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Abstract

This project’s aim, is to get more experience with Multipath TCP within SARA. Multipath
TCP makes it possible to use multiple paths at the same time. MPTCP wants to become the
TCP 2.0 and came recently available for the 2.6 linux kernel. In this project we go over the
theory behind MPTCP and its design goals and workings. We talk about how we configured
it and how we were able to use it. We created a layer two test topology with LAN and WAN
capabilities, both with 1- and 10Gb/s links. We did experiments regarding the following topics:
performance, load balancing, robustness and congestion, this within our topology. A couple of
scripts have been created to get the desired environment for our experiments.

As a result we can say that MPTCP works well overall and can meet two of its goals con-
cerning: improve throughput and balance congestion. We are however a bit curious about the
do no harm goal, in our results MPTCP was a bit unfair compared to TCP. We also noticed that
MPTCP behaved strange on link changes. When new connections joined, the old link was not
used anymore. Further MPTCP behaves most optimal in a stable environment, especially when
the links have the same capacity and have a small RTT difference.
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Introduction Chapter 1

1 Introduction

The demand for more bandwidth is constantly increasing, not only large organizations but also
home users are using more bandwidth. The AMS-IX gets more traffic throughput every month with
a current peak of 1.6 Tb/s [1]. Organizations are increasing their fiber infrastructure dramatically
[2]. Also the wireless world is expanding and increasing its infrastructure [3]. To cope with all those
bandwidth demands and increasing infrastructure the Internet is in need for new future technologies.
One of those promising techniques is called MultiPath TCP (MPTCP), this is a new protocol
developed in the IETF, which was partly funded by the Trilogy project of the European Commission
[4].

The purpose of MPTCP is the capability to use multiple paths in a network simultaneously. This
is obviously not always possible, since not every end-node has multiple network interfaces available.
However, some environments usually have multiple paths for failover or robustness. A good example
is a datacenter, which currently uses those different paths in a static load balancing manner. The
problem with load balancing different flows is that they do not fully utilize the actual maximum
bandwidth possible. This load balancing is usually done through hashes of the connections, based
on those hashes flows get created. Flows only take the same path, thus when one has a lot of
flows one can get great throughput. However e-science applications always have a limited amount of
flows and do not fully utilize the different links available. MPTCP should make it possible to fully
utilize all available paths and increase bandwidth and robustness. Some call MPTCP already the
Transmission Control Protocol (TCP) 2.0. Figure 1 shows how MPTCP can be used.

Figure 1: Topology where Multipath TCP is being used
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Another promising example is the mobile world. Phones hove multiple interfaces for example 3G
and Wifi. With regular TCP it is only possible to use one of those for a connection. The concept of
multi-homing in combination with MPTCP makes it possible to use both the 3G and Wifi link at
the same time. This has of course its pros and cons but at least MPTCP can make this possible.
One of the pros is for example the easy migration of your connection from 3G to Wifi, your phone
can use the same connection and does not have to establish a new one. In figure 2 is shown how this
looks like from a mobile phone point of view.

Figure 2: Mobile phone with Multi-Homing [5]

This project aims to be the first hands-on practice for SARA with MPTCP [6]. We want to get
more experience with the current MPTCP implementation and see how it operates and performs.

1.1 Related Work, Motivation & Goal

The Internet Engineering Task Force (IETF) has a working group, which is currently working on
standardizing MPTCP in different RFCs [7]. The IETF currently has three finalized RFCs 6181,
6182 and 6356. They also have four RFCs in draft, which get updated frequently. One of the parties
developing MPTCP is the University College London (UCL) department of computer science is
doing a lot of research in MPTCP [8]. They have released some papers and specifications in the
field of MPTCP, most of them are about congestion control and fairness with MPTCP. The
IP Networking Lab (INL) from the Universite Catholique de Louvain (UCL) created an MPTCP
implementation for the Linux Kernel and this is the main test environment for users, testers and
developers [9]. A protocol which has some comparable features to MPTCP is Stream Control
Transmission Protocol (SCTP), which is explained in section 2.2.1.

We are doing this research for SARA which is currently setting up a large WAN environment in
the Global Lambda Integrated Facility (GLIF) network. They want to perform MPTCP and
Openflow experiments in this topology. Since MPTCP is relatively new, SARA needs some hands-on
experience.
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1.2 Research Question

We formulated the following research question for this project:

Is the current MPTCP implementation a useful technology for e-science data transfers
in the GLIF environment

We identified the following subquestions, which help to answer the main research question:

• How does MPTCP handle failures and bandwidth changes?

• How is the fairness being handled? (congestion)

• Can MPTCP be configured and used easily in layer two networks?

• How is MPTCP working with large RTTs and buffers (LAN vs WAN)

• Optional: How well does MPTCP perform compared to GridFTP?

We also note some additional questions that can come up during the project:

• Does MPTCP work when all interfaces are in the same VLAN? (routing)

• Does MPTCP work when both IPv4 and IPv6 are being used at the same time?

• Can MPTCP work with different bandwidths speeds correctly?

1.3 Scope, Time & Approach

We want to look if the main goals MPTCP ‘should’ provide are really met. Also check which kind of
features it has and how well MPTCP performs. We also want to look into two additional subjects:
One is about the Wide Area Network (WAN) performance of MPTCP and if it works well with
a large RTT, will this give any problems compared to a Local Area Network (LAN) environment?
The second is how GridFTP performs compared to MPTCP.

This project has a predetermined fixed duration of four weeks. Due to this small time frame we
can’t do that much and do not have the time to test/analyze everything extensively. We will first
get ourself familiar with the MPTCP protocol and everything that comes with it. After that we
want to get some hands-on experience by creating a LAN environment and run the defined tests.
Than we move to the WAN environment and can test the same there and in combination.
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1.4 Report Structure

This report covers the theory, the research and the outcome of this project. The report is structured
as follows:

• Chapter 1: Introduction – the current chapter, introducing the project, its goals and the
research question

• Chapter 2: Theoretical Definitions and MPTCP explained – providing the required
theoretical definitions for this research and explaining the MPTCP protocol

• Chapter 3: Theoretical Research – examining the MPTCP protocol, describing our topology
and running test experiments

• Chapter 4: Results Discussion – discussing the results of the experiments and compare it
with MPTCP its design goals

• Chapter 5: Conclusion – the research conclusions and project outcome

• Appendices

4
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2 Theoretical Definitions

This chapter will give the definitions of the different terms and protocols used in this project, this
to get a basic understanding of what this project is about.

2.1 Definitions and Terms

This section covers the general terms that come up in this document.

2.1.1 Congestion Control

Network congestion occurs when too much data is being carried over a physical link and packets
are being dropped. When this happens the total amount of bandwidth that can be carried by the
link gets less. There are some techniques which make it possible to make efficiently use of all the
bandwidth available. Those techniques are implemented in the transport layer of the OSI stack and
are referred to as ‘congestion control’ mechanisms. In figure 3 is shown how congestion control works
when a link has two connections running over it. One can see that both links together almost fully
utilize the link.

Figure 3: Purpose of congestion control on a link [10]

Congestion control is implemented in the TCP protocol, this since TCP has to guarantee that data
gets delivered, compared to User Datagram Protocol (UDP) which does not. Some of the congestion
control algorithms used within TCP are Tahoe and New Reno, there are also specific algorithms
designed for long connections which have high RTTs. A congestion control algorithm is also being
used by MPTCP, the algorithm is almost like the one from TCP but modified to meet MPTCP
its goals.

2.1.2 Bandwidth Fairness

The idea of bandwidth fairness is that one connection should not consume more bandwidth than any
other connection. If one has for example three connections, which all want to use the full bandwidth
it should be shared, so all have them should get around 33% of the link.
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Sometimes some kind of traffic is preferred, this is called Quality of Service (QoS). With QoS one
can prefer different streams of traffic over another, this way one is less fair to other traffic. However,
MPTCP should be fair with its bandwidth usage to other traffic when no QoS is implemented.

2.1.3 Multi-Homing

Multi-Homing is a term that gets used when a device has multiple interfaces that can be used. This
for instance, can be a phone as shown in figure 2, but also a laptop or tablet can have multiple
interface. In recent years it is becoming more common for end-devices to have multiple connections
for example with Wifi and 3G. MPTCP should make it possible to use all available links from those
multi-homed devices at the same time with one MPTCP connection.

2.1.4 Round Trip Times

The Round-Trip Time (RTT) is the time it takes for a data packet to be acknowledged. For instance,
when a ping is being send the RTT basically means the time it takes to go back and forth over a
link. This can usually indicate how close the other device is and how fast one can connect to it. The
RTT is used by MPTCP in its congestion algorithm.

2.1.5 MTU and MSS

The Maximum Transmission Unit (MTU) is the size in bytes of what the largest protocol data unit
can be. The MTU is the size in which packets get fragmented and send over the link. The usual
MTU for Ethernet is 1500, but with higher speeds this can be increased till 9000. This is called a
jumbo frame. With a large MTU the CPU has less interrupts on the receiver side, this since it can
send larger packets and has less overhead this way. In this project we use jumbo frames when we
use 10Gb/s links, this to get the best performance in some of our experiments.

The Maximum Segment Size (MSS) is a parameter used in TCP protocols. It specifies how large a
packet can be. Therefor, the headers + MSS should be smaller or equal to the MTU. The default
MSS for MPTCP is 1400 but can be modified, which we did to get better performance on high
speed links, we increased it to 8900.

2.1.6 Global Lambda Integrated Facility

GLIF is an virtual organization that connects international networks together. This GLIF is used
by researchers and students for educational purposes and research. The network consists of optical
connections between major cities/universities around the world. A GLIF loop to Chicago and Geneve
is being used for this project. Further will SARA be using the GLIF infrastructure with its test-bed
topology.
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2.2 Explanation of Protocols mentioned

This section covers the protocols that gets talked about in this document.

2.2.1 SCTP

The SCTP protocol uses multiple streams over the same physical link, this in the way that it creates
multiple sub-connections over the same link. Those streams can have different priorities, so one can
have for example a control and data plane stream. The reason that SCTP is not a real success is due
to legacy devices that do not support the protocol. NATs and firewalls don’t recognize the SCTP
protocol and see it as ‘malicious or unknown’ traffic. Currently the IETF is working on an extension
which should make it possible to use SCTP over multiple paths. MPTCP however, should work on
every device that supports TCP. Application also don’t have to be changed to let them make use
of MPTCP, which is not the case with SCTP.

2.2.2 VLAN

A Virtual LAN (VLAN) is a group of computers which act as being on the same LAN. However,
physically they can be connected to different switches in different places. VLANs can also be used
to create different LANs while on the same switch. We use VLANs in this project to create different
paths, which are needed to make the MPTCP connection possible.

2.2.3 ECMP

Equal-Cost Multi-Path (ECMP) is a protocol that uses next-hop packet forwarding to a single
destination, which can be over multiple "best paths". It is used to balance traffic over different
paths available, which have the same "Cost". The routing is done based on a hash of a users
connection (IP address and port). A routing decision can be made with this hash value. Specific
hashes only go through a specific port which creates a "flow", every device that uses ECMP needs
to make this decision. Besides using VLANs one can make use of ECMP for their MPTCP routes.

2.2.4 GridFTP

GridFTP is a variant of the popular File Transfer Protocol (FTP) protocol. GridFTP is used by
Grid computing applications to transfer large chunks of data fast and reliable. GridFTP has the
capability to create multiple sockets over different interfaces, which makes it able to use multiple
links just as MPTCP. GridFTP however creates multiple TCP connection streams, while with
MPTCP one would have a single MPTCP connection. This project may test if this can help or is
better than using GridFTP.
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2.3 Multipath TCP Explained

The idea of using multiple paths for TCP came out some time ago. It was first suggested by Christian
Huitema in 1995 [8]. It took some time before the idea turned into MPTCP. Around 2006 the first
documentation appeared with the term MPTCP, later in 2011 Request For Comments (RFC)s were
written for it. In 2011 a paper appeared about the first implementation in the 2.6 Linux kernel [11].
They started working on it in 2009. Mark Handley is one of the members who is looking at the
MPTCP protocol.

MPTCP makes it possible to use multiple paths at the same time for the same connection. Since
MPTCP is a layer four protocol, it is able to use both IPv4 and IPv6 at the same time. MPTCP
does not setup paths itself but depends on routing protocols like IS-IS, OSPF and BGP. It is of course
also possible to use other protocols like ECMP or Openflow for this. With the use of MPTCP one
‘should’ get more robustness and the best congestion control possible when multiple links are being
used.

2.3.1 How does MPTCP work?

The MPTCP protocol is actually an extension (option) of the TCP protocol. When both the client
and server use the MPTCP capable option it will be used. Since MPTCP only uses options in the
TCP protocol all applications are able to use the regular TCP socket Application Programming
Interface (API) ‘as is’. The API is however extended and MPTCP aware applications can make
use of those extensions. Another feature is that MPTCP does not get intercepted by middle-boxes
like firewalls, since it just looks like TCP for them. This is one of the main advantages compared to
SCTP.

When the server does not support MPTCP the protocol switches over to regular TCP. When more
connections are possible MPTCP creates so called TCP subflows and every subflow can be seen as
a connection from interface to interface. MPTCP tries to create subflows between all the interfaces
it can find and creates a full-mesh. If for example one has two IPs on the same interface it tries to
connect them both as a subflow. A high level overview of how MPTCP works is shown in figure 4.
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Figure 4: Architectural diagram of MPTCP [5]

2.3.2 MPTCP design Goals

While developing MPTCP, some important goals regarding the protocol were created. Below the
three goals in mind for MPTCP are given, they are from RFC 6356 [12]:

1. Improve Throughput: A multipath flow should perform at least as well as a single path flow
would on the best of the paths available to it.

2. Do no harm: multipath flow should not take up more capacity from any of the resources shared
by its different paths than if it were a single flow using only one of these paths. This guarantees
it will not unduly harm other flows.

3. Balance congestion: A multipath flow should move as much traffic as possible off its most
congested paths, subject to meeting the first two goals.

All three goals make absolute sense and are very interesting when one combines them. The first rule
should make sure, that always the best performance is achieved or the same as TCP would get on
its fastest link. The second rule can be seen as the congestion and fairness part. When one has a
TCP and MPTCP connection over the same link they should both get 50% of the bandwidth, this

9
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even when MPTCP has several subflows over the link. The last rule says that one should always
move its traffic to the less congested link, this to get better throughput for all the links overall. It
is non-trivial to create an algorithm that follows all three goal. Section 2.3.5 dives into more detail
about this.

2.3.3 MPTCP Handshake

This section will cover how the MPTCP handshake works and looks like, the handshake is shown
in figure 5 and is written in a Internet draft [13]. First ‘Server A’ sends a SYN packet to ‘Server
B’, which is the same as a general TCP connection would do. This packet however also contains a
MP_CAPABLE option in the TCP option field. Than ‘Server B’ responds with a SYN/ACK packet
also with this MP_CAPABLE option (only when it can use MPTCP). Both packets also contain
authentication keys and additional information needed by MPTCP. At last ‘Server A’ responds
with a ACK to ‘Server B’ which also contains both keys from the previous packets. Now the first
connection (subflow) is setup and the same as TCP is a three way handshake.

Now the initial setup is done and the protocol tries to create additional subflows. Since the im-
plementation is in both servers the same, they can both create additional subflows, however it is
recommended the senders only do this. The creation of a subflow is also a SYN, SYN/ACK and
ACK handshake but now an additional MP_JOIN option is added. ‘Server A’ also sends with the
first SYN ‘Server B’s token’, which is generated with the keys exchanged earlier. This is used to
identify and authenticate the first subflow connection. Also a nonce is sent to prevent replay attacks.
The address ID sent is to specify the address and make the subflow unique from the others. Because
of this address ID the connection is independent from the source address. The flags can be used for
more advanced options (for example use it only as back-up link).

When the subflow MP_JOIN SYN is verified by ‘Server B’ it responds with an SYN/ACK. This
ACK contains a Message Authentication Code (MAC), a random nonce and the address ID for
‘Server B’. The MAC is used for the authentication of a subflow. After this ‘Server A’ responds with
a ACK packet and the MP_JOIN option also with the additional data as with ‘Server B’. After this
‘Server B’ needs to verify this packet with another ACK, since ‘Server A’ has to be sure ‘Server B’
received the packet. For all the authentication technique’s SHA-1 is being used.

10
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Figure 5: MPTCP handshake [14]

2.3.4 MPTCP Path Management

With the handshake explained above in section 2.3.3 the first initial subflow gets created. After this
MPTCP makes sure both hosts exchange all IP addresses they have with each other. The sending
host tries to create a full-mesh out of all combinations possible. The connections which do not work
are being dropped, after a time-out. When you have a interface with both a IPv4 and IPv6 address,
MPTCP creates two subflows for that inferface, one with IPv4 the other with IPv6.

MPTCP exchanges IP address with packets who have the subtype add-address. After this a join
subtype is send to create the actual new subflow with those new known addresses. Another nice
feature MPTCP has is that it is capable of removing subflows with the subtype remove-address.
When a host discovers one of its links is broken it can very fast send over a working link that that
particular link does not work anymore. This way the other end does not have to wait for time-outs
on the broken link and can just drop that subflow. Most of the subtype options are shown in section
3.2.4 in detail.

11
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2.3.5 MPTCP Congestion Algorithm

All reliable transport protocol needs a congestion algorithm. Because MPTCP uses multiple links
it is different than TCP and uses a modified algorithm. The idea for MPTCP is to have congestion
over multiple links as can be seen in figure 6.

Figure 6: How MPTCP should handle congestion [10]

The congestion algorithm for MPTCP should meet the goals described in section 2.3.2. In chapter
three in RFC 6356 is written how the algorithm is constructed and all the different goals are being
met [12]. The algorithm is not very different than the TCP congestion algorithm. TCP maintains
its congestion window by increasing the window with each ACK (1/cwnd) and dropping it to half
when a ACK is dropped. For MPTCP this is no different, however now a window is kept for each
subflow. The only thing changed is the increase rule for this window which is shown in equation 1.

The increase rule is based on alpha, which one can see as a constant for now and is explained
below. It increases the window by alpha, over the sum of the window sizes of all paths. This gives
more increase to the subflows with a larger window, remember that a larger window size means less
congestion. The sum of all windows part should meet goal two.

cwndi = cwndi +min

(
alpha

cwndtot
,

1

cwndi

)
(1)

Alpha is the increase parameter shown in equation 2. The first part looks at the congestion window
and RTT on all different paths and checks if it is getting better or worse than normal TCP, which
meets goal one. The second part of alpha moves traffic from a congested link to a uncongested link
and meets goal three.

alpha = cwndtot
maxi(

cwndi∗mss2i
RTT 2

i
)

(
∑

i
cwndi∗mssi

RTTi
)2

(2)
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The decrease formula is almost the same as for TCP but is now used per subflow and is shown in
equation 3.

cwndi
2

(3)

The algorithm should make sure that MPTCP takes the best path available. This is shown in figure
7, MPTCP should take the shortest and least congested path(s). Choosing the wrong paths can
make MPTCP less efficient, it can for example take longer routes or use links which are congested.
When MPTCP takes the most optimal paths it would get the best throughput.

Figure 7: MPTCP path decision taking [11]

2.3.6 MPTCP and buffer sizes

The buffer size needed for MPTCP is a little different than with TCP. In equation 4 is shown how
the buffer size for TCP is being calculated. Which is the maximum RTT in seconds multiplied by
the maximum the link can carry in bits.

BuffersizeTCP = RTTmax ∗ LinkMaxbits (4)

For MPTCP, this is a little bit different. Here you need to specify the total maximum bits possible
of all links combined. They also note that: "If we want to allow all paths to keep sending while any
path is fast retransmitting, the buffer must be doubled" [15]. This ends up in equation 5, shown
below. One can notice that you significantly need more buffer space than with TCP was the case.
One needs to combine the maximum bits of all links together and multiply that by two plus the
RTT.

BuffersizeMPTCP = RTTmax ∗ AllLinksMaxbits ∗ 2 (5)

If one has for example a RTT of 36ms and two 1Gb/s links, one would get the following formula:

0.036 ∗ 2000000000 ∗ 2 = 144000000bit = 18MB
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2.3.7 More about MPTCP

The concept and idea of MPTCP is very interesting. The current kernel version has parameters
which one can change to modify the MPTCP implementation, more over this in section 3.2.2. In
chapter 3 we look deeper into the technical side of MPTCP. For more information there are two
presentations on youtube, which go over the protocol briefly and clear [16][17].We will see in the near
future if the protocol will be adopted in the standard protocol stack and if we can really call it the
TCP 2.0.
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3 Research

This chapter will cover the research part of this project. We will describe how our topology looks
like and what we configured for our environment. At the end we describe and give the results of our
defined experiments.

3.1 What our Topology looks like

We created a topology with three servers, two switches and multiple 1Gb/s or 10Gb/s links. We have
both LAN and WAN links available in our topology. We got two WAN loops to Geneve and one to
Chicago. There was no routing in our network. All paths were configured by using various VLANs.
Our MPTCP servers have multiple VLANs per interface available. In figure 8 our topology is
shown. The dark-blue blocks are our servers. With a combination of all those links we can come
up with interesting test setups and see if MPTCP really works well in a real environment. Our
experiments can be found in section 3.3.

We have two servers ‘bliksem’ and ‘donder’, which are configured with a MPTCP kernel. They have
both a management interface on their eth0, which is being used for as the control plane. For our
data plane we have three other 10Gb/s interfaces on both servers. Each interface as either 2 or 3
VLANs attached to it. The server ‘bliksem’ is quite new and has a lot more RAM and CPU than
the ‘donder’ server. This caused some problems which are defined later in our report. The technical
specifications of those servers can be found in appendix B.

We have another server ‘rainbow’, which is used to generate normal TCP traffic and will be used to
cause congestion on a link. Rainbow also has the ability to power cycle ‘donder’ and ‘bliksem’, which
was handy since they ‘froze’ a few times. Further our topology contains a switch with 2x 1Gb/s
local loops, with this switch we could create a link bottleneck from 10Gb/s to 1Gb/s. We needed
this since all our other links were 10Gb/s.

3.2 Setup of the environment

We first got ourself familiar with MPTCP and looked at its theory on how it should function. We
came up with some basic ideas and questions, which are defined in section 1.2. Below we define what
we configured, experienced, show our topology, formulate our experiments and describe our scripts
created.

3.2.1 Configuration of our servers

We had to build the kernel for two of our Ubuntu 11.10 servers to be able to talk MPTCP to
each other. We used the guide on the INL website to build the 3.2.0 linux kernel with MPTCP
(http://inl.info.ucl.ac.be/mptcp/ [9]). We had to build the kernels a couple of times to load modules
for VLANs and different network cards to be able to work.
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Figure 8: Our test-bed topology used, VLAN numbers are shown

We also compiled Wireshark with the MPTCP patch provided on the INL website on one of our
servers, with this we could inspect packet dumps when this was needed. We noticed that the latest
Wireshark version (1.8.0) recognizes MPTCP.

For the different paths that should be possible we made use of VLANs, this since it was the easiest
way of routing and due to the short time slot for the project. We created a script for this which
is more explained in section 3.4. One can have a more complex environment by for example using
ECMP or Openflow.
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3.2.2 Hands-On

When we had the kernel up and running we had to create different routes first. Our first simple tests
with MPTCP worked and we saw that both our interfaces were being used. MPTCP has some
parameters build in which can be changed, those can be useful or needed in some situations. With
the following command one can configure them: sysctl -w <item below>

The following parameters can be changed and the default one is given:

• net.mptcp.mptcp_mss=1400 With this parameter, one can change the MSS size, which is
needed to reach high speeds for example with 10Gb/s links and greater (max 8900, this since
the max MTU= 9000).

• net.mptcp.mptcp_ndiffports=1 Defines how many subflows should be created. If it is one a
full-mesh is being created otherwise the number of flows specified. When it is zero only the
initiated flow will be created.

• net.mptcp.mptcp_enabled=1 This enables or disables the MPTCP option in the TCP headers
(0=disable, 1=enable).

• net.mptcp.mptcp_checksum=1 The checksum parameter for MPTCP can also be disabled to
increase performance on high speed links.

• net.mptcp.mptcp_debug=0 With this parameter you can enable the debug modus, which can
be useful for developers and testers.

Besides the kernel implementation the INL released a special iproute version, which is able to disable
specific interfaces for MPTCP. We used this to disable MPTCP for our management interfaces.
The git for it can be found here: git://mptcp.info.ucl.ac.be/iproute2.git. After installing the needed
packages and building/compiling it the iproute folder can be found in the /tmp folder, one can
disable a interface with the following command:

/tmp/iproute/sbin/ip link set dev <interface-name> multipath off

For our experiments to work as they should in theory, we need to increase the buffer sizes in our kernel.
Why this is needed should be clear from section 2.3.6. On the website: http://www.cyberciti.biz/faq/linux-
tcp-tuning/ is explained how you can modify the buffer sizes from your kernel. We used the following
commands which increased the buffers to 115MByte, which should be sufficient in our case:

echo ’net.core.wmem_max=115343360’ » /etc/sysctl.conf

echo ’net.core.rmem_max=115343360’ » /etc/sysctl.conf

echo ’net.ipv4.tcp_rmem= 10240 87380 115343360’ » /etc/sysctl.conf

echo ’net.ipv4.tcp_wmem= 10240 87380 115343360’ » /etc/sysctl.conf

We must say that the kernel froze some times and we had to reboot it often. Especially in the
beginning we had a lot of problems with this. Testing became difficult because scripts got stuck
often. The server froze especially often when interfaces went up and down.
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3.2.3 Addressing and Routing

This section focuses on the addressing and routing. For MPTCP to be able to work, every subflow
should take a different route over a different link or path. There are some possibilities to do this, one
can use layer three routing protocol like IS-IS or OSPF, or layer two protocols like ECMP, VLAN’s
or IEEE 802.1aq. We used different VLANs in this project, for every path we created a different
routing table with a default gateway.

Since MPTCP is a layer four protocol it is capable of handling both IPv4 and IPv6 addresses, even
at the same time over different or the same link. For the addressing part we only use IPv4, this
because its easier to use and packets have smaller headers. Our servers are multi-homed with 3x
a 10Gb/s interface card with in total of 8 VLANs, which means we need 8 IP addresses on both
servers. We created scripts which create all VLAN interfaces and configure the interfaces, another
script can easily create situation we want like a LAN or WAN environment. Below in table 1 is
shown how we addressed all interfaces and show their details.

Host Interface IP address Link ID Environment Speed To

Bliksem x.1 eth0 145.100.37.131 0 MAN 1Gb Switch
eth8.1001 192.168.11.1 1 LAN 10Gb Switch
eth5.514 192.168.138.2 2 WAN 10Gb Chicago
eth5.1000 192.168.12.1 3 LAN 10Gb Switch
eth2.2000 192.168.13.1 4 LAN 10Gb 2e Switch
eth8.520 192.168.21.1 5 LAN 1Gb Loop Switch
eth2.522 192.168.22.1 6 LAN 1Gb Loop Switch
eth8.516 192.168.23.1 7 WAN 1Gb Geneve
eth2.518 192.168.24.1 8 WAN 300Mb Geneve

Donder x.2 eth0 145.100.37.132 0 MAN 1Gb Switch
eth3.1001 192.168.11.2 1 LAN 10Gb Switch
eth2.515 192.168.138.18 2 WAN 10Gb Chicago
eth2.1000 192.168.12.2 3 LAN 10Gb Switch
eth1.2000 192.168.13.2 4 LAN 10Gb 2e Switch
eth3.521 192.168.21.2 5 LAN 1Gb Loop Switch
eth1.523 192.168.22.2 6 LAN 1Gb Loop Switch
eth3.517 192.168.23.2 7 WAN 1Gb Geneve
eth1.519 192.168.24.2 8 WAN 300Mb Geneve

Rainbow x.3 em2 192.168.22.3 9 LAN 1Gb 2e Switch

Table 1: Addressing and link information of our Servers
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3.2.4 Inspecting Packets

We used the patch available for WireShark to look deeper into the MPTCP packets. We can see
all MPTCP attributes in the options of the TCP header. In figure 9 is the subtype: Multipath
Capable shown, this option is from the sender side and sends both its own and receiver key back
to the receiver. This packet verifies that both sides can use MPTCP. The add address subtype
explained below can be in the same TCP packet.

Figure 9: MPTCP packet with multipath capable subtype

In figure 10 the subtype: Add Address is shown. Both the sender and receiver send those packets to
each other to show each other which IP addresses they have available. MPTCP then tries to create
a whole mess out of the addresses it knows and checks if a connection is possible with the subtype
join.

Figure 10: MPTCP packet with the Add Address subtype

19



Research Chapter 3

To check if a connection is possible and to create it the MPTCP protocol sends a subtype Join option,
shown in figure 11. Only the initial sender may send this packet to create additional subflows between
the two hosts. When this packet has been successfully arrived by the receiver the subflow is ready.

Figure 11: MPTCP packet with Join subtype

The subtype Data Sequence Signal is a option that contains a packet with the actual data. One
can see the ACKed data, the sequence number, the subflow sequence number and the MSS length
(data-level) in figure 12.

Figure 12: MPTCP packet with the Data Sequence Signal subtype
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3.3 Experiments and their setups

This section will describe the different experiments we did in our topology and what we think the
added value of the experiment is. For every experiment we created a script which also calls our other
scripts defined in section 3.4. We verified that we could get the maximum throughput possible with
TCP on all links. We need to note that the seconds in the graphs are less than the real tests because
the scripts sometimes took a little longer to run.

For our tests we used iperf to measure maximum throughput. All our experiments are performed on
our ‘bliksem’ server to our ‘donder’ server, we got the best results when the fastest machine acts as
sender. Most of our experiments run for 600 seconds to get a good idea how stable it is. It would
be a interesting to check how it would function in very long runs in specific environments, but this
is something for another project. Some of our experiments, which are based on changes run some
longer than 600 seconds to see if the connection is stable and changes on the interfaces take more
time to measure properly. We show in our experiments the "best" results of all runs we did for it,
since due to time constrains we could not test every experiment extensively.

For most of our experiments we used the following command iperf -l 64KB -w 3MB $ADDRESS which
seemed sufficient in most LAN environments, for the WAN experiments we needed to increase the
buffers as was explained in section 2.3.6. We must note that in iperf the -w options automatically
doubles the buffers so if we give it a value of 5MB it turns it into 10MB.
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3.3.1 Experiment A: Measure throughput on 2x 1Gb/s LAN links

The first experiment is with 2x 1Gb/s Ethernet links. We test if both links are being used and
when they are used, if both links are being fully utilized. The experiment runs for 10 minutes and
our scripts arrange the addressing, routing and bandwidth monitoring. This test was simple and no
advanced options were used.

We ran the test a couple of times and got the following possible scenarios:

• Only one of the links is being used fully

• Both links are being used fully

• In the beginning both links are used later only one

• In the beginning one link is used later both of the links

However after tweaking the parameters into the command iperf -l 64KB -w 3MB $ADDRESS we
were able to get the same result back every time (more or less at least). Below in figure 13 is shown
how it looks like when both links are being fully used. We can verify that it is possible for MPTCP
to fully utilizes both links at the same time.

Figure 13: Experiment-A: 2x 1Gb/s link
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3.3.2 Experiment B: Robustness, 2x 1Gb/s LAN links

In the next experiment we use the same 2x 1Gb/s links from experiment A. However this test turns
interfaces up and down, this to see how robust MPTCP is and how it responses to changes. The
script runs for 900 seconds (15min) and in table 2 is shown what it does on specific time slots.

Time Action Taken Max Throughput in Mb/s (±) Link Count

0 Only 1Gb link enabled ID1 960 1
120 Second 1Gb link joins ID2 1920 2
420 Link ID1 goes down 960 1
540 Link with ID1 joins again 1920 2
900 Experiment finished 0 0

Table 2: Actions for figure 14

After a couple of runs we can verify the same as in experiment A some runs are better than others.
Below is the result of the most perfect run, which is shown in figure 14. One can see that the first
few minutes everything goes fine. However at time slot 540 something strange happens. Here the
first initial link joins again, which was down for a short time frame and after that moment MPTCP
only used that link and not the other anymore. In our analyzes we look deeper into this and try to
figure out what the problem could be (sections 3.5 and 3.6).

Figure 14: Experiment-B: 2x 1Gb/s link
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3.3.3 Experiment C: Throughput on high speeds, 2x 10Gb/s LAN links

This experiment will have faster links, 2x a 10Gb/s link will be used to see if MPTCP functions
the same over faster links. This experiment will run for 10 minutes and can be compared with
experiment A. However, since we use higher speeds we had to increase the MSS to 8900, tuned the
kernel buffers [18], disabled the MPTCP checksum and increased the size of the receive/send buffers
for iperf to 10MB with the -w option. We increased the buffer even higher but this did not have a
more positive effect.

In figure 15 our result shown. We couldn’t get higher than around 10Gb/s, we think this is due our
server hardware since the receivers CPU was fully used and hardware restrictions of the PCI bus.
We see however that one of the links is almost fully used it had a average of 9185 Mb/s.

Figure 15: Experiment-C: 2x 10Gb/s link
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Besides this we also checked what happened when we opened two iperf sessions at the same time,
since we thought that using a single CPU may be the issue. The reason this being faster is that a
single iperf session only uses one CPU instead of multiple. When we open two session we should be
faster and as can be seen in figure 16 we do get more throughput. The average speed is now 12754
Mb/s, it was also nice to notice that both links got used evenly and got 6393 Mb/s and 6361 Mb/s
as throughputs.

Figure 16: Experiment-C: 2x 10Gb/s link with two iperf sessions

25



Research Chapter 3

3.3.4 Experiment D: Balancing, 2x 1Gb/s LAN links and 1x 10Gb/s LAN link

This experiment will test how MPTCP behaves with different link speeds available. We test this
with both a high and low MSS, to see how MPTCP behaves in both environments. We’ll use 2x
1Gb/s and 1x 10Gb/s LAN links with a buffer of 8MB. The tests will run for 10 minutes.

In figure 17 and 18 are two tests with a MSS of 1400 shown. One can see that the results are different
and MPTCP uses different paths, this while the exact same run is being used. The run where only
the 10Gb/s link is being used is also slightly faster and has a average of 4667 Mb/s, the one where
all three links are being used has a throughput of 4438 Mb/s.

Figure 17: Experiment-D: 2x 1Gb/s, 1x 10Gb/s link, MSS 1400
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Figure 18: Experiment-D: 2x 1Gb/s, 1x 10Gb/s link, MSS 1400

When we use a MSS of 8900 and high buffers on the 10Gb/s link we get a average throughput of
9540 Mb/s as shown in figure 19. In all repeated test with this setup only one link was being used,
the 10Gb/s one. Compared with a low MSS you can say for certain that you must increase your
MSS to reach higher speeds. The buffer was increased to 13MB with the -w option.

Figure 19: Experiment-D: 2x 1Gb/s, 1x 10Gb/s link, MSS 8900
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3.3.5 Experiment E: Robustness and balancing in a LAN environment

Now that we have three interfaces with different bandwidth capabilities it is interesting to see how
traffic will flow from one to another and how robust MPTCP is to changes with more links, this
experiment can be compared to experiment B. We however test this experiment with both a low and
high MSS. Below in table 3 is shown what happens at specific time slots, the total run takes 1000
seconds.

Time Action Taken Max Throughput in Mb/s (±) Link Count

0 Only 1Gb link enabled ID1 960 1
30 Second 1Gb link joins ID2 1920 2
280 Link ID1 goes down 960 1
310 10Gb link joins link ID3 10560 2
610 Link ID2 goes down 9600 1
640 Link ID1 goes up 10560 2
670 Link ID3 goes down 960 1
700 Link ID2 goes up 1920 2
880 Link ID3 goes up 11520 3
1000 Experiment finished 0 0

Table 3: Actions for figures 20 and 21

Below in figure 20 is the result shown with a low MSS. You see the exact same problem coming up
as which we saw in experiment B, as soon as another link joins the other one may stop working but
this is not always the case. We try to answer this in section 3.6.2.
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Figure 20: Experiment-E: 2x 1Gb/s, 1x 10Gb/s link, MSS 1400

We can suspect that in the test with a high MSS the exact same problem would show up and that
the 10Gb/s link would get more throughput. As can be seen in figure 21 this is true in both cases.
We used a 8MB buffer so that the 1Gb/s links also should be used optimal, increasing the buffers
higher in both cases did not have any positive effect.

Figure 21: Experiment-E: 2x 1Gb/s, 1x 10Gb/s link, MSS 8900
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3.3.6 Experiment F: Throughput in WAN environment, 1x 1Gb/s link and 1x 300Mb/s
link

In this experiment we test how well MPTCP performs in a WAN environment. In a WAN envi-
ronment the RTT is higher and servers need the ability to capture more packets to put them back
in the right sequence, this is done by increasing buffer sizes. We will use two loops to Geneve, one
has a speed of 300Mb/s and the other of 1Gb/s.

We test this first with different buffer sizes, the result is shown in figure 22. We see that the best
total throughput was with a buffer size of 5MB with 955 Mb/s as throughput. The particular result
from this experiment with a 5MB buffer size is shown in figure 23. It is however strange to see that
the performance drops when the buffer size increases, in theory this would stay stable after some
point.

When we calculated the needed buffer size with:

BuffersizeMPTCP = RTTmax ∗AllLinksMaxbits ∗ 2 (6)

We get: 0.033 ∗ 1300000000 ∗ 2 = 85800000bit = 10, 73MB. Which more or less corresponds with our
graph, since iperf doubles the 5MB which gives us 10MB.

Figure 22: Experiment-F: Sum(1x 1Gb/s + 1x 300Mb/s) WAN loops

30



Research Chapter 3

Figure 23: Experiment-F: 1x 1Gb/s and 1x 300Mb/s WAN loops, buffer 5MB

3.3.7 Experiment G: RTT Difference, WAN environment over three links

This is the second WAN environment experiment. Here things get a bit more complex since we at
another WAN link. Besides the links from experiment F we added a loop to Chicago, this loop has a
speed of 10Gb/s. This experiment is interesting since both loops have different RTT response times,
which means packets will dramatically arrive out of order. The RTT value for links to Geneve
are 33,3ms while for Chicago 202ms, which is a large RTT difference. We expected to get more
throughput than experiment F at first, this since we use more links. However, our results deviated
from these expectations.

After several runs we can say that the 300Mb/s and 1Gb/s link are mainly used when buffers are
small 3-9MB. Around 12-15MB the MPTCP takes a different path and takes mostly the 10Gb/s
link instead of the other two, however the test with a buffer of 21MB showed some inconsistency.
We used a low MSS in this experiment. When we used very high buffers our servers had problems
and could not get a stable throughput. The summary result is shown in figure 24.
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The total throughput when using a buffer of 6MB was 472Mb/s (shown in figure 25), which is way
less than we were using only the two Geneve links, where we got 905Mb/s throughput as was shown
in experiment F. So using more links is not always faster you need a good balance between the link
speeds, MSS, RTT and buffers to get the most optimal throughput.

Figure 24: Experiment-G: Summary with different buffer sizes

Figure 25: Experiment-G: 2x 1Gb and 1x 300Mb/s WAN loops with different RTTs, buffer 6MB
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3.3.8 Experiment H: RTT difference, 1x LAN and WAN link

In this experiment we make both use of a LAN and WAN link at the same time, this to see if a
low RTT difference is possible. This experiment can be compared to experiment G, we can already
suspect from it that it will work well with the Geneve link and worse with the Chicago link, because
of the big difference in RTT.

In figure 26 is shown how it looks like when both a 1Gb/s LAN link and a 1Gb/s Geneve link is
being used with a buffer of 5MB. One can see that it performs well, in the LAN environment we
got a average of 1899Mb/s throughput and in this one 1878Mb/s which is comparable (only a 1%
difference). Due to time restrains we could not test the Chicago link.

Figure 26: Experiment-H: 2x 1Gb/s one in a LAN other in a WAN environment, buffer 5MB
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3.3.9 Experiment I: Fairness, 1x and 2x 1Gb/s link(s)

Our last experiment is for testing how well MPTCP behaves when a link is used at the same time
with other traffic. This "other traffic" is in our case another iperf connection which is using TCP.
We use our machine ‘rainbow’ for this, which has a TCP kernel and acts as the receiver for this
connection. In theory both links should get half of the link, since MPTCP should be fair to other
traffic on the same link.

In figure 27 is shown how MPTCP behaves when only one link is being used for both sessions.
One can notice that MPTCP is not really fair for TCP and MPTCP gets a lot more throughput.
The actual numbers are 243Mb/s for TCP and 686Mb/s for MPTCP, which is a big difference. In
theory they should both get around ±480Mb/s.

Figure 27: Experiment-I: 1x 1Gb/s link, with one MPTCP and one TCP session
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We did this experiment again but now with two times a 1Gb/s link, shown in figure 28. Now
MPTCP should use two links while the TCP connection would only use one. One can still conclude
that TCP gets way less than it should get the actual numbers are 306Mb/s for TCP and 1468 for
MPTCP.

Figure 28: Experiment-I: 2x 1Gb/s link, one which is congested with TCP session

We again did this same experiment with two TCP sessions on both one and two times 1Gb/s. Here
MPTCP was a bit more fair to TCP but still 20% less than it should get in theory, this was 40%
less when only one link was being used. As a summary we show the results of experiment I in figure
29.

Figure 29: Experiment-I: Summary overview of the congestion experiment
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3.4 Scripts created

We created scripts for the following topics within this project:

• Routing Configurations

• Interface states

• Monitoring Bandwidth

• Experiments

Routing Configurations

This script creates all the VLANs needed and configures the interfaces correctly. Besides this it
disables the management interface for MPTCP and creates the routing tables, which contain default
gateways for the different interfaces and paths needed. The script for our ‘bliksem’ server can be
found in appendix C.

Interfaces States

A second script was needed for easy configuration of the desired situation. The script can easily
enable the LAN or WAN interfaces and a user can even specify to enable only the 1Gb/s or 10Gb/s
interfaces. One can use the script for example with: ./interfaces blik lan 10 which will enable the
10Gb/s lan interfaces on our server bliksem. The script can be found in appendix D.

Monitoring Bandwidth

To get all the results we needed to read the in and output bits going over the different interfaces.
This script can easily monitor any interface specified and puts it into a log file, it can also monitor
the RTT to the other side. When we look at the final results we could get the interface details from
those logs. One can call the script with: ./monitor eth5.1000 eth2.1001 this would read out those
two interfaces every second. The script can be found in appendix E.

Experiment Scripts

For every experiment explained above we created a script. The scripts do not vary a lot from each
other. With the other scripts created we could easily change the environment and capture the
information we needed. The script for our experiment I can be found in appendix F.

3.5 Analysis with MPTCPs Debug function

It is possible to enable the debug mode for MPTCP one can do this with the following command
sysctl -w net.mptcp.mptcp_debug=1. When it is enabled the kernel will log information in the file
/var/log/syslog. We looked at what happened in experiment B and checked if anything suspicious
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could be found. We defined all stages in experiment B, they are shown in table 4, we then marked
them in the log below it. The first number is the stage the second number is the subflow ID, the
number 0 is the main MPTCP process.

Stage Meaning

0 Starting the connection
1 First connection is made
2 New interface goes up
3 Initial interface goes down
4 Initial interface goes up again
5 Closing the connection

Table 4: Stages in experiment B

1 0−0 Jun 26 10 : 4 9 : 5 1 donder k e r n e l : [ 638 .534479 ] net /mptcp/mptcp_ctr l . c :
mptcp_alloc_mpcb: c r ea ted mpcb with token 0xc2b4e677

2 1−1 Jun 26 10 : 4 9 : 5 1 donder k e r n e l : [ 638 .534486 ] net /mptcp/mptcp_ctr l . c :
mptcp_add_sock: token 0xc2b4e677 p i 1 , s r c_addr : 192 . 168 . 22 . 2 : 5001
d s t_addr : 192 . 168 . 22 . 1 : 34694 , cnt_subflows now 1

3 2−2 Jun 26 10 : 5 0 : 5 1 donder k e r n e l : [ 698 .536532 ] net /mptcp/mptcp_pm.c:
mptcp_lookup_join:mpcb not found:d17275f0

4 2−2 Jun 26 10 : 5 0 : 5 1 donder k e r n e l : [ 698 .536717 ] net /mptcp/mptcp_ctr l . c :
mptcp_add_sock: token 0xc2b4e677 p i 2 , s r c_addr : 192 . 168 . 21 . 2 : 5001
d s t_addr : 192 . 168 . 21 . 1 : 36214 , cnt_subflows now 2

5 3−1 Jun 26 10 : 5 2 : 5 1 donder k e r n e l : [ 818 .541432 ] net /mptcp/mptcp_ctr l . c :
mptcp_del_sock: Removing subsock tok 0xc2b4e677 p i : 1 s t a t e 7 is_meta? 0

6 4−3 Jun 26 10 : 5 3 : 5 1 donder k e r n e l : [ 878 .544121 ] net /mptcp/mptcp_pm.c:
mptcp_lookup_join:mpcb not found:54c f0d62

7 4−3 Jun 26 10 : 5 3 : 5 1 donder k e r n e l : [ 878 .544336 ] net /mptcp/mptcp_ctr l . c :
mptcp_add_sock: token 0xc2b4e677 p i 3 , s r c_addr : 192 . 168 . 22 . 2 : 5001
d s t_addr : 192 . 168 . 22 . 1 : 44803 , cnt_subflows now 1

8 5−0 Jun 26 10 : 5 5 : 5 1 donder k e r n e l : [ 998 .523876 ] net /mptcp/mptcp_ctr l . c :
mptcp_close: Close o f meta_sk with tok 0xc2b4e677

9 5−3 Jun 26 10 : 5 5 : 5 1 donder k e r n e l : [ 998 .524072 ] net /mptcp/mptcp_ctr l . c :
mptcp_del_sock: Removing subsock tok 0xc2b4e677 p i : 3 s t a t e 7 is_meta? 0

10 5−2 Jun 26 10 : 5 5 : 5 1 donder k e r n e l : [ 998 .524132 ] net /mptcp/mptcp_ctr l . c :
mptcp_del_sock: Removing subsock tok 0xc2b4e677 p i : 2 s t a t e 7 is_meta? 0

11 5−0 Jun 26 10 : 5 5 : 5 1 donder k e r n e l : [ 998 .524136 ] net /mptcp/mptcp_ctr l . c :
mptcp_release_mpcb: Wil l f r e e mpcb 0xc2b4e677

The connection opens at 0-0. At 1-1 the first subflow is created and at 2-2 the other interface joins
where a new subflow gets created. At 3-1 the initial subflow closes. In 4-3 the initial interface is
used again but now for a new subflow with ID3. For some reason the total subflow count stays at 1,
this while 2 subflows should be available. Finally in 5-0 the connection gets closed again. The log
does not give a clear reason why the other flow is not used anymore in experiment B.
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3.6 Analysis with tcpdump and Wireshark

3.6.1 Analysis of dips in the experiment graphs

We wanted to know what the cause of all the downward spikes were in our graphs. We captured a
packet dump of one minute and used the setup of experiment A. From those captures we grabbed
the throughput and window sizes, we plotted those in figure 30. One can see that the drops of
throughput map the drops of the window size, this happened at both interfaces at the same time.
We can say that this is most likely happening due to the slow server or buffers overflowing which
causes packets to drop.

Figure 30: Analysis of the downward spikes in our graphs
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3.6.2 Analysis when old interface joins again

We were also really interested in the changes experiments, this since in experiments B and E is
shown that they do not work well. For those experiments we also looked at the debug logs, just as
described in section 3.5.

In Wireshark we analyzed the packets, with the following line you can filter on specific subtypes
tcp.options.mptcp.subtype == 1. One can change the number to show other subtype packets (sub-
type numbers can be seen in the images in section 3.2.4). It was a bit unhandy to look at our results
since tcpdumps became very large, this even when we captured only the headers. One minute of
capturing resulted in a file of 3GB.

We filter the dump on the moment were the ‘handover’ from one interface to the other takes place,
see figure 31. We did this by searching for subtypes numbers 3 and 1, which are the add and join
subtypes. We saw that the sender ‘bliksem’ sends the new available address and a few packets later
the join packet is send. After this the other side sends a join ACK package back. Than follow some
data packets from the old subflow but they stop very fast and after that point the other interfaces
was not used anymore. We filtered on the IP address of that particular interface and we could see
that, after that point no MPTCP packets were send over that link anymore. It seems as if that flow
just stops.

Figure 31: Which part we zoomed in on in experiment B
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When we analyzed further we saw a very strange behavior of the window sizes of both interfaces.
One can see in figure 32, that after a few packets the working interfaces stops and only the other
interface is being used. What is really interesting is that the windows size is tremendously large (a
socket buffer of 3MB was used). Path 1 is in the beginning still normal with a 65535 window size
but stops very fast after that. We can not explain the Path 2 its very first value is also 65535 but
very fast increases to a window size of 9427456, at the end I cut off the graph and the window size
stayed stable at windows size of 14155776. So due that one of the interfaces gets a very large window
size the other one is most likely not use anymore. This is only an indication and we can’t say this
for certain.

Figure 32: The two interfaces as paths, they both start at the time where both links should be used
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4 Results Discussion

This chapter discusses MPTCP in combination with the results we got from our experiments.

4.1 Improve Throughput

From all experiments we can verify that MPTCP is at least as fast as a single TCP session on
the best link available. With all experiments one of the links was always fully occupied. In the
experiments A, D, F and G one can see this well. We must say this only works well when your
buffers are big enough to handle the received data from multiple links.

MPTCP makes the best use of all links when they use the same bandwidth speed. This due the
changes in the MSS as could be seen in experiment D. The 1Gb/s links are not used properly when
a high speed link is being used and a high MSS is configured. The other way around is also true
that with a low MSS a 10Gb/s link can’t get full throughput over it. So in both cases you would not
get the maximum throughput possible due to those differences. When you use links with the same
maximum throughput you would get the best performance.

Another factor which should be taken into account is the RTT. A high buffer should narrow the
negative effect of the difference in RTT. But as can be seen in experiment G a big difference in RTT
does not work well and does not give maximum throughput. However, with a lower RTT difference
it is still possible to get maximum throughput as is shown in experiment H .

In the end we couldn’t get full throughput with our 2x 10Gb/s links in experiment C, this however
is most likely due to the servers and not due the MPTCP protocol. Christoph Paash (one of
the MPTCP implementers) mentioned by email that he once managed to get 30Gb/s while using
MPTCP.

We can say that MPTCP meets its goal 1: improve throughput as defined in section 2.3.2. MPTCP
gets the best throughput when the same link speeds are being used and the different paths have a
low RTT difference. When high speeds are being used one should take the buffers into account, the
buffer size needed for MPTCP is way more than TCP as described in section 2.3.6.

4.2 Balancing and Congestion

The balancing with a single MPTCP process is not always evenly balanced. Especially when we
were testing the high speed links in experiment C, usually only one of the links was fully occupied
and the other a little bit. This is however not bad since both links were not congested. One could
see that when we use two sessions at the same time MPTCP does his job well and both links get
evenly balanced. In experiment D the result was changing every time when a low MSS was being
used, traffic was balanced over all of the links or only the 10Gb/s one.

In experiments F and G is shown that MPTCP can still balance traffic with different RTTs and
even when there is a huge bandwidth difference, this is however not always optimal, since using a
single link can get more throughput. Also shown in experiment H is that even a LAN and WAN
link can work well together.
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Our last experiment I showed that MPTCP is still a little bit unfair for normal TCP traffic. When
they were both used at the same time MPTCP got more throughput than it should get in theory.

After our experiments we can say that MPTCP meets its balancing goal very well when the same
link speeds are being used and that it meets goal 3: balance congestion. This is however a bit less
the case when different link speeds are being used. We are also a little bit concerned about goal 2:
do no harm, since it did some harm in our experiments and TCP got less throughput than it should
have gotten. However we must say we could not test everything very extensively.

4.3 Robustness and Changes

Besides the improved throughput and congestion difference in MPTCP it was also interesting to see
how robust the protocol was. In experiment B we looked at this and can say its behavior is still very
strange. When a link goes down and goes up again it gets the whole traffic flow and the other link
is not used anymore. We tried to look at what was wrong or happening as described in sections 3.5
and 3.6, but we were not able to say anything for curtain in the short time slot. When we tested
MPTCP again against changes in experiment E the same problems showed up as in experiment B.

But besides those link interfaces going up and down the protocol was robust when the connection
was stable. It was still working when a link went down, which means it can be more reliable than
TCP already, since this would end your whole connection (when it times out).

4.4 Our Experience

It first took us quite some time to get ourself familiar with MPTCP and get the whole topology up
and ready to use. Especially creating the different VLANs and configurations took some time. In
the end we were quite happy with the topology we got and could test all our experiments we had in
mind. How our topology was setup can be read in the first sections of chapter 3 our experiments are
described in section 3.3.

We can say that overall the current MPTCP kernel implementation worked well. Sometimes our
servers froze but we can’t verify this was due MPTCP or some other factor, we also had some issues
with the memory sometimes. We were happy that we had the time and opportunity to look at
MPTCP and believe it can perform well in particular cases. We must also say that due the short
time frame for this project we could not test everything in such an extend as we wanted.
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5 Conclusion

This project aimed to answer the following research question:

Is the current MPTCP implementation a useful technology for e-science data transfers
in the GLIF environment?

During our research, we worked towards answering the main research question by answering the
identified subquestions. This section restates the research and summarizes the findings in this project.

5.1 Final Conclusion

Familiarizing ourself with MPTCP and creating the whole test topology took us some time. Also
creating the MPTCP environment correctly and configuring interfaces/routing tables was time con-
suming. But in the end everything turned out quite well, with some problems here and there. We
can say that MPTCP worked optimal in our layer two VLAN setup. It is capable of using both
IPv4 and IPv6 at the same time. MPTCP could even get maximum throughput when both a LAN
and WAN path were being used at the same time.

Looked at the MPTCP protocol side, we can say that it works most optimal in stable environment.
When MPTCP uses links with the same speed and little RTT difference it gets the best performance
and throughput. For higher speeds one should also take buffer sizes in real consideration (both the
kernel and TCP socket buffers), they need to be a lot bigger than with TCP was the case. One
should also not forget to increase the MSS size in high speed environments. MPTCP behaves worse
when links have large bandwidth- or RTT differences. It also seems that MPTCP has a particular
problem when interfaces go down and come up again, we tried to look deeper into this but due to
the short time we could not determine the cause.

While researching MPTCP, our experiments showed a little unfairness regarding general TCP
traffic, which MPTCP defined as the do no harm goal. The other two goals improve throughput
and balance congestion are being well met in our experiments.

When the e-science data transfers in the GLIF environment is a stable environment, with the same
link speeds, buffer sizes and RTTs MPTCP should perform well. However when this environment is
less stable, has different link speeds, buffers and RTTs one should really consider if using MPTCP
will give any real benefit compared to TCP. This because MPTCP needs higher buffers and uses
more CPU. However, when availability is a key factor you can of course use MPTCP, since any of
your links can break while the others would still continue functioning.

As a result we can say that MPTCP may work well in a e-science environment, this depending on
the actual environment details. We can say that MPTCP can improve throughput and robustness
when more than one path is available. We are very curious where and when we will see more of
MPTCP in the near future.
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5.2 Future Work

Due that MPTCP is still being developed and the short time frame of this project a lot of future
work can be done. After this research we got some additional questions which could be looked into
further. As an optional question we wanted to look how well MPTCP performs compared to a
application like GridFTP, which opens multiple TCP session over different interfaces. We are also
curious why MPTCP behaves strange when links go down and up again and why this is happening,
we wanted to test this over a longer time frame but did not have time for this. In addition to that
our experiments can be run again to verify the results we ended up with. Also will MPTCP be
further researched in the GLIF topology currently created by SARA, which this research formed a
basis for. We can sum everything up to the following:

• More advanced analyzing and testing of MPTCP

• Testing against other projects like GridFTP

• Run our experiment again to verify the results

• Further investigate the tuning of parameters

• Research in the GLIF test-bed topology within SARA

44



Acronyms Appendix A

A Acronyms

API Application Programming Interface

ECMP Equal-Cost Multi-Path

FTP File Transfer Protocol

GLIF Global Lambda Integrated Facility

IETF Internet Engineering Task Force

INL IP Networking Lab

LAN Local Area Network

MPTCP MultiPath TCP

MSS Maximum Segment Size

MTU Maximum Transmission Unit

QoS Quality of Service

RFC Request For Comments

RTT Round-Trip Time

SCTP Stream Control Transmission Protocol

TCP Transmission Control Protocol

UCL Universite Catholique de Louvain

UCL University College London

UDP User Datagram Protocol

UvA University of Amsterdam

VLAN Virtual LAN

WAN Wide Area Network
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B Specifications of our servers

Bliksem:

Supermicro X8DAH+-F

2x Intel Xeon X5677 3.73 GHz (8 cores total)

24GB DDR3 1333 MHz

2x Myricom 10G-PCIE-8B 2-port 10GE NIC

1x Intel 82598EB 2-port 10GE NIC

Donder:

Dell Precision T3400

2x Intel Core2 Duo E6550 2.33 GHz (4 cores total)

2GB DDR2 667 MHz

2x Myricom 10G-PCIE-8B 2-port 10GE NIC

1x Intel 82598EB 2-port 10GE NIC
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C Script: Routing Configurations

1 ‘/home/ g e r r i e / ip rou t e / sb in / ip l i n k s e t dev eth0 mult ipath o f f ‘
2 ‘/home/ g e r r i e / ip rou t e / sb in / ip l i n k s e t dev eth1 mult ipath o f f ‘
3
4 echo " [ I ] I n c r e a s i ng ␣ Bu f f e r s "
5 #echo ’ net.core.wmem_max=115343360 ’ >> / etc / s y s c t l . c o n f
6 #echo ’ net.core.rmem_max=115343360 ’ >> / etc / s y s c t l . c o n f
7 #echo ’ net.ipv4.tcp_rmem= 10240 87380 115343360 ’ >> / etc / s y s c t l . c o n f
8 #echo ’ net.ipv4.tcp_wmem= 10240 87380 115343360 ’ >> / etc / s y s c t l . c o n f
9

10 echo " [ I ] Creat ing ␣VLANs"
11 ‘ v con f i g add eth8 1001 ‘
12 ‘ v con f i g add eth5 514 ‘
13 ‘ v con f i g add eth5 1000 ‘
14 ‘ v con f i g add eth2 2000 ‘
15 ‘ v con f i g add eth8 520 ‘
16 ‘ v con f i g add eth2 522 ‘
17 ‘ v con f i g add eth8 516 ‘
18 ‘ v con f i g add eth2 518 ‘
19 echo " [ I ] C los ing ␣unused␣ i n t e r f a c e s "
20 ‘ i f c o n f i g eth3 down ‘
21 echo " [ I ] Adding␣ IPaddres se s "
22 ‘ i f c o n f i g eth8 .1001 192 . 1 68 . 1 1 . 1 ‘
23 ‘ i f c o n f i g e th5 .514 192 . 168 . 138 . 2 ‘
24 ‘ i f c o n f i g eth5 .1000 192 . 1 68 . 1 2 . 1 ‘
25 ‘ i f c o n f i g eth2 .2000 192 . 1 68 . 1 3 . 1 ‘
26 ‘ i f c o n f i g e th8 .520 192 . 1 68 . 2 1 . 1 ‘
27 ‘ i f c o n f i g e th2 .522 192 . 1 68 . 2 2 . 1 ‘
28 ‘ i f c o n f i g e th8 .516 192 . 1 68 . 2 3 . 1 ‘
29 ‘ i f c o n f i g e th2 .518 192 . 1 68 . 2 4 . 1 ‘
30
31 echo " [ I ] Creat ing ␣ rout ing ␣ t ab l e s "
32 ‘ ip r u l e add from 192 . 1 6 8 . 1 1 . 1 t ab l e 1 ‘
33 ‘ ip r u l e add from 192 . 1 6 8 . 1 3 8 . 2 t ab l e 2 ‘
34 ‘ ip r u l e add from 192 . 1 6 8 . 1 2 . 1 t ab l e 3 ‘
35 ‘ ip r u l e add from 192 . 1 6 8 . 1 3 . 1 t ab l e 4 ‘
36 ‘ ip r u l e add from 145 . 1 0 0 . 3 7 . 1 3 1 tab l e 5 ‘
37 ‘ ip r u l e add from 192 . 1 6 8 . 2 1 . 1 t ab l e 6 ‘
38 ‘ ip r u l e add from 192 . 1 6 8 . 2 2 . 1 t ab l e 7 ‘
39 ‘ ip r u l e add from 192 . 1 6 8 . 2 3 . 1 t ab l e 8 ‘
40 ‘ ip r u l e add from 192 . 1 6 8 . 2 4 . 1 t ab l e 9 ‘
41
42 echo " [ I ] Creat ing ␣ route s "
43 ‘ ip route add 192 . 1 6 8 . 1 1 . 0 /24 dev eth8 .1001 scope l i n k tab l e 1 ‘
44 ‘ ip route add de f au l t v ia 192 . 1 6 8 . 1 1 . 1 dev eth8 .1001 tab l e 1 ‘
45
46 ‘ ip route add 192 . 1 6 8 . 1 3 8 . 0 /24 dev eth5 .514 scope l i n k tab l e 2 ‘
47 ‘ ip route add de f au l t v ia 192 . 1 6 8 . 1 3 8 . 2 dev eth5 .514 tab l e 2 ‘
48
49 ‘ ip route add 192 . 1 6 8 . 1 2 . 0 /24 dev eth5 .1000 scope l i n k tab l e 3 ‘
50 ‘ ip route add de f au l t v ia 192 . 1 6 8 . 1 2 . 1 dev eth5 .1000 tab l e 3 ‘
51
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52 ‘ ip route add 192 . 1 6 8 . 1 3 . 0 /24 dev eth2 .2000 scope l i n k tab l e 4 ‘
53 ‘ ip route add de f au l t v ia 192 . 1 6 8 . 1 3 . 1 dev eth2 .2000 tab l e 4 ‘
54
55 ‘ ip route add 145 . 1 0 0 . 3 7 . 1 3 1 /27 dev eth0 scope l i n k tab l e 5 ‘
56 ‘ ip route add de f au l t v ia 192 . 1 6 8 . 3 7 . 1 3 1 dev eth0 tab l e 5 ‘
57
58 ‘ ip route add 192 . 1 6 8 . 2 1 . 0 /24 dev eth8 .520 scope l i n k tab l e 6 ‘
59 ‘ ip route add de f au l t v ia 192 . 1 6 8 . 2 1 . 1 dev eth8 .520 tab l e 6 ‘
60
61 ‘ ip route add 192 . 1 6 8 . 2 2 . 0 /24 dev eth2 .522 scope l i n k tab l e 7 ‘
62 ‘ ip route add de f au l t v ia 192 . 1 6 8 . 2 2 . 1 dev eth2 .522 tab l e 7 ‘
63
64 ‘ ip route add 192 . 1 6 8 . 2 3 . 0 /24 dev eth8 .516 scope l i n k tab l e 8 ‘
65 ‘ ip route add de f au l t v ia 192 . 1 6 8 . 2 3 . 1 dev eth8 .516 tab l e 8 ‘
66
67 ‘ ip route add 192 . 1 6 8 . 2 4 . 0 /24 dev eth2 .518 scope l i n k tab l e 9 ‘
68 ‘ ip route add de f au l t v ia 192 . 1 6 8 . 2 4 . 1 dev eth2 .518 tab l e 9 ‘
69
70 ‘ ip route add de f au l t scope g l oba l nexthop v ia 145 . 1 0 0 . 3 7 . 1 3 1 dev eth0 ‘
71
72 a=‘ ip route ‘
73 echo "$a"
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D Script: Interfaces Environments

1 #!/ bin /bash
2
3 HOST=$1
4 ENV=$2
5 SPEED=$3
6 NUMBER=$4
7
8 i f [ "$HOST" == " b l i k " ] ; then
9 echo " [ I ]BLIKSEM"

10 ‘ i f c o n f i g eth8 .1001 down ‘
11 ‘ i f c o n f i g e th8 .516 down ‘
12 ‘ i f c o n f i g e th8 .520 down ‘
13 ‘ i f c o n f i g eth5 .1000 down ‘
14 ‘ i f c o n f i g e th5 .514 down ‘
15 ‘ i f c o n f i g eth2 .2000 down ‘
16 ‘ i f c o n f i g e th2 .518 down ‘
17 ‘ i f c o n f i g e th2 .522 down ‘
18 s l e e p 2
19 ‘ i f c o n f i g eth2 down ‘
20 ‘ i f c o n f i g eth5 down ‘
21 ‘ i f c o n f i g eth8 down ‘
22 s l e e p 5
23 i f [ "$ENV" == " lan " ] ; then
24 echo "Enabling ␣LAN␣ i n t e r f a c e s "
25 ‘ i f c o n f i g eth2 up ‘
26 ‘ i f c o n f i g eth5 up ‘
27 ‘ i f c o n f i g eth8 up ‘
28 s l e e p 10
29 ‘ i f c o n f i g eth8 .1001 up ‘
30 ‘ i f c o n f i g e th8 .520 up ‘
31 ‘ i f c o n f i g eth5 .1000 up ‘
32 #‘ i f c o n f i g e th2 .2000 up ‘
33 ‘ i f c o n f i g e th2 .522 up ‘
34 ‘ i f c o n f i g e th8 .516 down ‘
35 ‘ i f c o n f i g e th5 .514 down ‘
36 ‘ i f c o n f i g e th2 .518 down ‘
37 s l e e p 10
38 i f [ "$SPEED" == "10" ] ; then
39 echo "Only␣Enabling ␣10GB␣ i n t e r f a c e s "
40 ‘ i f c o n f i g e th8 .520 down ‘
41 ‘ i f c o n f i g e th2 .522 down ‘
42 i f [ "$NUMBER" == "2" ] ; then
43 echo "Only␣ the ␣ r e a l ␣working␣two␣GB␣ l i n k s "
44 ‘ i f c o n f i g e th2 .2000 down ‘
45 s l e e p 3
46 ‘ i f c o n f i g eth2 down ‘
47 f i
48 e l i f [ "$SPEED" == "1" ] ; then
49 echo "Only␣Enabling ␣1GB␣ i n t e r f a c e s "
50 ‘ i f c o n f i g e th8 .1001 down ‘
51 ‘ i f c o n f i g e th5 .1000 down ‘
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52 ‘ i f c o n f i g e th2 .2000 down ‘
53 e l s e
54 echo "No␣Speed␣ Sp e c i f i e d "
55 f i
56 e l i f [ "$ENV" == "wan" ] ; then
57 echo "Enabling ␣WAN␣ i n t e r f a c e s "
58 ‘ i f c o n f i g eth2 up ‘
59 ‘ i f c o n f i g eth5 up ‘
60 ‘ i f c o n f i g eth8 up ‘
61 s l e e p 10
62 ‘ i f c o n f i g e th8 .516 up ‘
63 ‘ i f c o n f i g e th5 .514 up ‘
64 ‘ i f c o n f i g e th2 .518 up ‘
65 ‘ i f c o n f i g eth8 .1001 down ‘
66 ‘ i f c o n f i g e th8 .520 down ‘
67 ‘ i f c o n f i g eth5 .1000 down ‘
68 ‘ i f c o n f i g eth2 .2000 down ‘
69 ‘ i f c o n f i g e th2 .522 down ‘
70 i f [ "$SPEED" == "2" ] ; then
71 echo "Only␣ the ␣Geneve␣ l i n k s "
72 ‘ i f c o n f i g e th5 .514 down ‘
73 s l e e p 3
74 ‘ i f c o n f i g eth5 down ‘
75 f i
76 e l i f [ "$ENV" == " a l l " ] ; then
77 echo "Enabling ␣ a l l ␣ i n t e r f a c e s "
78 ‘ i f c o n f i g eth2 up ‘
79 ‘ i f c o n f i g eth5 up ‘
80 ‘ i f c o n f i g eth8 up ‘
81 s l e e p 10
82 ‘ i f c o n f i g eth8 .1001 up ‘
83 ‘ i f c o n f i g e th8 .520 up ‘
84 ‘ i f c o n f i g eth5 .1000 up ‘
85 #‘ i f c o n f i g e th2 .2000 up ‘
86 ‘ i f c o n f i g e th2 .522 up ‘
87 ‘ i f c o n f i g e th8 .516 up ‘
88 ‘ i f c o n f i g e th5 .514 up ‘
89 ‘ i f c o n f i g e th2 .518 up ‘
90 s l e e p 10
91 i f [ "$SPEED" == "10" ] ; then
92 echo "Only␣Enabling ␣10GB␣ i n t e r f a c e s "
93 ‘ i f c o n f i g e th8 .520 down ‘
94 ‘ i f c o n f i g e th2 .522 down ‘
95 ‘ i f c o n f i g e th8 .516 down ‘
96 ‘ i f c o n f i g e th2 .518 down ‘
97 e l i f [ "$SPEED" == "1" ] ; then
98 echo "Only␣Enabling ␣1GB␣ i n t e r f a c e s "
99 ‘ i f c o n f i g e th8 .1001 down ‘
100 ‘ i f c o n f i g e th5 .1000 down ‘
101 ‘ i f c o n f i g e th2 .2000 down ‘
102 ‘ i f c o n f i g e th5 .514 down ‘
103 e l s e
104 echo "No␣Speed␣ Sp e c i f i e d "
105 f i

50



Script: Interfaces Environments Appendix D

106 e l s e
107 echo "No␣Environment␣ g iven "
108 f i
109 e l i f [ "$HOST" == "don" ] ; then
110 echo " [ I ]DONDER"
111 ‘ i f c o n f i g eth2 .1000 down ‘
112 ‘ i f c o n f i g e th2 .515 down ‘
113 ‘ i f c o n f i g eth3 .1001 down ‘
114 ‘ i f c o n f i g e th3 .517 down ‘
115 ‘ i f c o n f i g e th3 .521 down ‘
116 ‘ i f c o n f i g eth1 .2000 down ‘
117 ‘ i f c o n f i g e th1 .519 down ‘
118 ‘ i f c o n f i g e th1 .523 down ‘
119 ‘ i f c o n f i g eth1 down ‘
120 ‘ i f c o n f i g eth2 down ‘
121 ‘ i f c o n f i g eth3 down ‘
122 i f [ "$ENV" == " lan " ] ; then
123 echo "Enabling ␣LAN␣ i n t e r f a c e s "
124 ‘ i f c o n f i g eth1 up ‘
125 ‘ i f c o n f i g eth2 up ‘
126 ‘ i f c o n f i g eth3 up ‘
127 #‘ i f c o n f i g e th1 .2000 up ‘
128 ‘ i f c o n f i g eth2 .1000 up ‘
129 ‘ i f c o n f i g eth3 .1001 up ‘
130 ‘ i f c o n f i g e th1 .523 up ‘
131 ‘ i f c o n f i g e th3 .521 up ‘
132 ‘ i f c o n f i g e th2 .515 down ‘
133 ‘ i f c o n f i g e th3 .517 down ‘
134 ‘ i f c o n f i g e th1 .519 down ‘
135 i f [ "$SPEED" == "10" ] ; then
136 echo "Only␣Enabling ␣10GB␣ i n t e r f a c e s "
137 ‘ i f c o n f i g e th1 .523 down ‘
138 ‘ i f c o n f i g e th3 .521 down ‘
139 i f [ "$NUMBER" == "2" ] ; then
140 echo "Only␣ the ␣ r e a l ␣two␣GB␣ l i n k s "
141 ‘ i f c o n f i g e th1 .2000 down ‘
142 f i
143 e l i f [ "$SPEED" == "1" ] ; then
144 echo "Only␣Enabling ␣1GB␣ i n t e r f a c e s "
145 ‘ i f c o n f i g eth2 down ‘
146 ‘ i f c o n f i g e th1 .2000 down ‘
147 ‘ i f c o n f i g e th2 .1000 down ‘
148 ‘ i f c o n f i g e th3 .1001 down ‘
149 e l s e
150 echo "No␣Speed␣ Sp e c i f i e d "
151 f i
152 e l i f [ "$ENV" == "wan" ] ; then
153 echo "Enabling ␣WAN␣ i n t e r f a c e s "
154 ‘ i f c o n f i g eth1 up ‘
155 ‘ i f c o n f i g eth2 up ‘
156 ‘ i f c o n f i g eth3 up ‘
157 ‘ i f c o n f i g e th2 .515 up ‘
158 ‘ i f c o n f i g e th3 .517 up ‘
159 ‘ i f c o n f i g e th1 .519 up ‘
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160 ‘ i f c o n f i g eth2 .1000 down ‘
161 ‘ i f c o n f i g eth3 .1001 down ‘
162 ‘ i f c o n f i g e th3 .521 down ‘
163 ‘ i f c o n f i g eth1 .2000 down ‘
164 ‘ i f c o n f i g e th1 .523 down ‘
165 i f [ "$SPEED" == "2" ] ; then
166 echo "Only␣ the ␣Geneve␣ l i n k s "
167 ‘ i f c o n f i g e th2 .515 down ‘
168 s l e e p 3
169 ‘ i f c o n f i g eth2 down ‘
170 f i
171 e l i f [ "$ENV" == " a l l " ] ; then
172 echo "Enabling ␣ a l l ␣ i n t e r f a c e s "
173 ‘ i f c o n f i g eth1 up ‘
174 ‘ i f c o n f i g eth2 up ‘
175 ‘ i f c o n f i g eth3 up ‘
176 ‘ i f c o n f i g eth2 .1000 up ‘
177 ‘ i f c o n f i g e th2 .515 up ‘
178 ‘ i f c o n f i g e th3 .517 up ‘
179 ‘ i f c o n f i g eth3 .1001 up ‘
180 ‘ i f c o n f i g e th3 .521 up ‘
181 #‘ i f c o n f i g e th1 .2000 up ‘
182 ‘ i f c o n f i g e th1 .519 up ‘
183 ‘ i f c o n f i g e th1 .523 up ‘
184
185 i f [ "$SPEED" == "10" ] ; then
186 echo "Only␣Enabling ␣10GB␣ i n t e r f a c e s "
187 ‘ i f c o n f i g e th3 .517 down ‘
188 ‘ i f c o n f i g e th3 .521 down ‘
189 ‘ i f c o n f i g e th1 .519 down ‘
190 ‘ i f c o n f i g e th1 .523 down ‘
191 e l i f [ "$SPEED" == "1" ] ; then
192 echo "Only␣Enabling ␣1GB␣ i n t e r f a c e s "
193 ‘ i f c o n f i g e th2 .1000 down ‘
194 ‘ i f c o n f i g e th2 .515 down ‘
195 ‘ i f c o n f i g e th3 .1001 down ‘
196 ‘ i f c o n f i g e th1 .2000 down ‘
197 e l s e
198 echo "No␣Speed␣ Sp e c i f i e d "
199 f i
200 e l s e
201 echo "No␣Environment␣ g iven "
202 f i
203 e l s e
204 echo "No␣Host␣machine␣ s p e c i f i e d "
205 e x i t
206 f i
207
208 echo " [ I ] S leep ␣ f o r ␣ f i v e ␣ seconds "
209 s l e e p 5
210 echo " ‘ i f c o n f i g ␣−s␣−a␣ | ␣ grep ␣BMRU‘ "
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E Script: Monitoring Interfaces

1
2 #!/ bin /bash
3 i f [ −z "$1" ] ; then
4 echo
5 echo usage : $0 network− inter face
6 echo
7 echo e . g . $0 Interface−name
8 echo
9 e x i t

10 f i
11
12 speed=1
13 INT1=$1
14 INT2=$2
15 INT3=$3
16 INT4=$4
17
18 i f [ "$INT1" == " eth3 .1001 " ] ; then
19 HOST1=192.168.11.1
20 e l i f [ "$INT1" == " eth2 .515 " ] ; then
21 HOST1=192.168.138.2
22 e l i f [ "$INT1" == " eth2 .1000 " ] ; then
23 HOST1=192.168.12.1
24 e l i f [ "$INT1" == " eth1 .2000 " ] ; then
25 HOST1=192.168.13.1
26 e l i f [ "$INT1" == " eth3 .517 " ] ; then
27 HOST1=192.168.23.1
28 e l i f [ "$INT1" == " eth3 .521 " ] ; then
29 HOST1=192.168.21.1
30 e l i f [ "$INT1" == " eth1 .519 " ] ; then
31 HOST1=192.168.24.1
32 e l i f [ "$INT1" == " eth1 .523 " ] ; then
33 HOST1=192.168.22.1
34 e l i f [ "$INT1" == " eth2 .1001 " ] ; then
35 HOST1=192.168.11.2
36 e l i f [ "$INT1" == " eth5 .514 " ] ; then
37 HOST1=192.168.138.18
38 e l i f [ "$INT1" == " eth5 .1000 " ] ; then
39 HOST1=192.168.12.2
40 e l i f [ "$INT1" == " eth8 .2000 " ] ; then
41 HOST1=192.168.13.2
42 e l i f [ "$INT1" == " eth2 .516 " ] ; then
43 HOST1=192.168.23.2
44 e l i f [ "$INT1" == " eth2 .520 " ] ; then
45 HOST1=192.168.21.2
46 e l i f [ "$INT1" == " eth8 .518 " ] ; then
47 HOST1=192.168.24.2
48 e l i f [ "$INT1" == " eth8 .522 " ] ; then
49 HOST1=192.168.22.2
50 e l s e
51 echo " I n t e r f a c e ␣one␣ g i v en : ␣Unknown"
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52 f i
53 i f [ "$INT2" == " eth3 .1001 " ] ; then
54 HOST2=192.168.11.1
55 e l i f [ "$INT2" == " eth2 .515 " ] ; then
56 HOST2=192.168.138.2
57 e l i f [ "$INT2" == " eth2 .1000 " ] ; then
58 HOST2=192.168.12.1
59 e l i f [ "$INT2" == " eth1 .2000 " ] ; then
60 HOST2=192.168.13.1
61 e l i f [ "$INT2" == " eth3 .517 " ] ; then
62 HOST2=192.168.23.1
63 e l i f [ "$INT2" == " eth3 .521 " ] ; then
64 HOST2=192.168.21.1
65 e l i f [ "$INT2" == " eth1 .519 " ] ; then
66 HOST2=192.168.24.1
67 e l i f [ "$INT2" == " eth1 .523 " ] ; then
68 HOST2=192.168.22.1
69 e l i f [ "$INT2" == " eth2 .1001 " ] ; then
70 HOST2=192.168.11.2
71 e l i f [ "$INT2" == " eth5 .514 " ] ; then
72 HOST2=192.168.138.18
73 e l i f [ "$INT2" == " eth5 .1000 " ] ; then
74 HOST2=192.168.12.2
75 e l i f [ "$INT2" == " eth8 .2000 " ] ; then
76 HOST2=192.168.13.2
77 e l i f [ "$INT2" == " eth2 .516 " ] ; then
78 HOST2=192.168.23.2
79 e l i f [ "$INT2" == " eth2 .520 " ] ; then
80 HOST2=192.168.21.2
81 e l i f [ "$INT2" == " eth8 .518 " ] ; then
82 HOST2=192.168.24.2
83 e l i f [ "$INT2" == " eth8 .522 " ] ; then
84 HOST2=192.168.22.2
85 e l s e
86 echo " I n t e r f a c e ␣two␣ g i v en : ␣Unknown"
87 f i
88 i f [ "$INT3" == " eth3 .1001 " ] ; then
89 HOST3=192.168.11.1
90 e l i f [ "$INT3" == " eth2 .515 " ] ; then
91 HOST3=192.168.138.2
92 e l i f [ "$INT3" == " eth2 .1000 " ] ; then
93 HOST3=192.168.12.1
94 e l i f [ "$INT3" == " eth1 .2000 " ] ; then
95 HOST3=192.168.13.1
96 e l i f [ "$INT3" == " eth3 .517 " ] ; then
97 HOST3=192.168.23.1
98 e l i f [ "$INT3" == " eth3 .521 " ] ; then
99 HOST3=192.168.21.1
100 e l i f [ "$INT3" == " eth1 .519 " ] ; then
101 HOST3=192.168.24.1
102 e l i f [ "$INT3" == " eth1 .523 " ] ; then
103 HOST3=192.168.22.1
104 e l i f [ "$INT3" == " eth2 .1001 " ] ; then
105 HOST3=192.168.11.2
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106 e l i f [ "$INT3" == " eth5 .514 " ] ; then
107 HOST3=192.168.138.18
108 e l i f [ "$INT3" == " eth5 .1000 " ] ; then
109 HOST3=192.168.12.2
110 e l i f [ "$INT3" == " eth8 .2000 " ] ; then
111 HOST3=192.168.13.2
112 e l i f [ "$INT3" == " eth2 .516 " ] ; then
113 HOST3=192.168.23.2
114 e l i f [ "$INT3" == " eth2 .520 " ] ; then
115 HOST3=192.168.21.2
116 e l i f [ "$INT3" == " eth8 .518 " ] ; then
117 HOST3=192.168.24.2
118 e l i f [ "$INT3" == " eth8 .522 " ] ; then
119 HOST3=192.168.22.2
120 e l s e
121 echo " I n t e r f a c e ␣ three ␣ g i v en : ␣Unknown"
122 f i
123 i f [ "$INT4" == " eth3 .1001 " ] ; then
124 HOST4=192.168.11.1
125 e l i f [ "$INT4" == " eth2 .515 " ] ; then
126 HOST4=192.168.138.2
127 e l i f [ "$INT4" == " eth2 .1000 " ] ; then
128 HOST4=192.168.12.1
129 e l i f [ "$INT4" == " eth1 .2000 " ] ; then
130 HOST4=192.168.13.1
131 e l i f [ "$INT4" == " eth3 .517 " ] ; then
132 HOST4=192.168.23.1
133 e l i f [ "$INT4" == " eth3 .521 " ] ; then
134 HOST4=192.168.21.1
135 e l i f [ "$INT4" == " eth1 .519 " ] ; then
136 HOST4=192.168.24.1
137 e l i f [ "$INT4" == " eth1 .523 " ] ; then
138 HOST4=192.168.22.1
139 e l i f [ "$INT4" == " eth2 .1001 " ] ; then
140 HOST4=192.168.11.2
141 e l i f [ "$INT4" == " eth5 .514 " ] ; then
142 HOST4=192.168.138.18
143 e l i f [ "$INT4" == " eth5 .1000 " ] ; then
144 HOST4=192.168.12.2
145 e l i f [ "$INT4" == " eth8 .2000 " ] ; then
146 HOST4=192.168.13.2
147 e l i f [ "$INT4" == " eth2 .516 " ] ; then
148 HOST4=192.168.23.2
149 e l i f [ "$INT4" == " eth2 .520 " ] ; then
150 HOST4=192.168.21.2
151 e l i f [ "$INT4" == " eth8 .518 " ] ; then
152 HOST4=192.168.24.2
153 e l i f [ "$INT4" == " eth8 .522 " ] ; then
154 HOST4=192.168.22.2
155 e l s e
156 echo " I n t e r f a c e ␣ four ␣ g i v en : ␣Unknown"
157 f i
158
159 whi le t rue
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160 do
161
162 R1=‘ cat / sys / c l a s s / net /$INT1/ s t a t i s t i c s / rx_bytes ‘
163 T1=‘ cat / sys / c l a s s / net /$INT1/ s t a t i s t i c s / tx_bytes ‘
164 i f [ −z "$2" ] ; then
165 echo −n ""
166 e l s e
167 R2=‘ cat / sys / c l a s s / net /$INT2/ s t a t i s t i c s / rx_bytes ‘
168 T2=‘ cat / sys / c l a s s / net /$INT2/ s t a t i s t i c s / tx_bytes ‘
169 f i
170 i f [ −z "$3" ] ; then
171 echo −n ""
172 e l s e
173 R3=‘ cat / sys / c l a s s / net /$INT3/ s t a t i s t i c s / rx_bytes ‘
174 T3=‘ cat / sys / c l a s s / net /$INT3/ s t a t i s t i c s / tx_bytes ‘
175 f i
176 i f [ −z "$4" ] ; then
177 echo −n ""
178 e l s e
179 R4=‘ cat / sys / c l a s s / net /$INT4/ s t a t i s t i c s / rx_bytes ‘
180 T4=‘ cat / sys / c l a s s / net /$INT4/ s t a t i s t i c s / tx_bytes ‘
181 f i
182
183 s l e e p $speed
184
185 R11=‘ cat / sys / c l a s s / net /$INT1/ s t a t i s t i c s / rx_bytes ‘
186 T11=‘ cat / sys / c l a s s / net /$INT1/ s t a t i s t i c s / tx_bytes ‘
187 i f [ −z "$2" ] ; then
188 echo −n ""
189 e l s e
190 R12=‘ cat / sys / c l a s s / net /$INT2/ s t a t i s t i c s / rx_bytes ‘
191 T12=‘ cat / sys / c l a s s / net /$INT2/ s t a t i s t i c s / tx_bytes ‘
192 f i
193 i f [ −z "$3" ] ; then
194 echo −n ""
195 e l s e
196 R13=‘ cat / sys / c l a s s / net /$INT3/ s t a t i s t i c s / rx_bytes ‘
197 T13=‘ cat / sys / c l a s s / net /$INT3/ s t a t i s t i c s / tx_bytes ‘
198 f i
199 i f [ −z "$4" ] ; then
200 echo −n ""
201 e l s e
202 R14=‘ cat / sys / c l a s s / net /$INT4/ s t a t i s t i c s / rx_bytes ‘
203 T14=‘ cat / sys / c l a s s / net /$INT4/ s t a t i s t i c s / tx_bytes ‘
204 f i
205
206 echo ‘ date ‘
207 snelheid_T1= ‘ expr $T11 − $T1 ‘
208 snelheid_R1= ‘ expr $R11 − $R1 ‘
209 gem_T1=‘ expr $snelheid_T1 / $speed ‘
210 gem_R1=‘ expr $snelheid_R1 / $speed ‘
211 #KBPS_T1=‘ echo " scale=2 ; ␣$gem_T1␣/␣1024" | bc ‘
212 #KBPS_R1=‘ echo " scale=2 ; ␣$gem_R1␣/␣1024" | bc ‘
213 #MBPS_T1=‘ echo " scale=2 ; ␣$KBPS_T1␣/␣1024" | bc ‘
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214 #MBPS_R1=‘ echo " scale=2 ; ␣$KBPS_R1␣/␣1024" | bc ‘
215 #TotKB_1=‘ echo " scale=2 ; ␣$KBPS_T1␣+␣$KBPS_R1" | bc ‘
216 #TotMB_1=‘ echo " scale=2 ; ␣$MBPS_T1␣+␣$MBPS_R1" | bc ‘
217 perf_1= ‘ echo " scale=2 ; ␣$gem_T1␣/␣131072" | bc ‘
218 perf_11= ‘ echo " scale=2 ; ␣$gem_R1␣/␣131072" | bc ‘
219 #perf_T1= ‘ echo " scale=2 ; ␣$TotMB_1␣∗␣8" | bc ‘
220 perf_T1= ‘ echo " scale=2 ; ␣$perf_1␣+␣$perf_11" | bc ‘
221 # rtt1= ‘ ping −I $INT1 $HOST1 −c 1 −i 0 . 01 | cut −d "/" −f 5 | t a i l −n 1 | cut

−f 1 ‘
222 #echo −e "$INT1=␣\ t ␣ t x : ␣$KBPS_T1␣kb/ s ␣$MBPS_T1␣mb/ s ␣\ t ␣ r x : ␣$KBPS_R1␣kb/ s ␣

$MBPS_R1␣mb/ s ␣\ t ␣ Totaa l : ␣$TotKB_1"
223 echo −e "$INT1=␣\ t ␣ i p e r f : ␣ tx␣$perf_1␣ rx␣$perf_11␣ to t ␣$perf_T1␣RTT:␣ $ r t t 1 "
224
225 i f [ −z "$2" ] ; then
226 echo −n ""
227 e l s e
228 snelheid_T2= ‘ expr $T12 − $T2 ‘
229 snelheid_R2= ‘ expr $R12 − $R2 ‘
230 gem_T2=‘ expr $snelheid_T2 / $speed ‘
231 gem_R2=‘ expr $snelheid_R2 / $speed ‘
232 perf_2= ‘ echo " scale=2 ; ␣$gem_T2␣/␣131072" | bc ‘
233 perf_22= ‘ echo " scale=2 ; ␣$gem_R2␣/␣131072" | bc ‘
234 #perf_T2= ‘ echo " scale=2 ; ␣$TotMB_2␣∗␣8" | bc ‘
235 perf_T2= ‘ echo " scale=2 ; ␣$perf_2␣+␣$perf_22" | bc ‘
236 echo −e "$INT2=␣\ t ␣ i p e r f : ␣ tx␣$perf_2␣ rx␣$perf_22␣ to t ␣$perf_T2␣RTT:␣ $ r t t 2 "
237 f i
238
239 i f [ −z "$3" ] ; then
240 echo −n ""
241 e l s e
242 snelheid_T3= ‘ expr $T13 − $T3 ‘
243 snelheid_R3= ‘ expr $R13 − $R3 ‘
244 gem_T3=‘ expr $snelheid_T3 / $speed ‘
245 gem_R3=‘ expr $snelheid_R3 / $speed ‘
246 perf_3= ‘ echo " scale=2 ; ␣$gem_T3␣/␣131072" | bc ‘
247 perf_33= ‘ echo " scale=2 ; ␣$gem_R3␣/␣131072" | bc ‘
248 perf_T3= ‘ echo " scale=2 ; ␣$perf_3␣+␣$perf_33" | bc ‘
249 echo −e "$INT3=␣\ t ␣ i p e r f : ␣ tx␣$perf_3␣ rx␣$perf_33␣ to t ␣$perf_T3␣RTT:␣ $ r t t 3 "
250 f i
251
252 i f [ −z "$4" ] ; then
253 echo −n ""
254 e l s e
255 snelheid_T4= ‘ expr $T14 − $T4 ‘
256 snelheid_R4= ‘ expr $R14 − $R4 ‘
257 gem_T4=‘ expr $snelheid_T4 / $speed ‘
258 gem_R4=‘ expr $snelheid_R4 / $speed ‘
259 perf_4= ‘ echo " scale=2 ; ␣$gem_T4␣/␣131072" | bc ‘
260 perf_44= ‘ echo " scale=2 ; ␣$gem_R4␣/␣131072" | bc ‘
261 perf_T4= ‘ echo " scale=2 ; ␣$perf_4␣+␣$perf_44" | bc ‘
262 echo −e "$INT4=␣\ t ␣ i p e r f : ␣ tx␣$perf_4␣ rx␣$perf_44␣ to t ␣$perf_T4␣RTT:␣ $ r t t 4 "
263 f i
264 done
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F Script: Experiment I

1
2 #!/ bin /bash
3
4 ADDRESS=192.168.22.2
5 EXPERIMENT=14B3−ID6
6 UITLEZEN=" eth8 .520 ␣ eth2 .522 " #LAN 1
7 BUFFER=3MB
8 MSS=1400
9 RUNTIME=600

10
11 echo " Starten ␣van␣ experiment ␣$EXPERIMENT"
12 echo "−−−−−−−−−−−−−−−−−−−−−−−−"
13
14 echo " [L ] Local ␣ i n t e r f a c e s ␣goed␣ ze t t en "
15
16 s y s c t l −w net.mptcp.mptcp_mss=$MSS
17 s y s c t l −w net.mptcp.mptcp_checksum=0
18 #/home/ g e r r i e /Desktop/ i n t e r f a c e s b l i k lan 1
19 #/home/ g e r r i e /Desktop/ i n t e r f a c e s don lan
20
21 echo " [R] Remote␣ rout ing ␣goed␣ ze t t en "
22
23 ssh root@145 .100 .37 .132 sudo s y s c t l −w net.mptcp.mptcp_mss=$MSS
24 ssh root@145 .100 .37 .132 sudo s y s c t l −w net.mptcp.mptcp_checksum=0
25 #ssh root@145 .100 .37 .132 sudo /home/ g e r r i e /Desktop/ i n t e r f a c e s don lan 1
26
27 f o r a in {1 , 2 , 3 , 9 , 1 6 , 2 1 }
28 do
29 date
30 echo " [R] Remote␣ i p e r f ␣ Starten "
31
32 #ssh root@145 .100 .37 .131 sudo k i l l a l l −9 nuttcp
33 #ssh root@145 .100 .37 .131 sudo k i l l a l l −9 nuttcp
34 #ssh root@145 .100 .37 .131 sudo nuttcp −S
35 #ssh root@145 .100 .37 .131 sudo nuttcp −S −r −l3MB −n3MB #LAN 1
36
37 ssh root@145 .100 .37 .132 sudo k i l l a l l −9 i p e r f
38 ssh root@145 .100 .37 .132 sudo k i l l a l l −9 i p e r f
39 ssh root@145 .100 .37 .132 sudo i p e r f −s −l 64KB −w $BUFFER −p 5001 −P $a &
40 #ssh root@145 .100 .37 .132 sudo i p e r f −s −l 64KB −w $BUFFER −p 5002 −P $a &
41
42 #ssh root@145 .100 .37 .132 sudo i p e r f −s &
43
44 s l e ep 5
45
46 echo " [L ] U i t l e z en ␣ s t a r t en "
47 k i l l a l l −9 uit lezen−donder
48 /home/ g e r r i e /Desktop/ uit lezen−donder $UITLEZEN > experiment$EXPERIMENT.$a.txt &
49
50 s l e ep 5
51
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52 echo " [L ] Sta r t ␣Local ␣Test "
53 #k i l l a l l −9 nuttcp
54 #k i l l a l l −9 nuttcp
55 k i l l a l l −9 i p e r f
56 k i l l a l l −9 i p e r f
57
58 echo "Parameters : ␣ [ S ] ␣−t␣600␣−w␣$BUFFER␣−l␣64KB␣−P␣$a␣ [R] ␣−s␣−w␣$BUFFER␣−l␣64KB␣−P␣$a

␣" >> experiment$EXPERIMENT.txt
59 echo −n "Thread␣ $a : " >> experiment$EXPERIMENT.txt
60 #nuttcp −t −T1200 −N$a $ADDRESS >> experiment$EXPERIMENT.txt & #LAN 1
61 #nuttcp −t −T30 −w200000 −ws200000 −wb200000 − l100000000 −n100000000 −N10 $ADDRESS
62 #nuttcp −t −T30 − l100000000 −n100000000 −N10 $ADDRESS
63 #nuttcp −T20 $ADDRESS
64
65 #i p e r f −i 5 −t $RUNTIME −l 500KB −c $ADDRESS >> experiment$EXPERIMENT.txt #LAN 1
66 i p e r f −i 1 −t $RUNTIME −l 64KB −w $BUFFER −p 5001 −P $a −c 192 . 1 6 8 . 2 2 . 3 >>

experimentRAIN$EXPERIMENT.txt &
67 i p e r f −i 1 −t $RUNTIME −l 64KB −w $BUFFER −p 5001 −P $a −c $ADDRESS >>

experiment$EXPERIMENT.txt &
68
69 s l e ep $RUNTIME
70
71 s l e ep 5
72
73 k i l l a l l −9 uit lezen−donder
74 INFO=‘ cat experiment$EXPERIMENT.txt | t a i l −n 1 ‘
75 echo " [ I ] Experiment␣$EXPERIMENT:␣Thread␣$a␣ f i n i s h e d "
76 echo "$INFO"
77 done
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