
I/O Load Scheduler for GRID Mass Storage

CHRISTOS TZIORTZIOS

Christos.Tziortzios(at)os3.nl

February 13, 2012

Abstract

SARA manages a high performance data storage system in order to
store data for LHC and LOFAR experiments. The amount of data that
are currently stored is more than 5 PB. They are using a Hierarchical
Storage Management (HSM) approach in order to achieve that. There is a
disk front-end and a tape back-end, in which data are stored permanently
and restored when researchers need that data. The Front End Storage
(FES) is using the dCache software in order to manage the data and the
transfer requests from the research sites. Data are transferred from FES
to the tapes and the other way around, through the Grid Mass Storage
(GridMS). The data transfers are scheduled on the Front End Storage
side in a basic way. In this project we created a prototype solution of
implementing a scheduler in the GridMS side, in order to control the
data flow between FES and GridMS more efficiently. We used TORQUE
resource manager and Maui cluster scheduler in order to achieve this.
Putting data from the GridMS disk to tape and getting it from tape
to disk is taken care of by the Data Migration Facility, thus this part
of the process is not going to be controlled by the scheduler. Last, we
propose some Maui and TORQUE configuration characteristics and some
modifications to the current working environment that could make it more
efficient.

1

Contents

1 Introduction 3

2 Current Infrastructure 3
2.1 Storage Infrastructure . 3
2.2 Operations . 4

2.2.1 Operations between FES and GridMS 4
2.2.2 Checksums . 5
2.2.3 Operations between GridMS disk and Tape 5
2.2.4 Writing to and Reading from disk 5

2.3 Performance issues . 5

3 Testing 7
3.1 Testing Environment . 7

3.1.1 Goals . 7
3.1.2 Software used for testing 7
3.1.3 Setup . 7
3.1.4 Operations . 7

3.2 Maui and TORQUE Configuration Tests 8
3.2.1 Calculating Job Priority with Maui 8
3.2.2 User Priorities . 9
3.2.3 Fairshare and Resource parameters for priority 9
3.2.4 Requesting Resources . 10
3.2.5 Different Queues . 11
3.2.6 Test Conclusions . 12

4 Proposed Architecture 12
4.1 Operations . 12
4.2 Time Windows . 13
4.3 Node allocation policy . 13
4.4 Optimal number of data transfers 13

5 Conclusion 14

2

1 Introduction

SARA [1] manages a high performance data storage system used, among other
things, to store data from the LHC [3] (particle accelerator in Switzerland) and
LOFAR [2]. SARA uses a disk front end and a tape back end. Data are copied
from a remote host to the disk cache (Front End Storage) and then stored on
the tape back end, through Grid Mass Storage (GridMS). Reading in data sets
from tape to the disk cache and then transporting it back to a remote host also
occurs. This process is referred to as data staging. SARA deals with enormous
amounts of data. This means that they may need to store and restore many ter-
abytes every day, while a single request could be for a file of even 1TB. Currently,
the requests are scheduled in the Front End Storage side, in a non-advanced way.

The research question is:
Is it possible to use an intelligent scheduling mechanism in order to control
the data flow between the Front End Storage and Grid Mass Storage more effi-
ciently?

Batch System Schedulers are used in order to give processes access to resources,
but normally CPU time and memory. However, our goal is to use schedulers
to efficiently control I/O. We will use TORQUE resource manager and Maui
cluster scheduler in order to achieve this.

2 Current Infrastructure

2.1 Storage Infrastructure

Hierarchical Storage Management (HSM) [5] is a technique used to move data
from high-level expensive storage facilities to cheaper ones in the lower level of
hierarchy, while preserving a single view of the filesystem. The storage infras-
tructure in SARA is organized in a hierarchical way as follows (also see figure
1):

• Front End Storage (FES): Front End Storage receives requests from LHC
and other projects such as LOFAR. Data are sent from these project sites
to the FES which has a capacity of approximately 4.6 PB, however this
disk space is shared with projects other than the one discussed in this
paper. Later on, researchers may request to retrieve that data. FES
consists of 48 nodes, with 10 GE (10 Gbps) network links to the Grid
Mass Storage (GridMS) front-end network. The FES uses dCache, which
is a storage middleware system [4], capable of managing the large amounts
of data created by projects such as the LHC and LOFAR.

• Next, data are sent to the Grid Mass Storage (GridMS) in order to be
stored permanently. GridMS consists of:

– 4 Data Movers (DM)

– 5 Tape Movers (TM) with 4 tape drives each

– the Data Migration Facility and

– a 33 TB disk

3

Figure 1: Current Architecture

– each DM node has a 10 GE link to the FES

– each DM and each TM has two Fiber Channels of 4 Gbps links to
the GridMS disk

Data are sent from the Front End Storage to the Data Movers to be stored.
First, data are sent to the 33 TB disk. Next, the data are put to tape, in which
they are stored permanently.

In order to restore data, a request is sent by the FES to the Data Movers.
If the data is on the disk, for example because the same file has been requested
recently, it is sent to the FES. Otherwise the data needed must be restored from
tape to disk. Then the data are made available for the FES. Putting data from
disk to tape and getting from tape to disk are both taken care of by the Data
Migration Facility (DMF). The DMF is a Hierarchical Storage Management
system and its purpose is to efficiently manage the data transfers from disk to
tape and the other way around [6].

2.2 Operations

It is extremely important that these operations are flawless, since a minor flaw
could potentially lead to loss of data.

2.2.1 Operations between FES and GridMS

Store When a file needs to be stored, the file is copied from a FES node to
the GridMS disk, using gridFTP [8]. The protocol used is sshftp, but instead of
the standard ssh, hpn-ssh [9] is used. The advantage of hpn-ssh is that there is
no encryption of the data, while retaining the strong authentication mechanism.
This helps data be transferred at higher rates. When the data are moved to the
GridMS, they are checksummed. FES will then check if their checksum is the
same as the one in the GridMS and if the file is intact the data may be removed
from the FES.

4

Restore When data need to be restored, the procedure is the following:

1. The user (essentially FES) is connected to one Data Mover through ssh
and runs a dmget command. dmget is used by the DMF to recall files
that have been stored to tape.

2. Next, the FES repeatedly checks if the dmget call has completed.

3. When the dmget call is found to be completed, the data are copied to the
FES.

4. If the FES gets the data successfully, the disk space in the GridMS is freed
up since the tape copy is retained.

2.2.2 Checksums

Data are checksummed with the Addler-32 algorithm on the FES side and af-
terwards on the GridMS side. The checksums are checked when the file is stored
and when the files are restored from tape in order to make sure that no errors
have taken place throughout the procedure. Adler-32 is not the most reliable
checksumming algorithm but it was found sufficiently adequate for our purposes
and it performs very fast.

2.2.3 Operations between GridMS disk and Tape

Put When data needs to be put on tape, the Data Migration Facility (DMF)
takes care of copying the file from the GridMS disk to tape and freeing up the
disk space. The DMF monitors the filesystem and when there are enough data
that need to be moved to tape, it takes care of the process at will.

Get When data needs to be retrieved from tape, dmget command is called
and the DMF takes care of getting back the file on disk.

2.2.4 Writing to and Reading from disk

The 33TB GridMS filesystem is a striped volume that is built up from RAID6
LUNs. This technique is applied for performance reasons. However, more than
one files are being written to or read from that filesystem concurrently and this
leads to some drop in performance.

2.3 Performance issues

Bandwidth bottlenecks Front End Storage consists of 48 nodes. However,
on the GridMS part there are only 4 nodes (Data Movers). Thus, the GridMS
nodes are too few to handle the whole data load that the FES nodes could
provide. However this is not the greatest problem, since the GridMS disk has
an even lower bandwidth (also see figure 2). The performance of the whole
system is limited by the low disk I/O rates, which is the real bottleneck. There
is 1 GB/s of bandwidth for I/O for the DM nodes and 1 GB/s for the TM
nodes. An other issue is that each tape drive can read from or write to tape at
a maximum speed of 120 MB/s. For this reason we need multiple concurrent
”puts” or ”gets” in order to utilize the bandwidth of the disk.

5

Figure 2: Disk I/O Bottleneck

Disk Input / Output The highest performance achieved between the disk
and the DM nodes is approximately 900 MB/s, which is nearly as much as the
bandwidth of the disk. However, the average performance is 400 MB/s while
performance can drop to even 200 MB/s. Performance depends on the amount
of parallel jobs running. On the one hand, we need, for example, multiple
concurrent ”get” operations, since having one would mean that we could only
get 120 MB/s at most (see figure 2). On the other hand, increasing the number
of concurrent operations on disk, makes I/O more and more random. There are
two different kinds of workload categories, which are sequential and random. In
sequential workloads large amounts of data are read at once, while in random
access workloads smaller amounts of data are read each time [7] . This leads to
worse performance because the data are not parsed at once and the heads need
to move a lot from one part of the disk to another. Performance also depends
on the size of the files; large files tend to perform better.

Scheduling only on FES-node level Data are sent to the FES from differ-
ent experiment sites. Later on, researchers all over the world request for files
to be restored. Next, the FES requests that data are stored to or restored from
tape. As far as the GridMS is concerned, these processes are initiated by the
FES. If we allowed each node to send several files to be stored at once, that
would lead to sending to the DMs more data than they could handle, thus we
allow only one transfer per node at a time. However, using this setup, there is
a possibility that there is only one FES node that needs to store lots of data.
In this case this node would not be allowed to utilize any other DMs, although
they would be idle. Thus, the scheduling performed by dCache in the FES
side is not advanced. Scheduling exists only on node level, instead of groups of
nodes (e.g nodes dedicated to LHC) or user groups. Using TORQUE resource
manager along with Maui Scheduler should provide more options to the storage
administrators. These options would let them increase the efficiency of the data

6

storage. Moreover, it could help providing more ”fair” access to the projects
and the researchers.

3 Testing

3.1 Testing Environment

3.1.1 Goals

The goal of the following tests is to investigate whether using a batch system
would improve the performance of GridMS. We wanted to check if features such
as scheduling priorities and resource sharing can be efficiently used in order to
schedule the I/O load. Moreover, we want to examine the feasibility of modifying
the procedures that are used currently, into procedures that would efficiently
use a scheduling mechanism and develop a prototype solution. For these reasons
we will be using TORQUE resource manager and Maui cluster scheduler.

3.1.2 Software used for testing

TORQUE TORQUE is a resource manager. Resource managers provide the
functionality to start, hold, cancel, and monitor jobs [10]. It is normally used
to give processes access to CPU time or memory, but we are mainly interested
in scheduling disk I/O and bandwidth.

Maui Although TORQUE has its own scheduler, it is normally configured
to use another, more advanced, scheduler; typically Moab or Maui. We are
using Maui Cluster Scheduler, which is an open source job scheduler for clusters
and supercomputers [11]. Maui is capable of providing scheduling and fairshare
options. Maui provides numerous options, through which administrators can
give priority to the users that may be more important and make sure that
everyone gets what one deserves through fairshare policies.

3.1.3 Setup

Some of the following tests were not done in the optimal way. The main reason
is that there was no test environment and we had to use the production envi-
ronment. Thus we had to be really careful on what we do and we should not
perform all of the tests using real store and restore jobs because that would have
negative effects to the performance of the working environment. Another side
effect is that we would not able to get reliable data if we wanted to calculate the
effect of multiple concurrent operations on the disk. We would be able to know
how many of our jobs are running but we would not know the number of store
and restore operations executing in the production environment. Although we
had practically full access to the GridMS nodes, we only had access to one of
the FES nodes. All jobs were sent through this node, using different test-users
in order to simulate the real requests.

3.1.4 Operations

Restore The Restore procedure of the testing scheme is a simplified version
of the one currently used in the working environment (described in the previous

7

section). The differences are that instead of just running the job, we first submit
it in the queue and that we do not copy the file back to the FES.

Store When a file needs to be stored, the procedure is as follows:

1. FES will ssh to one of the nodes of the grid in order to run a job sub-
mitQueue that will put another job copyJob to the queue.

2. When it is time for copyJob to execute, depending on the queue, it will
run.

3. What copyJob does, is run scp, thus copying a file from the FES to the
GridMS disk and remove the file from the FES disk upon success of the
copy command.

Using scp is not the most efficient way of copying files. In the production
environment a gridftp over hpn-ssh command is being run. We did not use the
hpn-ssh command because, neither was it installed on the GridMS nodes, nor
was there a daemon running on the FES side, in which we had limited access.
Moreover, using this set-up, the GridMS would pull the data from the FES
instead of having the FES push data to GridMS. This way the GridMS will
only pull data when it is ready to. Moreover, in the production environment
files are checksummed and the checksums of the FES are compared to the new
checksums on the GridMS side as previously mentioned, which was not part of
the testing scheme for simplicity.

Put and Get Put and Get operations are, as already mentioned, taken care
of by the DMF and we could not adjust the way that the DMF works. Thus,
these operations are not part of the testing environment.

3.2 Maui and TORQUE Configuration Tests

The purpose of testing different Maui and TORQUE configurations is to explore
the opportunities of scheduling jobs in different ways. Moreover we want to
ensure that the scheduler works as expected when different settings are used. In
order to achieve this, we first experimented with jobs that would not influence
the performance of the working environment. As soon as the first part of testing
was successfully conducted, we moved on to storing and restoring random data.

3.2.1 Calculating Job Priority with Maui

”Maui allows jobs to be prioritized based on a range of job related factors.
These factors are broken down into a two-level hierarchy of priority factors and
subfactors each of which can be independently assigned a weight” [12]. The
main components are:

• Job credentials

• Fairshare usage

• Requested job resources

• Current service levels

8

• Target service levels

• Usage

Each of the main components has several subcomponents. For example,
some of the subcomponents of the ”Job credentials” component are:

• User

• Group

• Class

3.2.2 User Priorities

In this test we only wanted to check if all jobs sent by users with higher priority
would run before the first job of a user with lower priority.

The following is part of the configuration:

#The priority of the job will not increase

#depending on when it was queued

QUEUETIMEWEIGHT 0

CREDWEIGHT 1

USERWEIGHT 1

GROUPWEIGHT 1

#User specific priority

USERCFG[testusr1] PRIORITY=500

USERCFG[testusr2] PRIORITY=500

USERCFG[testusr3] PRIORITY=800

USERCFG[testusr4] PRIORITY=1000

Numerous jobs were sent to the queue by different users. As expected, the
jobs of testusr4, who had the highest priority would run first, the jobs of testusr3
would run next and the jobs of the other users would be the last to run. It should
be noticed that, all jobs of testusr1 would run before the first job of testusr2
would, although they had the same priority.

3.2.3 Fairshare and Resource parameters for priority

The purpose of this test is to check the ”Fairshare” and the ”Requested job
resources” components. The Fairshare component is designed to ensure that
different users will get the amount of resources that they are entitled to. The
Fairshare component uses short term historical data in order to keep track of
how much of the resources each user has used. For this test we used short time
windows of 10 minutes in order to get to our results faster.

Moreover, the jobs that we sent to the queue were ”tagged” with different
walltimes in order to give them different priorities. The reason why walltime
was chosen is that larger files should take longer to be ”processed”. We chose
to give higher priority to jobs with longer walltime. If we wanted to give higher
priority to jobs with shorter walltime, we would have to make sure that the
walltime would still be long enough for the jobs to execute.

The following is part of the configuration:

9

#The priority of the job will not increase

#depending on when it was queued

QUEUETIMEWEIGHT 0

#Fairshare weight

FSWEIGHT 1

#longer jobs will have higher priority

RESOURCEWEIGHT -1

WALLTIMEWEIGHT 1

#All users have the same priority

USERCFG[testusr1] PRIORITY=500

USERCFG[testusr2] PRIORITY=500

USERCFG[testusr3] PRIORITY=500

USERCFG[testusr4] PRIORITY=500

#All groups get the same share of resources

GROUPCFG[testgrp1] FSTARGET=20.0

GROUPCFG[testgrp2] FSTARGET=20.0

GROUPCFG[testgrp3] FSTARGET=20.0

GROUPCFG[testgrp4] FSTARGET=20.0

#Configure time windows

FSPOLICY DEDICATEDPS

FSDEPTH 24

FSINTERVAL 00:10:00

In this configuration, all users have the same priority and fairshare target.
Thus, the order in which jobs will be processed should only depend on their
walltime. After some time, if one user has been running some CPU time con-
suming jobs we should see that this user’s jobs will not be taken into execution
any more. When the rest of the users get to their fairshare target, this user
should be able to run jobs again. If one user has not been running jobs at all
and at some point sends one job, this job should be processed soon. However,
this may not be the case if this job has a small walltime and the other jobs have
really big ones. testusr1 sent a number of jobs with big walltime and got to
run them. However, after 10 minutes of having full access to the resources, as
soon as these jobs were executed the rest of the users (testusr2 and testusr3)
got their jobs with the biggest walltime running, as expected. When these users
got their share of the resources, testusr1 was able to run jobs again. Next we
sent a number of jobs for testusr4 and they were put at the top of the queue as
expected.

3.2.4 Requesting Resources

When submitting a job to the queue, it is possible to specify the resources
that this job is going to need in order to run. Among other things, one can
request ”Walltime”, memory usage and most importantly in our case disk space
requirements.

10

Walltime Walltime stands for the amount of time that takes one job to exe-
cute. Time, in our case, is as perceived by humans, not the machine, therefore it
is measured in seconds, minutes and hours. This amount of time is estimated by
the users. If our estimates are accurate, this may lead to improved performance
of the scheduler, since Maui performs backfilling [13] [14]. In our case, we could
possibly estimate walltime based on the size of the file and the amount of jobs
being run at that time.

Disk Space When submitting a job, one can request for the disk space that
one’s job is going to need in order to be executed properly. The job will not run,
until enough disk space is available. This is useful to us, since the jobs that we
want to schedule are related to data transfer. Both store and restore operations
require disk space in GridMS and since we can get the size of each file that we
need to transfer, we can request for the disk space that we need. This way we
would be able to accept any number of jobs from the FES and queue them until
enough resources are available. However, when we tried to use this feature, we
found out that it did not work properly.

Let there be 1 TB of free disk space. If we request for 1.2 TB when we
submit a job, then this job will not run until there is enough space. However, if
we send two jobs that request 600 GB each, then both jobs would run, although
they do not ”fit” in the disk. The result is that one of the operations will return
an error.

Other resources Although the rest of the resources are not that important
for us for scheduling, we can still use them in order to give different priorities
to jobs. For example, we could configure Maui in a way that will favour jobs
that need more virtual memory. In this way we could for example request a lot
of virtual memory for a job that transfers data from a node that is almost full
of data, freeing up space as soon as possible.

Underestimating and Overestimating Resources Underestimating re-
sources may lead to the job starting to execute and being killed as soon as it
uses up its resources. For example we estimated the walltime for a job as 1
minute, while in fact our job needed 2 minutes to complete. When our job was
the only one running, underestimating resources was not a problem. However,
when there were other jobs queued, then at the end of the time that we re-
quested for our job, Maui gave the resources to one of the jobs in the queue,
thus killing our job. Overestimating walltime will not cause such problems, but
it may lead to less efficient scheduling. It may lead to having low-priority jobs
running before high-priority jobs, which may be annoying. For these reasons
it could be useful to get accurate estimates of walltime, but it may be risky as
well.

3.2.5 Different Queues

When using TORQUE, one can configure multiple queues. This can be useful,
since one could assign different jobs to different queues. In our case we could
have a queue that can run up to 2 jobs at a time and send all jobs related to
LOFAR to that queue. Another set-up could use one queue for store operations

11

and another queue for restore operations. This way we could have more parallel
restore operations, which is more useful than having parallel store operations.
However in both cases we could end up having idle nodes. Each queue may
have a different priority. However when we tried to send jobs of equal priority to
queues of different priority, Maui would override any priority given by TORQUE
or the end user.

3.2.6 Test Conclusions

We managed to check the way priorities and the fairshare components work.
The ”disk space” request feature did not work properly. Moreover, we were
able to give higher priority to different jobs by using the ”walltime” feature.
The procedures that were used in order to store and restore data were not
optimal, for example we did not use the most efficient data transfer protocol,
however we did manage to use the queuing system successfully in order to do
these data transfers.

4 Proposed Architecture

In this section we propose a way in which the operations can be performed after
implementing the scheduling mechanism.

4.1 Operations

The store and restore operations will be using the same file transfer protocols
as the ones currently used in the production environment (see subsection 2.2).
The same applies for the checksum algorithm used, which is still going to be
Addler-32. However, instead of executing the ”store” and ”restore” operations,
jobs are going to be submitted to the queue first. Checksum operations can be
part of the store and restore operations or be submitted to the queue separately.
Currently data are pushed from the FES to the GridMS for the store operations
and pulled from the GridMS side to the FES in restore operations. Inversing
this could improve the performance of the production environment. Jobs will
still be submited from the FES side, however the jobs will first be queued. Next,
the scheduler that will be implemented in the side of the GridMS will be running
as many concurrent jobs as the GridMS can handle.

Store Regarding the ”store” operation, only few changes are needed. The
FES, which initiates the request as far as the GridMS is concerned, will need to
submit a request for a file transfer to the queue, instead of transferring the file
at once, but no further changes are needed.

Restore Splitting the ”restore” operation into multiple jobs that will be sub-
mitted to different queues can be helpful. As previously mentioned, the way
restore operations currently work is by first requesting that the DMF gets the
data from tape to the GridMS. Afterwards, the FES repeatedly checks if the
GridMS disk has got the data and then moves the file from the GridMS to the
FES. A more efficient way could be the following:

1. First, the FES will ssh to GridMS and run a script.

12

2. When this script runs, it will request that the DMF gets the data from
tape (dmget command). This dmget command can either be submitted
to queue or run at once.

• Having the dmget command run at once may increase the efficiency
of the DMF. This way the DMF is given more options in order to
schedule its operations more efficiently and have multiple tape drives
working at the same time.

• Submitting the dmget command to the queue, can increase the level
of control on which transfer is going to take place, based on credential-
based priorities and fairshare criteria. However, we can run dmget
outside the queue and still have some control on this, by queuing the
rest of the commands.

3. Next, instead of having the FES repeatedly check (through ssh) the status
of the file, a second job will repeatedly check the status of the file locally.
This job does not need to be submitted to the queue.

4. When the previous job succeeds (the file has been put to the GridMS
disk), it will submit another job to the queue. This job will copy the data
to the FES and remove it from the GridMS disk. Through this job we can
apply credential-based priority and fairshare policies as well.

4.2 Time Windows

One common approach, when backing up data is doing your backups at night,
while the network is less busy. However we are dealing with an archiving prob-
lem. Requests to get data are random and so are the requests to store data,
so the pattern of more restore operations during daytime does not apply in
our case. Therefore, giving higher priority to restore operations during daytime
and higher priority to store operations at night will not necessarily improve the
performance.

4.3 Node allocation policy

Besides using the scheduler in order to determine which job is going to execute,
we can also choose which node it will be run on. Node allocation policy is
one of the parameters of Maui configuration that are important for us. We
chose to allocate the jobs to nodes based on the CPU load. This way one node
will have to run 2 jobs only if the rest of the nodes already run one job. The
most important part is that by balancing the CPU load, we also balance the
bandwidth used, since what these jobs mostly do, is transfer data.

4.4 Optimal number of data transfers

We did not have enough FES test nodes available in order to determine the
optimal number of concurrent data transfers. Other users would be able to
transfer data outside the queuing system, therefore our results would not be
reliable. In theory, one single store operation would be able to use the whole
bandwidth available on the GridMS disk. However, this does not happen in
practice and multiple store jobs should run in order to use the whole bandwidth

13

that the GridMS offers. It should be noticed that DMF will wait until there
are enough data that need to be stored, before it starts putting it to tape. On
the other hand, we definitely need multiple restore jobs running at a time. One
get operation may use a bandwidth of up to 120 MB/s, thus, in theory we can
have up to 8 get jobs running at a time, without fully utilizing the 1 GB/s of
bandwidth that the disk has to offer.

5 Conclusion

A prototype solution was created, that used TORQUE and Maui in order to
handle the GridMS disk I/O. The scheduling mechanism can increase the effi-
ciency of the current working scheme. First, we would no longer need to limit
the concurrent data transfers per FES node to one. Using the scheduler any
number of jobs can be submitted to the queue per node. The optimal number
of concurrent jobs can be calculated and used in order to increase the efficiency
of the scheme. Maui will then decide which job is going to run. Moreover,
Maui lets us give different priorities to jobs and lets users share the resources
in a more fair way. Furthermore, the restore operation proposed (subsection
4.1) can improve the efficiency of the scheme even more. Instead of repeatedly
checking the status of the file through ssh, this operation can be performed more
elegantly by having the GridMS check the status of the file locally.

Implementing a scheme that uses a scheduler is feasible. However, any
changes to the production environment must be made with care. The script
that is currently used includes a lot of code related to logging and error han-
dling. Implementing a new scheme may introduce new bugs, potentially leading
to loss of data. For these reasons, a testing environment should be created and
a long testing period should be used. Luckily, the FES is capable of storing a
lot of data and could possibly handle the data produced during this period of
testing.

References

[1] SARA www.sara.nl

[2] LOFAR www.lofar.org

[3] Large Hadron Collider lhc.web.cern.ch/lhc

[4] dCache www.dcache.org

[5] Hierarchical Storage Management

http://en.wikipedia.org/wiki/Hierarchical storage management

[6] SARA Data Migration Facility

http://www.sara.nl/systems/shared/software/dmf

[7] Darren Hoch, Extreme Linux Performance Monitoring Part II
http://www.ufsdump.org

[8] gridFTP www.globus.org/toolkit/docs/latest-stable/gridftp

14

[9] HPN-SSH http://www.psc.edu/networking/projects/hpn-ssh/

[10] TORQUE www.adaptivecomputing.com/products/torque.php

[11] Maui www.clusterresources.com/products/maui-cluster-scheduler.php

[12] Maui Job Priority Factors, Maui Scheduler Administrator’s Guide
www.adaptivecomputing.com/resources/docs/maui/5.1.2priorityfactors.php

[13] V. Subramani, R. Kettimuthu, S. Srinivasan and P. Sadayappan Distributed
Job Scheduling on Computational Grids using Multiple Simultaneous Re-
quests Proceedings of the 11 th IEEE International Symposium on High
Performance Distributed Computing HPDC-11 2002

[14] Backfill, Moab Workload Manager Administrator Guide
http://www.adaptivecomputing.com/resources/docs/mwm/6-
0/8.2backfill.php

15

