
Universiteit van Amsterdam System and Network Engineering

Automatic end-host configuration

Sebastian Dabkiewicz

February 12, 2012

Abstract
In scientific environments inter-domain networks are
spanned around the globe. These networks are usually
built for a certain time-frame. Setting up of the network
takes a huge amount of time. In the future it is desirable
to build these networks more dynamically. An important
issue is the configuration of the end-hosts attached to the
network. They need a IP-address and the ability to find
the other servers. Because no DHCP-server or DNS-
server is present this has to be done manually. In this
research project, research is done on automatic end-host
configuration which is also known as Zeroconf. Zeroconf
is a subset of link-local addressing, multicast DNS and
DNS service discovery. Some operating systems and ap-
plications (like iTunes) have this functionality build in.
Servers usually don’t, but applications like Avahi adds
this functionally also to servers. This research shows that
automatic configuration of servers is feasible, and could
be implemented in networks which are used in scientific
environments.

Research Project 1 report Automatic end-host configuration
https://www.os3.nl/2011-2012/students/sebastian_dabkiewicz/rp1

Contents

1 Introduction 5

2 Environment 6
2.1 Automatic configuration . 6
2.2 Zeroconf . 6

2.2.1 IP-addressing . 7
2.2.1.1 IPv4 Link-Local addresses 7
2.2.1.2 IPv6 Link-Local addresses 7

2.2.2 Multicast DNS . 8
2.2.3 DNS service discovery 8

3 Experimental methods 10
3.1 Test environment . 10
3.2 Initial installation . 11

3.2.1 avahi-daemon . 11
3.2.2 avahi-discover . 12
3.2.3 avahi-autoipd . 12
3.2.4 avahi-utils . 12
3.2.5 libnss-mdns . 14

4 Results 15
4.1 Interface configuration . 15

4.1.1 Address conflict . 15
4.2 Service Discovery . 16
4.3 IP lookup . 16
4.4 Cross platform . 17

4.4.1 Microsoft Windows 7 17
4.4.2 Apple Mac OS X . 18

4.5 Security . 19
4.6 Timing . 19

5 Conclusion 21

6 Further research 22

A Avahi-daemon configuartion file 23

3

1 Introduction

In scientific environments, there are circuit-based networks, which can span
over the world. At the moment these networks are built for a longer time-
frame (weeks or months).

In the future it is desirable that these networks become more dynamic
so that they can be set up for a short time-frame (days or even minutes).
Because there is no DHCP-server in those networks the configuration has to
be done manually. This is a time-consuming task, which should be done in
an automatic way.

Since the networks are on the same logical network segment there is no
need to do routing. So link-local addressing is an option.

During the iGrid 2005 event in San Diego, USA the System and Net-
work Engineering group from the University of Amsterdam has set up a
network connection between San Diego and Amsterdam. The Goal was to
do Zero configuration networking, and let people connect with their own
equipment. Back then the software which was available hast to be modified,
and configuring it took more time than manually configuration [16].

Since then much has changed, Avahi an open source Zeroconf implemen-
tation has been developed. In this report I will have a look at this technology.

This situation gives the following research questions:

How can one create an automatic end-host configuration?

- What are the requirements for a fast establishment of the connection?

- What is the current situation?

- What kind of implementations are available?

- What kind of configuration is needed?

- Is there support for a cross platform solution?

These questions will be answered in this research report. We start with
a global introduction of the environment and Zeroconf in chapter 2.

Chapter 3 describes the equipment and tools that are used for the ex-
periment.

The results of the experiment will be discussed in chapter 4.
In chapter 5, a conclusion will be drawn based on the results from chap-

ter 4.
Finally in chapter 6 ideas are given for additional research in this topic.

5

2 Environment

At this moment setting up a connection across the globe is a time intensive
task. Because of the great amount of providers which are involved. The
whole process can take months and a huge amount of email messages.

To minimise the time and emails that are needed to send, a project is
started named Automated GOLE.

Automated GOLE is a project to let researchers create a connection
using a Network Service Interface (NSI) to acquire unused network band-
width which is made available by members of the Global Lambda Integrated
Facility (GLIF), so there is no need to ask several organisations individually.

These connections can be used to transfer a huge amount of data or do
calculations together and then the connection could be terminated.

2.1 Automatic configuration

Some time ago the configuration of IP-networks was a difficult task. Ad-
ministrators must take care of IP-addresses, subnet-masks, gateways and so
on.

With the introduction of the Dynamic Host Configuration Protocol (DHCP)
[17] this became easier. The administrator can define a scope of IP-addresses
which are leased to the clients automatically. Together with the IP-lease the
client gets additional information like the default-gateway and DNS-server.
But there is still need for an administrator to maintain the situation.

About 30 years ago Apple developed a protocol-suite named AppleTalk.
Included in this suite was a protocol named Name Binding Protocol (NBP).
NBP provided naming and service discovery functionalities. In the mid ’90s
there was a discussion on the Net-Thinkers mailing list [11] about the need
for a simple automatic configuration method for small local area networks
(LAN).

In 1999 the IETF Zeroconf Working Group was started, which devel-
oped the necessary techniques to archive zero configuration networking (Ze-
roconf).

The group worked on the Dynamic Configuration of IPv4 Link-Local Ad-
dresses. Other techniques which are still in development are Multicast DNS
to resolve host names and DNS Service-Discovery to find services within the
network.

2.2 Zeroconf

Zero configuration networking (Zeroconf) [12] is a collection of techniques
which provide automatic network configuration. It is a subset of IP-Link-
Local-addressing, multicast DNS (mDNS) and DNS service discovery (DNS-
SD).

6

Developed by Apple as Bonjour (former known as Rendezvous) which is
available for Apple and Windows systems, also an open source version has
been developed, which named Avahi and is available for Linux.

2.2.1 IP-addressing

2.2.1.1 IPv4 Link-Local addresses

The working of IPv4 Link-Local addresses (IPv4ll) is described in RFC3927
[13].

The client allocates an IP-address out of the 169.254/16 scope. The
first 256 and last 256 addresses are reserved for future use and must not
be selected. The selection of the IP-address is based on a pseudo-random
number generation algorithm, which mainly uses the MAC-address of the
network card to generate the IP-address. Since the Media Access Control
(MAC)-address doesn’t change the the host will usually choose the same
IP-address.

After allocating the host will send an ARP (Address Resolution Protocol)-
request to find out if the IP-address is already in use. If no answer is received
the address is available and can be used. If the client gets a response back
from another client it knows that the address is in use, it will select an other
address and start over again.

Because of the big IP-range which is available in the IPv4ll address space
the chance that a client pick up an unused IP-address on a link with 1300
other hosts is 98% on the first try. Within two tries the chance of getting
a free IP-address is 99,96%. The chance that the client needs more than 10
tries is about 1 in 1017.

In our scientific-environment there will only be a few end-hosts in use,
so the actual chance of an address conflict should be very low when using
IPv4ll addresses.

2.2.1.2 IPv6 Link-Local addresses

The representation and auto-configuration of IPv6 link-local (IPv6ll) ad-
dresses is described in RFC4291 [18] and RFC4862 [19].

At start-up each interface allocates an IPv6ll address by default. Even
if there is a IPv6 address allocated by manual configuration or via a DHCP-
server. The scope for the IPv6ll addresses is the fe80::/64 scope.

The IPv6ll address is mostly derived from the MAC-address of the in-
terface. In the middle of the 48 bits MAC-address ff:fe is inserted and
the 7th significant bit is inverted to make it universal. So MAC-address
00:15:c5:e1:41:bf becomes: fe80::215:c5ff:fee1:41bf/64.

IPv6ll addresses are not routable and can even as the IPv4 equivalent
only used on the local segment.

7

After allocating an IPv6ll address the host has to check if the IP-address
is available. This will be done using Neighbor Solicitation and Advertise-
ment messages.

Figure 1: Interface with an IPv6 link-local address

2.2.2 Multicast DNS

Multicast DNS[15] (mDNS) is used to resolve host names into IP-addresses
using multicast. mDNS uses 224.0.0.251[9] as IPv4 multicast address and
ff02:0:0:0:0:0:0:fb[10] as IPv6 multicast address.

As destination MAC-address for the mDNS packets that are sent 01:00:5e:00:00:fb
is used.

The UDP Port 5353 is reserved for the use of mDNS
The domain name which is registers for the use of mDNS is .local.

But if necessary this can be changed to an other domain.

The mDNS packet header contains a 2 byte field with flags. The first and
sixth bit are used to identify if an packet is a request or a reply. If the packet
is a request the first and de sixth bit are set to zero. If the packet is a reply
these two bits are set to one. The other bits are always zero.

The data-field of the mDNS packet is UTF-8 encoded and contains DNS
data, like A-records and PTR-records.

2.2.3 DNS service discovery

DNS service discovery[14] (DNS-SD) is a technique to discover services on
other end-hosts.

DNS-SD uses DNS SRV, TXT and PTR records to advertise the services
which are running on the host. A list of DNS SRV Service Types can be
found on the dns-sd.org website[7]

For services who don’t announce his existence by itself or via a plug-in,
it is possible to create custom service announcement files. The XML-file
format [5] is used to archive this.

Figure 2 shows an example-file for announcing an SSH-server.

8

Figure 2: ssh.service file to announce a SSH-server

Important in the *.service-file are the labels <type> and <port> which
respectably describes the protocol used and port number of the service. The
<name> describes the name of the service.

9

3 Experimental methods

In consultation with my supervisors, I decided to make use of two servers in
the lab. This is because creating an inter-domain connection takes a long
time and there are different other organisations involved then only the Uni-
versity of Amsterdam. Practically there is no difference between two servers
connected by a simple network cable and a switch, or a light connection to
a remote site. Because the work will be done within a broadcast domain.

Timing is important feature when connecting the end-hosts together.
They should be fast online. Defining an entry in the interface configuration
file as described in section 4.1 should make the host faster come online.

3.1 Test environment

For the research I had two servers in use, installed with Ubuntu 11.10 server
edition. These servers were attached to our public OS3 lab-network on eth0
and directly connected to a simple switch on eth1.

The eth0 was used to connect remotely to the server via SSH, while the
eth1 connection was used for the Zeroconf.

Furthermore there where 2 clients, a laptop with Windows 7 Professional
and a Mac Mini with Mac OS X. These two machines are used to test the
cross-platform functionality.

Figure 3: Network diagram

10

3.2 Initial installation

The initial installation of the server can be accomplished by installing the
following standard Avahi-packages from the repository:

- avahi-daemon

- avahi-discover

- avahi-autoipd

- avahi-utils

- libnss-mdns

3.2.1 avahi-daemon

The avahi-daemon is the main part of Avahi. In the configuration file one
can specify parameters to make sure the proper working of avahi. By default
most settings are commend out and so they are set do the default value. The
default settings works well in the most cases, since it was designed for home
use.

In our environment we have advanced servers with multiple interfaces,
native support for IPv4 and IPv6. So the we have to change some of the
default values.

To restrict the use of IP-addresses one can specify to run Avahi only
on IPv4 or IPv6, but also both at the same time is possible. For better
readability I disabled IPv6 to create the screenshots for the document.

Our servers have two network interfaces, one connected to the internet
and the other connected to the second server by a switch. Since we did not
want to publish the services which our server offers on the internet, it is
possible to restrict the use of avahi only to eth1, which is in our case the
local interface.

Settings which I changed are:

use-ipv4=yes

use-ipv6=no

allow-interfaces=eth1

deny-interfaces=eth0

Other settings which may be important to use are:

11

[server]

host-name=foo

domain-name=local

browse-domains=example.org

[publish]

disable-publishing=no

disable-user-service-publishing=no

publish-workstation=yes

The Avahi configuration file of the Ubuntu server can be found in ap-
pendix A and additional information for the parameters here [3].

3.2.2 avahi-discover

Avahi-discover is a GUI tool to find services within the network. Due the fact
that it is a GUI tool, it can not be used if only a command line connection
to the server is available and avahi-discover is not installed on the client
system.

3.2.3 avahi-autoipd

Avahi-autoipd provides an extra interface with a configured IPv4 link-local
address. The name of the interface is as follows: ethX:avahi. In our envi-
ronment it was eth1:avahi. So can, if the DHCP-server in the network fails
or is not available, the host use the network connection with a link-local
address.

Because every interface gets an IPv6ll-address automatically even if there
is a DHCP-server who gives out IP-leases there is no need for an extra
interface with an IPv6ll address.

Although Avahi works well with just installing avahi-autoipd, it is pos-
sible to run some commands directly [2].

To assign an IPv4ll address to interface eth1 one can run the following
command: sudo avahi-autoipd eth1 -D

3.2.4 avahi-utils

Avahi-utils is a package with useful tools for use with Avahi. It is possible
to browse the domain for available services or resolve an hostname to an
IP-address.

avahi-browse Avahi-browse can be used to discover services on the net-
work. Because of DNS-SD announcements the existence of a service
shows up. It is also possible to resolve the services found. See figure
5

12

Figure 4: interface eth1 and eth1:avahi

Figure 5: The use of the avahi-browse tool

avahi-publish With avahi-publish[4] it is possible to announce the exis-
tence of a service within the network. For example an telnet server as
seen in figure 6. After closing the avahi-publish command the service
disappears.

avahi-resolve Avahi-resolve can be used to resolve host names to IP-address
and vice versa. avahi-resolve -n HOSTNAME gives out the IP-address
and avahi-resolve -a IP-address gives the hostname of the client. See
figure 7

13

Figure 6: Publish a service with avahi-publish

Figure 7: The use of the avahi-resolve tool

3.2.5 libnss-mdns

Libnss.mdns is a Name Service Switch (NSS) module for Multicast DNS
name resolution. It allows name resolution by programs in the .local.

domain. [8]

14

4 Results

After installing the Avahi-packages described in section 3.2 and editing the
configuration files the discovery of hosts and services worked well.

4.1 Interface configuration

Since Zeroconf should provide automatic configuration, it should not be
necessary to configure the interface where one want to use Zeroconf. But
sometimes it is good to have the ability to shut down an interface for some
time, without disabling the whole network functionality. Therefore the use
of the commands ifdown and ifup is sometimes desirable. To reach this,
one can edit the /etc/network/interface file by adding the following lines:

auto eth1

iface eth1 inet ipv4ll

In our environment the eth1 interface is used for Zeroconf. So it should
get an inet (IPv4) address and more specific an IPv4ll-address. Avahi-
autoipd then takes care of it and creates the eth1:avahi interface as described
in section 3.2.3

Also with configuring an interface speeds up the establishment of the
connection. Because the interface does not search for an DHCP-server before
it changes to link-local addressing.

When using dhcp instead of ipv4ll at the interface configuration line,
the host tries to first get an IP-address from a DHCP-server in the network.
In our test this took about five minutes to time out, where after the interface
gets an IPv4ll address within 10 seconds.

Without interface configuration, the command ”avahi-autoipd -D eth1”
is needed to create an IPv4ll address for the interface.

4.1.1 Address conflict

To see what happens when an address conflict occurs, vanilla.local was
manually configured with the IPv4ll address of tomato.local.

After configuring the IP-address on vanilla.local, the interface at
tomato.local is restarted (packet 11). During the restart tomato.local

wants to claim the IP-address again and probes with ARP-requests if the
address is in use (packet 12). vanilla.local sends a reply that it has
allocated the IP-address (packet 13). So tomato.local chooses an other
IP-address and ask again (packet 14, 16, 18). No answer was received and
tomato.local allocated the address (packet 19). See figure 8.

15

Figure 8: Wireshark screenshot of an address conflict packetdump

4.2 Service Discovery

The discovery of services is an essential part of Zeroconf. During the test it
seems that not every software package advertise their service/existence by
default. For some packages like the Apache2 webserver a plugin is available
named libapache2-mod-dnssd which enables the announcement of the http-
service.

Other packages like SSH or vsftpd does not have such a plugin. But it is
still possible to announce the existence of a SSH or FTP-server within the
network. This can be accomplished with a *.service file placed in:

/etc/avahi/service

How these *.service-files are set up is described in section 2.2.3

4.3 IP lookup

Using the multicast IP-address to resolve a host name to a IP-address with
the DIG-tool may fail when using two interfaces. Because the multicast is
send on the primary interface and not the interface which is configured for
use with Zeroconf. So the request will timeout. To solve this one can add a
static route which points to the multicast IP-address on eth1.

sudo route add 224.0.0.251 eth1

After adding the route, resolving a host name with dig works well, see
figure 9.

IP lookup using the avahi-resolve tool, works without adding a route
for the multicast IP-address, and is preferred. Although sometimes us-
ing the avahi-resolve tool instead of the IPv4 address of the host the IPv6
is shown. This is caused because the standard Avahi configuration also
publishes an AAAA-record via IPv4. This can be turned off using the

16

Figure 9: The use of dig

”publish-aaaa-on-ipv4=no” in the avahi configuration file. Running avahi-
resolve a second time gives then the IPv4 address.

4.4 Cross platform

In situations where there is not always an internet or management connec-
tion is available there is a need for some kind of cross platform support.
Like a Mac or Windows client who is connected to the network. In these
situations we work with Avahi on the servers and Bonjour on the client, but
this should not be a problem since they do practically the same.

In the test environment I used a Windows 7 Professional laptop and a
Mac Mini with Mac OS X. After connecting both hosts to the network they
got an IPv4ll address and could communicate with the other hosts.

4.4.1 Microsoft Windows 7

Windows has standard build in the functionality to use IPv4ll addresses
if no other network configuration is available like manual configuration or
a DHCP-server. Microsoft calls this Automatic Private Internet Protocol
Addressing (APIPA) [1].

To make use of Zeroconf, Bonjour has to be installed. It can be installed
with iTunes or the Safari Browser.

After installing Safari, the web server running on the vanilla.local

server, was found using the Bonjour bookmark menu. See figure 10.
It is also possible to announce the existence of shared folders in present

in Windows. Therefore is the Bonjour SDK for Windows [6] is needed. It

17

Figure 10: Screenshot of Safari with the vanilla.local webpage

installs a Control Panel program, in which one is able to select advertise
shared folders in Bonjour, see figure 11.

Figure 11: Screenshot of the Bonjour SDK

4.4.2 Apple Mac OS X

Mac OS has build in Zeroconf support using Bonjour. (The Mac mini,
which I used, is used to host a webcam using evocam on conferences. I
didn’t change the configuration to don’t mess it up).

After I connected the Mac mini to the network and start it, the network
configuration was done without any interaction of me. It was really Zeroconf.

The interface got a IPv4ll-address and was fully operational, ping as well

18

connection via SSH to the servers was no problem. Even ping using IPv6
worked.

Using the Safari browser, the Bonjour bookmark found the website run-
ning on tomato.local.

Figure 12: Pinging the servers from the Mac mini

4.5 Security

Zeroconf is designed to work on a small local area network or in ad-hoc
networks, so there is no really security implemented. The techniques are
kept very simple for ease of use.

However, in the configuration file as show in appendix A, there are some
parameters which can add some basic kind of security, like disabling the
publishing of services and names. So the host will be a bit invisible.

Since there is a dedicated circuit where only trusted hosts connected to
this should not be a risk.

4.6 Timing

An other important factor is timing, the end-host should be online quickly.
To test how long it takes, for a end host to come online, I did the following:

Ping from vanilla.local to tomato.local

Perform a ”sudo ifdown eth1 && sudo ifup eth1” at inter-
face eth1 on tomato.local

19

While doing that, I ran tcpdump on eth1 at vanilla.local to capture the
packets what are going over the line.

As seen in figure 13 vanilla.local performs first a IP lookup for the
host name tomato.local via mDNS. After receiving the answer it starts
with the ping. Four reply’s are received, after which the restart of the
interface is performed.

During the restart of the interface tomato.local leaves the mDNS mul-
ticast group (packet 13). After becoming online again, the interface checks if
the IP-address it wants is available (see packet 15, 17 and 19). If no answer
is received the tomato.local claims the IP-address and joins the multicast
group again (packet 22 and 23).

During all the time vanilla.local pings and get no response. After
tomato.local is online again it performs an ARP request to get the MAC-
address of vanilla.local to reply to the ping request (packet 27 and 28).
Finally packet 29 shows that tomato.local reply to the pings again.

Time needed to become online again is about 6 seconds from 3.35 to
9.00.

Figure 13: Wireshark sceenshot

20

5 Conclusion

As described in the previous section the automatic configuration worked
well, and should be suitable for use in circuit-based networks.

The situation now is that setting up a inter-domain connection is time
intensive and can take months and a huge amount of emails messages. in the
future this can become easier with automated GOLE, described in chapter 2.
There it is desirable to have almost instantly a connection when connecting
the server to the network. With a proper configured interface this will be
accomplished within 10 seconds, which fits in the requirement.

Avahi provides an ease to use Zeroconf solution for Linux-based hosts.
It can run dual stack on both IPv4 and IPv6, this gives no problems in our
environment. Although some configuration is needed, to fit in the environ-
ment. Like the interface on which the Avahi should listen or the IP version,
if one don’t want to run dual stack.

The automatic assignment of IP-addresses did give no problems at all.
Also IP-address conflict detection, when two host have assigned the same
IP-address works as expected and described in the RFC.

The cross-platform test using a Windows 7 client and Mac client run-
ning Bonjour in combination with Avahi on the Linux servers didn’t give
any problems. Although the test with the Mac works a bit better since
MAC OS X has out of the box Bonjour support, which Windows not (yet)
have. Maybe a feature which should be implemented in future versions of
Windows.

21

6 Further research

In the environment where the System and Networking research group pos-
sibly wants to implement the Zeroconf implementation in a group of organ-
isations, which share network equipment and servers could be Zeroconf a
great opportunity to simplify the basic network configuration.

However it seems to be a difficult task to convince all cooperation’s
involved to do so. Since Zeroconf is implemented mostly in workstation
operating systems, and system peripherals like printers, webcams. The con-
figuration of servers takes some effort at the moment.

This document could be a starting point for that.

22

A Avahi-daemon configuartion file

This file is part of avahi.

#

avahi is free software; you can redistribute it and/or

modify it

under the terms of the GNU Lesser General Public License

as

published by the Free Software Foundation; either version

2 of the

License, or (at your option) any later version.

#

avahi is distributed in the hope that it will be useful,

but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY

or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public

License for more details.

#

You should have received a copy of the GNU Lesser General

Public

License along with avahi; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston,

MA 02111-1307

USA.

See avahi-daemon.conf(5) for more information on this

configuration

file!

[server]

#host-name=foo

#domain-name=local

#browse-domains=0pointer.de, zeroconf.org

use-ipv4=yes

use-ipv6=no

allow-interfaces=eth1

deny-interfaces=eth0
#check-response-ttl=no

#use-iff-running=no

#enable-dbus=yes

#disallow-other-stacks=no

#allow-point-to-point=no

23

#cache-entries-max=4096

#clients-max=4096

#objects-per-client-max=1024

#entries-per-entry-group-max=32

ratelimit-interval-usec=1000000

ratelimit-burst=1000

[wide-area]

enable-wide-area=yes

[publish]

#disable-publishing=no

#disable-user-service-publishing=no

#add-service-cookie=no

#publish-addresses=yes

#publish-hinfo=yes

#publish-workstation=yes

#publish-domain=yes

#publish-dns-servers=192.168.50.1, 192.168.50.2

#publish-resolv-conf-dns-servers=yes

#publish-aaaa-on-ipv4=yes

#publish-a-on-ipv6=no

[reflector]

#enable-reflector=no

#reflect-ipv=no

[rlimits]

#rlimit-as=

rlimit-core=0

rlimit-data=4194304

rlimit-fsize=0

rlimit-nofile=768

rlimit-stack=4194304

rlimit-nproc=3

24

References

[1] Apipa msdn. Website. available at http://msdn.microsoft.com/

en-us/library/aa505918.aspx; on 30th January 2012.

[2] avahi-autoipd(8) - linux man page. Website. available at http://

linux.die.net/man/8/avahi-autoipd; on 30th January 2012.

[3] avahi-daemon.conf(5) - linux man page. Website. available at http:

//linux.die.net/man/5/avahi-daemon.conf; on 30th January 2012.

[4] avahi-publish-service(1) - linux man page. Website. available at http:
//linux.die.net/man/1/avahi-publish-service; on 31th January
2012.

[5] avahi.service. Website. available at http://avahi.org/download/

avahi.service.5.xml; on 24th January 2012.

[6] Configuring clients to use wide-area bonjour. Website. available at
http://www.dns-sd.org/ClientSetup.html; on 31th January 2012.

[7] Dns srv (rfc 2782) service types. Website. available at http://www.

dns-sd.org/ServiceTypes.html; on 25th January 2012.

[8] libnss-mdns. Website. available at http://0pointer.de/lennart/

projects/nss-mdns; on 30th January 2012.

[9] List of ipv4 multicast addresses. Website. available at
http://www.iana.org/assignments/multicast-addresses/

multicast-addresses.xml; on 25th January 2012.

[10] List of ipv6 multicast addresses. Website. available at
http://www.iana.org/assignments/ipv6-multicast-addresses/

ipv6-multicast-addresses.xml; on 25th January 2012.

[11] Net-thinkers mailing list. Website. available at http://www.

stuartcheshire.org/rants/NBPIP.html; on 26th January 2012.

[12] Zeroconf working group. Website. available at http://www.zeroconf.
org/; on 04th January 2012.

[13] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of
IPv4 Link-Local Addresses RFC 3927. available at http://tools.

ietf.org/html/rfc3927; on 04th January 2012.

[14] Stuart Cheshire and Marc Krochmal. DNS-Based Ser-
vice Discovery. available at http://files.dns-sd.org/

draft-cheshire-dnsext-dns-sd.txt; on 30h January 2012.

25

[15] Stuart Cheshire and Marc Krochmal. Multicast DNS
draft. available at http://tools.ietf.org/html/

draft-cheshire-dnsext-multicastdns-15; on 25th January
2012.

[16] Freek Dijkstra, Jeroen J. van der Ham, and Cees T.A.M. de Laat. Us-
ing zero configuration technology for ip addressing in optical networks.
Future Generation Computer Systems, 22(8):908–914, May 2006.

[17] Ralph Droms. Dynamic Host Configuration Protocol RFC 2131.
available at http://tools.ietf.org/html/rfc2131; on 22th January
2012.

[18] Robert M. Hinden and Stephen E. Deering. IP Version 6 Addressing
Architecture RFC 4291. available at http://tools.ietf.org/html/

rfc4291; on 25th January 2012.

[19] Susan Thomson, Thomas Narten, and Tatuya Jinmei. IPv6 State-
less Address Autoconfiguration RFC 4862. available at http://tools.
ietf.org/html/rfc4862; on 25th January 2012.

26

