Passive LAN Information Gathering

Roy Duisters - 30 June 2011

Supervised by: Michiel van Veen & Marc Smeets KPMG IT Advisory

Outline

- Introduction
- Methods
- Protocol analysis
- Proof of concept
- Conclusion
- Questions

Passive LAN Information Gathering

- Network reconnaissance
 - Lots of multicast/broadcast traffic can be passively observed
 - ARP, CDP, SMB, HSRP, etc.
 - Passive vs active
 - Conventional reconnaissance techniques can be detected
 - Passive information gathering lowers detection risk
- Proof of concept

Main research question:

Which information can be obtained by listening passively in a corporate LAN environment and how can this information be combined, correlated and reported to create an "outline" of the network, to simplify and to prevent detection of the reconnaissance phase of a penetration test?

- Highlights of the subquestions
 - Selecting the protocols
 - Analysis of these protocols
 - Combining and presenting the gathered information

Methods

- Determine the information to gather
 - By first determining which information is generally gathered during the reconnaissance phase
 - The organization and its procedures
 - Organizational structure
 - •
 - Security of the enterprise IT environment
 - Security plans and policies
 - Technical security measures
 - •
 - Structure / architecture of the IT infrastructure
 - Hard- and software in use
 - Important IT components
 - •

Methods

- Passively gathering the information
 - Only broadcast / multicast traffic observed on switched / bridged LANs
- Protocol sample
 - Selection criteria
 - Common usage in enterprise LAN environments
 - Possibility whether the protocol contains useful information
 - Each protocol has been given a "score", based the applicability to both criteria

Methods

- Protocol sample
 - The six protocols with the highest "score" have been selected
 - mDNS, SMB Browser, DHCP, NBNS, STP, CDP
- Selected protocols were analysed on
 - Functionality
 - Protocol details
 - Usability for network profiling

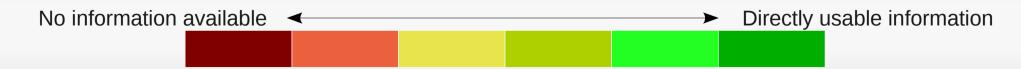
Protocol Analysis – Two interesting protocols 1/5

- Server Message Block Browser
 - Functionality
 - Provides access to files/printers/etc.
 - Mainly used on Microsoft Windows networks
 - Interesting information for network profiling
 - Hosts / domains advertise themselves periodically
 - Containing the hostname, configured domain / workgroup, OS version, etc.
 - Flags indicate the services the system offers
 - NT workstation, print queue, SQL server, domain controller, etc.

Protocol Analysis – Two interesting protocols 2/5

- Cisco Discovery Protocol
 - Functionality
 - Shares network information between (mainly Cisco) devices
 - Interesting information for network profiling
 - Information about the connected network device
 - Platform, OS, capabilities, etc.
 - Information about the connected network
 - VLAN information (connected and voice)

- Combining the pieces of the puzzle
 - Map information to a single system
 - By source MAC or IP (depending on the protocol)
 - Map the systems to a single (L3) subnet
 - By the IP subnet
 - Map systems to a single (L2) network
 - By the source traffic capture
 - Difficulties
 - Protocols from multiple layers from the OSI model
 - No guarantee that information will be obtained



- Generally gathered information (recap)
 - The organization and its procedures
 - E.g. naming procedures, physical locations
 - Security of the enterprise IT environment
 - E.g. security devices, password policies
 - Structure / architecture of the IT infrastructure
 - E.g. systems that store interesting data

Protocol Analysis

	mDNS	SMB Browser	DHCP	NBNS	STP	CDP
Organization and procedures						
Security of the IT environment						
Structure/ architecture						

Proof of concept

- Implementation of the previously described technique
 - Parses PCAP traffic captures
 - Gathers information from five protocols
 - Makes use of the Scapy library
 - Writes gathered information to a database
 - Creates relations between the data
 - Generates an example report

Proof of concept - Demo

roy@roy-\	<pre>/GN-FE41E ~/rp2/Proof-of-concept \$./main.py -f Obtained\ traffic\ captures/combinat</pre>
on.pcap	
INFO	Passive.DB Database Passive_DB.sqlite does not exist, creating a new database
INFO	Passive Processing: Obtained traffic captures/combination.pcap
DEBUG	Passive.DB Adding CDP entry for 00:e0:1e:d5:d5:15 - R1
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.101 - DC01.DEMO.NL
DEBUG	Passive.DB Adding DHCP inform entry for HR-01
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.101 - WPAD
DEBUG	Passive.DB Adding DHCP ack entry for 255.255.255.255
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.101 - HR-01
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.101 - DEMO
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.101 - ISATAP.DEMO.NL
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.1 - HR-01
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.101 - DC01
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.102 - HR-01
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.101 - GUEST
DEBUG	Passive.DB Adding SMB entry for DC01
DEBUG	Passive.DB Adding SMB entry for HR-01
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.101 - GUESTMACHINE
DEBUG	Passive.DB Adding SMB entry for GUESTMACHINE

Proof of concept - Demo

DEBUG	Passive.DB Adding SMB entry for GUESTMACHINE
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.102 - GUEST
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.1 - GUESTMACHINE
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.102 - DEMO
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.102 - DC01
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.1 - GUEST
DEBUG	Passive.DB Adding DHCP inform entry for Guestmachine
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.102 - WPAD
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.102 - NU.NL
DEBUG	Passive.DB Adding NBNS entry for 192.168.2.102 - WWW.BING.COM
INFO	Passive Creating relationships in the database
DEBUG	Passive.DB Adding system ID for 00:16:3e:10:a9:d9 - 192.168.2.101
DEBUG	Passive.DB Adding system ID for 00:16:3e:10:a1:d9 - 192.168.2.102
DEBUG	Passive.DB Adding system ID for 00:e0:12:d5:d5:15
DEBUG	Passive.DB Adding system ID for 00:16:3e:10:a9:d3 - 192.168.2.1
DEBUG	Passive.DB Adding network 192.168.2.0/24 (subnet guess)
DEBUG	Passive.DB Adding network 1 to system 192.168.2.101
DEBUG	Passive.DB Adding network 1 to system 192.168.2.102
DEBUG	Passive.DB Adding network 1 to system 192.168 2.1
INFO	Passive Generating the report (Passive_report.pdf)
INFO	Passive Finished:

Proof of concept - Demo

The example PDF report

Conclusion

Main research question

Which information can be obtained by listening passively in a corporate LAN environment and how can this information be combined, correlated and reported to create an "outline" of the network, to simplify and to prevent detection of the reconnaissance phase of a penetration test?

- One can passively create a profile of the network
- Outcome is highly dependent on the available protocols
- A combination of methods is required to obtain all information

Thank you for your attention!

Questions?