
Secure Internet Banking on Insecure Hosts

Christos Tziortzios - christos.tziortzios@os3.nl
University of Amsterdam

System and Network Engineering (MSc)
(Dated: July 31, 2012)

This paper discusses using one - time applications for secure and usable Internet Banking. The
authentication and authorization methods are those implemented by ABN - Amro bank in the Nether-
lands. Customers use a secure device and their smartcard to generate the one - time codes needed
to login and sign their transactions. This paper suggests that one - time Java applets can be used
for Internet Banking transactions. Although there are more secure schemes, banks need to balance
security and usability; secure solutions that customers are not willing to use can be disastrous from a
marketing perspective. The goal of the scheme is to stop the Man - in - the - Browser attack as it is
implemented at the moment of writing. Moreover, new attacks should be expected to arise against it;
these attacks should be hard to automate. An important trait of the scheme is that it is suitable even
for environments, over which the user has limited or no control, such as internet - cafe computers.
Moreover, banks can easily update the application in case of a security breach.

I. INTRODUCTION

Internet Banking (IB) services have enabled bank cus-
tomers to perform their transactions from the comfort of
their homes or while on the move providing a 24 hour a
day, seven days a week service. These services no longer
require physically going to the bank. This saves both cus-
tomers and banks time and money. Furthermore, IB and
the ways in which it is performed can be used as market-
ing tools, giving certain banks a competitive advantage.
This has become more obvious with the introduction of
Mobile Banking applications for Smart phones.

Ever since the first IB services have been offered, banks
have been confronted with the obvious exposure to In-
ternet criminality. Ever since the introduction much at-
tention has been paid to ensure security of online trans-
actions. There is still an ongoing ”cat and mouse” game
between banks and criminals [1, 2]; banks implement new
security features and criminals continuously try to find
the weakest link and compromise that. As a result, there
is an evolution in the security features of IB applications,
which leads to more advanced attacks. Increased secu-
rity, however, often means limiting usability [3]. As a
result banks are confronted with a constant struggle for
the optimum balance between usability and security.

IB attacks have evolved from simple keyloggers, which
would capture users’ passwords to Man in the Middle
(MitM) attacks. Nowadays most European banks use
two-factor client-side authentication for IB [4]. This
is similar to what most people are used to when us-
ing an Automated Teller Machine (ATM); authentica-
tion is based on something you have (card, cell phone)
and something you know (pin code).

Although the servers on the bank side can be thought
of to be trusted, security of hosts used on the customer
end as well as the network (Internet) cannot be trusted.
Banks take for granted that a lot of their customers per-
form their transactions using computers, which are in-

fected with malicious software. Currently the most severe
type of attack is the Man-in-the-Browser (MitB) attack.
A Trojan Horse is installed in the client side, which inter-
cepts and manipulates calls between the browser and its
security mechanisms [5]. What should be noticed is that
the target browser will not provide any warnings related
to Public Key Infrastructure certificates; there is no Man-
in-the-Middle in the connection between the client host
and the bank server. The outcome of the MitB attack
is that the bank customer will see the correct transac-
tion in the browser, while the bank will get a transac-
tion that transfers money to an account of the criminal’s
preference. While it would be extremely hard for a bank
customer to detect the fraud, the bank side can some-
times detect possibly - fraudulent behaviour. However,
the high sophistication and the constant evolution of the
attacking tool let the attack succeed in many cases.

A. Related Research

A lot of research has been performed, related to secure
IB. Weigold et al. [6] state that malware on a compro-
mised host is capable of faking all information displayed
on the computer screen, including digital certificate ma-
nipulation. They also indicate that using a trusted device
is necessary for secure e - commerce. Weir et al. [7] il-
lustrate the usability - security tradeoff. In their survey
about two thirds of the sample would rather use an au-
thentication scheme that they perceive as possibly less
secure, as long as it is more usable. The fact that banks
in the Netherlands tend to compensate victims of fraud
in most cases, in fear of reputational damage, makes IB
users reluctant to accept less usable schemes. Hanacek
et al. [1] summarize attacks against IB, focusing on the
authentication and authorization problems. Oppliger et
al. [2] distinguish three types of client - side attacks:
credential - stealing, channel - breaking and content -
manipulation attacks; the MitB attack is a content ma-



2

nipulation attack. Among other things, they suggest that
in order to provide transaction authentication, the user
can input the transaction details in the web application.
In addition to that, the user will enter the same data in
the trusted device, which will generate Transaction Au-
thentication Numbers (TAN). Then the user will enter
those numbers in the web application. This requires that
the user inputs the transaction data twice. Moreover,
the user must input the TANs. This makes this scheme
less usable, but much more secure. Provided that the
bank customer got the destination account from a trusted
source, it is less likely that he will be tricked into enter-
ing the wrong transaction data to the secure device. As a
result criminals will not have the TAN for the fraudulent
transaction.

Several different concepts have been examined in order
to mitigate the risks related to IB. Especially in the case
of the Man - in - the - Browser attack different technolo-
gies have been examined [8]. Portable, hardened web-
browsers and Live - CDs are examples of that. Such
solutions may be suitable for home usage, even though
they require higher technical knowledge levels at the cus-
tomer end. However, they may not be functional when
the customer uses a computer in an Internet - cafe and
hosts on which there is limited or no control by the cus-
tomer (e.g. USB ports may be disabled). Moreover, the
fact that there is no malware on the Live distribution
used, does not mean that there are no vulnerabilities in
the, otherwise trusted, Operating System [9].

Another option involves sending out - of - band messages;
an SMS is sent to the customer’s cell phone including the
details of the transaction to be performed and an autho-
rization code. This approach requires that the cell phone
is free of malware. This is not always a valid assump-
tion, especially nowadays that smartphone users install
all kinds of applications on their cell phones and circum-
vent the security features of their device. It is also impor-
tant to notice that users do not always pay attention to
the transaction details sent through the SMS [10], thus
even if the users can see the fraudulent data on the SMS,
they could still authorize the transaction.

From a security point of view, using a secure device to
authorize transactions seems as the most promising ap-
proach. Any software - only solution cannot be trusted
when the customer uses a compromised host. Trusted
secure devices can provide increased security. However,
this approach provides limited usability; the customer
must have the secure device any time he wants to per-
form a transaction. Thus, there must be a balance be-
tween security and usability.

B. ABN Amro IB scheme

In order to log into ABN Amro IB, customers have to use
one - time passwords (OTP), generated on a trusted de-

vice by a smartcard; the card that customers use for their
transactions on an Automated Teller Machine (ATM).
At the moment of writing, customers can either use
e.dentifier or e.dentifier2; both are secure devices, dis-
tributed by the bank. Figure 1 provides a simplified
overview of the login and transaction procedure. In or-
der to generate the codes, users must enter their PIN
code. When customers want to perform transactions,
they enter the transaction details to the web application
and send them to the bank server. Next the bank server
generates a receipt and a challenge. If the transaction
details are correct, the user will input the challenge in
the secure device and get a response. Finally the user
will input that response to the web application in order
to digitally sign the transaction.

FIG. 1: Simplified Login and Transaction Procedure; Tasks
tagged with ”*” require e.dentifier

e.dentifier2 can be used either connected to the user’s
computer through a USB port or not connected. When
the user connects this device to his computer, the in-
tegrity of the transaction details displayed on the screen
can be considered guaranteed; this is the ”See What You
Sign” principle. Customers are also allowed to use the
device in a non - connected mode. This is the easy thing
to do, since in order to use the connected mode, cus-
tomers need to install software. Customers tend not to
use the connected mode to perform their transactions,
either because they are unaware of its increased secu-
rity or because they find it less usable. Moreover, using
the connected mode is not always possible. In certain
cases customers have no control over the device they use
for their transactions. One example for that is using a
computer in an Internet cafe. In this case, users usually
cannot install software, or even use USB ports.



3

C. Research Question

The USB - connected e.dentifier2 scheme is as secure as
possible, but not always usable. The scheme that is pro-
posed targets increased security without need to connect
a secure device to the computer in use or need for ad-
ministrative privileges in order to install software on the
user’s host.

This project introduces an alternative approach for se-
cure Internet Banking transactions: every time an In-
ternet - Banking user needs to perform a transaction, a
”one-time” application will be created by the bank server
and be run by the client.

The considerations mentioned above lead us to the fol-
lowing research question:

Is the use of one - time applications for Inter-
net Banking a secure and usable solution?

Related to the formulated research question the following
subquestions need to be answered:

• What kind of functionality should exist in such an
application?

• Which are the risks, related to implementing and
using the previously mentioned scheme?

• Which are the strengths and weaknesses of the
scheme from a security and usability perspective?

D. Scope

In this project, the concept of using one-time applications
for IB is investigated. Due to time restrictions there is
not a prototype solution implementing the idea. More-
over, usability will be estimated by the author, based on
the complexity of the operations that need to be per-
formed by the user. Last, scalability of the scheme is not
investigated thoroughly.

E. Assumptions

The authentication scheme that is currently implemented
by ABN-Amro Bank is considered secure. Furthermore,
the server-side operations are considered secure.

II. THEORY

In this section the required theoretical background for
understanding this report is provided. We give theoreti-
cal definitions to the most significant terms and concepts
used within the report.

A. One - Time Application

This report discusses using an application in order to per-
form IB transactions. In this application, local code can
be used in order to stop a number of attacks as imple-
mented at the time of writing. The concept is similar to
that of a hardened browser, but while in the case of a
hardened browser one needs to install software or use a
portable application on a USB stick, we can use a Java
applet that does not need administrative privileges to
run. Part of the paper is specific to Java applets, while
some concepts can be used on other runtime environ-
ments too.

In this report, a one - time application is an application
that is built for one transaction. The functionality of the
application is the same for all transactions, but features
of the application are randomized. The target of the
one - time application is to increase the level of security
without deteriorating the customer’s experience. This
can be achieved by making it harder for the attacking
software to know which calls must be intercepted in order
to perform the attack. Code obfuscation is needed but
not enough. The Internet criminals will probably be able
to find out which methods to intercept to achieve their
goal, this is why randomization is needed. In order to
ensure that the application is only going to be usable
once, we need to make sure that the application times
out on the server side after it is first used or after a
certain period of time.

B. Malware

Malware stands for malicious software. There are differ-
ent types of malware, some of which are related to attacks
against IB. Attackers can combine different malware con-
cepts to increase their power over the compromised host.
A common type of malware is Trojans; programs that ap-
pear to be useful to the victim, while they hide malicious
code. Internet criminals can use rootkits in order to hide
the existence of malware on the victim host. They can
also use backdoors, which allow them to connect to the
compromised host and possibly update and reconfigure
the malware that is already there. In earlier times, a key-
logger would be sufficient to get an IB user’s credentials
and credit card details. That would allow the attacker to
perform fraudulent transactions. Apart from using key-
loggers, attackers are also capable of taking screenshots
on mouse events. This enables Internet criminals to get
their victims’ passwords even when graphical keyboards
are used. This led the banks to use more sophisticated
schemes, using one - time codes. Even if Internet crimi-
nals could capture the one - time codes, the codes would
be of no use to them in a later time. This also led to
more sophisticated kinds of attacks, such as the Man -
in - the - Browser attack. The level of sophistication of



4

malware drives us to the conclusion that there is nothing
that can be trusted in the software level.

1. Rootkit

Originally, the term Rootkit referred to tools that used
to gain administrative access in UNIX operating systems
[11]. There are two types of rootkits, user mode and ker-
nel mode rootkits. Kernel mode rootkits have unlimited
privileges, which makes them capable of making the in-
fected host practically completely compromised. Rootk-
its have the ability to hide the existence of malware to
antivirus programs. They also can manipulate memory
entries.

C. Man - in - the - Middle attack

”An active attack which involves getting on the path be-
tween two legitimate users, relaying their messages to
each other, and thereby spoofing each of them into think-
ing they are talking directly to the other” [12]. The MitM
attack can also take place in sessions encrypted through
SSL/TLS. In such a case there are two SSL/TLS connec-
tions established, one between user A and MitM and one
between MitM and user B. Banks use PKI certificates to
ensure that if there is a MitM attack, the browser of the
customer will raise an alert. However, since we can as-
sume that criminals may have full control over a host, we
can also assume that it is possible to make a fraudulent
website or piece of code look legitimate to the user.

D. Man - in - the - Browser attack

Man - in - the - Browser attack is a content manipula-
tion attack. It is performed by malware that is installed
on the computer of the victim. The malware is capable
of modifying the transaction data that are sent to the
server, without any visible effect that would let victim -
user notice being under attack. Currently the attack is
automated. This means that as soon as a host is com-
promised, the criminal does not need to be sitting behind
his computer for the attack to succeed.

The malware (for instance a browser extension) will check
all websites that the user visits; when it is a website of
the criminal’s interest the attack will begin. As seen in
Figure 2 the bank customer wants to send an amount of
money to a certain account. The malware will capture
that data and save it for later use. Then it will change
the transaction details to what it is configured to, so that
it sends the money to an account of the criminal’s inter-
est. It should be mentioned that this is done before data

is encrypted through SSL. Moreover, it is not a MitM at-
tack. From a network perspective, the customer is com-
municating with the bank as normal. In the next step
of the IB transaction, the bank will generate a receipt
of the transaction. This receipt includes the destination
account and the amount of money to be sent. In the
transaction receipt there is also a challenge, a number to
be used as input to the secure device of the customer.
The output of the device is the response. Through this
response the bank customer signs the transaction. Nor-
mally the customer would not sign the transaction if he
notices manipulation of his data. However the malware
can scan the HTML document for the receipt fields and
simply change the transaction details back to what the
user entered. The malware uses regular expressions to
find which data need to be altered. This way the legiti-
mate user will never notice signing the fraudulent trans-
action.

FIG. 2: Man - in - the - Browser attack

Currently, the points of attack for the MitB attack are
the following [5]:

• Browser Helper Objects (Internet Explorer) - Ex-
tensions (Firefox - Chrome): dynamically - loaded
libraries, loaded upon startup. User may be un-
aware of the existence of the extensions.

• API-Hooking: Malware intercepts calls between
the executable application and its libraries.

• Javascript Injection

However, it should be mentioned that if these points are
better secured, attack could work on other points as well,
for instance by manipulating the memory entries for the
data to be sent to the bank server.

III. IDENTIFYING THREATS

According to the proposed scheme, there will be an appli-
cation, through which IB transactions will be performed.



5

While there are certain types of attacks against the pro-
posed scheme that are still possible, these attacks should
be more expensive that the attacks implemented at the
moment.

There are different types of attacks related to IB.
About credential stealing attacks, the user authentica-
tion scheme will remain as currently implemented by
ABN Amro. The application will not implement extra
security measures against such attacks. The second type
of attacks is channel - breaking attacks, namely MitM
attacks. Defending against such attacks requires user’s
cooperation. Unless users pay attention on certificates,
any measures taken by the bank will fail. Adversaries
only need to find the weakest link and break it in order
to perform their fraudulent transactions; users can be
the weakest link. Even applications that automatically
check the digital fingerprint of the server will not nec-
essarily increase security, unless users download trusted
applications from trusted websites. A low level of protec-
tion against MitM attacks can be implemented by making
the attack harder to automate, however if the adversary
uses his computer in real time, the attack will succeed.

The application may increase security against content
manipulation attacks. It must stop current content ma-
nipulation attacks and be prepared to cope with new
types of attacks. A compromised host can be thought
to be infected with any of the malware in the Theory
section, as well as with combinations of those. Content
manipulation can happen in different steps of the trans-
action procedure. Adversaries need to manipulate data
in cleartext, thus before encryption. This is commonly
done through API hooking. Adversaries can also create
an overlay application and pass it to the bank customer,
while they use the legitimate application for their own
transaction. The reason why adversaries need an overlay
application is because they need to trick the user into
signing the transaction.

Last, there is the threat of a replay attack. Since adver-
saries may be capable of reverse - engineering the code of
the application, they may be able to compromise it and
make the bank customer use it. The application should
be usable only once by a specific customer at a specific
period of time. The server side should be able to check
the validity of the application by expecting certain mes-
sages from it.

IV. ATTACK SCENARIOS

A. Content Manipulation

Adversaries want to manipulate transaction data trans-
parently to the user. Currently they manipulate calls to
OS libraries. Manipulation in a lower level is also possi-
ble, but probably more expensive for the adversaries. All

communication between client and server is encrypted
and attackers need to manipulate data in cleartext, thus
before encryption and after decryption. Apart from ma-
nipulating calls between the application and the OS, ad-
versaries can also break into the application. One can
assume that criminals will be able to reverse - engineer
the application, so that they find ways to break it. The
outcome of such an attack would be similar to the MitB
attack; the customer will not be able to notice signing
fraudulent transactions.

B. Overlay Application

Internet criminals need to make bank customers sign
their transactions. Instead of manipulating the cus-
tomer’s transaction details, while the customer uses the
legitimate application, they can also trick the customer
into using a fraudulent application. In this scenario,
criminals use the application by the bank, while cus-
tomers use a bogus application. The criminals need this
application in order to make the customer believe he is
performing a transaction in order to give them the TAN
codes. A possible example is the following:

1. User logs in to Bank website

2. Application is built by the server and downloaded
by the host

3. Adversary passes fraudulent application to the user
while the adversary uses the legitimate application

4. Adversary extracts the challenge of his transaction
and passes it to the fraudulent application

5. Victim - user answers the challenge and signs the
fraudulent transaction

The attack can be performed through Javascript injec-
tion, but also in other ways, since the customer is using
a compromised host. There are certain features in the
browsers, such as the same - origin policy, that would
not allow this attack to succeed. However, these policies
do not necessarily apply on a compromised host.

V. APPLICATION SECURITY CONTROLS

A. Security Objectives

Before defining what the application should do, the goal
of the project must be defined. Usability is a key factor in
IB; banks could have enforced more secure schemes, but
this would probably drive their customers to other banks.
Thus, balance between security and usability is needed.



6

Provided that a host can be completely compromised by
malware, it is rational to assume that no scheme can be
totally secure if a compromised host is the only device
used on the client side. Although any scheme will not
be totally secure, it can be more secure than the scheme
in use. At the moment of writing, MitB attack is auto-
mated. A reasonable goal is to make the attack harder to
automate, while keeping the level of usability high. The
new scheme aims to increase security by stopping fraudu-
lent transactions. There are no countermeasures against
other security related concerns, such as confidentiality of
transactions; one can assume that if a compromised host
is used, the adversary can simply take screenshots for all
transactions performed.

B. Scheme Limitations

The scheme is limited to not connecting a secure device to
the possibly compromised host; the e.dentifier2 provides
maximum security when connected to the host. More-
over, no software, other than what exists in most com-
puters should be installed. Last, if the customer enters
data twice, once in the keyboard of the host and once in
the secure device, there can be high security. The pro-
posed scheme is also limited to not requiring the user to
enter data twice.

C. Point of Implementation

There are three points in the transaction procedure for
the one - time application to be implemented. The first
option is to try to simulate the ”See What You Sign”
principle as found in the e.dentifier2 connected - mode.
In this case we need to build a one - time application for
the last part of the transaction; the application would
take over the transaction for messages 4 and 5, as seen
in Figure 1. The goal of such an application would be to
make the transaction receipt harder to seem legitimate
in case of fraud. In such a case, the customer would
have to notice being under attack and cancel the trans-
action. The second option is to perform the whole trans-
action, including the login process, through the applica-
tion. Compiling and signing one - time applications is an
operation that requires resources on the server side; this
would make it possible for Internet criminals to perform
Denial of Service attacks. The third option is to use the
application for the transaction after the login process.
This way it is possible to make it harder for the attacker
to enter the fraudulent data in the first place, while we
also make the transaction receipt harder to manipulate.

D. Runtime Environment

One important decision that needs to be made, is whether
the application will run on a browser or independently.
Both options are viable, however customers will probably
be reluctant to perform the beginning of the transaction
on a browser and finalize it on another program. Run-
ning a Java applet within the browser fits this criterion.
Moreover, Java applets run within a Virtual Machine;
this provides for code isolation. Last, API hooking does
not apply to Java applets, at least not in the same sense
as with other applications. Adversaries would have to
perform the attack on a lower level, which means that
the attack can be more expensive.

E. Code Signing

Code Signing is essential in order to provide proof of in-
tegrity and authenticity of the application in use. The
Public Key Infrastructure (PKI) is used to provide this
proof. One major problem is that criminals can insert
fraudulent root certificates to OSs. This way code that
is not legitimate may appear to be signed by a trusted
source. Furthermore, users do not always pay attention
to certificates; they will underestimate the warnings pro-
vided by their browser if a website is not trusted. Users
also underestimate the risks related to using an applica-
tion that is not signed.

Related to Java PKI, Java applets can be signed by a
trusted source. Moreover, there are features that would
terminate the application if code is modified or if un-
signed code is used along with signed code. However,
there is limited research on the level of effectiveness of
these features. Most Java - related security research is
about ensuring that the host will not suffer from a ma-
licious applet. There are indications that Java security
can be completely shut down [13]. This means that al-
though the application should be signed, the security of
the scheme cannot solely depend on the possibility that
customers check the certificate of the application prop-
erly.

F. Local Code

One of the points of attack for MitB is API hooking. One
of the solutions proposed is Hardened Browsers. Hard-
ened Browsers disallow extensions, have Javascript dis-
abled, are statically compiled and use local code as much
as possible [8]. Through these measures they have man-
aged to disallow MitB attack, at least for now. One im-
portant disadvantage is that banks cannot enforce cus-
tomers to use hardened browsers. Moreover, such so-
lutions will not work in environments, over which users



7

have limited control. However, the concepts that they
use for increased security can be used in other schemes.
The code of the application should be as local as possible.
Using libraries provided by the underlying OS should be
avoided if possible, since libraries can be compromised
and introduce points of attack [14].

1. Encryption

The application to be implemented should not rely on SS-
L/TLS libraries provided by the underlying OS. The ap-
plication should encrypt data by itself, so that there are
fewer opportunities to manipulate cleartext transaction
details. This can increase the level of security, however
kernel - mode rootkits are possibly capable of extracting
the key from the memory and manipulating data in the
memory level. Obfuscating memory entries in such low
level is also possible, but possibly not effective.

G. Code Obfuscation

Code obfuscation makes it harder for an adversary to
analyse the code, yet not impossible. If criminals put
effort on it, eventually they will be able to reverse en-
gineer the application and find ways to attack. On the
other hand, if variants of the application with random-
ization features are used for each transaction, then it will
take more effort on the attacker’s side.

H. Application Randomization

Certain concepts can increase the security of the appli-
cation. Using functions only once can increase the level
of security, by making it harder for the attackers to find
patterns within the code. In our application, the main
target of randomization is to make the transaction re-
ceipt harder to manipulate; the adversary should not be
aware of which methods to intercept in order to display
the information he wants without obvious effects to the
legitimate user. One way to achieve this is by breaking
strings into characters. This way, regular expressions will
not work efficiently; attack will be harder to automate.
For increased security we can change numbers into the
words, i.e. ”1” into ”one”. This would provide a larger
set of characters and confuse attackers even more. ”One”
in turn should consist of three textboxes, one for each
character. Each textbox could be displayed to its unique
coordinates by its own method. The order in which these
methods are called can be randomized. This way, crimi-
nals will have a harder task finding which textboxes they
need to manipulate. It should be noticed that measures,
like changing ”1” into ”one” may decrease usability. Not

only users will have a harder time to read the text, but it
is also possible that some customers will not know how
to read these words, while numbers are practically uni-
versal.

I. Data Input

The way that users input data for their transactions has
a major effect on the levels of security and usability. If
the application only simulates the ”See What You Sign”
principle, then the user will input the transaction details
as normal. The response to the challenge (message 5 in
Figure 1) can be entered through the keyboard or by us-
ing graphical keyboards. If the whole transaction is per-
formed through the application, the user may input all
data through graphical keyboards or through the hard-
ware keyboard. The level of usability and security can
be affected by this decision. In both cases input is vul-
nerable to manipulation, but generating valid messages
by automated manipulation of mouse events is a harder
task for the adversary. The side - effect is that it is also
less usable for most legitimate users.

J. Pushing Code

One important trait of a one - time application is that
it is supposed to be used only once. Every time a bank
customer wants to perform a transaction, he will have
to download a new application. This means that every
time there is a security breach, the application can be
updated in a way that makes it secure again. The user
does not need to allow for an update in his application, it
will happen automatically since he will be downloading
a new one anyway. On the other hand, there may be
vulnerabilities in the JRE. Unless the JRE is updated by
the user, adversaries will be able to take advantage of
these vulnerabilities.

VI. RESIDUAL RISKS

The one time application can increase the security of IB
transactions, but there are still attacks that can be suc-
cessful. The threat of MitM attacks remains. The appli-
cation can improve security against content manipulation
attacks, but if adversaries successfully pass an overlay
application to the user, they can still perform fraudulent
transactions.

There are two ways to defend against such an attack. Un-
fortunately, both will also decrease the level of usability.
The first way is through the use of graphical keyboards
for data input. This will work under the assumption
that adversaries will not be able to automate data input;



8

they will not know where they need to click to perform
the transaction if the layout of the application is ran-
domized. Moreover, clicking on e.g. button ”1” does
not necessarily mean that the message sent to the bank
server will include ”1”. Messages can be encoded, so that
adversaries do not know which messages to send, unless
they click on the button. The attack will be harder to
automate, but a criminal sitting in front of his computer
will still be able to attack this scheme.

The second way to defend against such an attack is by
making it harder for the attacker to extract the challenge
from the legitimate applet. The challenge should be obvi-
ous to the legitimate user, so if the adversary sits behind
a monitor, he will also be able to extract the challenge
and pass it to the user. However this is not an automated
attack. Currently malware uses regular expressions in or-
der to find which data need to be manipulated. The effi-
ciency of regular expressions can be reduced by breaking
strings into characters and displaying them in a random-
ized order. This can be done transparently to the user
by positioning the characters in the correct coordinates,
but displaying them in a different order than normal. A
vulnerability of this is that there is already software that
can break CAPTCHAs. Malware that has similar func-
tionality will be able to extract the challenge from the
application.

VII. JAVA CONSIDERATIONS

In most cases, users have Java installed on their comput-
ers. In this case, users do not need to install software
to run the application. However, if the JRE does not
exist on a host, customers will need to install it; this
requires administrative privileges. Moreover, a number
of security aware users do not allow Java applets to run
on their host, since they are afraid of malicious applets.
Last, there are popular devices that do not support Java
at all, e.g. the iPad. Although there are IB applications
for these devices, customers may still want to use IB in
the same way as in their desktops or laptops.

There are security considerations related to Java. Java
applets run in a sandbox, which in theory would keep
the underlying host intact, even if the code is malicious.
However, sandboxes are not always effective. Thus, users
do not always wish to allow Java applets to run. More-
over, earlier versions of the JRE would provide higher
privileges to trusted applets, i.e. applets signed by a
trusted source. This lead some users to disallow signed
Java applets to run on their computer.

VIII. CONCLUSIONS AND FURTHER
RESEARCH

Using one - time applications for IB transactions can mit-
igate the risks related to the MitB attack, as it is per-
formed at the moment. Moreover, it can do it in a usable
way. It should be expected that new types of attacks will
arise against the application, if it is popular enough. One
can think of this as the next stage in the Cat and Mouse
game. Since adversaries have full power over compro-
mised hosts, securing the transaction against all types of
attacks may be impossible without a trusted display.

Making the application totally secure is not the real tar-
get. Finding the balance between security and usability is
more important from a marketing perspective. Scenarios
like the overlay application will succeed if the adversary
sits in front of his computer. One realistic goal is to make
it as hard as possible for the attack to be automated.
Automation may still be possible, but if the application
changes frequently, it is possible that Internet criminals
stop targeting it. The security of the application relies
on its obscurity and on the fact that it is easy to update.
One question is how long it will take, until Internet crim-
inals find a generic way to perform the attack, in spite of
the obfuscation.

The functionality of the application depends on the bal-
ance between security and usability that needs to be de-
fined. From a security perspective, performing the whole
transaction through the application may increase the se-
curity level, while the scheme remains usable. Usability
is an important factor of the equation for the ideal IB
scheme. e.dentifier2 connected - mode is known to be
secure; one idea would be that ABN Amro forces all cus-
tomers to use that for IB. However, this would probably
drive customers away. Using graphical keyboards may
increase the level of security but it will also decrease us-
ability. Other measures to confuse the criminals can be
deployed, but it is quite probable that they will also con-
fuse the legitimate users to some extent. Thus there is
need for a usability survey that will show what customers
are willing to do for secure IB transactions. Moreover,
the scheme proposed should be implemented and pene-
tration testing should be performed before the scheme is
deployed.

The application will be pushed to the bank customers,
thus there will never be an outdated application in use.
This does not apply for the JRE, which may be vulner-
able; JRE will not be updated automatically. There are
certain shortcomings related to the use of Java. A lot
of customers do not have it installed in their computers,
while others have it disabled. Even worse, popular de-
vices such as Ipad do not support it at all. Moreover,
Java security tries to make sure that malicious applets
do not harm a host. There is little research done on
how secure the security features of Java actually are. If
the same concepts can apply to other runtime environ-



9

ments, complying with the same requirements, then the
security and usability of those environments need to be
researched.

Last, building and signing applications at real time is
an expensive operation. Customers will need more time
to perform transactions. On the server side, the opera-
tions require increased resources. If the scheme is secure
enough, implementing it is within the capabilities of the
bank, however the scalability of the scheme needs to be

investigated.

IX. ACKNOWLEDGEMENTS

I would like to thank my supervisor Sander Vos, Steven
Raspe and Han Sahin for all their help during the project.

[1] P. Hanacek, K. Malinka, and J. Schafer. e-banking se-
curity - a comparative study. Aerospace and Electronic
Systems Magazine, IEEE, 25(1):29 –34, jan. 2010.

[2] R. Oppliger, R. Rytz, and T. Holderegger. Internet
banking: Client-side attacks and protection mechanisms.
Computer, 42(6):27 –33, june 2009.

[3] Morten Hertzum, Niels Jrgensen, and Mie Nrgaard. Us-
able security and e-banking: ease of use vis-a-vis secu-
rity. Australasian Journal of Information Systems, 11(2),
2007.

[4] Fred Douglis. Phone + Internet Cafe = Secure

Banking? You Betcha. Internet Computing, IEEE,
13(6):4 –5, nov.-dec. 2009.

[5] The Open Web Application Security Project (OWASP).
Man-in-the-browser attack. https://www.owasp.org/

index.php/Man-in-the-browser_attack.
[6] Thomas Weigold, Thorsten Kramp, Reto Hermann,

Frank Hring, Peter Buhler, and Michael Baentsch. The
zurich trusted information channel an efficient defence
against man-in-the-middle and malicious software at-
tacks. In Peter Lipp, Ahmad-Reza Sadeghi, and Klaus-
Michael Koch, editors, Trusted Computing - Challenges
and Applications, volume 4968 of Lecture Notes in Com-
puter Science, pages 75–91. Springer Berlin / Heidelberg,
2008. 10.1007/978-3-540-68979-9 6.

[7] Catherine S. Weir, Gary Douglas, Martin Carruthers,
and Mervyn Jack. User perceptions of security, conve-

nience and usability for ebanking authentication tokens.
Computers and Security, 28(12):47 – 62, 2009.

[8] Philipp Guhring. Concepts against Man-in-the-Browser
Attacks. 2006.

[9] R. Oppliger and R. Rytz. Does trusted computing rem-
edy computer security problems? Security Privacy,
IEEE, 3(2):16 – 19, march-april 2005.

[10] Mohammed AlZomai, Bander AlFayyadh, Audun
Jøsang, and Adrian McCullagh. An exprimental inves-
tigation of the usability of transaction authorization in
online bank security systems. In Proceedings of the sixth
Australasian conference on Information security - Vol-
ume 81, AISC ’08, pages 65–73, Darlinghurst, Australia,
Australia, 2008. Australian Computer Society, Inc.

[11] Symantec. Windows rootkit overview. https:

//www.symantec.com/avcenter/reference/windows.

rootkit.overview.pdf.
[12] Charlie Kaufman, Radia Perlman, and Mike Speciner.

Network Security: Private Communication in a Public
World, Second Edition. in computer networking and de-
strilanted systems. Prentice Hall PTR, April 2002.

[13] A. Dabirsiaghi. Javasnoop: How to hack anything in
java. BlackHat Las Vegas, 2010.

[14] J. Berdajs and Z. Bosni. Extending applications using
an advanced approach to dll injection and api hooking.
Software: Practice and Experience, 40(7):567–584, 2010.


