MultiPath TCP: Hands-On

Gerrie Veerman - UvA Supervisor: Ronald van der Pol - SARA 05-07-2012

What is MultiPath TCP?

• The ability to use multiple paths with the same connection.

Making use of Multi-homing

• One could make use of multiple interfaces simultaneously and roam between 3G and WiFi instantly.

The Project

Research Question:

Is the current MPTCP implementation a useful technology for e-science data transfers in the GLIF environment?

Why are we doing this?

- Demand for bandwidth keeps increasing
- MPTCP is still relatively new
- Can MPTCP really make efficient use of multiple paths
- How stable is the current implementation
- First hands-on experience for SARA

History and Present

History:

- Christian Huitema suggested the idea in 1995
- The idea turned into MPTCP around 2006

Present:

- In 2011 the first RFCs appeared
- 1e implementation in the 2.6 Linux kernel in 2011 (higher versions should support it, we used 3.2)
- Currently three RFCs written and four still in draft
- MPTCP is still being developed, discussed and extensively tested

How does MPTCP work?

Properties of MPTCP

- MPTCP is actually implemented in TCP option fields
- For middle-boxes MPTCP looks like regular TCP packets
- Applications can use MPTCP as in a regular TCP socket API
- End-hosts need multiple routing tables, one for each path (default gateways)
- One needs higher buffers than with TCP

Path Management

- Routes and paths are created by the network not the MPTCP protocol
- After a handshake the first initial subflow is created
- MPTCP shares all available IP addresses with each other and tries to create a full-mesh out of them
 - The connections which do not work get dropped
- MPTCP has the ability to add and remove subflows
- Every subflow has its unique subflow ID and keys (SHA-1 is used).

The Goals of MPTCP

- **1. Improve throughput:** Perform at least as well as a single path flow would on the best of the paths available to it.
- 2. Do no harm: multipath flow should not take up more capacity from any of the resources shared by its different paths
- **3. Balance congestion:** A multipath flow should move as much traffic as possible off its most congested paths, subject to meeting the first two goals.

• With MPTCP:

Congestion Algorithm

Should make sure the most efficient paths are taken and meet the design goals of MPTCP

Questions we had?

- How is everything configured/addressed/routed?
- How well does the current implementation work?
 - Can it handle a LAN and WAN environment?
 - How robust is the protocol?
 - Can it handle differences in bandwidth?
 - How well does MPTCP handle congestion?

Created Topology

Experiments

Experiment Topics:

- Improved throughput
- Robustness
- Congestion and Fairness
- LAN vs WAN environment

What we used:

- Small and large packets (MSS)
- For all our tests we used iperf
- Different sizes for socket buffers
- Increased the maximum buffer size for the kernel (rmem_max, wmem_max, tcp_rmem and tcp_wmem).

LAN: Throughput

LAN: Robustness

Interfaces go UP and DOWN

LAN: Balancing

• We got both graphs with the exact same experiment

LAN: Balancing

	LAN	LAN	LAN
Speed	1Gb/s	1Gb/s	10Gb/s
RTT	5ms	5ms	5ms
Buffer	26MB	26MB	26MB
Min-Buf	15MB	15MB	15MB
MSS	8900	8900	8900

- 10Gb/s LAN
- 1Gb/s LAN
- 1Gb/s LAN

WAN: Throughput

WAN: Advanced Throughput

• Using only the two Geneve links is more optimal

LAN + WAN: Throughput

• Small difference in RTT +/- 30ms

	WAN	LAN
Speed	1Gb/s	1Gb/s
RTT	35ms	5ms
Buffer	10MB	10MB
Min-Buf	17.5MB	17.5MB
MSS	1400	1400

LAN: Fairness

 One can see that the bandwidth TCP gets is far below what it 'should' get in theory

Analysis

Behavior of the different parameters

Performance dips in graphs

- Window size decreases (packets are dropped)
 - Slow server?
 - Overflowing buffers?
- Interfaces going UP and DOWN
 - MPTCP debug option
 - Subflow count stays 1 while it should be 2, no clue why this happens
 - Tcpdump/Wireshark
 - No clear explanation yet. (indication its due to the socket buffer in combination with the window size)

Achievements

Experience:

- Kernel froze sometimes, especially when interfaces went up and down
- Can work with both IPv4 and IPv6 simultaneously
- MPTCP seems quite stable overall

Research

- MPTCP meets its goals: *improve throughput* and *balance congestion*
- The goal: *do no harm* is not met perfectly. In our experiments MPTCP is a bit unfair to TCP
- The behavior of MPTCP in different environments with different parameters

Conclusion

Research Question:

- *Is the current MPTCP implementation a useful technology for e-science data transfers in the GLIF environment?*
- When the e-science environment is stable, uses the same link speeds, has high enough buffers and same RTTs
 - MPTCP seems to behave well and gets maximum throughput
- However, when you have a lot of differences in link speeds, buffer sizes and RTTs
 - MPTCP may behave less optimal and becomes as good as TCP would get. One should consider if using MPTCP gives any real benefit. However, when robustness is a key factor you can of course make use of MPTCP
- With higher speeds, one would need fast servers and one should put a lot of attention in tweaking all parameters

Future work

- More advanced analyzing and testing of the protocol
- Testing against other projects like GridFTP
- The GLIF test-bed topology within SARA
- Run experiments again to verify our results
- Investigate the tuning further
- Try it yourself

Questions

Backup Slides

Congestion Algorithm

 Should make sure the most efficient paths are taken and meet the design goals of MPTCP

Flow 1:1

Flow 4:1

MPTCP Handshake

Buffer calculation

• TCP:

 $Buffersize_{TCP} = RTT_{max} * LinkMax_{bits}$

• MPTCP:

 $Buffersize_{MPTCP} = RTT_{max} * AllLinksMax_{bits} * 2$

• Example: RTT=36ms, 2x 1Gb/s

0.036 * 200000000 * 2 = 144000000bit = 18MB

MPTCP Algorithm

• Window size increase rule is only changed

$$cwnd_i = cwnd_i + min\left(\frac{alpha}{cwnd_{tot}}, \frac{1}{cwnd_i}\right)$$

$$alpha = cwnd_{tot} \frac{max_i(\frac{cwnd_i * mss_i^2}{RTT_i^2})}{(\sum_i \frac{cwnd_i * mss_i}{RTT_i})^2}$$

MPTCP Handover

										Min-Buf	in-Buf	25MB	25MB
											MSS	8900	8900
		14000										_	
One MPTCP	s/s	12000 -										_	
	qΣ	10000 -			•								
session H	idth	8000 -											
	Mpr	4000 -										10	Gb/s LAN
	Baı	2000 -										1 0	JD/S LAN
		0 -				1			,				
		1	61	121	181	241	301	361	421	481	541		
						S	econds						
		14000											
		12000										ŀ	
Two MPTCP	s/4/	10000	_										
	4	8000	-										
Sessions	hwid	6000	et esti et inste									1 0	Gb/s LAN
	Jand	4000	_									1 0	Gb/s LAN
	4	2000	_										
	0	-	1	1	1	1	1	· ·	1	1 1 1			
			1 61	. 121	181	241	301	361	421	481	541		
						S	beconds						

LAN: 2x 10Gb/s Link

LAN

5ms

20MB

Speed RTT

Buffer

LAN

5ms

20MB

34

10Gb/s 10Gb/s

LAN: Advanced changes

LAN: Fairness with a TCP session

LAN LAN 1x 1Gb/s 2x 1Gb/s 1Gb/s 1Gb/s Speed RTT 5ms 5ms 2000 Buffer 6MB 6MB Min-Buf 2.5MB 2.5MB 1800 MSS 1400 1400 1600 1400 TCP Bandwidth Mb/s 1200 TCP in theory MPTCP 1000 MPTCP in theory 800 Combined Combined in theory 600 400 200 0 One TCP session **Two TCP sessions** One TCP session **Two TCP sessions**

LAN: Fairness on 2x 1Gb/s links

LAN: Fairness on 2x 1Gb/s links

