Distributed Password
Cracking Platform

Dimitar Paviov Supervisors:
Gerrie Veerman Marc Smeets
UvA SNE Master Students Michiel van Veen

08-02-2012

The project

* Research Question:

How can a scalable, modular and extensible middleware solution be
designed for the purposes of password cracking, so that it is based on
existing cracking tools and allows for the use of a dynamic and
adjustable cracking strategy?

* Why: The need for a distributed password cracking system, which can
work with both CPU and GPU capabilities

* Approach: -Formulate system requirements
-Research and creation of system designs
-Proof of Concept
* Related Work:
KPMG's previous research projects
Other work

Making the scope clear

* What we did:
Use existing cracking tools

Set requirements and make a distributed system
design which is scalable, modular and extensible

Develop the basis for such a design

* What we didn’t do:
Create our own cracking tool
Design of cracking strategy

Research & Creation

* Distributed Systems * System Design

Architectures Technical
Communication Functional

* Cracking Tools * Proof of concept
CPU
GPU

Both

System Overview

o R

¥

Website Front-End

Submission/Response

L 4

Connector———— Cracking Controller | Connector Controller

——Connector————Connector——

¥ ¥ b k ¥

Future
CPU Box | |CPU Cluster| | GPU Box 1| | GPU Box 2 Technology Workers

User Requirements

System Requirements

Front-end Functionality Controller Functionality
User Job Input User input and request
Current Job Status handling
Job History Worker nodes control
Stop Job Dynamic cracking strategy
Delete Job User notifications

Worker Functionality
Register a controller
Status request handling
Job processing
Cracking tool support

System Design

* System Architecture
* Communication

* Existing Cracking tools

System Architecture Design

Front-End

m s

Workers

Communicator Workflow

Provide Status Register Node
\ Startup /

9
v
Q
S
o
K &
Worker

P Submit New Job N % T §

0 trd

g 2

g \ / £

. :

v

T | | Show History |- . | Worker Ready

- “ Listener |

c

v

=

c

o e

i CancelJob | =No

/ T -
Delete Job / Notify User S:;g ::l::r

Communicator

Dispatcher Workflow

Worker Node Workflow

Requests Send To Controller

l Startup '

Register With

Controller

Provide Result

Yes+

Job
ompleted

«—No

Intermediate
Updates

Listener

r

Executing Job
Using Password
Cracking Tool

Provide Status

\

Cancel Job

Accept Job

Requests Received From Controller

Worker

Submitjob Example

User

15: Send Result or Status Request To User - Website

L

1 _
—.=*
| f 9: Dispatch Subjobs
I : :
i |

\Iler

11: Start Cracking (GPU) Jorkers
13:Send Resultback

Communication

* Paradigms
Remote Procedure Calls (RPC)
Message-oriented communication

* Protocol

* Data Structures

Communication Messages & Data

* Protocol
Controller Messages — requestStatus, deletelob, etc.
Worker Messages — requestStatus, stopJob
Asynchronous RPC — submitJob, sendResults

* Data Structures Example: Subjob data structure

Reply | Parameter | Type | Meaning
id int The identifier of this subjob

H as h hashtype string | The name of the hashtype used
method string | The name of the cracking method nsed
alphabeot string | The name of the alphabet used

JO b subimitted long | The time of submission { Unix timestamp format)
percentage int The percentage of completed checks

S u b H o) b minlength int The minimum length of the password

J maxlength int The maximum length of the password

Cracking Tools

* Existing cracking tools
* John the ripper (CPU)
* oclHashcat-plus (GPU)

Proof of Concept - Overview

Component: Progress: Used:
*Website

Frond-end: Very simple <HTML>
*Controller

Communicator: Finished <PHP>

Dispatcher: Very simple strategy <PHP>
*Worker

Common code: Finished <PHP>

Tool specific: Basic John the Ripper <PHP>
*Database

Controller: Finished <MySQL>

Worker: Finished <SQLite>

Proof of Concept

* Demonstration

Adding new node

Show database with jobs
Starting dispatcher
Intermediate hashes cracked
Job ready (result?)

Worker Clean up / Ready again

Conclusion

* What was the research question again? ©

How can a scalable, modular and extensible middleware solution
be designed for the purposes of password cracking, so that it is
based on existing cracking tools and allows for the use of a dynamic
and adjustable cracking strategy?

* Research

Distributed Architecture: Centralized
Transparency
Modularity
Concurrency
Simplicity
Communication: Message-Oriented / RPC
Existing Tools: John the Ripper (CPU) / oclHashcat (GPU)

[10])

Project Achievements

* Functional Specification:
System overview
Use-cases
System requirements
* Technical Specification:
User interface
Controller
Worker
Database
Communication
* Proof of Concept:
Website: very simple
Controller: working with simple strategy
Worker: working with John the Ripper

Future work

* Further development / fine tuning of the system modules
* Extending to support other architectures (Cloud, Cell, etc.)

* Implementing the following for the system:
Adding more tools and hashtypes

Tweaking for multiple OS’s (small changes needed)
Proper cracking strategy

Security for controller/node communication
Development of a proper front-end

* Testing / Benchmarking with many workers

Any Questions?

