5].

Niels Monen July 8, 2011

2 THEORY RESEARCH 8

Every internet module must be able to forward a datagram
of 68 octets without further fragmentation. This is because
an internet header may be up to 60 octets, and the minimum
fragment is 8 octets.

By creating a big TCP header, the TCP flags could be pushed into the
next fragment. This gave some problems with packet filters, which just
let them through.

Overlapping fragment attack This attack uses fragments which will over-
write a part of a previous fragment. This could be done because the
reassembly algorithm didn’t check if the fragment offset was right.

Ping of Death This attack is based on the maximum size an IP packet can
be. This is defined in RFC 791 [5] to be 65.535 bytes. When such a big
packet is send, it will be fragmented. But because of the added “Fragment
Offset” of 13 bits, the last fragment can only have a maximum offset of
65.528, and data no larger than 7 bytes. A malicious person could send
the last fragment with the maximum offset, but with more data. This
resulted into an IP packet larger than 65.535 bytes and cause a buffer
overflow.

All these attacks are outdated, and won’t work nowadays, but administrators
are still configuring firewall rules for them. Or the firewall systems are that old
and critical, the administrators won’t touch those rules.

2.3 ICMP

ICMP is an abbreviations of Internet Control Message Protocol, which are typ-
ically used for error reporting in the IP layer. This protocol is defined in RFC
792 [16]. While there are many different types of ICMP packets, I will only
focus on Type 11 “Time Exceeded” packets.

2.3.1 Type 11: Time Exceeded

This type of ICMP packet can have two meanings. These are differentiated by
the “Code” field. Code 0 is “time to live exceeded in transit” and Code 1 is
“fragment reassembly time exceeded”. In this project, I will focus on the Code
1 of these ICMP packets. The layout of such a packet can be seen below.

Niels Monen July 8, 2011

2 THEORY RESEARCH 9

ICMP Type 11
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Code | Checksum |

+-+

| unused |

+-+

| Internet Header + 64 bits of Original Data Datagram |

+-+

These packets are send when a host cannot complete the reassembly of an IP
packet, due to missing fragments within the time limit.

To standardize the behavior on the Internet, RFC 1122 [19] has been written by
the IETF [20] in 1989. In this RFC the requirements of communication layers
for Internet hosts are defined. While the ICMP RFC says only 64 bits (8 bytes)
of the original datagram can be send, RFC 1122 defines that at least the first
8 bytes of the original data datagram has to be added, but more MAY be sent.
They also define that this timeout MUST be present, and when this timeout
expires, the partially-reassembled datagram MUST be discarded, and an ICMP
Type 11 Code 1 MUST be sent to the source host. But only when fragment 0
is received. To ensure the ICMP packets are really sent, they say they MUST
be passed to the transport layer.

Niels Monen July 8, 2011

3 METHODOLOGY 10

3 Methodology

In this section the methodology that is used for the research is discussed. As
stated in Section 1, the theory behind the problem has to be studied, and test if
the problem is reproducible in a lab environment. If this problem is reproducible,
the amount of clients that have this problem has to be measured.

3.1 Lab setup

To test the ICMP packets in a lab environment, I setup three machines. One
DNSSEC enabled resolver, one client, and one machines which acted as packet
filter between the client and resolver. The specifications of these machines can
be found in Appendix A, and the graphical representation of the setup can be
seen in Figure 3.

Figure 3: Lab setup

This setup is not exactly the same as the original setup with the problem. If I
had to build a setup, exactly like the problem, I had to create a chain of trust
for DNSSEC, which would be a lot of extra work. However, the setup created
by my can do the same. The DNS resolver acts as a proxy for the client, so I
can capture the packets on all interfaces involved.

Niels Monen July 8, 2011

3 METHODOLOGY 11

The client and resolver are configured to use the packet filter as a gateway to
the different networks they are connected to. On Linux, this can be done by
executing the following commands:

route on client
route add -net 10.132.231.0 netmask 255.255.255.0 gw 172.25.0.1 dev eth1

route on resolver
route add -net 172.25.0.0 netmask 255.255.255.0 gw 10.132.231.1 dev eth1

On Windows this can be done in the “Network Connection properties”, and
setting the right gateway.

To get the whole setup working, IP forwarding has to be enabled in the packet
filter machine. This is done by adding or changing the line with gateway enable:

IP forwarding
#gateway_enable="NO"

gateway_enable="YES"

3.1.1 Unbound

As DNSSEC enabled resolver, I used “Unbound 1.4.10” [21]. This is a vali-
dating, recursive, and caching DNS resolver. This package is developed and
maintained by NLnet Labs [22]. It has been developed with security in mind.
This means that it has DNSSEC options build in, and is easily configurable.
The configuration of the machine can be found at Appendix C. In this configu-
ration, NLnet Labs already added an option to set the maximum size of packets,
so they won’t get fragmented. The default EDNS0 buffer size in Unbound is
4096 bytes, but they advise 1480 bytes to solve fragmentation timeouts if they
occur. When those fragmentation timeouts are not occuring, the EDNS0 buffer
size should not be changed. With this option, Unbound will not ask as much
additional information as possible from the authoritative server, so this will fill
up the packet till the buffer size is reached. An answer with 1480 bytes of buffer
size can be found in Appendix D.2.1.

3.1.2 Packet filter

To reproduce the problem in the lab setup, not all the fragments have to be
blocked by the packet filter. The first fragment should arrive at the IP protocol
stack, and the other fragments should be dropped without notification.
I tested several packet filters which should be able to do this. The packet filters
are:

Niels Monen July 8, 2011

3 METHODOLOGY 12

IPtables This is a packet filtering framework inside the Linux 2.4.x and 2.6.x
kernel [23]. According to the man pages of this framework, it should be
able to block the second and third fragment:

IPtables manpage
[!] -f, --fragment

This means that the rule only refers to second and further frag

ments of fragmented packets. Since there is no way to tell the

source or destination ports of such a packet (or ICMP type),

such a packet will not match any rules which specify them. When

the "!" argument precedes the "-f" flag, the rule will only

match head fragments, or unfragmented packets.

However, I couldn’t get it working as intended. This could be because
IPtables had to route the traffic too, and skips some rules. Because of the
time limitations for this project, I had to abandon this framework.

PF This is a Packet Filter for BSD kernels[24]. I installed Debian with kFreeBSD
[25] to test. This packet filter can “scrub” fragments. Scrubbing is their
name for fragment reassembly. The documentation states that when you
do not scrub fragments, they are processed as normal packets. This should
mean they can also be blocked because in fragments there is no informa-
tion about the ports it should go to. However, this also took too much
time to get it working as intended.

IPFW This is a “IPFIREWALL” [26] sponsored by FreeBSD. Because of this, I
installed a clean FreeBSD-8.2 server. This firewall is very easy to setup and
configure. The only rules I used on this firewall can be seen in Appendix
B. The line:

IPFW deny fragment
ipfw -q add deny all from any to any in frag

tells the firewall to block every fragment it detects, except the first one.

3.1.3 Extensible Ethernet Monitor

To measure the amount of clients which have this problem, I used a tool
SURFnet has developed. This is the “Extensible Ethernet Monitor”, or “eemo”
[27]. This program listens to the live traffic which arrives at a server, and sends
it to a back-end server for post-processing. It already has several plug-ins to
capture different types of packets, which includes the ICMP packets.

3.1.4 Packet analyzers

To see what is exactly send on the network, I used “tcpdump” [28]. This program
is a powerful command-line packet analyzer, and uses the “libpcap” library to

Niels Monen July 8, 2011

3 METHODOLOGY 13

capture the network traffic. It is lightweight, and can capture data on separate
interfaces simultaneously, which makes it perfect for my test setup. Because it
uses the “libpcap” library, one can open the saved file with any other program
which uses this library.

To open and analyze the data, I used “Wireshark” [29]. This is a network
protocol analyzer, which lets you capture and interactively browse the network
traffic. Because it can recognize “conversations” and can “follow streams”, I
can analyze the captured traffic more easily than with tcpdump.

3.2 Test procedures

For me to study if, when and where the ICMP packets are send, I had to create
a small test procedure. This procedure is applied on all the tested packet filters,
clients, and buffer sizes.

3.2.1 Test plan: Reproducibility

For the tests, I only had to generate a fragmented DNS packet. This is done
from the client in Figure 3.

1. Tcpdumps Start tcpdump on each machine for each interface. The com-
mands I executed for this are:

tcpdump on packet filter
$ tcpdump -i le0 host 10.132.231.2 or host 172.25.0.2 -s0 \

-w ~/le0_dump.pcap

$ tcpdump -i le1 host 10.132.231.2 or host 172.25.0.2 -s0 \

-w ~/le1_dump.pcap

tcpdump on client and server
$ tcpdump -i eth1 src 10.132.231.2 or src 172.25.0.2 -s0 \

-u -w ~/client_dump.pcap

$ tcpdump -i eth1 src 10.132.231.2 or src 172.25.0.2 -s0 \

-u -w ~/server_dump.pcap

Because these servers where part of a test lan, there was a lot of other
traffic. The “src” or “host” made it possible to only capture the right
packets. The “-i” tells tcpdump on which interface it has to listen; “-s0”
tells tcpdump to capture every size of package; “-u” tells tcpdump to write
unbuffered; and “-w [file]” tells tcpdump to write the data to a file, instead
of showing it on the stdout.

2. Unbound Start unbound with the right configuration file.

Niels Monen July 8, 2011

3 METHODOLOGY 14

3. Request Request a DNSSEC and EDNS0 enabled answer with:

dig request
$ dig @10.132.231.2 www.surfnet.nl +dnssec +bufsize=4096 \

+tries=1 +retry=0

Dig is a DNS look up utility. This request asks the unbound server
(10.132.231.2) to look up “www.surfnet.nl” with dnssec enabled, and buffer
size 4096. This is needed to enable EDNS0. It will only try this 1 times,
without any retries. This way I can clearly see the ICMP response.

4. Stop tcpdumps Stop the tcpdumps on the machines.

5. Analyze Analyze the data with tcpdump, or Wireshark.

3.2.2 Test plan: Live measurement

As said in Section 3.1.3, I used the “eemo” package to capture the live traffic.
To do this I followed a few steps:

1. Configure Configure the “eemo” server to send the data to the right back-
end server for post-processing. This was a server I controlled.

2. Start Start both the “eemo” servers.

3. Capture The back-end server outputs the received data to “stdout”. To
capture this, I redirected the output to a file.

4. Reformat the data The back-end server outputs the data as seen below:

Example output eemo
Received 148 bytes

Sending sensor ID is 0x00000001

Received data is fragmentation monitoring data

host = 62.24.xxx.xxx

host = 85.62.xxx.xxx

host = 62.24.xxx.xxx

host = 211.140.xxx.xxx

host = 211.140.xxx.xxx

host = 216.150.xxx.xxx

...

(The data in the report is anonymized, the real output shows the whole
IP address).
Because of the extra information provided, I had to reformat the data into
one big list of IPs. This can be done by executing

Niels Monen July 8, 2011

3 METHODOLOGY 15

Reformatting
cat [file] | grep "host = " > [only_ip file]

5. Analyze Analyze the data. How many requests failed, and from how many
unique IPs.

Niels Monen July 8, 2011

4 MEASUREMENTS 16

4 Measurements

In this section, I will discuss the results of the tests that are described in the
test plans in Section 3.2.

4.1 Reproducibility

After I executed my test plan to reproduce the problem, I found out the problem
could exists. The client (172.25.0.2) asks the DNS resolver (10.132.231.2) for
“www.surfnet.nl” with the “DO” bit set to 1, and payload size of 4096 bytes.
The DNS resolver answers to this query with a fragmented IP packet. This is
the query response. Figure 4 is a merged network dump of the two interfaces of
the packet filter.

Figure 4: Network dump of the problem

Packets number 2, 3, 5 and 9 are from the interface connected with the DNS
resolver. This means it is still unfiltered network traffic. Packet 5 is the second
fragment of the DNSSEC packet. Packets number 1, 4 and 8 are from the
interface connected to the client. In packet 1 and 2, we see the client querying
for “www.surfnet.nl”. Packet 3 is a fragment of the response from the resolver,
which goes through the packet filter, which can be seen with packet 4. However,
the second fragment (packet 5) is only seen on the interface connected with the
resolver. This means it is dropped by the packet filter. After 30 seconds, the
client sends a ICMP Type 11 Code 1, which can be seen in packet 8. This is
going through the packet filter, and delivered to the DNS resolver in packet 9.

To test if not all DNS traffic is being stopped, I also tested if “www.surfnet.nl”
would resolve when I was not requesting DNSSEC information. This can be
seen in Figure 5.

Figure 5: Network dump for a normal DNS query

In this figure, packet 12 and 13 are from the interface connected to the DNS
resolver, and packet 11 and 14 are from the interface connected to the client. In
packet 11, the client asks where “www.sufnet.nl” is located. And in packet 14,

Niels Monen July 8, 2011

4 MEASUREMENTS 17

the client get its answer back. This shows the normal DNS traffic is not being
blocked.

4.1.1 ICMP

ICMP Type 11 As can be seen in Figure 4, the ICMP Type 11 Code 1 packets
are send by the client, to the source (DNS resolver). This is compliant to
the RFCs. These ICMP packets are around 1500 bytes. This means it is
compliant to RFC 1122, were it specifies at least 8 bytes, but more MAY
be added.

Timeout There is no default reassembly timeout defined in the RFCs, but
there are suggested values for the timeout in RFC 1122 [19]. In this RFC
they suggest a timeout between 60 seconds and 120 seconds. I found out
that on Ubuntu 11.04 the default timeout for fragment reassembly is 30
seconds. This is defined in the kernel parameter “net.ipv4.ipfrag time”
or “/proc/sys/net/ipv4/ipfrag time”. After this, I looked at several other
Linux operating systems, and they all have a 30 seconds timeout. Windows
Server 2008 R2 is more compliant with the RFC, and uses a timeout of
60 seconds.

Operating System Fragment timeout (s)

Ubuntu 11.04 30
Ubuntu 10.04 30

Debian 6.0 30
CentOS 5.6 30

Windows 2008 R2 60

Table 1: Fragment timeout per OS

Niels Monen July 8, 2011

4 MEASUREMENTS 18

4.2 SURFnet DNS

I had the opportunity to capture live traffic for five hours (12:00 - 17:00, June
23 2011) and monitor the amount of ICMP Type 11 Code 1 packets on the first
name server of SURFnet. In these five hours, a total amount of 15530 ICMP
Type 11 packets were captured, which came from 3160 unique IP addresses.
From those 15530 packets, 911 came from IPv6 addresses, which originated
from 334 unique IPv6 addresses. This is a big part (10.6%) of all the unique IP
addresses.

Figure 6: Results of 5 hour scan

To give some perspective to these numbers, the total amount of DNS queries
in these five hours is estimated on 600.000. The amount of DNSSEC enabled
queries in these five hours is estimated on 300.000.

Niels Monen July 8, 2011

5 CONCLUSION AND RECOMMENDATIONS 19

5 Conclusion and recommendations

In this section I state my conclusions of the results that were discussed in the
previous sections.

This research was about studying and reproducing if it is possible to detect if a
packet filter between the client DNS resolver and the authoritative DNS server
of SURFnet is blocking fragmented DNSSEC traffic. In the lab setup created by
me, the client queries the DNS resolver, which will respond to the client with a
fragmented DNS answer. The packet filter allows the first fragment, but blocks
the seconds one. After 30 seconds, the client sends a ICMP Type 11 Code 1
packet back to the DNS resolver to inform him the fragment reassembly has
timed out. This is exactly what is seen on the infrastructure of SURFnet, so
the problem is reproducible.

This problem is happening, because of the additional information that DNSSEC
is generating. These extra resource records are needed to validate another re-
source record, or to authenticate the chain of trust. This results into a DNS
answer which is 1659 bytes big. This size is bigger than the default MTU on
the Internet, which is 1500 bytes, causing it to fragment somewhere between
the authoritative DNS server, and the packet filter of the client.

The other side of this research was to see how many of the SURFnet clients have
this problem. To study this, I had the opportunity to capture live data on the
first name server of SURFnet for five hours. The result of this was that 3160
unique IP addresses had this problem. This means, those 3160 clients could
not obtain some of the DNS information in the “surfnet.nl” zone, but they also
won’t be able to obtain DNS information for other domains which answer with
big DNS packets.

I could not find any reason why fragments should be blocked nowadays. I could
find attacks from 1995, which were using bugs to get through packet filters, or
to crash systems. However, there bugs are patched long ago, so they won’t work
any more.

Niels Monen July 8, 2011

6 FUTURE WORK 20

6 Future work

This project has some future work which could be researched. They are dis-
cussed in this section.

Web application A web page or application can be build, so administrators
can test if their DNS resolver has any problem receiving fragmented pack-
ets. This can be done by using the probe I build. The only problem I
foresee is that the web server is running as a less privileged user. And for
creating packets, the root user is needed. The source code of the probe
can be found in Appendix E.

Test on bigger scale This problem might be tested on a bigger scale, like the
“.nl” domain. This way you can test a bigger “audience”. However, I sus-
pect the “.nl” domain does not have this problem, because the DNS(SEC)
answers aren’t that big. If this is really the case, the problem might be
tested on a “bigger” domain.

Test if ICMP packets always arrive The question I had after this research
was, “Are ICMP packets always arriving at the source host?”. Maybe
there are administrators which even block egress ICMP packets. When
this is happening, even more DNS resolvers than I have measured in this
research, could have this problem. This could be done by checking how
many times a DNS resolver tries to get its answers. Most of the times,
a DNS resolver will try three times before giving up, or trying DNS over
TCP. When this information is known, more and more precise conclusions
can be made.

Plug in for DNS packages A small monitor program can be created, which
outputs the IPs it finds that have this problem to a list. The DNS package
than looks up if an IP is on this list, and lowers the DNS(SEC) answer size
to below the fragment size. There could be a time-to-live on this list, so
when administrators fix this problem on their side, the server will receive
a normal DNS(SEC) answer again.

Research why there are so much IPv6 with this problem In my results,
there are relatively a lot of IPv6 addresses. There are some ideas why this
could be. The first idea is that IPv6 records (AAAA) are bigger than
normal IPv4 records. The other idea is that the Red hat 5 IPv6 imple-
mentation is dropping fragments [30].

Niels Monen July 8, 2011

A SERVER DETAILS 21

A Server details

In this section, I will describe the specifications of the used machines.

• DNS Resolver

Brand VMware

CPU Intel(R) Xeon(R) CPU L5520 @ 2.27GHz

Memory 1GB

OS Ubuntu 11.04 Server edition

Kernel 2.6.38-8-generic-pae #42-Ubuntu SMP Mon Apr 11 05:17:09 UTC
2011 i686 i686 i386 GNU/Linux

• DNS Client

Brand VMware

CPU Intel(R) Xeon(R) CPU L5520 @ 2.27GHz

Memory 1GB

OS Ubuntu 11.04 Server edition

Kernel 2.6.38-8-generic-pae #42-Ubuntu SMP Mon Apr 11 05:17:09 UTC
2011 i686 i686 i386 GNU/Linux

• DNS Client Windows

Brand VMware

CPU Intel(R) Xeon(R) CPU L5520 @ 2.27GHz

Memory 1GB

OS Microsoft Windows 2008 R2 Server

• Packet Filter

Brand VMware

CPU Intel(R) Xeon(R) CPU L5520 @ 2.27GHz

Memory 1GB

OS FreeBSD 8.2

Kernel 8.2-RELEASE FreeBSD 8.2-RELEASE #0: Fri Feb 18 02:24:46
UTC 2011 root@almeida.cse.buffalo.edu:/usr/obj/usr/src/sys/GENERIC
i386

Niels Monen July 8, 2011

C UNBOUND CONFIGURATION 22

B Firewall setup

IPFW ruleset
ipfw -q -f flush

cmd="ipfw -q "

$cmd add deny all from any to any in frag

$cmd add allow tcp from any to any

$cmd add allow udp from any to any

$cmd add allow icmp from any to any

ipwf list
nimo02# ipfw list

00100 deny ip from any to any in frag

00200 allow tcp from any to any

00300 allow udp from any to any

00400 allow icmp from any to any

65535 deny ip from any to any

C Unbound configuration

unbound.conf
server:

verbosity number, 0 is least verbose. 1 is default.

verbosity: 1

specify the interfaces to answer queries from by ip-address.

The default is to listen to localhost (127.0.0.1 and ::1).

specify 0.0.0.0 and ::0 to bind to all available interfaces.

specify every interface[@port] on a new ’interface:’ labelled line.

The listen interfaces are not changed on reload, only on restart.

interface: 0.0.0.0

port to answer queries from

port: 53

EDNS reassembly buffer to advertise to UDP peers (the actual buffer

is set with msg-buffer-size). 1480 can solve fragmentation (timeouts).

edns-buffer-size: 4096

buffer size for handling DNS data. No messages larger than this

size can be sent or received, by UDP or TCP. In bytes.

Niels Monen July 8, 2011

D SURFNET DNS ANSWERS 23

msg-buffer-size: 65552

control which clients are allowed to make (recursive) queries

to this server. Specify classless netblocks with /size and action.

By default everything is refused, except for localhost.

Choose deny (drop message), refuse (polite error reply),

allow (recursive ok), allow_snoop (recursive and nonrecursive ok)

access-control: 127.0.0.0/8 allow

access-control: 10.132.231.0/24 allow

access-control: 172.25.0.0/24 allow

D SURFnet DNS Answers

D.1 SURFnet normal DNS

DNS answer
; <<>> DiG 9.7.3 <<>> www.surfnet.nl

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33469

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 6

;; QUESTION SECTION:

;www.surfnet.nl. IN A

;; ANSWER SECTION:

www.surfnet.nl. 3163 IN A 194.171.26.203

;; AUTHORITY SECTION:

surfnet.nl. 2337 IN NS ns0.ja.net.

surfnet.nl. 2337 IN NS ns2.surfnet.nl.

surfnet.nl. 2337 IN NS ns1.surfnet.nl.

surfnet.nl. 2337 IN NS ns1.zurich.surf.net.

surfnet.nl. 2337 IN NS ns3.surfnet.nl.

;; ADDITIONAL SECTION:

ns1.surfnet.nl. 2337 IN A 192.87.106.101

ns1.surfnet.nl. 2337 IN AAAA 2001:610:1:800a:192:87:106:101

ns2.surfnet.nl. 2337 IN A 192.87.36.2

ns2.surfnet.nl. 2337 IN AAAA 2001:610:3:200a:192:87:36:2

ns3.surfnet.nl. 2337 IN A 195.169.124.71

ns3.surfnet.nl. 2337 IN AAAA 2001:610:0:800c:195:169:124:71

;; Query time: 7 msec

Niels Monen July 8, 2011

D SURFNET DNS ANSWERS 24

;; SERVER: 192.87.106.106#53(192.87.106.106)

;; WHEN: Thu Jun 16 13:52:50 2011

;; MSG SIZE rcvd: 288

D.2 SURFnet DNSSEC answer

DNSSEC answer
; <<>> DiG 9.7.3 <<>> www.surfnet.nl +dnssec

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 39320

;; flags: qr rd ra ad; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 13

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096

;; QUESTION SECTION:

;www.surfnet.nl. IN A

;; ANSWER SECTION:

www.surfnet.nl. 3132 IN A 194.171.26.203

www.surfnet.nl. 3132 IN RRSIG A 8 3 3600 20110621225534

20110615070013 30160 surfnet.nl. 9+QfZyefAz1iq6lwrl1+rn1n+47pVPkf

Z8QnhkJjv0PqYEJXAx1vpMDX 3+1nfCijNPac01Q82UJ2Y60ZGhBCufLrM3ezeOWl

9q9CEiWak8ryTFnN pYzIvtkSz6KHlUq16yelNAU+ijtc6qQEhgrQN1jmhSqmmp+I

r8f2T4iN XM4=

;; AUTHORITY SECTION:

surfnet.nl. 2306 IN NS ns0.ja.net.

surfnet.nl. 2306 IN NS ns2.surfnet.nl.

surfnet.nl. 2306 IN NS ns1.surfnet.nl.

surfnet.nl. 2306 IN NS ns1.zurich.surf.net.

surfnet.nl. 2306 IN NS ns3.surfnet.nl.

surfnet.nl. 2306 IN RRSIG NS 8 2 7200 20110622051656

20110615070013 30160 surfnet.nl. Lfo0uyu+meOE7zLYEppSZJ7Prn3itKQLE

Oh6rwA0i+ZjEDYef5/t/Xib DuEmeOqfI8yb/ul5we/UPZweSNfINI9Cs8V4iuYKa/

ydin5Pu6RFHcMY Pd9dwxjhKZAAwoLfTBjfZ5uTJ0ar3Te8rMQRBGrmyQAbz0wxbUj

u9JYp Bq8=

;; ADDITIONAL SECTION:

ns1.surfnet.nl. 2306 IN A 192.87.106.101

ns1.surfnet.nl. 2306 IN AAAA 2001:610:1:800a:192:87:106:101

ns2.surfnet.nl. 2306 IN A 192.87.36.2

ns2.surfnet.nl. 2306 IN AAAA 2001:610:3:200a:192:87:36:2

ns3.surfnet.nl. 2306 IN A 195.169.124.71

ns3.surfnet.nl. 2306 IN AAAA 2001:610:0:800c:195:169:124:71

Niels Monen July 8, 2011

D SURFNET DNS ANSWERS 25

ns1.surfnet.nl. 2306 IN RRSIG A 8 3 7200 20110622161346

20110615070013 30160 surfnet.nl. Y5DQgVHk6hVv335Mvi6bBSg8aTkQWCcE

AQ+5LPIaMvcQf4tll7kQJnUu k5Zfbxozxd9+JgEh9Q4pMd/UTps0Fho/oaVWLNBA

bXMzVcGf60odEvBU aLKw8AanwauykR1AoUiyb0Rl5G6c1csRT21mZfo1jdrIJgos

QeINMyn2 9Do=

ns1.surfnet.nl. 2306 IN RRSIG AAAA 8 3 7200 20110622191527

20110615070013 30160 surfnet.nl. W9/kRSVhU26eKDwEq9LQ8g830FupycI

X51tWBJqeHohgutHkXqiUvj+q Mrbqz96dOlpXMM/Un/vuqw2LOJzSlRzw7snjOci

DNpp4ILRphA+Yf4Nt aFntN1jgsjmI4FkwMpwbD6p5V/y00o8huzieFNkamPFRKJM

f2XUNAG4n 7jE=

ns2.surfnet.nl. 2306 IN RRSIG A 8 3 7200 20110622094157

20110615070013 30160 surfnet.nl. YLFovBuwyx1N9IU3/4RXwRChMXfIKPG

j7rNVmWeKPpOyLlL7a+YinxPo 16WQdHbGHa0I6ZV2tTXNqTNhk+c3Afj7coUDHL+

fD7IFoICM9J5XJFN5 u71dmc7KXU1krxReWtn8Bly7+yBaCLeugKHm6SJpIkKf32p

w3DWGc6ys qUg=

ns2.surfnet.nl. 2306 IN RRSIG AAAA 8 3 7200 20110622060339

20110615070013 30160 surfnet.nl. Uz2LPenyHscJZP5FB1Rk7gBz8SO2hTT

KpXNy3+tn51Wligg9n4HhnEZ1 gRtjpL3JrpkQSEJyFz5doFMmr20e6zeDLBvRtbN

ob1lAgeEFgB9KzT5V x/Ixitfq1NbhJVI/6EQE0yef3yNLVurPm5pzrWs618Zcr/f

VNV7+wHTQ ipk=

ns3.surfnet.nl. 2306 IN RRSIG A 8 3 7200 20110622042940

20110615070013 30160 surfnet.nl. ewHhKueMzv8yRQn3GaIvX3g5/kpFGTD

8Eo73XRka0DRFZ4CXn40kK8cQ WLHFPumJQN724XqFxG3SjPDUTNsXszNrQam1184

HvCz6ZJfRGDv7tIOe ds3PRz6qsaI89vbeEkhV+DqMymBk/7UN7VGzFPLUz6puHRy

kQHM1GDPV bhE=

ns3.surfnet.nl. 2306 IN RRSIG AAAA 8 3 7200 20110622001049

20110615070013 30160 surfnet.nl. kMXR6ftaBMOZOrKCtH8o2F53vrGsPEDv

JT87n3jKNhusdduQ3r69DktA sYaede75quhttyasG7NX+PFe+7VYxhaZUQiZ6V+Y

bZsygA+BuC+snpkn erbRBYy15Fx19zCIWIR/ovCUP6PRN35Epbv7iCxPgFnzwCuv

NY8Itemf 8ow=

;; Query time: 13 msec

;; SERVER: 192.87.106.106#53(192.87.106.106)

;; WHEN: Thu Jun 16 13:53:21 2011

;; MSG SIZE rcvd: 1659

D.2.1 SURFnet DNSSEC answer limited

DNSSEC limited answer

; <<>> DiG 9.7.3 <<>> @10.132.231.2 www.surfnet.nl +dnssec

; +bufsize=4096 +tries=1 +retry=0

; (1 server found)

;; global options: +cmd

;; Got answer:

Niels Monen July 8, 2011

D SURFNET DNS ANSWERS 26

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38386

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 11

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 1480

;; QUESTION SECTION:

;www.surfnet.nl. IN A

;; ANSWER SECTION:

www.surfnet.nl. 3600 IN A 194.171.26.203

www.surfnet.nl. 3600 IN RRSIG A 8 3 3600 20110629200223

20110623000007 30160 surfnet.nl. ZWw9z6uSlPpVg2mfqJrjjeDBOGo0H/T7

0NYQeJYr702ioJgNDkMVvo3P k48VqPUCyHshYw7wqjs46Fi8sGACatRa+Ico6k2i

ZhGMbTo7tMOCBnv9V0ioR6DsUXmYISX0sR6Ojt2SJo6DOhY+ext3QQCb1xYVuINlX

ESerL31 yis=

;; AUTHORITY SECTION:

surfnet.nl. 7200 IN NS ns1.surfnet.nl.

surfnet.nl. 7200 IN NS ns1.zurich.surf.net.

surfnet.nl. 7200 IN NS ns0.ja.net.

surfnet.nl. 7200 IN NS ns3.surfnet.nl.

surfnet.nl. 7200 IN NS ns2.surfnet.nl.

surfnet.nl. 7200 IN RRSIG NS 8 2 7200 20110630154809

20110623120007 30160 surfnet.nl. VFlPczRHLx5ClfjQhqpKBkUk1WBrD129

g2Q2T/8h4iXu3kRlWD5MliTq P5+tPFM6LV/uhU9Q4yXHBoEabzVBHbsF3B8J48Jy

QCQVtsTfpafMTeY+ N54AogS6Lb1K8vINAhWmBPmlPJ0mX7uej7BOitHViIpKjQzI

mDl9nUJ/ mV8=

;; ADDITIONAL SECTION:

ns1.surfnet.nl. 7200 IN A 192.87.106.101

ns1.surfnet.nl. 7200 IN AAAA 2001:610:1:800a:192:87:106:101

ns2.surfnet.nl. 7200 IN A 192.87.36.2

ns2.surfnet.nl. 7200 IN AAAA 2001:610:3:200a:192:87:36:2

ns3.surfnet.nl. 7200 IN A 195.169.124.71

ns3.surfnet.nl. 7200 IN AAAA 2001:610:0:800c:195:169:124:71

ns1.surfnet.nl. 7200 IN RRSIG A 8 3 7200 20110630133059

20110623200007 30160 surfnet.nl. obariyLkTMUxxePJWzI6I3EmbjS1PYD3

q86q1hTk25BEEgErWtI/jlUe rqxD/6bNRRPn8a2iywdpIS81Mb9pF+9MvAZcx0VB

Y/aQgBmsOEFeoDai g+S8QasjeeY5LGSX7lc+S8dxORZaZpYzzMoL2jvcEVr1QDNH

gC9c/gA8 S18=

ns1.surfnet.nl. 7200 IN RRSIG AAAA 8 3 7200 20110701101814

20110624000007 30160 surfnet.nl. s50xJ2O5afxsapjyQuEaCpqefLUt5WhD

yX2siTiXqYWZwdp1ZCfTS8X+ 17MALuIP0/6QqJIMz/mmLZHdX7A2W2Uk78tairej

Mkyw8eCgvA4uTpEd xbLKaCGYs0g2hH8BIRgeFov2roYYYZv1AhtxF+3OuCNFBqGF

vVaCYmyQ Mtc=

ns2.surfnet.nl. 7200 IN RRSIG A 8 3 7200 20110630122659

Niels Monen July 8, 2011

E PROBE 27

20110623140007 30160 surfnet.nl. PQbbrQbyvzZe119vDiXyyVX/QMSQgNLy

8cDCEecPXKDt+g9f00xJdGLB uiXyvUQI/1dwaE2fwWs4jXHwTJk69zvWjAV9iInz

3tIdautHbbX9VOWP 0lB1bFxhVtpeTCiwgdxLaLS8nY3JBIeHxG1UFI/2LVDK4EhM

wQ+vPJM0 x7I=

ns2.surfnet.nl. 7200 IN RRSIG AAAA 8 3 7200 20110629233326

20110623040007 30160 surfnet.nl. tHQgBc3WPmQ+wVi7ih0s3OpxxWtRWCvP

OnwxzmoS3vYXEU8fgkN1Hzq0 I7OPz19zNIeedFEa048n13MlV9KyPtyy1A5hPoA0

8mz68/txr9OLSCTA +kvx0C8cZfAmkKK9lpbkb29x0QnR/RstjQGDvI8LF/eVMgnr

uJWZJpv/ XuU=

;; Query time: 199 msec

;; SERVER: 10.132.231.2#53(10.132.231.2)

;; WHEN: Fri Jun 24 16:18:08 2011

;; MSG SIZE rcvd: 1319

E Probe

probe.py
#! /usr/bin/env python

Import the needed libraries

from scapy.all import *

import sys

Variable to check if the machine is probed

probed=0

Probe the given machine, and check for ICMP packets

def icmp_monitor_callback(pkt):

global probed

while probed == 0:

dst = argument from commandline

send(fragment(IP(dst=sys.argv[1])/UDP("X"*1600, dport=[53])))

probed=probed+1

add # If there is a ICMP type 11, code 1 packet, write the IP,MAC to file

if ICMP in pkt and pkt[ICMP].type == 11 and pkt[ICMP].code == 1:

print pkt.sprintf("%IP.src% %Ether.src%")

f = open(’/tmp/ips_frag’, ’w’)

f.write(pkt.sprintf("%IP.src% %Ether.src%")+’\n’)

f.close()

Initiate the sniffer, only icmp packets are captured, but not stored

sniff(prn=icmp_monitor_callback, filter="icmp", store=0)

Niels Monen July 8, 2011

REFERENCES 28

References

[1] Dnssec validation at surfnet. https://dnssec.surfnet.nl/?p=665.
[Graph of December 20, 2010].

[2] Roland van Rijswijk. Mtu woes again... https://dnssec.surfnet.nl/

?p=684, March 2011.

[3] Roland van Rijswijk. Mtu woes. https://dnssec.surfnet.nl/?p=641,
November 2010.

[4] P.V. Mockapetris. Domain names - implementation and specification. RFC
1035 (Standard), November 1987. Updated by RFCs 1101, 1183, 1348,
1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2845, 3425,
3658, 4033, 4034, 4035, 4343, 5936, 5966.

[5] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Up-
dated by RFC 1349.

[6] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[7] P. Vixie. Extension Mechanisms for DNS (EDNS0). RFC 2671 (Proposed
Standard), August 1999.

[8] D. Eastlake 3rd and C. Kaufman. Domain Name System Security Exten-
sions. RFC 2065 (Proposed Standard), January 1997. Obsoleted by RFC
2535.

[9] D. Eastlake 3rd. Domain Name System Security Extensions. RFC 2535
(Proposed Standard), March 1999. Obsoleted by RFCs 4033, 4034, 4035,
updated by RFCs 2931, 3007, 3008, 3090, 3226, 3445, 3597, 3655, 3658,
3755, 3757, 3845.

[10] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security
Introduction and Requirements. RFC 4033 (Proposed Standard), March
2005. Updated by RFC 6014.

[11] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Resource
Records for the DNS Security Extensions. RFC 4034 (Proposed Standard),
March 2005. Updated by RFCs 4470, 6014.

[12] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol Modi-
fications for the DNS Security Extensions. RFC 4035 (Proposed Standard),
March 2005. Updated by RFCs 4470, 6014.

[13] Wikipedia: Public-key cryptography. http://en.wikipedia.org/wiki/

Public-key_cryptography. [Wikipedia page about Public-key cryptogra-
phy, consulted at 06-23-2011].

Niels Monen July 8, 2011

https://dnssec.surfnet.nl/?p=665
https://dnssec.surfnet.nl/?p=684
https://dnssec.surfnet.nl/?p=684
https://dnssec.surfnet.nl/?p=641
http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Public-key_cryptography

REFERENCES 29

[14] Wikipedia: Maximum transmission unit. http://en.wikipedia.org/

wiki/Maximum_transmission_unit. [Wikipedia page about Maximum
transmission unit, consulted at 06-23-2011].

[15] Wikipedia: Protocol data unit. http://en.wikipedia.org/wiki/

Protocol_data_unit. [Wikipedia page about Protocol data unit, con-
sulted at 06-23-2011].

[16] J. Postel. Internet Control Message Protocol. RFC 792 (Standard), Septem-
ber 1981. Updated by RFCs 950, 4884.

[17] D.D. Clark. IP datagram reassembly algorithms. RFC 815, July 1982.

[18] G. Ziemba, D. Reed, and P. Traina. Security Considerations for IP Frag-
ment Filtering. RFC 1858 (Informational), October 1995. Updated by RFC
3128.

[19] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC
1122 (Standard), October 1989. Updated by RFCs 1349, 4379, 5884, 6093.

[20] The internet engineering task force. http://www.ietf.org/. [Their mis-
sion is to make the Internet work better.].

[21] Unbound. http://unbound.net/. [Unbound is a validating, recursive, and
caching DNS resolver].

[22] Nlnet labs. http://www.nlnetlabs.nl/. [NLnet Labs is a research and
development group].

[23] Netfilter; firewalling, nat, and packet mangling for linux. http://www.

netfilter.org/. [Home to the software of packet filtering framework inside
the Linux kernel].

[24] Pf. http://www.openbsd.org/faq/pf/. [OpenBSD FAQ for PF].

[25] Debian gnu/kfreebsd. http://www.debian.org/ports/kfreebsd-gnu/.
[consulted at 06-27-2011].

[26] Ipfw. http://www.freebsd.org/doc/en_US.ISO8859-1/books/

handbook/firewalls-ipfw.html. [FreeBSD Handbook].

[27] Svn of eemo. https://svn.surfnet.nl/svn/eemo. [3-clause BSD-style
licensed, Copyright SURFnet bv].

[28] tcpdump website. http://www.tcpdump.org/. [Consulted on 07-03-2011].

[29] Wireshark website. https://www.wireshark.org/. [Consulted on 07-03-
2011].

[30] Red hatted trouble... ipv6 and bind 9.7 on rhel 5.x. https://dnssec.

surfnet.nl/?p=464. [Consulted on 07-06-2011].

Niels Monen July 8, 2011

http://en.wikipedia.org/wiki/Maximum_transmission_unit
http://en.wikipedia.org/wiki/Maximum_transmission_unit
http://en.wikipedia.org/wiki/Protocol_data_unit
http://en.wikipedia.org/wiki/Protocol_data_unit
http://www.ietf.org/
http://unbound.net/
http://www.nlnetlabs.nl/
http://www.netfilter.org/
http://www.netfilter.org/
http://www.openbsd.org/faq/pf/
http://www.debian.org/ports/kfreebsd-gnu/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls-ipfw.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls-ipfw.html
https://svn.surfnet.nl/svn/eemo
http://www.tcpdump.org/
https://www.wireshark.org/
https://dnssec.surfnet.nl/?p=464
https://dnssec.surfnet.nl/?p=464

	Introduction
	Research

	Theory research
	DNS
	Fragmentation
	ICMP

	Methodology
	Lab setup
	Test procedures

	Measurements
	Reproducibility
	SURFnet DNS

	Conclusion and recommendations
	Future work
	Server details
	Firewall setup
	Unbound configuration
	SURFnet DNS Answers
	SURFnet normal DNS
	SURFnet DNSSEC answer

	Probe

