
University of Amsterdam
System & Network Engineering

Research Project 2

A mapping library for the

Locator/ID Separation Protocol (LISP)

Author

Marek Kuczyński
MSc. System and Network Engineering

University of Amsterdam
marek.kuczynski@os3.nl

Supervisors

Job Snijders
Network Architect

InTouch NV
job@intouch.eu

Rager Ossel
CEO

InTouch NV
rager@intouch.eu

Abstract

The Locator/ID Separation Protocol (LISP) is a protocol that is currently being developed
by a Working Group in the Internet Engineering Task Force (IETF). LISP is a network
architecture and a protocol that implements a new approach to addressing and routing on
top of regular IP. In a nutshell: LISP separates the ’where’ and the ’who’ in networking and
uses a mapping system to couple the routing location (where) and endpoint identifier (who).

A non-proprietary Linux implementation of LISP is in development, but there currently
is no open source control-plane software. This paper gives a brief overview about the control
plane of LISP and the Python library that was developed during the research project.

Keywords: LISP, control plane, routing, addressing, Python, library

July 10, 2011

marek.kuczynski@os3.nl
job@intouch.eu
rager@intouch.eu

1

Acknowledgments

I would like to thank Job Snijders, Rager Ossel, Maurits Dijkstra, Daan van der Sanden,
Bart de Bruijn and Kevin Tieman for their unwavering support and valuable assistance through-
out the research project. I would also like to thank InTouch NV for providing me with the op-
portunity to work at their office and to get acquainted with their professional environment.

- Marek

Marek Kuczyński July 10, 2011

CONTENTS 2

Contents

1 Introduction 4

2 Concepts of LISP 5

2.1 Routing packets . 5

2.2 Mapping IDs to locations . 5

2.3 Communicating with the regular Internet . 6

2.4 Maintaining consistent address space over multiple locations 7

2.5 Summary of benefits . 8

3 Previous research 9

4 LISP control plane 10

4.1 Control packet structure . 10

4.2 Packet types . 10

4.3 Control packet encapsulation . 11

5 LISP library 12

5.1 Features and internals . 12

6 LISP Internet Gopher 13

6.1 Features and internals . 13

6.2 LIG example . 14

7 Conclusion 15

7.1 Publication of work . 15

8 Appendix; source code 18

8.1 Library . 18

8.2 LIG . 24

Marek Kuczyński July 10, 2011

CONTENTS 3

Glossary

Below, a summary of some terms used in this paper is given.

• AS - Autonomous System: A collection of routing prefixes that have a consistent routing
policy on the Internet.

• BGP - Border Gateway Protocol: Protocol responsible for core routing of the Internet.
It shares prefixes and how to reach them in a push-based fashion.

• DFZ - Default Free Zone: The collection of autonomous systems that do not require a
route for their packets to be routed. Each autonomous system has full knowledge of all
other autonomous systems around it.

• EID - Endpoint ID: An EID is an IPv4 or IPv6 address used in the source and destination
address fields of the first (most inner) LISP header of a packet.

• ETR - Egress Tunnel Router: An ETR is a router that accepts an IP packet where the
destination address in the ”outer” IP header is one of its own RLOCs.

• ITR - Ingress Tunnel Router: An ITR receives IP packets from site end-systems on one
side and sends LISP-encapsulated IP packets toward the Internet on the other side.

• IXP - Internet Exchange Point: gathering point where parties exchange network traffic
with each other.

• PETR - Proxy ETR: A PETR is used for inter-networking between LISP and Non-LISP
sites. A PETR acts like an ETR on behalf of LISP sites.

• PITR - Proxy ITR: A PITR is used for inter-networking between Non-LISP and LISP
sites. A PITR acts like an ITR on behalf of non-LISP sites.

• RLOC -Routing Locator: A RLOC is an IPv4 or IPv6 address of an egress tunnel router
(ETR). A RLOC is the output of a EID-to-RLOC mapping lookup.

• xTR: A xTR is a reference to an ITR or ETR when direction of data flow is not part of
the context description. xTR refers to the router that is the tunnel endpoint.

Marek Kuczyński July 10, 2011

1 INTRODUCTION 4

1 Introduction

The LISP protocol[1] is the result of an IETF workshop that was held in 2006[1]. The attendees
of the conference agreed on the fact that a new routing architecture for the Internet should be
developed, because of scalability issues with the current Border Gateway Protocol (BGP) [2]
based model.

Right now, nodes on the Internet use the BGP to share information about the IP address
prefixes that are part of their Autonomous System (AS) [3]. Additionally, every node also
maintains information about the best path to all other IP prefixes on the Internet. All these
characteristics are distributed using a push mechanism that floods available information to all
neighbors of the node.

The problems with scale are apparent; the mechanism works well when the total amount of
prefixes is small. However, the Internet has grown explosively since 1994 when BGP version 4
was first introduced. It is becoming increasingly harder to maintain all the up-to-date routing
information in the memory of a node. Right now, external routing servers are often used in
order to store all the routing tables that a node needs to access [4]. This introduces new
problems, like for example synchronization of this information and delays caused by looking up
the information.

What makes the situation even worse, is that not all prefixes are aggregated in the most
optimal way. Sometimes, fractions of a prefix are advertised, which adds to the size of the
routing tables. All routes that are part of the default free zone (DFZ) [19] are managed by the
parties that operate the autonomous systems individually, meaning that it is difficult to enforce
or stimulate the most effective way to spread prefixes.

Splitting IDs from locations

Splitting relation between a prefix (”identity”) and a node (”location”) can provide a solution
for issues like these [20]. It makes it possible to, for example, address multiple prefixes to a
single autonomous system, without including all the path information every single time. The
concept also applies to routing single IP addresses, since it may be good enough to know the
specifics of reaching a very large aggregate somewhere, which will take care of further routing
once the IP packet arrives there.

The LISP protocol makes use of this concept, not only to decrease the size of the BGP
tables, but also to enable easy to manage OSI level 3 routing [5]. It enables companies or
institutions to maintain their own allocated address space without needing to control the AS
or the BGP configuration. Additionally, LISP uses a pull mechanism to retrieve information
about prefix mappings instead of a push mechanism like BGP. This means that the information
is always up to date and that information about prefixes that you are unlikely to ever reach do
not need to be stored in the node.

You will read more about the characteristics and possibilities of LISP in the next few
chapters. After that, a section follows that describes the control plane library that has been
created as part of this project. Finally, the future work and conclusions are listed.

Marek Kuczyński July 10, 2011

2 CONCEPTS OF LISP 5

2 Concepts of LISP

2.1 Routing packets

The LISP protocol operates using OSI layer 3, this layer is used to specify the sending and
receiving IP version 4 or 6 address of a packet. In a normal situation when a packet gets
sent out, it traverses the local network card and eventually ends up on a node that can route
it further towards its destination. This is quite a static procedure, since the entire path the
packet will follow is determined based only on the sending and receiving IP addresses and global
routing policies that the packet may encounter on the Internet. The sender already needs to
have specific information about the destination that it wants to reach.

This is not much of an issue in small environments where for example one IP address
represents one server. It gets more difficult when one IP address represents multiple servers or
even complete server farms - how do you spread the load over all servers equally? And how
do you determine which node contains, for example, the e-mails that a customer has received?
There is currently no proper solution for issues like these.

Right now, the load balancing often gets mitigated by the use of round robin DNS [6], where
a random IP address from a predefined pool gets returned every time a domain name is looked
up. Unfortunately, this setup makes you dependant on the correct functioning higher OSI layers,
meaning that you need to send, receive and process a DNS query before your host knows where
to address the packet to. Additionally, the method is dependant on application support for
DNS and it does not offer decent granularity regarding load balancing. The reachability might
partially be solved, but end-user security and network exposure to the outside world are issues
that are introduced.

2.2 Mapping IDs to locations

However, DNS can provide consistent addressability since it uses a decentralized, hierarchical
database to map labels to IP addresses. The LISP protocol introduced a similar concept, except
that identities (in the form of IP addresses or other address types) are looked up and their true
IP address location is returned. The LISP mapping database contains the relations between
endpoint identifiers (EIDs) and routing locators (RLOCs) and these mappings are spread in a
distributed, decentralized fashion.

Figure 1: LISP logo

These routing locators form the gateways between a site or host and the Internet and
are announced in the conventional BGP Internet using a normally routeable IPv4 or IPv6

Marek Kuczyński July 10, 2011

2 CONCEPTS OF LISP 6

addresses. LISP RLOCs are capable of doing the lookups in the mapping database described
above, meaning that they know which RLOC should be addressed if a packet destined for some
endpoint identifier (EID) needs to be forwarded. If two LISP sites want to communicate with
each other, they can use any type of EID they like. This is not limited to just IP addressing;
MAC addresses, GPS coordinates or any type of consistent addressing can be used, as long as
you can partition it logically.

After doing the lookup for the EID, the sending RLOC will encapsulate the packet and
address it to the IP address of the destination RLOC. The receiving RLOC will decapsulate the
packet and send it to whatever destination address was specified in the payload. In most cases,
both RLOCs will operate as xTRs (bidirectional tunnel routers), which means they handle both
encapsulation and decapsulation from and to a site. This is not a hard requirement though,
you can also split these roles over multiple devices for upstream and downstream Internet
connectivity.

2.3 Communicating with the regular Internet

The situation illustrated above applies only if both gateways are LISP capable and registered
properly. This can be determined by doing a lookup in the mapping database, since there will
be no records returned for a site not using LISP. If only one site is LISP enabled, then a packet
sent from the LISP site is encapsulated and flows to a a LISP proxy router (called PxTR if it
handles both ingress and egress traffic). Once the packet leaves the PxTR, BGP takes over the
routing process.

The PxTR does not need to be physically connected to the rest of the LISP site, as long
as it is addressable by the xTR router that acts as a gateway for a LISP site. The PxTR will
announce the IP address prefixes that it is responsible for in regular BGP, through which it will
attract the traffic destined for these sites. It will then encapsulate traffic in between the PXTR
and the destination RLOC xTR, which will decapsulate the packet again. An example of these
techniques is shown in the next paragraph.

Marek Kuczyński July 10, 2011

2 CONCEPTS OF LISP 7

2.4 Maintaining consistent address space over multiple locations

Imagine that the University of Amsterdam owns a /24 IPv4 address block that it wants to share
with two American universities. In order to do this, all universities would need a LISP enabled
router on the edge of their internal network. These routers have to register with the central
mapping database which will keep track of the IP address allocated by their Internet carrier.
Additionally, they have to configure which part of the EID space their edge router represents,
this information is also registered and stored in the mapping database.

UVA
/26

SRI
/26

UCLA
/26

Internet
/0

PxTR
/24

EU

US

BGP

direct

encapped

Figure 2: A fictional topology where research institutions can maintain a consistent address
space between eachother. Every site gets an allocated subnet out of the public /24. Note; the
LISP map resolvers and map servers are not shown on this figure.

When the UVA wants to send traffic to UCLA, the UCLA RLOC address is looked up and
traffic can be encapsulated between both RLOC routers directly. The same goes for traffic in
between UCLA and SRI, even though the address space is allocated to the UVA in Europe.
Traffic in between LISP sites always has a link stretch of 1.0, irregardless of the ISP that
connects each site. What should be mentioned as well, is that this minimal stretch requires no
site specific configuration, except for the one-time setup mentioned before. The universities can
also use other identifiers in their EID space, like for example MAC addresses, to address each
other. This can be especially useful when dealing with virtual server environments.

The universities can also communicate with the rest of the world through the PxTR, which
will encapsulate the traffic between itself and the sites, while advertising the IP prefixes to the
DFZ. Multiple PxTRs can support the topology as long as they are advertised within BGP, so
multiple PxTRs could be split up across both continents.

Marek Kuczyński July 10, 2011

2 CONCEPTS OF LISP 8

2.5 Summary of benefits

Segregating the ”where” from the ”who” using LISP provides the following advantages;

• Consistent and global addressing
The university example shows how multiple individual institutions can share address space
in order to simplify addressing. The available subnets can be divided in any possible way
and assigned to any LISP enabled site. These addresses can either be used only internally,
or used as globally routeable addresses as well.

• Independence from Internet carrier
LISP makes use of a mapping system where any IPv4 or IPv6 address can be used as
RLOC address. It is therefore irrelevant which Internet service provider is used and what
addresses it provides to its endpoints. Multiple endpoint addresses can be associated with
one EID space and different metrics like weight and priority can be assigned to them.
This increases the reliability of the connectivity a site has to the Internet and also enables
traffic engineering to be configured on these links.

• Layer 2 connectivity using layer 3
Layer 2 addresses can be used to address other nodes or networks over layer 3. This means
that there is no need for dedicated layer 2 connections between sites, since this can be
done over cheaper, easier available and more flexible layer 3 connections. The Instance
ID feature of LISP can also guarantee that the connection is secure.

Keep in mind though that you do lose control over a part of the OSI stack, meaning that
you are dependant on another party for layer 2 connectivity. Spreading your connections
out over multiple ISPs with different backbones and equipment should provide enough
reliability though.

• IPv6 transition support
Many Internet exchange points (IXPs) [21] can route IPv6 traffic at this point, but the
connection in between a modem and the IXP is often not ready for IPv6 yet. Using LISP,
the traffic in between a xTR and PxTR can be encapsulated with an IPv4 header, meaning
that an IPv6 incompatible part of the infrastructure can still be used. Once the path in
between the modem and the IXP becomes IPv6 ready, the prefix could be changed using
IPv6 router advertisements and LISP could be removed from the network (or it can be
used for the other benefits that it offers).

• Enhanced mobility
So far, this paper has described the solutions that LISP offers for network-based flexibility.
The same concepts can be applied for individual hosts as well, which offers a whole new
scala of opportunities. As an example, mobile phones can register a public IP by contacting
the LISP mapping system, irregardless of whether they are using a wireless network or
any form of mobile Internet. Connectivity with the outside world goes through the PxTR
while connectivity between LISP capable mobile phones has a link stretch of 1. Mobile
devices can call each other simply by sending packets to the known public IP address,
without the need for a central infrastructure to route the traffic through.

The software to make this possible on the Android mobile operating system is currently
in testing, while Qualcomm (a large manufacturer of mobile phone chips) is considering
to implement the protocol in mobile chips. Testing of mobile nodes is also taking place
on the public LISP beta network [7].

Marek Kuczyński July 10, 2011

3 PREVIOUS RESEARCH 9

3 Previous research

The LISP protocol is still under heavy development and it is still in draft status according to
the IETF. The documentation that belongs to the protocol development can be found here and
here. Over the last few years, the following research has been performed;

• The University of Louvain has released an alpha of OpenLISP[8], which enables encapsu-
lation and decapsulation of LISP packets in the FreeBSD kernel. Their software provides
data plane functionality, which can be combined with the control plane through an API.

• Atilla de Groot (former UvA and OS3 student) has evaluated the LISP control plane using
OpenLISP and ALT in 2009 [9]. His research focused mostly on the overlay topology that
enables LISP sites to share RLOC and EID information. One of his conclusion was that
the OpenLISP software was not feature complete yet and that a control plane packet
daemon is required.

• A lookup tool called LIG has been developed to query the LISP mapping database [10].
It queries for the location of an EID, after which it receives an RLOC as reply. Later in
this paper you will read about the Python implementation that has been created of this
tool during the project.

• A LISP beta network [7] has been operational for a couple of years. It enables multi-
vendor testing of the protocol and new features, like for example the LISP mobile node
extensions. Participants include universities, hardware vendors, but also large Internet
companies like Facebook and Google. As of July 2011, it consists of approximately 100
xTRs, over 10 map servers and around 10 PxTRs, all spread over 25 countries [11].

• InTouch NV[12] is currently in the process of deploying LISP on the end-user network.
The protocol will replace the current MPLS structure and will enable greater flexibility
for customers in various ways. The current implementations of LISP are considered stable
enough for a production environment.

Marek Kuczyński July 10, 2011

4 LISP CONTROL PLANE 10

4 LISP control plane

The LISP control plane takes care of acquiring, maintaining and sharing RLOC and EID infor-
mation within the LISP ecosystem. The following list gives a brief overview of the control plane
functionality of the LISP protocol. The information is based on draft-ietf-lisp-13 [13] of
the LISP protocol which was released in June 2011, the packets implemented in the library are
described in this document as well.

4.1 Control packet structure

The general structure of the packets is as follows;

IPv4 header IPv6 header

UDP

MapRequest MapReply MapRegister MapNotify

Nonce

Source EID + RLOC Authentication Data

N x LISP records

The contents of the LISP records vary per packet type.

4.2 Packet types

• MapRequest
The map request is sent out in order to retrieve an RLOC address for an EID prefix. A
host can send this packet to a map server which will send back a reply message. The
map request contains several flags denoting what kind of request is made. The packet
also contains RLOC information about the requesting node and the address plus address
family that is being requested.

• MapReply
This packet is sent back to the requester, containing the EID allocation plus its size. It
also contains TTL information for the record, RLOC addresses and information about the
metrics of the space.

• MapRegister
The register packet announces that a xTR is going to be responsible for an EID prefix.
The packet contains the addresses of the prefix, the sizes of them and authentication data
in order to validate the request.

• MapNotification
The map notification is used to notify a remote LISP site about local changes in the RLOC
or EID space. The packet contents are very similar to the map register packet format.

Marek Kuczyński July 10, 2011

draft-ietf-lisp-13

4 LISP CONTROL PLANE 11

4.3 Control packet encapsulation

Encapsulated Control Message
The ECM is not really a packet type of its own, but rather a wrapper around another LISP
control message. It adds an additional IP, UDP and LISP header in front of a regular LISP
packet, through which two machines can be addressed at once. As an example, when making a
map request, the following structure is followed;

IP header
source: requesting node

destination: map server address

UDP header

LISP Encapsulated Control Message

IP header
source: requesting node

destination: query address

UDP header

LISP MapRequest

The packet will first be received by the map server, which will strip the packet from the
top three layers. After that, the packet is forwarded to the RLOC IP address responsible for
the EID. This RLOC will send a map reply back to the original requester. All involved nodes
are now up to date of each others status after this packet triangle has completed.

Marek Kuczyński July 10, 2011

5 LISP LIBRARY 12

5 LISP library

Programming language: Python

Python [14] was chosen as the programming language for the creation of the library. Reasons
include easy portability across operating systems and an extensive amount of libraries that can
be used. Additionally, it is a very accessible and widely used programming language that can
easily be used in a modular fashion. Python will not perform as great on high data throughput
as C will, but it is a good choice for lower throughput functions like control planes.

Packet crafting library: Scapy

Scapy [15] is a well-known library for packet manipulation in Python. It uses the concept of
’layers’ in order to craft packets, where every layer stands for a network protocol like IP or
UDP. These layers can be chained together and special fields like checksums over payload can
automatically be calculated. The research group could therefor focus completely on the design
and coding of the new LISP layer, which will be submitted to the ’contribute’ code base of
Scapy in the near future.

5.1 Features and internals

The final version of the library can craft all the control plane packets of LISP. After initializing
a packet layer class, the user can specify the parameters that the packet should contain. Special
fields like record count fields, address identifier fields and the varying bit length of these fields
are taken care of as well, they are automatically calculated when the packet is built.

The library works fully synchronous, meaning that it can both generate and dissect LISP
packets. The library can also handle both IPv4 and IPv6 addresses and destinations while any
new address families for EIDs can be added easily. The library has been verified to work with
existing networking hardware and it can also dissect packet captures or live traffic sent by these
devices.

Marek Kuczyński July 10, 2011

6 LISP INTERNET GOPHER 13

6 LISP Internet Gopher

Once the library was finalized, some basic tools were built in order to interact with LISP nodes.
The first and finalized piece of software is a Python implementation of the LISP Internet Gopher
(LIG). The original implementation of this tool has been written in C by David Meyer [10].

LIG can query a LISP map server for the RLOC belonging to a certain EID. This happens
by sending out a encapsulated map request to the map server, in a similar fashion as described
in paragraph 4.3. After this, the map reply is processed and displayed by the requesting node.

6.1 Features and internals

The Python implementation of LIG extends on the original by storing the requests and replies
in Python objects. This means that the library and the Python LIG can be used together in
order to create a daemon or other type of service.

LIG uses the following syntax to request RLOCs;

1 $. / l i g . py <map−se rver> <EID query>

The following steps are taken in order to send the request and to process the reply.

1. A check is done whether arguments are supplied on the command line, or whether LIG
should drop to the Python shell for user input.

2. A check is done to see whether the input values are IP addresses or DNS names. DNS
names are resolved and stored as the corresponding IP address.

3. Information about the sending node is collected. Checks are done to see whether the
node has an IPv4 and/or IPv6 address, this is important since LISP topologies can use
either one address family or both. IPv6 is preferred as the sending address, but then there
obviously has to be an IPv6 address for the destination as well.

4. The request packet is built with all the information available. Checksums for the IP
headers are calculated.

5. A socket is opened on the local machine. This socket will capture all traffic for a short
period (default 1 second) and filter out the LISP map replies.

6. The correct map reply is verified by checking the packet type and by comparing the nonce
from the sender and receiver. This is done by iterating through the array containing the
network card capture.

7. The output of the capture is printed to the terminal.

Marek Kuczyński July 10, 2011

6 LISP INTERNET GOPHER 14

6.2 LIG example

An example of the in and output of LIG is displayed below. The server and query in this
example are DNS names that are mapped to IP addresses representing a map server and EID
(85.184.2.42 and 85.184.3.77 respectively). The output of ’Ethernet’ and ’IP’ has been
omitted.

1 marek@lisp−dev :˜/ py−l i spne twork ing$ sudo . / l i g . py ms . marek . a s i a marek . a s i a
2 WARNING: No route found for IPv6 d e s t i n a t i on : : (no d e f au l t route ?)
3 Begin emis s ion :
4 . . .
5
6 ###[Ethernet]###
7 . . .
8
9 ###[IP]###

10 . . .
11
12 ###[UDP]###
13 spor t = 4342
14 dport = 62337
15 l en = 48
16 chksum = 0xb1c8
17 ###[LISP]###
18 ###[LISP Map−Reply packe t]###
19 ptype = 2L
20 r e p l y f l a g s=
21 p2 = 0L
22 re s e rved = 0L
23 map count = 1
24 nonce = 0 x39 f fd3ec9
25 \map records \
26 |###[LISP Map−Reply Record]###
27 | r e c o r d t t l= 1440L
28 | l o c a t o r c oun t= 1
29 | e i d p r e f i x l e n g t h= 29
30 | ac t i on = no ac t i on
31 | au tho r i t a t i v e= 1L
32 | r e s e rved = 0L
33 | map version number= 0L
34 | r e c o r d a f i= 1
35 | r e co rd addr e s s= ’ 8 5 . 1 8 4 . 3 . 7 2 ’
36 | \ l o c a t o r s \
37 | |###[LISP Locator Records]###
38 | | p r i o r i t y = 50
39 | | weight = 50
40 | | mu l t i c a s t p r i o r i t y= 255
41 | | mul t i c a s t we i gh t= 0
42 | | r e s e rved = 0L
43 | | l o c a t o r f l a g s= l o c a l l o c a t o r+route
44 | | l o c a t o r a f i= 1
45 | | address = ’ 82 . 1 36 . 213 . 75 ’

Marek Kuczyński July 10, 2011

85.184.2.42
85.184.3.77

7 CONCLUSION 15

7 Conclusion

Both the library and the Python implementation of LIG lay the groundwork for the following;

• Registration of hosts in LISP
The library can interact with the LISP mapping database and it should be able to suc-
cessfully finish the transaction of a registration. The library plus some additional software
should be able to register an OpenLISP node as a valid participant, since OpenLISP has
the kernel support to process the packets generated by LISP. The research team is excited
about the possibilities that further development of the LISP mobile node can bring in the
near future.

• Testing of LISP control plane
The LISP control plane specifications are still work in progress and some design decisions
haven’t been made yet. Using the library, the correct functioning of prototype designs
can be verified and diagnostic information can be retrieved about possible failures during
the processing of control plane packets.

• Packet handling for the creation of a daemon
With Python LIG, it is already possible to perform lookups in the LISP database sys-
tem. The packet handling of the library could be combined with the necessary logic to
automatically receive and reply to status requests.

• Debugging and hacking of routing hardware
At the moment, it is difficult to debug routing equipment since you are limited to inter-
action using other hardware. It would be very useful to test the current LISP implemen-
tations in routers, for example by sending malformed or illegal packets. Right now, these
kind of issues are still easy to fix, since LISP is not deployed on a massive scale yet.

• Other creative solutions
The development of the Python LIG implementation proves that it is not difficult to create
tools which can interact with the LISP control plane. Much like with the draft definitions,
the exact business models for LISP are still on the drawing table. Simple control plane
tools could enable management, status updates or basic configuration to be done by third
parties or customers.

7.1 Publication of work

The source code of the programs produced during the research project can be downloaded of
Github[16] or found in the appendix. The source code falls under the GPL2 license[18]. This
document and the presentation slides used to present it can be downloaded from the research
project website [17].

Marek Kuczyński July 10, 2011

REFERENCES 16

References

[1] LISP protocol information
http://www.lisp4.net/

[2] Border Gateway Protocol
http://en.wikipedia.org/wiki/Border_Gateway_Protocol

[3] Autonomous Systems
http://en.wikipedia.org/wiki/Autonomous_system_(Internet)

[4] Route reflectors
http://en.wikipedia.org/wiki/Route_reflector

[5] OSI Layer 3
http://en.wikipedia.org/wiki/OSI_Layer_3

[6] Round-robin DNS
http://en.wikipedia.org/wiki/Round-robin_DNS

[7] LISP Beta network
http://www.lisp4.net/lisp-site/

[8] OpenLISP
http://www.openlisp.org/

[9] Implementing OpenLISP with LISP + ALT, Atilla de Groot, 2009
http://cees.delaat.net/sne-2008-2009/p06/report.pdf

[10] LIG C source code
https://github.com/davidmeyer/lig

[11] Overview of LISP beta network
http://www.lisp4.net/images/lisp-alt.pdf

[12] InTouch NV
http://www.intouch.eu

[13] LISP draft 13
http://tools.ietf.org/id/draft-ietf-lisp-13.txt

[14] Python
http://en.wikipedia.org/wiki/Python_(programming_language)

[15] Scapy
http://www.secdev.org/projects/scapy/

[16] RP2 project source code
https://github.com/intouch/py-lispnetworking

[17] RP2 page containing this document and presentation
http://cees.delaat.net/sne-2010-2011/index.html

[18] GPL2 information
http://www.gnu.org/licenses/gpl-2.0.html

Marek Kuczyński July 10, 2011

http://www.lisp4.net/
http://en.wikipedia.org/wiki/Border_Gateway_Protocol
http://en.wikipedia.org/wiki/Autonomous_system_(Internet)
http://en.wikipedia.org/wiki/Route_reflector
http://en.wikipedia.org/wiki/OSI_Layer_3
http://en.wikipedia.org/wiki/Round-robin_DNS
http://www.lisp4.net/lisp-site/
http://www.openlisp.org/
http://cees.delaat.net/sne-2008-2009/p06/report.pdf
https://github.com/davidmeyer/lig
http://www.lisp4.net/images/lisp-alt.pdf
http://www.intouch.eu
http://tools.ietf.org/id/draft-ietf-lisp-13.txt
http://en.wikipedia.org/wiki/Python_(programming_language)
http://www.secdev.org/projects/scapy/
https://github.com/intouch/py-lispnetworking
http://cees.delaat.net/sne-2010-2011/index.html
http://www.gnu.org/licenses/gpl-2.0.html

REFERENCES 17

[19] Default Free Zone
http://en.wikipedia.org/wiki/Default-free_zone

[20] Locator/ID split
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4685199

[21] Internet Exchange Point
http://en.wikipedia.org/wiki/Internet_exchange_point

All references have been accessed in July 2011.

Marek Kuczyński July 10, 2011

http://en.wikipedia.org/wiki/Default-free_zone
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4685199
http://en.wikipedia.org/wiki/Internet_exchange_point

8 APPENDIX; SOURCE CODE 18

8 Appendix; source code

Last updated; July 10, 2011. Visit Github [16] for updated versions.

8.1 Library

1 #!/ usr / b in /env python
2 # scapy . c on t r i b . d e s c r i p t i o n = Locator ID Separat ion Protoco l
3 # scapy . c on t r i b . s t a t u s = loads
4 ”””
5 This f i l e i s par t o f a t o o l s e t to manipulate LISP contro l−p lane
6 packe t s ”py−l i s pn e two r k i n g ” .
7
8 Copyright (C) 2011 Marek Kuczynski <marek@intouch . eu>
9 Copyright (C) 2011 Job Sn i j d e r s <job@intouch . eu>

10
11 This f i l e i s s u b j e c t to the terms and cond i t i on s o f the GNU General
12 Pub l i c License . See the f i l e COPYING in the main d i r e c t o r y o f t h i s
13 arch i v e f o r more d e t a i l s .
14 ”””
15
16 import socket , s t ruc t , random , n e t i f a c e s , sys
17 from s t r i n g import a s c i i l e t t e r s
18 from scapy import ∗
19 from scapy . a l l import ∗
20
21 ””” GENERAL DECLARATIONS ”””
22
23 LISP TYPES = {
24 0 : ” r e s e rved ” ,
25 1 : ”maprequest ” ,
26 2 : ”mapreply” ,
27 3 : ”mapreg i s te r ” ,
28 4 : ”mapnotify ” ,
29 8 : ” encapsu l a t ed cont ro l mes sage ”
30 }
31
32 LISP MAP REPLY ACTIONS = {
33 0 : ” no ac t i on ” ,
34 1 : ” nat ive f o rward ” ,
35 2 : ” send map request ” ,
36 3 : ”drop”
37 }
38
39 AFI = {
40 ””” An AFI va lue o f 0 used in t h i s s p e c i f i c a t i o n i n d i c a t e s an un sp e c i f i e d

encoded address where the l e n g t h o f the address i s 0 b y t e s f o l l ow i n g the
16− b i t AFI va lue o f 0 . See the f o l l ow i n g URL fo r the o ther va l u e s :

41 h t t p ://www. iana . org / ass ignments / address−fami ly−numbers/ address−fami ly−numbers
. xml ”””

42
43 ” zero ” : 0 ,
44 ” ipv4 ” : 1 ,
45 ” ipv6 ” : 2 ,
46 ” l c a f ” : 16387
47 }
48

Marek Kuczyński July 10, 2011

8 APPENDIX; SOURCE CODE 19

49 ””” nonce max determines the maximum va lue o f a nonce f i e l d . The d e f a u l t i s s e t
to 18446744073709551615 , s ince t h i s i s the maximum po s s i b l e va lue (>>> i n t (’ f
’∗16 , 16)) . TODO − see about the entropy f o r t h i s source ”””

50 nonce max = 16777215000
51 nonce min = 15000000000
52
53 ”””CLASS TO DETERMINE WHICH PACKET TYPE TO INTERPRET
54 scapy i s des i gned to read out b y t e s b e f o r e i t can c a l l another c l a s s . we are

us ing the ug l y c ond i t i ona l con s t ruc t i on you see be low to circumvent t h i s ,
s ince a l l c l a s s e s must have the l e n g t h o f one or more by t e s . improving and
making t h i s p r e t t i e r i s s t i l l on the TODO l i s t ”””

55
56 class LISP(Packet) :
57 name = ”LISP”
58
59 def gu e s s pay l o ad c l a s s (s e l f , payload) :
60 # read the pay load (non i n t e r p r e t e d par t o f the packe t s t r i n g) in t o a

v a r i a b l e
61 a = payload [: 1]
62 # put the hex from the packe t remainder in t o an a t t r i b u t e
63 b = s t r u c t . unpack (”B” , a)
64 # s h i f t the va lue from the a t t r i b u t e f o r 4 b i t s , so t ha t we have

on ly the 4 b i t type va lue t ha t we care about in the form of a
by t e . t h i s means t ha t f l a g s are not taken in to account in t h i s
va lue , which makes enumeration much c l eaner and ea s i e r .

65 c = b [0] >> 4
66
67 # compare the i n t e g e r from the va lue to the packe t t ype and

cont inue to the co r r e c t c l a s s
68 i f c == 1 :
69 return LISP MapRequest
70 e l i f c == 2 :
71 return LISP MapReply
72 e l i f c == 3 :
73 return LISP MapRegister
74 e l i f c == 8 :
75 return LISP Encapsulated Control Message
76 else :
77 return payload
78
79
80 ””” the c l a s s be low reads the f i r s t by t e o f an un i d e n t i f i e d IPv4 or IPv6 header .

i t then checks the f i r s t by t e o f the pay load to see i f i t s IPv4 or IPv6 header
. the IPv4 header conta ins a by t e to d e s c r i b e the IP vers ion , which i s a lways
hex45 . IPv6 has a 4 b i t header , which i s harder to read in scapy . maybe t h i s
can be done in a p r e t t i e r way − TODO ”””

81
82 class LCAF Type(Packet) :
83 def gu e s s pay l o ad c l a s s (s e l f , payload) :
84 a = payload [: 1]
85 b = s t r u c t . unpack (”B” , a)
86 c = b [0] >> 4
87
88 i f c == 4 :
89 return IP
90 e l i f c == 6 :
91 return IPv6
92 e l i f c == 16387 :
93 print ”LCAF, WIP”
94 else :

Marek Kuczyński July 10, 2011

8 APPENDIX; SOURCE CODE 20

95 return payload
96
97 ”””
98 LISPAddressField , Deal ing wi th addre s se s in LISP contex t , the packe t s o f t en

conta in (a f i , address) where the a f i d ec i d e s the l e n g t h o f the address (0 , 32
or 128 b i t) . LISPAddressField w i l l parse an IPFie ld or an IP6Fie ld depending
on the va lue o f the AFI f i e l d .

99 ”””
100
101 class LISP AddressFie ld (F i e ld) :
102 def i n i t (s e l f , f ld name , ip f ld name) :
103 F i e ld . i n i t (s e l f , ip f ld name , ’ 0 ’)
104
105 s e l f . f ld name=fld name
106 s e l f . i p f i e l d=IPFie ld (ip f ld name , ’ 1 2 7 . 0 . 0 . 1 ’)
107 s e l f . i p 6 f i e l d=IP6Fie ld (ip f ld name , ’ : : 1 ’)
108
109 def g e t f i e l d (s e l f , pkt , s) :
110 i f g e t a t t r (pkt , s e l f . f ld name) == AFI [” ipv4 ”] :
111 return s e l f . i p f i e l d . g e t f i e l d (pkt , s)
112 e l i f g e t a t t r (pkt , s e l f . f ld name) == AFI [” ipv6 ”] :
113 return s e l f . i p 6 f i e l d . g e t f i e l d (pkt , s)
114
115 def add f i e l d (s e l f , pkt , s , va l) :
116 i f g e t a t t r (pkt , s e l f . f ld name) == AFI [” ipv4 ”] :
117 return s e l f . i p f i e l d . add f i e l d (pkt , s , va l)
118 e l i f g e t a t t r (pkt , s e l f . f ld name) == AFI [” ipv6 ”] :
119 return s e l f . i p 6 f i e l d . add f i e l d (pkt , s , va l)
120
121
122 ”””RECORD FIELDS, PART OF THE REPLY, REQUEST, NOTIFY OR REGISTER PACKET CLASSES

”””
123
124 ””” LISP Address Fie ld , used mu l t i p l e t imes whenever an AFI determines the l e n g t h

o f the IP f i e l d . f o r example , IPv4 r e qu i r e s 32 b i t s o f s t o rage wh i l e IPv6
needs 128 b i t s . This f i e l d can e a s i l y be extended once new LISP LCAF formats
are needed , see the LISP AddressFie ld c l a s s f o r t h i s . ”””

125 class LISP AFI Address (Packet) : # used f o r 4 by t e f i e l d s t h a t
conta in a AFI and a v4 or v6 address

126 name = ”ITR RLOC Address ”
127 f i e l d s d e s c = [
128 Shor tF ie ld (” a f i ” , i n t (1)) ,
129 LISP AddressFie ld (” a f i ” , ” address ”)
130]
131
132 def ext rac t padd ing (s e l f , s) :
133 return ”” , s
134
135 ””” Map Reply LOCATOR, page 28 , paragraph 6 . 1 . 4 , the LOCATOR appears N times

dependant on the l o c a t o r count in the record f i e l d ”””
136 class LISP Locator Record (Packet) :
137 name = ”LISP Locator Records ”
138 f i e l d s d e s c = [
139 ByteFie ld (” p r i o r i t y ” , 0) ,
140 ByteFie ld (”weight ” , 0) ,
141 ByteFie ld (” mu l t i c a s t p r i o r i t y ” , 0) ,
142 ByteFie ld (”mu l t i c a s t we i gh t ” , 0) ,
143 B i tF i e ld (” r e s e rved ” , 0 , 13) ,
144 F lag sF i e ld (” l o c a t o r f l a g s ” , 0 , 3 , [” l o c a l l o c a t o r ” , ”probe” , ” route ”]) ,
145 Shor tF ie ld (” l o c a t o r a f i ” , i n t (1)) ,

Marek Kuczyński July 10, 2011

8 APPENDIX; SOURCE CODE 21

146 LISP AddressFie ld (” l o c a t o r a f i ” , ” address ”)
147]
148
149 # de l im i t s the packet , so t ha t the remaining records are not conta ined as ’

raw ’ pay loads
150 def ext rac t padd ing (s e l f , s) :
151 return ”” , s
152
153 ””” Map Reply RECORD, page 28 , paragraph 6 . 1 . 4 , the RECORD appears N times

dependant on Record Count ”””
154 class LISP MapRecord (Packet) :
155 name = ”LISP Map−Reply Record”
156 f i e l d s d e s c = [
157 B i tF i e ld (” r e c o r d t t l ” , 0 , 32) ,
158 Fie ldLenFie ld (” l o c a t o r c oun t ” , None , ” l o c a t o r s ” , ”B” , count o f=” l o c a t o r s

” , ad jus t=lambda pkt , x : x/12) ,
159 ByteFie ld (” e i d p r e f i x l e n g t h ” , 0) ,
160 BitEnumField (” ac t i on ” , 0 , 3 , LISP MAP REPLY ACTIONS) ,
161 B i tF i e ld (” au tho r i t a t i v e ” , 0 , 1) ,
162 B i tF i e ld (” r e s e rved ” , 0 , 16) ,
163 B i tF i e ld (”map version number” , 0 , 12) ,
164 Shor tF ie ld (” r e c o r d a f i ” , i n t (1)) ,
165 LISP AddressFie ld (” r e c o r d a f i ” , ” r e co rd addr e s s ”) ,
166 Packe tL i s tF i e ld (” l o c a t o r s ” , None , LISP Locator Record , count from=lambda

pkt : pkt . l o c a t o r c oun t + 1)
167]
168
169 # de l im i t s the packet , so t ha t the remaining records are not conta ined as ’

raw ’ pay loads
170 def ext rac t padd ing (s e l f , s) :
171 return ”” , s
172
173 ””” Map Request RECORD, page 25 , paragraph 6 . 1 . 2 , the ’REC ’ , appears N times

depending on record count ”””
174 class LISP MapRequestRecord (Packet) :
175 name= ”LISP Map−Request Record”
176 f i e l d s d e s c = [
177 ByteFie ld (” r e s e rved ” , 0) ,
178 # eid mask l en g t h
179 ByteFie ld (” e id mask l en ” , 24) ,
180 # eid p r e f i x a f i
181 Shor tF ie ld (” r e q u e s t a f i ” , i n t (1)) ,
182 # eid p r e f i x in format ion + a f i
183 LISP AddressFie ld (” r e q u e s t a f i ” , ” r eque s t add r e s s ”)
184]
185
186 def ext rac t padd ing (s e l f , s) :
187 return ”” , s
188
189 ”””PACKET TYPES (REPLY, REQUEST, NOTIFY OR REGISTER) ”””
190
191 class LISP MapRequest (Packet) :
192 ””” map re que s t par t used a f t e r the f i r s t 16 b i t s have been read by the

LISP Type c l a s s ”””
193 name = ”LISP Map−Request packet ”
194 f i e l d s d e s c = [
195 B i tF i e ld (”ptype” , 0 , 4) ,
196 F lag sF i e ld (” r e q u e s t f l a g s ” , None , 6 , [” au tho r i t a t i v e ” , ”

map rep ly inc luded ” , ”probe” , ”smr” , ” p i t r ” , ” smr invoked ”]) ,
197 B i tF i e ld (”p1” , 0 , 6) ,

Marek Kuczyński July 10, 2011

8 APPENDIX; SOURCE CODE 22

198 # r i g h t now we s t e a l 3 ex t ra b i t s from the re se rved f i e l d s t h a t are
p r i o r to the i t r r l o c r e c o r d s

199 # the lambda you see below , checks f o r the l e n g t h o f the ’
i t r r l o c r e c o r d s ’ by going from the l a r g e s t p o s s i b l e IP + AFI
record (IPv6 = 18 by t e s) to the sma l l e s t one (IPv4 = 6 by t e s) . The
entry in the middle (%12) t a k e s care o f dua l IPv4 records .

200 # TODO − ge t the 2 record l im i t a t i o n worked out .
201 Fie ldLenFie ld (” i t r r l o c c o u n t ” , None , ” i t r r l o c r e c o r d s ” , ”B” , count o f=”

i t r r l o c r e c o r d s ” , ad jus t=lambda pkt , x : ((not (x%18) and (x/18−1)) or
((not (x%12) and (x/12−1)) or ((not x%6) and (x/6−1))))) ,

202 Fie ldLenFie ld (” r eques t count ” , None , ” r e qu e s t r e c o r d s ” , ”B” , count o f=”
r e qu e s t r e c o r d s ” , ad jus t=lambda pkt , x : x/8) ,

203 XLongField (”nonce” , random . rand int (nonce min , nonce max)) ,
204 # below , the source address o f the r e que s t i s l i s t e d , t h i s occurs

once per packe t
205 Shor tF ie ld (” r e q u e s t a f i ” , i n t (1)) ,
206 # the LISP IP address f i e l d i s cond i t i ona l , because i t i s absent i f

the AFI i s s e t to 0
207 Cond i t i ona lF i e ld (LISP AddressFie ld (” r e q u e s t a f i ” , ” address ”) , lambda pkt :

pkt . r e q u e s t a f i != 0) ,
208 Packe tL i s tF i e ld (” i t r r l o c r e c o r d s ” , None , LISP AFI Address , count from=

lambda pkt : pkt . i t r r l o c c o u n t + 1) ,
209 Packe tL i s tF i e ld (” r e qu e s t r e c o r d s ” , None , LISP MapRequestRecord ,

count from=lambda pkt : pkt . r eque s t count)
210]
211
212 class LISP MapReply (Packet) :
213 ””” map r ep l y par t used a f t e r the f i r s t 16 b i t s have been read by the

LISP Type c l a s s ”””
214 name = ”LISP Map−Reply packet ”
215 f i e l d s d e s c = [
216 B i tF i e ld (”ptype” , 0 , 4) ,
217 F lag sF i e ld (” r e p l y f l a g s ” , None , 3 , [”probe” , ” echo nonce a lg ” , ” s e c u r i t y ”

]) ,
218 B i tF i e ld (”p2” , 0 , 9) ,
219 B i tF i e ld (” r e s e rved ” , 0 , 8) ,
220 Fie ldLenFie ld (”map count” , 0 , ”map records ” , ”B” , count o f=”map records ” ,

ad jus t=lambda pkt , x : x/16 − 1) ,
221 XLongField (”nonce” , random . rand int (nonce min , nonce max)) ,
222 Packe tL i s tF i e ld (”map records ” , 0 , LISP MapRecord , count from=lambda pkt :

pkt . map count + 1)
223]
224
225 class LISP MapRegister (Packet) :
226 ””” map r ep l y par t used a f t e r the f i r s t 16 b i t s have been read by the

LISP Type c l a s s ”””
227 name = ”LISP Map−Reg i s t e r packet ”
228 f i e l d s d e s c = [
229 B i tF i e ld (”ptype” , 0 , 4) ,
230 F lag sF i e ld (” r e g i s t e r f l a g s ” , None , 1 , [” proxy map reply ”]) ,
231 B i tF i e ld (”p3” , 0 , 18) ,
232 F lag sF i e ld (” r e g i s t e r f l a g s ” , None , 1 , [”want−map−no t i f y ”]) ,
233 Fie ldLenFie ld (” r e g i s t e r c o un t ” , None , ” r e g i s t e r r e c o r d s ” , ”B” , count o f=”

r e g i s t e r r e c o r d s ” , ad jus t=lambda pkt , x : x/16 − 1) ,
234 XLongField (”nonce” , random . rand int (nonce min , nonce max)) ,
235 Shor tF ie ld (” key id ” , 0) ,
236 Shor tF ie ld (” au th en t i c a t i on l eng th ” , 0) ,
237 # au th en t i c a t i on l en g t h e xp r e s s e s i t s e l f in by tes , so no

mod i f i c a t i on s needed here

Marek Kuczyński July 10, 2011

8 APPENDIX; SOURCE CODE 23

238 StrLenFie ld (” au then t i c a t i on da ta ” , None , l ength f rom = lambda pkt : pkt .
au th en t i c a t i on l eng th) ,

239 Packe tL i s tF i e ld (” r e g i s t e r r e c o r d s ” , None , LISP MapRecord , count from=
lambda pkt : pkt . r e g i s t e r c o un t + 1)

240]
241
242 class LISP MapNotify (Packet) :
243 ””” map no t i f y par t used a f t e r the f i r s t 16 b i t s have been read by the

LISP Type c l a s s ”””
244 name = ”LISP Map−Not i fy packet ”
245 f i e l d s d e s c = [
246 B i tF i e ld (”ptype” , 0 , 4) ,
247 B i tF i e ld (” r e s e rved ” , 0 , 12) ,
248 ByteFie ld (” r e s e r v e d f i e l d s ” , 0) ,
249 Fie ldLenFie ld (” no t i f y c oun t ” , None , ” n o t i f y r e c o r d s ” , ”B” , count o f=”

n o t i f y r e c o r d s ”) ,
250 XLongField (”nonce” , random . rand int (nonce min , nonce max)) ,
251 Shor tF ie ld (” key id ” , 0) ,
252 Shor tF ie ld (” au th en t i c a t i on l eng th ” , 0) ,
253 # au th en t i c a t i on l en g t h e xp r e s s e s i t s e l f in by tes , so no

mod i f i c a t i on s needed here
254 StrLenFie ld (” au then t i c a t i on da ta ” , None , l ength f rom = lambda pkt : pkt .

au th en t i c a t i on l eng th) ,
255 Packe tL i s tF i e ld (” n o t i f y r e c o r d s ” , None , LISP MapRecord , count from=lambda

pkt : pkt . no t i f y c oun t)
256]
257
258 class LISP Encapsulated Control Message (Packet) :
259 name = ”LISP Encapsulated Control Message packet ”
260 f i e l d s d e s c = [
261 B i tF i e ld (”ptype” , 0 , 4) ,
262 F lag sF i e ld (” ecm f l ag s ” , None , 1 , [” s e c u r i t y ”]) ,
263 B i tF i e ld (”p8” , 0 , 27)
264]
265
266 ””” Bind LISP in to scapy s t a c k
267
268 According to h t t p ://www. iana . org / ass ignments / port−numbers :
269 l i s p−data 4341/ tcp LISP Data Packets
270 l i s p−data 4341/udp LISP Data Packets
271 l i s p−cons 4342/ tcp LISP−CONS Contro l
272 l i s p−con t r o l 4342/udp LISP Data−Triggered Contro l ”””
273
274 # t i e LISP in to the IP/UDP s tack
275 b i nd l ay e r s (UDP, LISP , dport=4342)
276 b i nd l ay e r s (UDP, LISP , spor t=4342)
277 b i nd l ay e r s (LISP Encapsulated Control Message , LCAF Type ,)
278
279 ””” s t a r t scapy s h e l l ”””
280 i f name == ” main ” :
281 i n t e r a c t (mydict=g l oba l s () , mybanner=” l i s p debug”)

Marek Kuczyński July 10, 2011

8 APPENDIX; SOURCE CODE 24

8.2 LIG

1 #!/ usr / b in /env python2 .6
2 ”””
3 This f i l e i s par t o f a t o o l s e t to manipulate LISP contro l−p lane
4 packe t s ”py−l i s pn e two r k i n g ” .
5
6 Copyright (C) 2011 Marek Kuczynski <marek@intouch . eu>
7 Copyright (C) 2011 Job Sn i j d e r s <job@intouch . eu>
8
9 This f i l e i s s u b j e c t to the terms and cond i t i on s o f the GNU General

10 Pub l i c License . See the f i l e COPYING in the main d i r e c t o r y o f t h i s
11 arch i v e f o r more d e t a i l s .
12 ”””
13 # query a mapserver f o r the RLOC of the g iven EID space
14 # note t ha t t h i s does no t work over NAT
15 # you a l s o need roo t f o r the socke t s , might f i x t h i s in the f u t u r e
16
17 from l i s p import ∗
18
19 # de f i n e the t imeout here , j u s t in case no r ep l y i s r e c e i v ed
20 timeout = 1
21 # de f i n e the i n t e r f a c e to send out on , FIXME
22 i n t e r f a c e = ’ eth0 ’
23 # de f i n e the use message
24 use = ”USAGE: . / pyLIG . py <mapserver> <eid−query>”
25 a f i e r r o r = ”ERROR: the AFI (IPv4 / IPv6) you ’ re t ry ing to use i s not a v a i l a b l e .

check i f c o n f i g ”
26
27 # c l a s s to r e s o l v e FQDN addres se s us ing Google DNS. i t sends out a DNS

packe t and re turns the r e p l y IP . r i g h t now , q type i s s e t to A (= IPv4)
, gonna f i x t h i s f o r AAAA (= IPv6) soon .

28 def resolveFQDN(host) :
29 dns=DNS(rd=1,qd=DNSQR(qname=host , qtype=’A ’))
30 response=sr1 (IP (dst=’ 8 . 8 . 8 . 8 ’) /UDP() /dns)
31 i f re sponse . ha s l aye r (DNS) :
32 ans = response . g e t l a y e r (DNS) . an
33 return ans . rdata
34
35 # check i f an input i s a FQDN or IP record , s ince they both appear as

s t r i n g s
36 def checkFQDN(s t r i n g) :
37 i f re . match (” [A−Za−z] ” , s t r i n g) :
38 return resolveFQDN(s t r i n g)
39 else :
40 return s t r i n g
41
42 def sendLIG (map server , query) :
43 # an a l t e r n a t i v e approach to r e t r i e v e the ho s t s ip i s by us ing sock e t .

gethostbyname (socke t . gethostname ()) , but t h i s un f o r t una t l y o f t en
re turns on ly a loopback on LINUX systems . the method below appears to
work

44 sou r c e ipv4 = n e t i f a c e s . i f a d d r e s s e s (i n t e r f a c e) [socke t .AF INET] [0] [’ addr ’]
45 sou r c e ipv6 = n e t i f a c e s . i f a d d r e s s e s (i n t e r f a c e) [socke t .AF INET6] [0] [’ addr ’]
46 # warn the user t h e r e i s no IPv6 c onn e c t i v i t y
47 i f not s ou r c e ipv6 :
48 print ”NOTIFY: you have no IPv6 conne c t i v i t y ”
49
50 # genera te a random source port , t h i s seems to be an OK range
51 sport1 = random . randint (60000 , 65000)

Marek Kuczyński July 10, 2011

8 APPENDIX; SOURCE CODE 25

52 sport2 = random . randint (60000 , 65000)
53 map s e rv e r a f i = in t (0)
54 qu e r y a f i = in t (0)
55 s o u r c e a f i = in t (0)
56 source = in t (0)
57 # l e t scapy open a socke t a l ready , so t ha t the f i r s t packe t w i l l be

captured too
58 s e r v e r s o c k e t = L2ListenSocket ()
59
60 # check i f the map se r v e r s p e c i f i e d i s IPv4 or IPv6 , t h i s i s important

f o r python f i e l d l e n g t h s
61 # could implement i t in a method , but we use i t j u s t once anyway
62 c = map server . count (’ : ’)
63 i f c == 0 :
64 map s e rv e r a f i = 4
65 e l i f c > 0 :
66 map s e rv e r a f i = 6
67
68 # the same fo r the query , check f o r IPv4 or IPv6
69 d = query . count (’ : ’)
70 i f d == 0 :
71 qu e r y a f i = 1
72 e id mask l en = 32
73 e l i f d > 0 :
74 qu e r y a f i = 2
75 e id mask l en = 128
76
77 # determine whether to use an IPv4 or IPv6 header and s e t some va l u e s .

i n i t i a t e the ’ packe t ’ too here .
78 i f s ou r c e ipv6 and map se rv e r a f i == 6 :
79 s o u r c e a f i = 2
80 source = sour c e ipv6
81 packet = IPv6 (dst=map server)
82 s o c k e t a f i = socke t .AF INET6
83 e l i f s ou r c e ipv4 and map se rv e r a f i == 4 :
84 s o u r c e a f i = 1
85 source = sour c e ipv4
86 packet = IP (dst=map server)
87 s o c k e t a f i = socke t .AF INET
88 else :
89 print a f i e r r o r
90
91 # bu i l d the packe t wi th the in format ion ga thered . f l a g s are s e t to smr +

probe (e qua l s 12)
92 packet /= UDP(spor t=sport1 , dport=4342)/LISP Encapsulated Control Message (

ptype=8)
93
94 # check whether to use IPv4 or IPv6 f o r the second IP header
95 i f qu e r y a f i == 1 and s ou r c e ipv4 :
96 packet /= IP (s r c=source ipv4 , dst=query , t t l =255)
97 e l i f qu e r y a f i == 2 and s ou r c e ipv6 :
98 packet /= IPv6 (s r c=source ipv6 , dst=query)
99

100 # bu i l d the packet , uncomment the deb i g command below to see i t s
s t r u c t u r e

101 packet /= UDP(spor t=sport2 , dport=4342)/LISP MapRequest (r e q u e s t a f i =0, address
=source , ptype=1, i t r r l o c r e c o r d s =[LISP AFI Address (address=source , a f i=
s o u r c e a f i)] , r e qu e s t r e c o r d s =[LISP MapRequestRecord (r eque s t add r e s s=query ,
r e q u e s t a f i=que ry a f i , e id mask l en=e id mask l en)])

102

Marek Kuczyński July 10, 2011

8 APPENDIX; SOURCE CODE 26

103 # debug
104 # packe t . show2 ()
105
106 # send packe t over l a y e r 3
107 send (packet)
108
109 # s t a r t cap tur ing on the source por t . i n i t i a t e count va lue f
110 f = 0
111 # use the e a r l i e r opened sock e t to capture t r a f f i c on UDP por t 4342
112 capture = s n i f f (f i l t e r=’udp and port 4342 ’ , t imeout=timeout , opened socket=

s e r v e r s o c k e t)
113 for i in range (l en (capture)) :
114 try :
115 i f capture [i] . nonce == packet . nonce and capture [i] . ptype == 2 :
116 capture [i] . show2 ()
117 f = 1
118 break
119 except Attr ibuteError :
120 pass
121
122 # pr in t message i f no r ep l y r e c e i v ed
123 i f f == 0 :
124 print ”ERROR: no rep ly rece ived , are you sure you ’ re not behind NAT and

that your c onne c t i v i t y i s OK?”
125
126 # c l o s e the socke t , e l s e i t ’ l l s t ay a l i v e f o r a wh i l e
127 s e r v e r s o c k e t . c l o s e ()
128
129 # check command l i n e arguments
130 i f l en (sys . argv) == 3 :
131 map server = sys . argv [1]
132 query = sys . argv [2]
133 map server = checkFQDN(map server)
134 query = checkFQDN(query)
135 sendLIG (map server , query)
136 # i f no arguments s p e c i f i e d , drop to CLI
137 e l i f l en (sys . argv) == 1 :
138 print use
139 i f name == ” main ” :
140 i n t e r a c t (mydict=g l oba l s ())
141 else :
142 # i f a weird amount o f arguments i s given , d i s p l a y usage

in format ion
143 print use

Marek Kuczyński July 10, 2011

	Introduction
	Concepts of LISP
	Routing packets
	Mapping IDs to locations
	Communicating with the regular Internet
	Maintaining consistent address space over multiple locations
	Summary of benefits

	Previous research
	LISP control plane
	Control packet structure
	Packet types
	Control packet encapsulation

	LISP library
	Features and internals

	LISP Internet Gopher
	Features and internals
	LIG example

	Conclusion
	Publication of work

	Appendix; source code
	Library
	LIG

