
Distributed Password
Cracking Platform

Dimitar Pavlov Supervisors:
Gerrie Veerman Marc Smeets
UvA SNE Master Students Michiel van Veen
08-02-2012

1

The project
• Research Question:

How can a scalable, modular and extensible middleware solution be
designed for the purposes of password cracking, so that it is based on
existing cracking tools and allows for the use of a dynamic and
adjustable cracking strategy?

• Why: The need for a distributed password cracking system, which can
work with both CPU and GPU capabilities

• Approach: -Formulate system requirements

 -Research and creation of system designs

 -Proof of Concept

• Related Work:

• KPMG's previous research projects

• Other work

2

Making the scope clear

• What we did:

• Use existing cracking tools

• Set requirements and make a distributed system
design which is scalable, modular and extensible

• Develop the basis for such a design

• What we didn’t do:

• Create our own cracking tool

• Design of cracking strategy

3

Research & Creation

• Distributed Systems

• Architectures

• Communication

• Cracking Tools

• CPU

• GPU

• Both

• System Design

• Technical

• Functional

• Proof of concept

4

System Overview

5

User Requirements

6

System Requirements

• Front-end Functionality

• User Job Input

• Current Job Status

• Job History

• Stop Job

• Delete Job

• Worker Functionality

• Register a controller

• Status request handling

• Job processing

• Cracking tool support

• Controller Functionality

• User input and request
handling

• Worker nodes control

• Dynamic cracking strategy

• User notifications

7

System Design

• System Architecture

• Communication

• Existing Cracking tools

8

System Architecture Design

9

Communicator Workflow

10

Dispatcher Workflow

11

Worker Node Workflow

12

Submitjob Example

13

User

1: New job Request

2: Listener Accepts Job

3: Check Credentials
4: Put Job in DB

5: Any Job Available? 6: Any Node Available? 7: Determine Strategy

8: Create subjobs

10: Subjob 10: Subjob 9: Dispatch Subjobs

11: Start Cracking (CPU) 11: Start Cracking (GPU)

12: Intermediate Updates 13: Job Finished 13: Send Result back

14: Worker Clean Up

15: Send Result or Status Request To User

12: Intermediate Updates

16: Stop Other Workers 17: Cancel Job

18: Stop Worker and Clean Up

Done

Check node 1 Check node 2

Communication

• Paradigms

• Remote Procedure Calls (RPC)

• Message-oriented communication

• Protocol

• Data Structures

14

Communication Messages & Data

• Protocol

• Controller Messages – requestStatus, deleteJob, etc.

• Worker Messages – requestStatus, stopJob

• Asynchronous RPC – submitJob, sendResults

• Data Structures

• Reply

• Hash

• Job

• Subjob

Example: Subjob data structure

15

Cracking Tools

• Existing cracking tools

• John the ripper (CPU)

• oclHashcat-plus (GPU)

16

Proof of Concept - Overview
Component: Progress: Used:

•Website

• Frond-end: Very simple <HTML>

•Controller

• Communicator: Finished <PHP>

• Dispatcher: Very simple strategy <PHP>

•Worker

• Common code: Finished <PHP>

• Tool specific: Basic John the Ripper <PHP>

•Database

• Controller: Finished <MySQL>

• Worker: Finished <SQLite> 17

Proof of Concept

• Demonstration
1. Adding new node

2. Show database with jobs

3. Starting dispatcher

4. Intermediate hashes cracked

5. Job ready (result?)

6. Worker Clean up / Ready again 18

Conclusion
• What was the research question again?

• How can a scalable, modular and extensible middleware solution
be designed for the purposes of password cracking, so that it is
based on existing cracking tools and allows for the use of a dynamic
and adjustable cracking strategy?

• Research

• Distributed Architecture: Centralized

• Transparency

• Modularity

• Concurrency

• Simplicity

• Communication: Message-Oriented / RPC

• Existing Tools: John the Ripper (CPU) / oclHashcat (GPU)
19

Project Achievements

• Functional Specification:

• System overview

• Use-cases

• System requirements

• Technical Specification:

• User interface

• Controller

• Worker

• Database

• Communication

• Proof of Concept:

• Website: very simple

• Controller: working with simple strategy

• Worker: working with John the Ripper

20

Future work

• Further development / fine tuning of the system modules

• Extending to support other architectures (Cloud, Cell, etc.)

• Implementing the following for the system:

• Adding more tools and hashtypes

• Tweaking for multiple OS’s (small changes needed)

• Proper cracking strategy

• Security for controller/node communication

• Development of a proper front-end

• Testing / Benchmarking with many workers

21

Any Questions?

22

