Time Sensitive Application Transport

Mohammad Shafahi

University of Amsterdam Faculty of Science

Introduction

Time sensitive applications are becoming more and more demanded

The demand of TSAs has introduced discussions in the network community specially the NRENS community

The NRENS main question is "What transport technology best suites time sensitive applications?"

Research Question(s)

What are the sources of delay and jitter in technologies?

What are the magnitudes of each source of delay and jitter?

What are the requirements for measuring delay and jitter?

What are the suitable methods and tools for measuring delay and jitter?

What are TSAs?

Jitter requirements of TSAs

Video	Audio	Application	jitter
v		Overlay image	240ms
~	~	lip synchronization	80ms
v	v	Music Script	5ms
	v	Dialog	120ms
	v	Background music	500ms
	v	Stereo	5µs

What are the sources of delay and jitter in technologies?

Sources of delay in a network node

 $dealy_t^i = RD_t + QD1_t + PCD_t + QD2_t + TD_t + PPD_t$

Sources of delay in a network node

 $dealy_t^i = RD_t + QD1_t + PCD_t + QD2_t + TD_t + (PPD_t)$

Delay in a network path

 $delay_t =$

$\sum_{i=1}^{N} (RD_t^i + QD1_t^i + PCD_t^i + QD2_t^i + TD_t^i + PPD_t^i) - PD_t^N$

Delay in a network path

 $delay_t =$

$\sum_{i=1}^{N} (RD_{t}^{i} + QD1_{t}^{i} + PCD_{t}^{i} + QD2_{t}^{i} + TD_{t}^{i} + PPD_{t}^{i}) - (PD_{t}^{N})$

Definition of jitter

 $Jitter_i = delay_i - delay_{i-1}$

 N_1

 $(N_2) \cdots (N_n)$

R

Definition of jitter

 $Jitter_i = delay_i - delay_{i-1}$

S

 N_1

 $(N_2) \cdots (N_n)$

Sources of delay

Tech/Delay	Propagation	Transmission/ Reception	Processing	Queuing
TDM		 		
(D)WDM		 		
SONET/SDH		 		
OTN		 		
Openflow			 	
MPLS-TP			~	
PBB-TE			~	
Optical	~			
Diffserv				 ✓

What are the magnitudes of each source of delay and jitter?

Magnitudes of delay

Source of Delay	Magnitude
Propagation	4.9 µs/km
Transmission	0.01 µs/kb*
Processing	2 µs/kb**
Queuing	<u>Used Memory</u> Service Speed

* For a 100Gb interface** Could be much less

What are the requirements for measuring delay and jitter?

One Way Delay and jitter

T^{STS} = Send Time Registered T^{RTS} = Receive Time Registered

One Way Delay and jitter

T^{STS} = Send Time Registered T^{RTS} = Receive Time Registered

One Way Delay and jitter

 T^{STS}_{1} , T^{STS}_{2} T^{S}_{1} , T^{S}_{2}

 T^{R_1} , T^{R_2} T^{RTS_1} , T^{RTS_2}

 T^{STS} = Send Time Registered $T^{S} = A$ T^{RTS} = Receive Time Registered $T^{R} = A$

Round Trip Time and jitter

T^{STS} = Send Time Registered T^{RTS} = Receive Time Registered

Round Trip Time and jitter

 T^{STS} = Send Time Registered T^{RTS} = Receive Time Registered

Round Trip Time and jitter

 T^{STS}_{1}, T^{STS}_{2} T^{S}_{1}, T^{S}_{2} T^{R}_{1}, T^{R}_{2} T^{RTS}_{1}, T^{RTS}_{2}

 T^{STS} = Send Time Registered T^{RTS} = Receive Time Registered

Calculating delay and jitter

 $delay_{i}^{o} = delay_{i}^{m} + delay_{i}^{n}$ $delay_{i}^{n} = T_{i}^{R} - T_{i}^{S}$ $delay_{i}^{m} = T_{i}^{S} - T_{i}^{STS} + T_{i}^{RTS} - T_{i}^{R}$

 $jitter_{i}^{o} = delay_{i}^{o} - delay_{i-1}^{o}$ $jitter_{i}^{n} = delay_{i}^{n} - delay_{i-1}^{n}$ $jitter_{i}^{m} = delay_{i}^{m} - delay_{i-1}^{m}$

Calculating delay and jitter

$$jitter^{m}(\delta t) + jitter^{n}(\delta t) = \frac{\sum_{i=1}^{N} |jitter_{i}^{m}|}{N} + \frac{\sum_{i=1}^{N} |jitter_{i}^{n}|}{N}$$
$$= \frac{\sum_{i=1}^{N} |jitter_{i}^{m}| + |jitter_{i}^{n}|}{N}$$
$$\geq \frac{\sum_{i=1}^{N} |jitter_{i}^{o}|}{N} = Jitter^{o}(\delta t)$$

Calculating delay and jitter

$$delay^{m}(\delta t) + delay^{n}(\delta t) = \frac{\sum_{i=1}^{N} |delay_{i}^{m}|}{N} + \frac{\sum_{i=1}^{N} |delay_{i}^{n}|}{N}$$
$$= \frac{\sum_{i=1}^{N} |delay_{i}^{m}| + |delay_{i}^{n}|}{N}$$
$$\geq \frac{\sum_{i=1}^{N} |delay_{i}^{o}|}{N} = delay^{o}(\delta t)$$

Measuring Delay and jitter

One way delay measurement (OWD)

requires synchronous clock for measuring delay (Using NTP + GPS)

Works fine without synchronous clock for jitter

Round Trip Time measurement (RTT)

Assumes your out going and return path and delay are the same/equal (Use the same!) What are the suitable methods and tools for measuring delay and jitter? Tools for measuring delay and jitter

Hardware Solutions Second Expensive Higher accuracy Software Solutions Cheep and many open source
 Solution Lower accuracy

Tools for measurement

Hardware Solutions

Custom hardware

Passive

Active

Network devices with OAM support

Software

Libraries

Applications

D-ITG

Supports OWD and RTT measurement
Supports multiple flows at the same time
Supports multiple senders and receivers
Supports Custom traffic patterns
Supports a verity of protocols

Measurement accuracy setup

Pentium D 3GHz 2 cores 8GB ram 1 Gbit Ethernet

Cat5e x-connect 8m Pentium Xeon 3GHz 8 cores 16GB ram 1 Gbit Ethernet

Jitter density function of Setup

Jitter(us)

Measurement accuracy setup 2

Pentium D 3GHz 2 cores 8GB ram 1 Gbit Ethernet

Dell PowerConnect 6248 Pentium Xeon 3GHz 8 cores 16GB ram 1 Gbit Ethernet

Jitter density function of Setup

Jitter(us)

Estimation of delay and jitter

Central Limit theorem:

The mean of a sufficiently large number of independent random variables each with finite mean and variance will approximately have a normal distribution

POC measurement setup

SUT University, Iran

AMD Athlon 64 3.4GHz 1 cores 2GB ram 1 Gbit Ethernet

UvA University, Netherlands

Pentium Xeon 3GHz 8 cores 16GB ram 1 Gbit Ethernet

Jitter density function of setup

Jitter(us)

Conclusion

Classified the sources of delay and provide a magnitude for them

Provided a framework for discussion about delay and jitter

We have to be careful with arithmetics

Showed that software solutions provide accuracies of microseconds in jitter measurements

Stimate that hardware is more accurate

Further Work

Studying hardware solutions

Looking into different implementations of OAM in Network devices

Adding queueing theory and system compression theories to the framework

Thanks

Cees de laat for his great guidance
The OS3 Research group
My wife, fahime for her patience

Questions?

mohammad.shafahi@os3.nl mohammad.shafahi@gmail.com