

Christos Tziortzios

System and Network Engineering

University of Amsterdam

 Introduction

Research Question

Man – in – the – Browser attack

 Solution Proposed: One – time Java Applet

Attack Scenario

Conclusion

Questions

 19 slides

Agenda

Why?

Evolution of attacks

Keyloggers

Man-in-the-Middle

Man-in-the-Browser (MitB)

Countermeasures

 Transaction Authentication Codes

 2 – factor authentication

Introduction: Cat and
Mouse Game

Usability
Marketing
Transaction Cost

e.g. e.dentifier2 Connected – Mode
 Secure device
 See What You Sign
 Users may not find it usable
 Need privileges to install software
 Need for USB port
 What about internet cafés?

Security vs …

Is using one – time Java Applets for Internet
Banking transactions a secure and usable
solution?

What kind of functionality should exist in such an
applet?

Which are the risks, related to implementing and
using the previously mentioned scheme?

Which are the strengths and weaknesses of the
scheme from a security and usability perspective?

Research Question

Malware on customer’s computer

Real – time content manipulation

Man-in-the-Browser
attack (1)

 Content Manipulation attack

 Automated

 Two stages

 Manipulate data input

 Manipulate transaction receipt

 The user will never notice

 Not a Man – in – the – Middle attack

 Nothing “wrong” with the network; bar is green!

 One Time Passwords, Client Certificates etc. cannot help
against the attack

Man-in-the-Browser attack
(2)

 Points of attack
 API hooking

 Browser Helper Objects (Explorer) - Extensions
(Mozilla)

 Java Script injection

 Uses regular expressions to find which content needs
to be altered

 Example malware
 Zeus

 Spy Eye

Man-in-the-browser attack
(3)

One – Time Java Applet

Pros

 No API hooking

 Java Virtual Machine

 No need for administrative
privileges or USB

 Concepts like randomization
against pattern matching

 Encryption within the applet

 Easy to push updates

Cons

 Changes what customers are
used to

 Need for Java Runtime
Environment; not always
installed

 Transactions probably take
longer (compile, sign)

 Not necessarily an answer to
Man-in-the-Middle attacks

 Schemes based only on
software cannot be 100%
secure

What should the applet do?

• What do we need to
protect?
• Login process?

• Transaction Details?

• Challenge?

• Response?

• In a compromised host
all the attacker needs is
the one – time codes

 Keyloggers

 Screenshots

 Rootkits

 Manipulate Input

 Manipulate Memory Entries

 Break a CAPTCHA

 Insert root – certificates to OS; code appears to be legitimate

 Break into Java VM

 Break Java security?

 Update botnets!

Possible threats: What can
Malware do?

Make it as hard as possible

 100% secure is impossible

 Prevent automation of attack

 Make input of fraudulent data harder to automate

 Make receipt manipulation harder to automate

What do we want to achieve?

 Signed code

 SSL/TLS communication

 Automatically check server fingerprint

 Secure on a lower level

 Strings to Characters

 Code Obfuscation: Harder to analyze code

Graphical keyboards

Randomize applet features

Quick server side updates

Secure the applet

Attacker builds overlay applet on victim host
 Attacker tricks the customer into using bogus applet

 Attacker uses legitimate applet in the background

All the attacker needs to do is make the user answer
the challenge for the attacker’s transaction
 Extract challenge from legitimate applet

 Pass it to the customer applet

 Let the customer generate the response

 Use it as input for his transaction

Attack Scenarios (1)

 Sign Code and Hope(!) Java Security does not break

 Hope(!) customers pay attention to Certificates

 Randomize code

 Make it harder to know what messages attacker must
send

 Replace Strings with characters

 Harder to manipulate the transaction receipt

 Graphical keyboards

 Possibly harder to automate fraudulent input

Attack Scenarios (2):
Countermeasures

 Software only schemes cannot be 100% secure
 Connected mode is secure enough; use when possible

One – Time Applet solves the problem, at least for
now
 Easy to update

 Security through obscurity to some extend

Different levels of security – usability; functionality
depends on that

Usability Survey needed

 Penetration testing needed

Conclusion

 Sander Vos

 Steven Raspe

Han Sahin

Acknowledgements

Christos.Tziortzios @ os3.nl

c.Tziortzios @ gmail.com

Questions

